
U. S. Department of Commerce
National Oceanic and Atmospheric Administration

National Weather Service
National Centers for Environmental Prediction

5830 University Research Court
College Park, MD 20740

Technical Note

WAVEWATCH III R© development best practices †.

Hendrik L. Tolman‡ (Editor)
Environmental Modeling Center

Marine Modeling and Analysis Branch

Version 1.2, Feb. 2019

this is an unreviewed manuscript, primarily intended for informal

exchange of information among ncep staff members

† MMAB Contribution No. 286.
‡ Contact code manager, e-mail: NCEP.List.WAVEWATCH@NOAA.gov

This page is intentionally left blank.

i

Abstract

This guide describes best practices for code development of WAVEWATCH
III R©. This includes guidelines for packaging of codes delivered by general users
to NCEP according to the WAVEWATCH III license, as well as instructions
for co-developers on the use of the subversion depository at NCEP. The guide
addresses codes, documentation and manuals.

Change log

version svn rev. date comment

0.1 7869 May 14, 2010 Initial MMAB No. 286.
Sec. 4 (regression testing)
as placeholder only

1.0 12398 Feb. 18, 2011 Adding svn note p. ??.
Adding svn warning p. ??.
Section 4 updated.

1.1 38155 Mar. 18, 2014 Changed address on title page.
Updating most sections.
Adding Sec. ?? (code distr.).
Finalize for release of v. 4.18.

1.2 Feb. 26, 2019 Prepare for release of v. 6.07.

(minor edits included in each new version)

ii

Acknowledgments. Code management for WAVEWATCH III is provided by NCEP.
Arun Chawla (NCEP), Henrique Alves (SRG at NCEP), Erick Rogers and Tim Camp-
bell (NRL Stennis) contributed to this guide.

This guide is available as a pdf file from

http://polar.ncep.noaa.gov/waves

iii

Contents

Abstract i

Acknowledgments ii

Table of contents iii

1 Introduction 1

2 Programming style 3

3 Adding to the model 9

4 Regression testing 11

5 Manual and documentation 15

6 Git repository 17

References 19

This page is intentionally left blank.

1

1 Introduction

The WAVEWATCH III R© wind wave model has a history dating back to the second
half of the 1980s. It’s history started with the development of the WAVEWATCH
model at Delft university of technology (Tolman, 1989, 1990, 1991). The next step
of development occurred at NASA, Goddard Space Flight Center in the early 1990s,
with the development of WAVEWATCH II. This model was explicitly designed for
(vector) super computing, and focused on improved numerics (Tolman, 1992a,b).
Development of WAVEWATCH III at NCEP started in 1993. Compared to previous
WAVEWATCH models, this model uses modified basic equations, and introduces
the present model architecture. This model utilizes vector optimization, together
with OpenMP or MPI parallel optimization, and hence can be run efficiently on
most modern computer architectures. With model version 3.14, WAVEWATCH III
has been trademarked and copyrighted, and has been distributed under an open-
source style license (see section 1.2 of Tolman, 2009, or the web site1). Henceforth,
WAVEWATCH III will be denoted as WW3.

Five public releases of WW3 have been made available (Tolman, 1999, 2002, 2009;
Tolman and The WAVEWATCH III R© Development Group, 2014), including the cur-
rent release version 5.16 ((alias?), 2016). This best practices guide was first provided
with model versions 3.14 for two reasons. First, coding standards are needed to foster
and support community model development. This has become particularly important
with the National Oceanographic Partnership Program (NOPP) project to improve
all basic wave model source terms, which will run from 2010 through 2014, and which
will use WW3 as a main development vehicle. This means that several teams will
work simultaneously on the WW3 code. Second, there is a need for unifying coding
approaches within NCEP. A first set of standards has been developed for the Commu-
nity Radiative Transfer Model (CRTM) as presented in Van Delst (2008). Whereas
it is unrealistic to retrofit all NCEP codes to a completely homogeneous coding stan-
dard due to the shear size of legacy codes, all basic precepts should be the same, and
are consistent between the present guide and Van Delst (2008).

From the beginning, WW3 has been envisioned as a modeling framework, with
various options for numerical and physical approaches, both for operational and re-
search applications. With a focus on operations at NCEP, selections of numerical
and physical approaches are done at the compile level of the code. This limits the
complexity of the source code that is used in operations. For example, complex exact
interaction codes are not compiled into the operational models at NCEP, and hence
do not need to be maintained in the operational code versions. Compile level code
selections are made using the native WW3 preprocessor and ‘switches’ in the source
code, as described in full in the WW3 manuals as identified above.

Starting with the release model version 3.14, we were maintaining the code using
subservion (Collins-Sussmann et al., 2004) and now are maintaining the code via git.

1 http://polar.ncep.noaa.gov/waves/wavewatch/license.shtml

2

The master version of WW3 will be maintained and supported at NCEP. With the
licensing of model version 3.14, users that develop code and/or modifications for WW3
are obligated to offer these back to NCEP, relative to the most recent version of WW3
available to them2. NCEP will then decide if such modifications and additions will
be included in the master version of WW3, and will be responsible for including it in
the authoratitive git repository.

In this context, coding standards, best practices for upgrading parts of WW3 and
for adding new pieces to WW3, regression testing, and maintenance of documentation
are essential. These issues are approached in Sections 2 (also including copyright
statements), 3, 4, and 5, respectively. Finally, Section 6 discusses standards of code
management using the subversion server at NCEP.

Some formatting practices for the WW3 manual are used in this guide. The file
font will be used to identify files, scripts and command line entries. The CODE font is
used to identify source code. Previous experience with WW3 is expected, and the use
of, for instance, optional switches in the code, will not be explained here in detail.

2 Public release or research version on svn server, depending on user access.

3

2 Programming style

WW3 is written in ANSI standard Fortran 90, fully modular, and with an internal
dynamic data structure exclusively using use-associated data modules. All modules
are internally documented with a style of documentation as illustrated in Fig. 2.1
and 2.2 for subroutines and modules, respectively. Examples of this can be found
throughout the source code, and templates are also provided in ‘user slot’ routines
for source terms and propagation schemes.

Is should be noted that WW3 consists of incomplete (‘.ftn’) FORTRAN files that
require standard WW3 preprocessing. All changes and additions should be made in
these files, not in extracted true FORTRAN files (for details see the manual).

The following is expected of codes provided to NCEP for inclusion in the official
version of WW3:

i) Fully document the code following the outline described above.

ii) Follow the coding style of WW3, in particular :

• For readability, code is written following the use of columns as in
fixed format Fortran, even though codes are technically written in free
format. Use typical indent strategies for loops and logical structures.

• Code intended as permanent code is written in upper case, temporary
(test) code is written in lower case. Note that we encourage the inclu-
sion of permanent test output to be activated at compile time using
the WW3 compile switches3 like ‘!/T’. The latter test output should
be coded in upper case as a permanent part of the code.

iii) Maintain an update log at the top of each module and for each individual
routine or function, and update the last update date in the header of each
module, function and routine, as has been done in the distribution version of
WW3. If a module only contains one program element, only a single update
log needs to be maintained. This is a legacy from code management before
using subversion, but will be retained until further notice.

iv) Each subroutine, function or grouping should be embedded in a module
to allow for full use association and internal automatic interface checks in
Fortran compilers. File naming conventions include:

• File names for elements of the basic wave model should start with w3.

• Program elements related to the multi-grid capability should start with
wm.

3 See manual for details on use of compile level switches.

4

• Module file names should end in md (before the file extension).

• Files with main programs should be stored in file names starting with
ww3 .

• The file extension.ftn identifies code elements that need to be prepro-
cessed by the WW3 preprocessor w3adc to activate switches.

• Files with ready-to-use source code (no need for the WW3 prepro-
cessor) are identified by the extension .f90. This includes external
packages interfaced to WW3.

As examples w3snl2md.ftn is a module of the basic wave model (one of the
Snl source term options) that needs to be preprocessed by the WW3 prepro-
cessor. ww3 grid.ftn contains the main program for the grid preprocessing.
mod constants.f90 is a part of a user-supplied package that does not require
WW3 code preprocessing. Note that the only file not following the WW3
naming convention is constants.ftn, which contains a module with physical
constants.

v) For now, we have been using the Fortran 90 standard. Required coding
practices include:

• Use free format with style as described above.

• Use IMPLICIT NONE in each module.

• Do not use COMMON declarations. Eventually all major data structures
should become part of the WW3 dynamical data structures (see man-
ual), which are all contained in separate modules, and can be used
by use association. See section 3 for suggestions on how to deal with
these data structures during (initial) code development.

• Each module used in a given program element will need to be use
associated with a USE statement. Where feasible, use

USE module name, ONLY: used names

to avoid unintended use of variables in modules.

• For the same reason, use PRIVATE for general declarations in modules.

• Declare INTENT on all dummy argument list items.

• Do not use tab characters in the code (not in Fortran character set).

• Name ENDs fully both for readability and because several compilers
will require this.

• Do not use numbered DO loops.

• Use CYCLE and EXIT instead of GOTO.

5

• Use CASE statements with a default rather than IF statements for
multiple selection tests.

• As a holdover of days long gone, short variable names have been used
throughout the WW3 code. Although this makes it easy to keep docu-
mentation readable, it does not necessarily make it easy to understand
the code at a glance. Feel free to use longer variable names to make
the code more easily understandable.

• Up to now, there has been no need for explicit KIND declarations in
WW3. If such declarations are needed, follow the standard set in
Van Delst (2008).

vi) Provide documentation for the modules to be included in the WW3 manual.
The manual is written in LATEX. Required manual elements to be provided
are

• Description or update of basic equations / physical parameterizations
as needed.

• Description or update of numerical approaches as needed.

• Update of system documentation including description of parameters
in the dynamical data structure of WW3.

• Document namelist options as applicable in ww3 grid in full in the
example input file ww3 grid.inp. The example file is included in full in
the manual.

The coding style does not imply that existing packages that are attached to WW3
need to be re-written in this style. However, it is strongly recommended that any such
package should be fully documented inside the code. Typically, a user provided pack-
age will require an interface routine to WW3. Such an interface routine is expected
to conform to the WW3 coding practices.

Note that the NWS claims copyright for all main elements of WW3, and generally
will claim copyright for interface routines. Providers of packages to be included
with the distribution of WW3 are encourage to provide copyright statements and
disclaimers in these packages as appropriate (as NWS will not claim copyright of
such packages).

6!/ --- /

SUBROUTINE W3XXXX

!/

!/ +-----------------------------------+

!/ | WAVEWATCH III NOAA/NCEP |

!/ | John Doe |

!/ | FORTRAN 90 |

!/ | Last update : 01-Jan-2010 |

!/ +-----------------------------------+

!/

!/ 01-Jan-2010 : Origination. (version 4.xx)

!/

! 1. Purpose :

! 2. Method :

! 3. Parameters :

!

! Parameter list

! --

! --

!

! 4. Subroutines used :

!

! Name Type Module Description

! --

! STRACE Subr. W3SERVMD Subroutine tracing.

! --

!

! 5. Called by :

!

! Name Type Module Description

! --

! --

!

! 6. Error messages :

! 7. Remarks

! 8. Structure :

! 9. Switches :

!

! !/S Enable subroutine tracing.

!

! 10. Source code :

!

!/ --- /

!/S USE W3SERVMD, ONLY: STRACE

!/

IMPLICIT NONE

!/

!/ --- /

!/ Parameter list

!/

!/ --- /

!/ Local parameters

!/

!/S INTEGER, SAVE :: IENT = 0

!/

!/ --- /

!/

!/S CALL STRACE (IENT, ’W3XXXX’)

....

!/

!/ End of W3XXXX --- /

!/

END SUBROUTINE INSBTX

Fig. 2.1 : Documentation template for subroutines. Note that each subroutine

is expected to include a call to the STRACE subroutine to enable subroutine

tracing inside WW3,

7

!/ --- /

MODULE W3XXXXMD

!/ +-----------------------------------+

!/ | WAVEWATCH III NOAA/NCEP |

!/ | John Doe |

!/ | FORTRAN 90 |

!/ | Last update : 01-Jan-2010 |

!/ +-----------------------------------+

!/

!/ 01-Jan-2010 : Origination. (version 4.xx)

!/

!/ Copyright 2010 National Weather Service (NWS),

!/ National Oceanic and Atmospheric Administration. All rights

!/ reserved. WAVEWATCH III is a trademark of the NWS.

!/ No unauthorized use without permission.

!/

! 1. Purpose :

! 2. Variables and types :

!

! Name Type Scope Description

! --

! --

!

! 3. Subroutines and functions :

!

! Name Type Scope Description

! --

! W3XXXX Subr. Public

! --

!

! 4. Subroutines and functions used :

!

! Name Type Module Description

! --

! STRACE Subr. W3SERVMD Subroutine tracing.

! --

!

! 5. Remarks :

! 6. Switches :

!

! !/S Enable subroutine tracing.

!

! 7. Source code :

!/

!/ --- /

!/

PRIVATE

!/

CONTAINS

!/ --- /

SUBROUTINE W3XXXX

.....

!/

!/ End of w3XXXX --- /

!/

END SUBROUTINE W3XXXX

!/

!/ End of module W3XXXXMD -- /

!/

END MODULE W3XXXXMD

Fig. 2.2 : Documentation template for modules. Copyright statement to be

adapted as appropriate.

8

This page is intentionally left blank.

9

3 Adding to the model

WW3 is designed as a highly plug-compatible code. Source term and propagation
approaches can be included as self-contained modules, with limited changes needed
to the interface of routine calls in W3SRCE, W3WAVE, and in the point post-processing
programs only. General users can experiment with new approaches in user slots
that are provided as dummy model slots like W3SNLX in the file w3snlxmd.ftn for the
nonlinear interactions. General users are expected to provide these ‘user slot’ routines
to NCEP for inclusion in subsequent versions of WW3, following the instruction in
this guide and in the documentation of routines like W3SNLX. Such codes should be
self-contained in the way described below.

When providing a module for a source term like W3SNLX or for a propagation
scheme the following programming guidelines should be followed:

i) Follow coding guidelines as outlined in the previous section.

ii) Provide a file with necessary modifications to W3SRCE and all other routines
that require modification.

iii) Provide a test case with expected results.

Furthermore, the module needs to be self-contained in the following way.

i) All saved variables connected with this source term need to be declared
in the module header. Upon acceptance as permanent code, they will be
converted to the WW3 dynamic data structure.

ii) Provide a separate computation and initialization routine. In the submis-
sion, the initialization should be called from the computation routine upon
the first call to the routine. Upon acceptance as permanent code, the ini-
tialization routine will be moved to a more appropriate location in the code
(i.e., being absorbed in ww3 grid or being moved to W3IOGR).

When such packages are provided to NCEP, NCEP may choose to not include the
package, or to provide the package as a ‘user slot routine’ like W3SNLX, with some minor
work of users required to install these routines, or may choose to fully integrate the
routines as a standard option in WW3.

Co-developers of WW3 with access to the subversion server are expected to fully
integrate the new modules in the experimental versions of WW3, using software se-
lection switches as provided by the NCEP code managers. It is, nevertheless, strongly
recommended that initially data structures are kept internal to the modules that are
being developed, and that data for the modules are only included in the dynamic

10

data structure of WW3 when the module is mature. This will make code develop-
ment and unification much easier when multiple developers are working on the code
simultaneously.

The integration of new modules may involve adding new software selection switches
to the source code. When this happens it is necessary to also add the new software
selection switches to the build scripts. Specifically, the new switches must be prop-
erly encoded in model/bin/make file.sh and model/bin/w3 new. This is required so
that switch incompatibilities can be trapped at compile time and source files affected
by changes to model/bin/switch can be correctly identified and recompiled. Docu-
mentation for new software selection switches must be added to Chapter 5.4 of the
manual.

The above approach are applicable to inherently modular elements of WW3 such as
source terms or propagation schemes. For more intricate changes to the code, please
consult the WW3 code managers4 on how to proceed with developing and providing
code upgrades.

4 Mail to NCEP.EMC.wavewatch@NOAA.gov

11

4 Regression testing

Up to model version 3.14, the wave model was distributed with a suite of test cases
in the tests directory. This set of tests was inconvenient to use for regression test-
ing, as it needed manual intervention and compilation of the code for each indi-
vidual test. In model version 4.07, an automated script was introduced by Erick
Rogers and Tim Campbell of NRL Stennis to convert the traditional tests cases to
regression tests that could be run in an automated manner. The automated re-
gression tests were first maintained in the nrltest directory, and are now kept in
the regtests directory. The previous tests directory has been removed, moving the
remaining real-world examples in the new cases directory. A more complete docu-
mentation of the test cases and of the regression test tools can be found in Section 5.6
in The WAVEWATCH III R© Development Group (WW3DG) (2019). The regression
tests in regtests cover basic tests to assure that features such as propagation and
source terms work. The following conventions are used in naming the test cases:

• ww3 tp1.n: Tests for one-dimensional propagation (regular grids).

• ww3 tp2.n: Tests for two-dimensional propagation (all grids).

• ww3 tsn: Tests for source term integration (some including propagation).

• ww3 btd.n: Tests for wave-bottom interaction. (d = 1 or 2, indicating one- or
two-dimensional test cases.)

• ww3 icd.n: Tests for wave-ice interaction. (d = 1 or 2, indicating one- or two-
dimensional test case.)

• mww3 test nn: Tests cases for the multi-grid wave model.

these idealized test cases should be used for regression testing when new code is added
to the repository; i.e., these tests should result in different answers compared to the
previous codes only when expected.

More generally, there are two reasons for providing regression tests. The first is
the responsibility of a code developer not to break previously existing code. The
regression testing gives a developer the tools to check this systematically and rigor-
ously. The second is to avoid that a contributor of code has to provide large efforts in
keeping the contributed code functional. By providing a regression testing for your
new code, the responsibility of keeping code function will first and foremost fall on
developers of new code, not on the contributor of already accepted code. As already
outlined above, this implies that developers of new model options should both run
relevant regression tests during development, and provide new (options for existing)
regression tests for their code additions. Some more details of how and when to
regression test will follow below.

12

To facilitate regression testing, a shell script, regtests/bin/run test is provided
along with input files for all test cases. The test cases are organized such that each
major test case has its own directory. Within each test case directory, it is possible to
have more test cases, for instance by compiling the code with different switches, using
different grid configurations, using different model inputs, and running the code in
either a shared or a distributed compute environment. A regression test is run using
command-line commands only. All options can be displayed by running the script
without arguments or with the -h option

run test

run test -h

the output of which is displayed in Fig. 4.1 at the end of this section.
When editing input files, it is recommended that developers avoid “checking in”

trivial changes as updates to the git repository. In the case of ww3 grid.inp and switch,
this can easily be avoided by keeping non-version-controlled variants of these files for
local editing and accessing them via the -g and -s switches, respectively.

Most WW3 developers will not have reason to edit the run test script itself, i.e. it is
treated as a black box. However, developers who would like to extend the capabilities
of the script (e.g. by adding new command line switches) and commit these changes
to the repository for sharing are encouraged to do so.

With the set of simple test cases, an a large number of switch and grid options, several
hundred unique regression tests have been created. A matrix of all possible regression
tests can be generated with the tools provided in the regtests/bin directory, as de-
scribed in Section 5.6 in The WAVEWATCH III R© Development Group (WW3DG)
(2019). The tools also allow for quickly sub-setting the full matrix by test case or
other filter options. The NCEP code managers will run the full matrix of regression
tests for trunk updates, running the matrix on both the old trunk, and the proposed
new trunk, and using the tools in regtests/bin to do bit-wise comparisons of the model
results. As it may take up to 12 hours to run the full matrix on our supercomputers,
it makes no sense to run the full set of regression tests during development of new
options.

During development of code, common sense should prevail. For instance, when
developing a new source term package, it is worth while to regularly run some of the
source term tests to assure that the other source term options are not broken, and
only occasionally run the entire matrix. Note that the NCEP developers do expect
that a branch presented for integration with the trunk has been tested at least once
with the entire matrix of regression tests by the developer.

There are two basic ways in which the regression testing can be done. One is to
keep copy of the trunk from which the development branch is created, and have a set
of regression tests run for both the trunk and the development branch, and compare

13

the results with the tools provide. The other is to do the regression testing “in place”.
In this case, when creating a branch, run the selected regression test(s) to create a
baseline identifying it with a version identifier. For instance, checking the PR3 and
UQ propagation options while working on another propagation scheme, a baseline
could be generated with (and possibly other command line options)

./bin/run test -s PR3 -w work PR3 OQ v4.00 ../. ww3 tp1.1

and after modifications are made to the code, the regression test is re-run in a in a
different work directory, e.g.,

./bin/run test -s PR3 -w work PR3 UQ v4.01 ../. ww3 tp1.1

after which results can be compared using tools provided or with direct Linux file
comparison tools. Note that for a test case to run to completion is a necessary but
not sufficient indication of success.

Note that run test has utility beyond regression testing. Perhaps the most useful
feature is that it makes it possible to fully document (or communicate) a model simu-
lation using a single line of text, “./bin/run test ...” without ambiguity. Furthermore,
the utility allows for direct comparison of options in the model. For instance, the
GSE test can be used to easily generate GrADS output for all different propagation
schemes on a regular grid with otherwise identical model settings.

14

Usage: run_test [options] source_dir test_name

Required:

source_dir : path to top-level of WW3 source

test_name : name of test case (directory)

Options:

-a ww3_env : use WW3 environment setup file <ww3_env>

: *default is <source_dir>/bin/wwatch3.env

: *file will be created if it does not already exist

-c cmplr : setup comp & link files for specified cmplr

-C coupl : invoke test using <coupl> coupled application

: OASIS : OASIS3-mct ww3_shel coupled application

: ESMF : ESMF ww3_multi coupled application

-d : invoke main program using gdb (non-parallel)

-e : prompt for changes to existing WW3 environment

-f : force pre- and post-processing programs to be compiled

: non-MPI (i.e., with SHRD switch); default is all programs

: compiled with unmodified switch settings

-g grid_string : use ww3_grid_<grid_string>.inp

-G : create GrADS data files using gx_outX.inp

-h : print usage and exit

-i inpdir : use inputs in test_name/<inpdir> (default test_name/input)

-m grid_set : execute multi-model test

: *grid names are obtained from input/<grid_set>

: *ww3_multi_<grid_set> will execute instead of ww3_shel

: *to execute a single model test case with ww3_multi use

: grid_set = none

-n nproc : specify <nproc> processors for parallel run

: *some <runcmd> programs do not require <nproc>

: *ignored if -p <runcmd> or -O is not specified

-N : use namelist (.nml) input instead of .inp (if available)

-o outopt : limit output post-processing based on <outopt>

: native : post-process only native output

: netcdf : post-process only NetCDF output

: both : post-process both native and NetCDF output

: * default is native

: * note that required input files must be present for

: selected output post-processing to occur

-O : parallel run using OpenMP paradigm and OMP_NUM_THREADS

environment variable and number of processors defined with

the -n np option

-p runcmd : run in parallel using <runcmd> to start program

: *MPICH or OpenMPI: mpirun or mpiexec (default <nproc> = 1)

: *IBM with Loadleveler: poe (no <nproc> required)

: *LSF: mpirun.lsf (no <nproc> required)

-q program : exit script after program <program> executes

-r program : only execute program <program>

-s switch_string : use switch_<switch_string>

-S : create stub file <finished>. with end data and time.

tests not executed if file is found.

-t nthrd : Threading option. (this is system dependant and can be used

: only for the hybrid option)

-w work_dir : run test case in test_name/work_dir (default test_name/work)

Fig. 4.1 : Description of arguments for run test script.

15

5 Manual and documentation

The WW3 manual and other WW3 documents like this guide are written in LATEX.
Since these are dynamic documents, the corresponding files are maintained in git,
together with the WW3 source code, script and auxiliary files. Because the manual is
rather large, it has been stored in several .tex files. During the development of model
version 4.18, most sub-sections were placed in their own file, to minimize conflicts in
editing when many contributors work on the manual simutaneously. The main files
(and directories) making up the manual are

manual.tex Main .tex file, mainly combining the .tex files below into the
complete manual.

defs.tex User defined LATEX constructs used in the manual.
start.tex Title page and table of contents set up.
intro.tex Chapter: Introduction, using directory intro.
eqs.tex Chapter: Governing equations, using directory eqs.
num.tex Chapter: Numerics, using directory num.
run.tex Chapter: Running the model, using directory run.
impl.tex Chapter: Installing the model, using directory impl.
sys.tex Chapter: System documentation, using directory sys.
app.tex Appendices, using directory app.
manual.bib BibTex database with references used in the manual.
jas.bst Bibliography style file used for the manual.

All files for the main chapters and appendices manage individual LATEX files for indi-
vidual sections (appendices) in the chapter. This way, new options are documented
in their own sub-file, and can therefore be easily managed. See the main chapter
files for the contents of the chapter directories. Note that the chapter directories also
include files for many individual figures.

A makefile is provided to compile the manual. The default make target will compile
a PDF version of the manual (manual.pdf). Other make targets available are: ”inp”
(create LATEXversions in current directory of the ww3 *.inp and gx *.inp input files),
as well as outputs of the ww3 gspl.sh and run test scripts, ”clean” (remove all files
created during compile of manual). The following external programs are required and
must be found in the user PATH: latex, bibtex and dvipdf.

The example input files (ww3 *.tex and gx *.tex) required for the programs described
in run.tex are automatically generated during compilation of the manual. The source
input files are copied from $(INPDIR). The default setting for INPDIR, ”../inp”, can be
overridden by setting INPDIR either on the make command-line or in the environment.

16

This method assures that the example input files provided with the code are the files
displayed in the manual.

Note that the manual consist of both a conventional manual and a basic system doc-
umentation. The following standards should be used in writing LATEX contributions
to the manual:

• Use American spelling and grammar.

• Use dynamic references to equation, chapter and section numbers, etc. Do not
use any hardwired reference numbers when referring to equations, sections etc.

• Use BibTex exclusively for references to other work. Do not write any references
directly into the text.

• Do not use excessive line lengths in the .tex files. We typically use a maximum
line length of 78 characters and ‘auto-fill-mode’ when writing or updating .tex
files using emacs.

• When adding contributions to the manual, add a note of the update to the
introduction, so that users of the public releases have a concise log of upgrades
since the previous model release.

• If you have no LATEX capability or experience, contact the WW3 code managers
to determine an acceptable method of delivering contributions to the manual.

For general users we will provide a recent manual package when they are ready to
provide their manual contributions. For co-developers, the most recent version of the
manual will be available on github.

17

6 Git repository

Starting with model version 3.14, the WW3 model is maintained using subversion
(Collins-Sussmann et al., 2004). Now the code is maintained via git on github. Infor-
mation on how to contibute code and use git will now be maintained on the github
wiki. Please see the github wiki for more information.

18

This page is intentionally left blank.

References

Collins-Sussmann, B., B. W. Fitzpatrick and C. M. Pilato, 2004: Version control with

subversion. O’Reilly, 320 pp.1

The WAVEWATCH III R© Development Group (WW3DG), 2016: User manual and
system documentation of WAVEWATCH III R© version 5.16. Tech. Note 329,
NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 326 pp. + Appendices.

The WAVEWATCH III R© Development Group (WW3DG), 2019: User manual and
system documentation of WAVEWATCH III R© version 6.07. Tech. Note 333,
NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 465 pp. + Appendices.

Tolman, H. L., 1989: The numerical model WAVEWATCH: a third generation model
for the hindcasting of wind waves on tides in shelf seas. Communications on Hy-
draulic and Geotechnical Engineering 89-2, Delft Universtity of Technology, ISSN
0169–6548, 72 pp.

Tolman, H. L., 1990: Wind wave propagation in tidal seas. Communications on Hy-
draulic and Geotechnical Engineering 90-1, Delft Universtity of Technology, ISSN
0169–6548, 135 pp. (Doctoral Thesis).

Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying,
unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782–
797.

Tolman, H. L., 1992a: Effects of numerics on the physics in a third-generation wind-
wave model. J. Phys. Oceanogr., 22, 1,095–1,111.

Tolman, H. L., 1992b: Effects of the Gulf Stream on wind waves in SWADE. in Proc.

23rd Int. Conf. Coastal Eng., Venice, Italy, pp. 712–725. ASCE.
Tolman, H. L., 1999: User manual and system documentation of WAVEWATCH III
version 1.18. Tech. Note 166, NOAA/NWS/NCEP/OMB, 110 pp.

Tolman, H. L., 2002: User manual and system documentation of WAVEWATCH III
version 2.22. Tech. Note 222, NOAA/NWS/NCEP/MMAB, 133 pp.

Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH
III TM version 3.14. Tech. Note 276, NOAA/NWS/NCEP/MMAB, 194 pp. + Ap-
pendices.

Tolman, H. L. and The WAVEWATCH III R© Development Group, 2014: User manual
and system documentation of WAVEWATCH III R© version 4.18. Tech. Note 316,
NOAA/NWS/NCEP/MMAB, 282 pp. + Appendices.

Van Delst, P., 2008: CRTM: Fortran95 coding guidelines. Technical report, Joint
Center for Satellite Data Assimilation.

1 Updated versions available online at http://subversion.tigris.org/.

This page is intentionally left blank.

	Abstract
	Acknowledgments
	Table of contents
	Introduction
	Programming style
	Adding to the model
	Regression testing
	Manual and documentation
	Git repository
	References

