
EnergyPlus Developers Meeting -- April 3-4 2014

Introduction
EnergyPlus C++

Stuart G. Mentzer
Objexx Engineering, Inc.

EnergyPlus Developers Meeting -- April 3-4 2014

What We Did: Round 1
EnergyPlus 8.0 Fortran was prepped/tested
● Vela Energy-Plus-Fortran repo

EnergyPlus 8.0 was converted to C++
● ObjexxFCL: arrays, strings, and intrinsics

Validated 8.0 (Thanks Edwin!)

* Issues found and fixed/noted in Fortran and C++

EnergyPlus Developers Meeting -- April 3-4 2014

What We Did: Round 2
EnergyPlus 8.2 Fortran was prepped
● Merged into Energy-Plus-Fortran code

EnergyPlus 8.2 converted, merged, polished
Validated/debugged 8.2 (Edwin!)
* New issues reported: Some fixed, some not yet

EnergyPlus Developers Meeting -- April 3-4 2014

Why We Did It
Opens code to wider developer pool
C++ Standard Library enables better code
Rich set of libs: Boost, Blitz++, Loki, Qt, …
Enables OOD to manage growing complexity
C++ is powerful and expressive (but not easy)

Converting to C++ is just the first step

EnergyPlus Developers Meeting -- April 3-4 2014

Fortran Limitations as Apps Grow
Profusion of function arguments
Logic is distributed throughout code
Big, nested IF blocks for type discrimination
Arrays used for every data structure
Difficult to modify code without introducing bugs
Poor ecosystem of testing tools

EnergyPlus Developers Meeting -- April 3-4 2014

What C++/OO Can Bring
Enables migration to a robust OOD
● Solid components with clean interfaces

=> Focus on the engineering
● Express subtle behaviors and relationships
● Good OO design is modular and extensible

EnergyPlus Developers Meeting -- April 3-4 2014

C++ In a Nutshell

Type-safe with full OO support:
● Encapsulation/containment layering
● Dynamic polymorphism via inheritance
● Compile-time polymorphism via templates

Powerful but easy to get into trouble:
● Raw pointers and C-style arrays => overflows, leaks, ...
● Class hierarchy implementation subtleties: overrides,

overloads, protected constructors, ...

EnergyPlus Developers Meeting -- April 3-4 2014

Not Why We Did It
C++ is simpler and easier to learn than Fortran

C++ programs run faster than Fortran

C++ code is automatically object-oriented

C++ compiles and links quickly

C++ compilers produce clear error messages

EnergyPlus Developers Meeting -- April 3-4 2014

Good News / Bad News
☺ Still looks a lot like the Fortran

– Easy to start working with
– Type safety and debug assertions reduce bugs
– Some bugs were exposed during conversion

☹ Still looks a lot like the Fortran
– Not object-oriented
– Conversion to C++ is an enabling step

EnergyPlus Developers Meeting -- April 3-4 2014

What We Have

Fortran-like C++ very close to original
Not object-oriented (but TYPE to struct)
Mostly solid C++ but some Fortran-isms
● Post-conversion migrations are suggested

EnergyPlus Developers Meeting -- April 3-4 2014

Code Remains Familiar

DO A=1,LEN_TRIM(InputString)

 B=INDEX(UpperCase,InputString(A:A))

 IF (B .NE. 0) THEN

 OutputString(A:A)=LowerCase(B:B)

 ELSE

 OutputString(A:A)=InputString(A:A)

 END IF

END DO

for (A = 1; A <= len_trim(InputString); ++A) {

 B = index(UpperCase, InputString(A, A));

 if (B != 0) {

 OutputString(A, A) = LowerCase(B, B);

 } else {

 OutputString(A, A) = InputString(A, A);

 }

}

Fortran C++

EnergyPlus Developers Meeting -- April 3-4 2014

Fortran to C++ Mappings
MODULE namespace

TYPE struct + constructors

SUBROUTINE sub(...) void sub(...)

IF (cond) THEN if (cond) {

DO i = 1, N for (i = 1; i <= N; ++i)

WRITE(unit,fmt) a, b gio::write(unit, fmt) << a << b;

EnergyPlus Developers Meeting -- April 3-4 2014

Function Declarations

REAL(r64) FUNCTION foo(i,x,o)
 INTEGER, INTENT(IN) :: i
 REAL(r64) :: x
 LOGICAL, OPTIONAL :: o
 …
END FUNCTION foo

Real64
foo(
 int const i,
 Real64 & x,
 Optional_bool o
)
{…}

Fortran C++

EnergyPlus Developers Meeting -- April 3-4 2014

User-Defined Types

TYPE :: Vector

 REAL(r64) :: x

 REAL(r64) :: y

 REAL(r64) :: z

END TYPE

struct Vector

{

 // Members

 Real64 x;

 Real64 y;

 Real64 z;

Fortran C++

 // Default Constructor
 Vector()
 {}

 // Member Constructor
 Vector(
 Real64 const x,
 Real64 const y,
 Real64 const z
) :
 x(x),
 y(y),
 z(z)
 {}
};

Fortran generates constructors and
assignment operators automatically

EnergyPlus Developers Meeting -- April 3-4 2014

Performance
Tuning needed to get back to Fortran speed
Typically focus on hot spot loops:
● Linear array indexing (like Fortran compiler)
● Common expression hoisting
● Algorithm refinements (FindArrayIndex 2+x speedup)
● Heap use and temporaries (ANY(A==B) is wasteful)

Future: OO and performance are not enemies
Getting both requires care

EnergyPlus Developers Meeting -- April 3-4 2014

EnergyPlus Performance
EnergyPlus hot spots are not array/loop ops
● Lookups in nested arrays/objects in arrays/objects in …
● Conditional tests for state and type
● Simple expressions and assignments

 Harder to tune but doable
Performance-limiting:
● Not vectorizable
● Cache unfriendly

EnergyPlus Developers Meeting -- April 3-4 2014

Performance Tuning Case Study

RefrigeratedWarehouse example (annual run)
● Raw C++ more than 2x slower
● FindArrayIndex was top: New C++ is >2x faster
● With addl. tuning gprof time now matches Fortran
● C++ system lib time kept it 50% slower overall
● A lot of this was heap use that Fortran avoids
● Quick pass at some easy heap waste cut this by 40%

EnergyPlus Developers Meeting -- April 3-4 2014

Potential Longer Range Goals

Migrate code to be more robust and natural C++
OO to simplify: modularity, extensibility
Increase focus on testing and testability
Exploit libraries and expressive power of C++
Attack flow to reach very high performance

EnergyPlus Developers Meeting -- April 3-4 2014

Where Are We Going?
Near Term:
● Post-conversion migrations
● Structural improvements
● Simple OO migration
Evolutionary migration to OO architecture
Modern design: testable, no global data, ...
Refactoring for high performance

Copyright © 2014 Objexx Engineering, Inc. EnergyPlus Developers Meeting -- April 3-4 2014

Questions

 ?

