
EnergyPlus Developers Meeting -- April 3-4 2014

Migrating to OO
EnergyPlus C++

Stuart G. Mentzer
Objexx Engineering, Inc.

EnergyPlus Developers Meeting -- April 3-4 2014

Why OO?

Manage complexity via abstraction

Self-managing objects improve reliability

Interfaces give extensibility & pluggability

Component packages give modularity

EnergyPlus Developers Meeting -- April 3-4 2014

OO C++: Good News

Enables powerful robust systems

● Modular
● Extensible
● Testable
● High performance

EnergyPlus Developers Meeting -- April 3-4 2014

OO C++: Bad News
Takes a lot of work and code in C++

Abstractions slice application in new ways
● Poorly decomposed systems are inflexible
● Finding decoupling “pinch points” takes experience

Abstraction inhibits quick hacks (not all bad)

Learning robust idioms & patterns takes time
Not everyone can become proficient at OO

EnergyPlus Developers Meeting -- April 3-4 2014

Getting to OO

Turning a procedural code
into OO is a big job

Clean slate for crusty
legacy components

Evolutionary migration is
usually best

EnergyPlus Developers Meeting -- April 3-4 2014

Clean Slate Approach
Need OO dev team
Architect high-level design
Build “mini” prototype 1st
Refine and embellish
Ambitious
Delayed benefits

EnergyPlus Developers Meeting -- April 3-4 2014

Evolutionary Approach

Develop OO guidelines
Refactoring phases:
● Support developers

Architecture evolves
Smaller steps
Less ambitious

EnergyPlus Developers Meeting -- April 3-4 2014

Can EnergyPlus Migrate to OO? (Yes)

You can introduce OO to a procedural code

Code can evolve towards an OO design

You don’t need to make everything OO

Various migration strategies...

EnergyPlus Developers Meeting -- April 3-4 2014

Migration Sequencing Strategies
Most Useful: Biggest Bang theory
Top-Down:
● High-level parts are most important
● They provide the application framework
Bottom-Up: Low-hanging fruit
● Attack peripheral/utility classes early
● They are simpler & have fewer dependencies

Typically use all of these approaches

EnergyPlus Developers Meeting -- April 3-4 2014

Migration Process

Choose a migration strategy

Gradually replace legacy components with OO

Aim for frequent functional milestones

Build tests as you go

EnergyPlus Developers Meeting -- April 3-4 2014

OO Principles
Focus on reducing dependencies
● Good for extensibility and compile speed
● Acyclic package dependencies

Insulate client code from object internals
● Interface-based designs: Clients know what not how
● Factories localize dependence on concrete types
● Pluggable and fast compilation

EnergyPlus Developers Meeting -- April 3-4 2014

Agile Processes
● No heavyweight up-front design process
● Build the application domain model
● Evolve it gradually
● Small iterations between working systems
● Test in parallel: Find problems early
● Evolve requirements in parallel
● Decoupled, interface-based designs help

EnergyPlus Developers Meeting -- April 3-4 2014

Application Domain Modeling
● Finding the objects

● Start with natural application
domain nouns/entities

● Algorithm variants

● Rough out a high-level design
● CRC cards
● Use cases
● Class diagrams
● Sequence diagrams

EnergyPlus Developers Meeting -- April 3-4 2014

CRC Card
Class Name
Responsibilities

Interface (Services)
Invariants (Promises)

Collaborators

Who does it interact with
Does it use or own them

EnergyPlus Developers Meeting -- April 3-4 2014

Class Profile
Name: AminoAcid

Description: An AminoAcid

What it Does Who it Works With
move Position

score Atom, Bond

What it is Made Of Description
Atom

Bond

ChiAngle

Invariants Description

EnergyPlus Developers Meeting -- April 3-4 2014

UML Class Diagrams

EnergyPlus Developers Meeting -- April 3-4 2014

UML Sequence Diagrams

EnergyPlus Developers Meeting -- April 3-4 2014

Design Modeling & Implementation
● Fill out design as real implementations added

● Add “glue” and helper classes/functions

● Discover finer granularity design

● Refine package design for low coupling

● Agile: Build this as you go!

EnergyPlus Developers Meeting -- April 3-4 2014

Phase 1: Basics

structs -> classes: methods, private data, ...

Find hierarchies / Add base classes

Replace if blocks of type tests with virtual calls

Reduce global data

EnergyPlus Developers Meeting -- April 3-4 2014

Phase 1: Payoffs

Reduce boilerplate code

Improve maintainability

Enable assert & unit testing

Insulate clients of types from some details

EnergyPlus Developers Meeting -- April 3-4 2014

Phase 2: Extend Object Model

Improve object granularity

Find more objects

Bring more functions into classes

Modern C++ data structures and smart pointers

EnergyPlus Developers Meeting -- April 3-4 2014

Phase 2: Finding Objects
Nouns: Building, Zone, Pump, Coil, …

Verbs: Iteration, Minimization, Controller alg.
● Strategy Pattern / Functors

Factories separate point of (concrete) object
creation from (abstract) object users: Decouple

EnergyPlus Developers Meeting -- April 3-4 2014

Struct Should be a Class If...
Code to manage/check state reappears:
● Principal angle in [0, 2π]
● Rotation matrix orthogonality
● Unit quaternion renormalization

Objects manage their own state
Removes clutter from engineering code
Reduces bug exposure

EnergyPlus Developers Meeting -- April 3-4 2014

You Need a Class Hierarchy If ...
if (ControlTypeNum == 0) { // Uncontrolled
 ...
} else if (ControlTypeNum == SingleHeatingSetPoint) {
 ...
} else if (ControlTypeNum == SingleCoolingSetPoint) {
 ...
} else if (ControlTypeNum == SingleHeatCoolSetPoint) {
 ...
} else if (ControlTypeNum == DualSetPointWithDeadBand) {
 ...
}

EnergyPlus Developers Meeting -- April 3-4 2014

Looks Like a Factory
if (SameString(Alphas(4), "CaseTemperatureMethod")) {

 RefrigCase(CaseNum).LatentEnergyCurveType = CaseTemperatureMethod;

} else if (SameString(Alphas(4), "RelativeHumidityMethod")) {

 RefrigCase(CaseNum).LatentEnergyCurveType = RHCubic;

} else if (SameString(Alphas(4), "DewpointMethod")) {

 RefrigCase(CaseNum).LatentEnergyCurveType = DPCubic;

} else {

 ShowSevereError(RoutineName + trim(CurrentModuleObject) + …

 ErrorsFound = true;

}

EnergyPlus Developers Meeting -- April 3-4 2014

Functors ‘R Us
if (SELECT_CASE_var == CaseTemperatureMethod) {

 DefCapModFrac = CurveValue(DefCapCurvePtr, TCase);

 DefrostRatio = max(0.0, (1.0 - (RatedAmbientRH - ZoneRHPercent) …

} else if (SELECT_CASE_var == RHCubic) {

 DefrostRatio = max(0.0, CurveValue(DefCapCurvePtr, ZoneRHPercent));

} else if (SELECT_CASE_var == DPCubic) {

 DefrostRatio = max(0.0, CurveValue(DefCapCurvePtr, ZoneDewPoint));

} else if (SELECT_CASE_var == None) {

 DefrostRatio = 1.0;

}

EnergyPlus Developers Meeting -- April 3-4 2014

Costs of Type-Selection If Blocks

Adding types is a large task
Maintaining all the if blocks is a big bug risk
Concrete type set dependency everywhere

Factories localize concrete dependency
● Reduces build time and code clutter

EnergyPlus Developers Meeting -- April 3-4 2014

Stage 1: Data Bundling

● Combine data for
objects into structs

● This may require
cutting up arrays

● Reduces function
argument lists

struct Position
{
 double x, y, z;
};

std::vector< Position > p(N);

double x[N], y[N], z[N];

might become:

EnergyPlus Developers Meeting -- April 3-4 2014

Stage 2: Migrate Behavior
struct Position
{
 // Default Constructor
 Position() :
 x(0.0),
 y(0.0),
 z(0.0)
 {}

 // Coord Constructor
 Position(
 double x,
 double y,
 double z
) : x(x), y(y), z(z)
 {}

 // Length
 double
 length() const;

 // Normalize
 Position &
 normalize();

 // Data
 double x, y, z;

};

EnergyPlus Developers Meeting -- April 3-4 2014

Stage 3: Hidden Data
 // X coordinate
 double
 x() const
 { return x_; }

 // X coordinate
 double &
 x()
 { return x_; }
 …
private: // Data

 double x_, y_, z_;

};

class Position
{
 // Default Constructor
 Position() :
 x(0.0),
 y(0.0),
 z(0.0)
 {}

 // Coord Constructor
 Position(
 double x,
 double y,
 double z
) : x_(x), y_(y), z_(z)
 {}

EnergyPlus Developers Meeting -- April 3-4 2014

Stage 4: Polymorphism
● Insulates Sidechain users

from concrete details
● Pluggable
● More maintainable
● Faster compiles
● But abstract Sidechain has

shared implementation

EnergyPlus Developers Meeting -- April 3-4 2014

Stage 5: Interfaces
● Observation: Users

dependency on shared
data or methods is bad

● Solution: Interface root
with only pure virtual
functions and no data

EnergyPlus Developers Meeting -- April 3-4 2014

Stage 6: Templates
● Same behavior diff. types
● Behavior sep. as Policy
● Templates bring:

● Code reduction: GOOD
● Dependencies: BAD

● CRTP: Template base class is
a template argument unique

EnergyPlus Developers Meeting -- April 3-4 2014

Are We Done?
● What if clients need

subinterfaces?
● Chain of interfaces
● How to avoid

dependencies?
● Solution: Lattice

hierarchy

?

EnergyPlus Developers Meeting -- April 3-4 2014

Stage 7: Lattice Hierarchy

● Interface chain

● Multiple inheritance

● Not simple

EnergyPlus Developers Meeting -- April 3-4 2014

Composite Objects: Structure

Contains objects of (usually dynamic) types

class Building

 std::set< Zone > zones; // No good if Zone abstract

These work:
 std::set< Zone * > zones; // Must manage lifetimes

 std::set< std::shared_ptr< Zone > > zones;

EnergyPlus Developers Meeting -- April 3-4 2014

Composite Objects: Operation

Delegate varying behaviors to objects:
 for (auto & zone : bldg.zones)

 zone->run_cycle(); // Depends on zone

Require multiple dispatch patterns if varying
behavior depends on multiple types

EnergyPlus Developers Meeting -- April 3-4 2014

Code Duplication: Problem
Multiple copies of near-same code:
● Hard to maintain
● Get out of synch

Frankensource:
● Keep bolting on more code to add subtypes
● Can’t understand intent
● Can’t safely extend algorithms

EnergyPlus Developers Meeting -- April 3-4 2014

Code Duplication: Macro Solution
scaffolding()
{
 doA();
 …
 doB();
 …
 doC();
 …
 doD();
}

Scaffolding functions
that call functors for
the variable parts¹

¹ Template Method pattern

EnergyPlus Developers Meeting -- April 3-4 2014

Code Duplication: Micro Solution
Non-member scaffolding function:
● Function-like objects pick the right behavior
● Actual objects are set elsewhere so scaffold is stable

Scaffolding function is member of base class:
● Calls virtual functions to do the work

Result: Scaffolding code is stable while behavior is
extensible: Don’t need to copy & paste

EnergyPlus Developers Meeting -- April 3-4 2014

Phase 3: Advanced OO
Higher-level idioms/patterns/techniques to
capture complex relationships & behavior
• Composite pattern for nested containment
• Compile-time type flexibility via templates
• Modular type flexibility via Pluggable Factories
• Functor hierarchies for pluggable algorithms (Strategy)
• Inheritance + templates: mixin/policy designs

EnergyPlus Developers Meeting -- April 3-4 2014

Phase 3: Advanced OO

Application domain modeling

Select appropriate idioms/patterns
● Loose coupling
● Low dependency
● Avoid class explosion

EnergyPlus Developers Meeting -- April 3-4 2014

Implementation Tasks
Utility and “glue” classes reduce code repetition
Support functions: numeric, array, string, ...
Layered namespace scoping to avoid conflicts
Unit and component-level tests

EnergyPlus Developers Meeting -- April 3-4 2014

Design Patterns
Core OO patterns => Better solutions
Strategy
Observer
Factories (various)
Visitor / Multiple dispatch
CRTP

EnergyPlus Developers Meeting -- April 3-4 2014

Proper C++ Classes
● RAII: Get resources in ctor and release in dtor

● Don’t hand out pointers hoping user will/won’t delete
● Smart pointers are an alternative

● Rule of 3: If class owns heap resources write a copy
constructor, assignment, and destructor

● Base class destructors must be virtual
● Make them pure if no other pure functions

● Abstract class assignment is usually protected
● Prevents slicing of data-incompatible subtypes
● Virtual assignment idiom when appropriate

EnergyPlus Developers Meeting -- April 3-4 2014

What C++ Adds Automatically
● Default constructor if no constructors specified
● Copy constructor unless suppressed or have

reference data members
● Assignment unless reference or const data
● Automatic copy constructor and assignment do

memberwise shallow copying

EnergyPlus Developers Meeting -- April 3-4 2014

OO C++: Rules of Thumb
Use type safety to make bugs compile-time

Use forward declarations maximally

Use “live” assertion testing liberally (DBC)

Use unit testing: It can be pretty painless

Make source self-documenting & clear

External docs/wiki to clarify the subtleties

EnergyPlus Developers Meeting -- April 3-4 2014

C++ Best Practices
● No C-style arrays & strings (leaks & overruns)
● No C-style i/o (unless performance dictates)
● RAII / Avoid manual heap use in client code
● Private class data members
● Pass by reference unless small built-in types
● Prefer exposing nothing or iterators to class containers
● Project guidelines for lifetime management, naming, style, …
● Assert invariants and pre-/post-conditions
● Code reviews (pair or group)

a b c Oops!

EnergyPlus Developers Meeting -- April 3-4 2014

OO C++ Development is Painful
● Discipline needed to avoid buggy code
● Header inclusion is primitive
● Compile/link/test cycle is slow
● Error messages are horrid
● Static typing => Lots of code (but gives speed)
● Templates are powerful but make compiles

slower and error message worse

EnergyPlus Developers Meeting -- April 3-4 2014

Goals for New/OO Code
Reliability: Fewer points of potential failure

Clarity: Science not obscured by bookkeeping

Natural Data Structures: Clean & efficient

Modularity: Small self-contained subsystems

Decoupling: Subsystems, libs, platforms

Layering: Dependency management

EnergyPlus Developers Meeting -- April 3-4 2014

Large Scale Physical Design
● Decompose into packages/namespaces

● Low coupling between packages: Interfaces
● Consider testing dependencies: Mocks/Stubs

● Acyclic dependencies between packages
● Prefer downward, then sibling dependencies

● Minimize #include coupling
● Fine grained: Class.hh/.cc + all.hh + pkg.hh
● Forward declaration headers Class.fwd.hh

EnergyPlus Developers Meeting -- April 3-4 2014

conformation

chemical

Architecture
Dependency management
● Directional layered design
● Modular & faster builds

Decoupling via abstraction

Finding the right abstractions

Clean interfaces and responsibilities

Protein

AminoAcid

Atom

Atom

EnergyPlus Developers Meeting -- April 3-4 2014

Management Aspects

A strong OO architectural vision is essential

Support for non-OO developers

Scrums / Pair programming / Agile buzzword

Code review to assure OO best practices

EnergyPlus Developers Meeting -- April 3-4 2014

Useful Idioms
● Virtual construction: clone() and create()
● Named constructors: Avoid flag arguments
● Named keys (no “magic” numbers)
● Smart pointers: Manage ownership/lifetime

● Intrusive smart pointers are faster and safer
● Beware of thread-safety issues
● Keep pointer graph acyclic

EnergyPlus Developers Meeting -- April 3-4 2014

Useful Patterns
● Factories: Create correct type when specified

at run time by name, etc.
● Localize dependency on concrete types
● Pluggable Factory! Zero-maintenance & Zero-

dependency: Very cool!
● Strategy: Hierarchies of algorithms
● Observer: Objects talk behind the scene
● GOF Book is good after initial stages

EnergyPlus Developers Meeting -- April 3-4 2014

Useful C++ Libraries
Boost
Loki (Modern C++ Design: Fun with Templates)
Blitz++ (Array expressions)
Armadillo | Boost uBLAS (Linear Algebra)
Qt | wxWidgets (GUI)
OpenSceneGraph | Ogre3D (3D visualization)

EnergyPlus Developers Meeting -- April 3-4 2014

C++/OO Resources
Books
Accelerated C++
The C++ Programming Language
Effective C++, More…
The C++ Standard Library
Effective STL
Large-Scale C++ Software Design
Design Patterns

Web
C++ Best Practices [Meyers, ...]
Boost library
C++ FAQ / LITE / FQA
C++ containers, iterators, algorithms
Performance-critical design

EnergyPlus Developers Meeting -- April 3-4 2014

Questions

 ?

