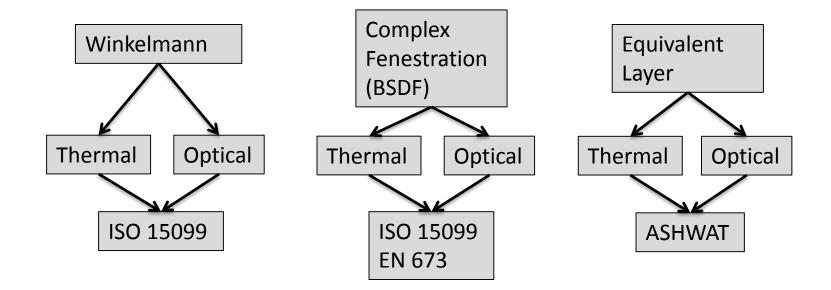


Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

EnergyPlus and fenestration routines

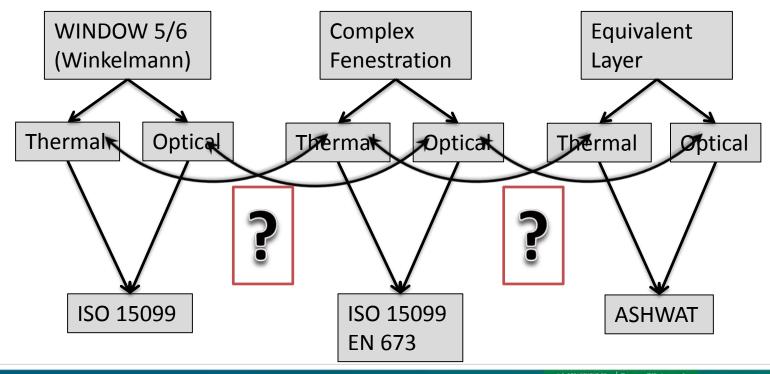
Simon Vidanovic Charlie Curcija Windows and Envelope Materials Group Building Technology and Urban Systems Department

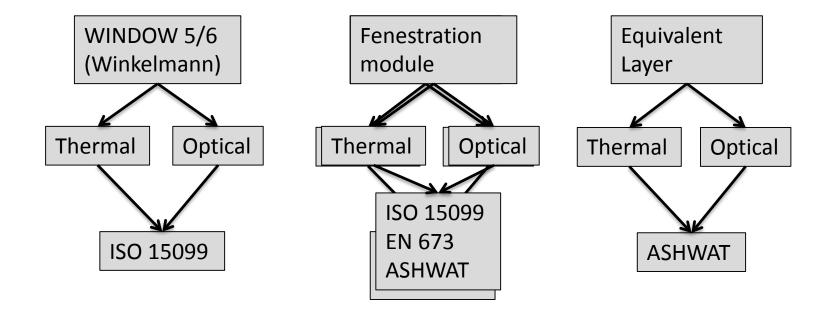
Current State


Three different models in E+:

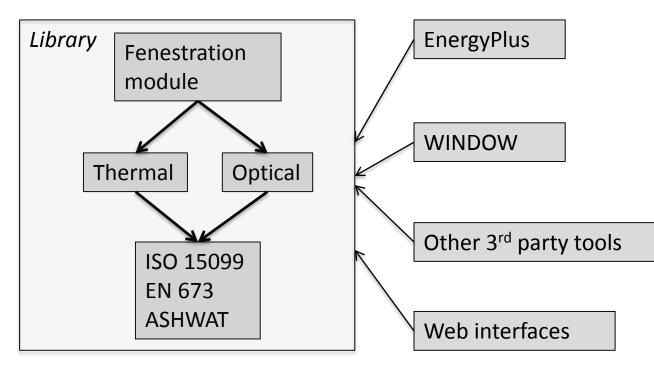
- Winkelmann (ISO 15099)
 - -Layer by layer calculations (most commonly used)
 - Conversion to single equivalent layer (does not work for shading devices)
- Complex fenestration BSDF (ISO 15099 and EN673 standards with BSDF solar/optical distribution)
- Equivalent layer (ASHWAT)

Fenestration routines are divided into two parts:


- Thermal
- Solar/Optical


Current Problems

- Some of the routines that use same standard are NOT shared between models.
 - -Bug fixes in multiple places with inconsistent implementation
 - -New feature implementation across different routines extra effort
 - -Discrepancy between established fenestration software tools and E+
- Harder to perform tests.


- Implementation of single set of modules, shared between WINDOW and E+
- Single set of modules for fenestration components in EnergyPlus, with option to select different calculation algorithm through input data. Same set of modules will also be available in WINDOW.
- Benefits:
 - Easier to maintain and develop new features across different modules (fixing bugs, new features, unit tests)
 - Introduction of unit tests for certain routines, which improves accuracy and consistency
 - -Single, consistent set of fenestration routines in EnergyPlus
 - Validation of fenestration algorithms are more extensively performed in WINDOW world
 - -Additional unit tests are being added to the test suite

Modularity

- Separate modules into the library
- Fenestration module will share variables (constants) in EnergyPlus
- Fenestration module will share interface between EnergyPlus and WINDOW
- Develop documented API that can be used by other programs and web interfaces

- More importantly, bug fixes and new features developed as part of WINDOW or OPTICS will become part of EnergyPlus world
- Some of the features are already part of EnergyPlus code (available only for complex fenestration):
 - -Deflection
 - –Vacuum glazing
 - -Support pillars
 - -EN 673 standard
- Some features that are part of WINDOW (and OPTICS) are still not in EnergyPlus:
 - -Creation of optical properties in BSDF format.
 - -Venetian blind
 - -Woven shade
 - -Perforated screens

Programming Aspect

- Some of the code in WINDOW and OPTICS is written in FORTRAN and Visual Basic. New code is converted to C++
- Introduction of object oriented modeling (classes, records, enumerators).
- Use of libraries for common mathematical operations (mainly matrix operations). Implementation of efficient solver for system of non-linear equations
- Use of Objexx library is being removed from fenestration modules.
 Pure C++ code is implemented without translation
- Usage of common modules. Some modules will be shared between EnergyPlus and fenestration library (good example is "DataGlobals" module from EnergyPlus)

- Explore usage of Modelica and FMI in EnergyPlus, WINDOW and OPTICS.
- Fixes of some of the other issues related to fenestration calculations in EnergyPlus:
 - Inconsistent frame heat transfer calculations (inability to model highly conductive frames and inaccuracy in translating WINDOW frame performance data in EnergyPlus)
 - Use of conductance area weighting as opposed to U-factor area weighting
 - -Scheduling of automated shading operations
 - –Inconsistent modeling of dynamic glazing (EC, TC, etc.)
- OpenStudio implications?