Permalink
Branch: master
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1497 lines (1118 sloc) 38.4 KB
/* Copyright (c) 1994,2006 *Fraunhofer Institut for Solar Energy Systems
* Heidenhofstr. 2, D-79110 Freiburg, Germany
* *Agence de l'Environnement et de la Maitrise de l'Energie
* Centre de Valbonne, 500 route des Lucioles, 06565 Sophia Antipolis Cedex, France
* *BOUYGUES
* 1 Avenue Eugene Freyssinet, Saint-Quentin-Yvelines, France
* print colored output if activated in command line (-C). Based on model from A. Diakite, TU-Berlin. Implemented by J. Wienold, August 26 2018
*/
#define _USE_MATH_DEFINES
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "color.h"
#include "sun.h"
#include "paths.h"
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
double normsc();
/*static char *rcsid="$Header: /home/cvsd/radiance/ray/src/gen/gendaylit.c,v 2.17 2018/08/31 16:01:45 greg Exp $";*/
float coeff_perez[] = {
1.3525,-0.2576,-0.2690,-1.4366,-0.7670,0.0007,1.2734,-0.1233,2.8000,0.6004,1.2375,1.000,1.8734,0.6297,
0.9738,0.2809,0.0356,-0.1246,-0.5718,0.9938,-1.2219,-0.7730,1.4148,1.1016,-0.2054,0.0367,-3.9128,0.9156,
6.9750,0.1774,6.4477,-0.1239,-1.5798,-0.5081,-1.7812,0.1080,0.2624,0.0672,-0.2190,-0.4285,-1.1000,-0.2515,
0.8952,0.0156,0.2782,-0.1812,-4.5000,1.1766,24.7219,-13.0812,-37.7000,34.8438,-5.0000,1.5218,3.9229,
-2.6204,-0.0156,0.1597,0.4199,-0.5562,-0.5484,-0.6654,-0.2672,0.7117,0.7234,-0.6219,-5.6812,2.6297,
33.3389,-18.3000,-62.2500,52.0781,-3.5000,0.0016,1.1477,0.1062,0.4659,-0.3296,-0.0876,-0.0329,-0.6000,
-0.3566,-2.5000,2.3250,0.2937,0.0496,-5.6812,1.8415,21.0000,-4.7656,-21.5906,7.2492,-3.5000,-0.1554,
1.4062,0.3988,0.0032,0.0766,-0.0656,-0.1294,-1.0156,-0.3670,1.0078,1.4051,0.2875,-0.5328,-3.8500,3.3750,
14.0000,-0.9999,-7.1406,7.5469,-3.4000,-0.1078,-1.0750,1.5702,-0.0672,0.4016,0.3017,-0.4844,-1.0000,
0.0211,0.5025,-0.5119,-0.3000,0.1922,0.7023,-1.6317,19.0000,-5.0000,1.2438,-1.9094,-4.0000,0.0250,0.3844,
0.2656,1.0468,-0.3788,-2.4517,1.4656,-1.0500,0.0289,0.4260,0.3590,-0.3250,0.1156,0.7781,0.0025,31.0625,
-14.5000,-46.1148,55.3750,-7.2312,0.4050,13.3500,0.6234,1.5000,-0.6426,1.8564,0.5636};
float defangle_theta[] = {
84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72,
72, 72, 72, 72, 72, 72, 72, 72, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60,
60, 60, 60, 60, 60, 60, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48,
48, 48, 48, 48, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 12, 12, 12, 12, 12, 12, 0};
float defangle_phi[] = {
0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264,
276, 288, 300, 312, 324, 336, 348, 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180,
192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 0, 15, 30, 45, 60, 75, 90, 105,
120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 15, 30, 45, 60, 75,
90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 0, 20, 40, 60,
80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 0, 30, 60, 90, 120, 150, 180, 210,
240, 270, 300, 330, 0, 60, 120, 180, 240, 300, 0};
/* default values for Berlin */
float locus[] = {
-4.843e9,2.5568e6,0.24282e3,0.23258,-4.843e9,2.5568e6,0.24282e3,0.23258,-1.2848,1.7519,-0.093786};
/* Perez sky parametrization: epsilon and delta calculations from the direct and diffuse irradiances */
double sky_brightness();
double sky_clearness();
/* calculation of the direct and diffuse components from the Perez parametrization */
double diffuse_irradiance_from_sky_brightness();
double direct_irradiance_from_sky_clearness();
/* Perez global horizontal, diffuse horizontal and direct normal luminous efficacy models : */
/* input w(cm)=2cm, solar zenith angle(degrees); output efficacy(lm/W) */
double glob_h_effi_PEREZ();
double glob_h_diffuse_effi_PEREZ();
double direct_n_effi_PEREZ();
/*likelihood check of the epsilon, delta, direct and diffuse components*/
void check_parametrization();
void check_irradiances();
void check_illuminances();
void illu_to_irra_index();
void print_error_sky();
double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[]);
void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[]);
double radians(double degres);
double degres(double radians);
void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z);
double integ_lv(float *lv,float *theta);
void printdefaults();
void check_sun_position();
void computesky();
void printhead(int ac, char** av);
void usage_error(char* msg);
void printsky();
FILE * frlibopen(char* fname);
/* astronomy and geometry*/
double get_eccentricity();
double air_mass();
double solar_sunset(int month, int day);
double solar_sunrise(int month, int day);
double stadj();
int jdate(int month, int day);
const double AU = 149597890E3;
const double solar_constant_e = 1367; /* solar constant W/m^2 */
const double solar_constant_l = 127500; /* solar constant lux */
const double half_sun_angle = 0.2665;
const double half_direct_angle = 2.85;
const double skyclearinf = 1.0; /* limitations for the variation of the Perez parameters */
const double skyclearsup = 12.01;
const double skybriginf = 0.01;
const double skybrigsup = 0.6;
/* required values */
int month, day; /* date */
double hour; /* time */
int tsolar; /* 0=standard, 1=solar */
double altitude, azimuth; /* or solar angles */
/* definition of the sky conditions through the Perez parametrization */
double skyclearness = 0;
double skybrightness = 0;
double solarradiance;
double diffuseilluminance, directilluminance, diffuseirradiance, directirradiance, globalirradiance;
double sunzenith, daynumber, atm_preci_water=2;
/*double sunaltitude_border = 0;*/
double diffnormalization = 0;
double dirnormalization = 0;
double *c_perez;
int output=0; /* define the unit of the output (sky luminance or radiance): */
/* visible watt=0, solar watt=1, lumen=2 */
int input=0; /* define the input for the calulation */
int color_output=0;
int suppress_warnings=0;
/* default values */
int cloudy = 0; /* 1=standard, 2=uniform */
int dosun = 1;
double zenithbr = -1.0;
double betaturbidity = 0.1;
double gprefl = 0.2;
int S_INTER=0;
/* computed values */
double sundir[3];
double groundbr = 0;
double F2;
double solarbr = 0.0;
int u_solar = 0; /* -1=irradiance, 1=radiance */
float timeinterval = 0;
char *progname;
char errmsg[128];
double st;
int main(int argc, char** argv)
{
int i;
progname = argv[0];
if (argc == 2 && !strcmp(argv[1], "-defaults")) {
printdefaults();
return 0;
}
if (argc < 4)
usage_error("arg count");
if (!strcmp(argv[1], "-ang")) {
altitude = atof(argv[2]) * (M_PI/180);
azimuth = atof(argv[3]) * (M_PI/180);
month = 0;
} else {
month = atoi(argv[1]);
if (month < 1 || month > 12)
usage_error("bad month");
day = atoi(argv[2]);
if (day < 1 || day > 31)
usage_error("bad day");
hour = atof(argv[3]);
if (hour < 0 || hour >= 24)
usage_error("bad hour");
tsolar = argv[3][0] == '+';
}
for (i = 4; i < argc; i++)
if (argv[i][0] == '-' || argv[i][0] == '+')
switch (argv[i][1]) {
case 's':
cloudy = 0;
dosun = argv[i][0] == '+';
break;
case 'R':
u_solar = argv[i][1] == 'R' ? -1 : 1;
solarbr = atof(argv[++i]);
break;
case 'c':
cloudy = argv[i][0] == '+' ? 2 : 1;
dosun = 0;
break;
case 'C':
if (argv[i][2] == 'I' && argv[i][3] == 'E' ) {
locus[0] = -4.607e9;
locus[1] = 2.9678e6;
locus[2] = 0.09911e3;
locus[3] = 0.244063;
locus[4] = -2.0064e9;
locus[5] = 1.9018e6;
locus[6] = 0.24748e3;
locus[7] = 0.23704;
locus[8] = -3.0;
locus[9] = 2.87;
locus[10] = -0.275;
}else{ color_output = 1;
}
break;
case 'l':
locus[0] = atof(argv[++i]);
locus[1] = atof(argv[++i]);
locus[2] = atof(argv[++i]);
locus[3] = atof(argv[++i]);
locus[4] = locus[0];
locus[5] = locus[1];
locus[6] = locus[2];
locus[7] = locus[3];
locus[8] = atof(argv[++i]);
locus[9] = atof(argv[++i]);
locus[10] = atof(argv[++i]);
break;
case 't':
betaturbidity = atof(argv[++i]);
break;
case 'w':
suppress_warnings = 1;
break;
case 'b':
zenithbr = atof(argv[++i]);
break;
case 'g':
gprefl = atof(argv[++i]);
break;
case 'a':
s_latitude = atof(argv[++i]) * (M_PI/180);
break;
case 'o':
s_longitude = atof(argv[++i]) * (M_PI/180);
break;
case 'm':
s_meridian = atof(argv[++i]) * (M_PI/180);
break;
case 'O':
output = atof(argv[++i]); /*define the unit of the output of the program:
sky and sun luminance/radiance
(0==W visible, 1==W solar radiation, 2==lm) */
break;
case 'P':
input = 0; /* Perez parameters: epsilon, delta */
skyclearness = atof(argv[++i]);
skybrightness = atof(argv[++i]);
break;
case 'W': /* direct normal Irradiance [W/m^2] */
input = 1; /* diffuse horizontal Irrad. [W/m^2] */
directirradiance = atof(argv[++i]);
diffuseirradiance = atof(argv[++i]);
break;
case 'L': /* direct normal Illuminance [Lux] */
input = 2; /* diffuse horizontal Ill. [Lux] */
directilluminance = atof(argv[++i]);
diffuseilluminance = atof(argv[++i]);
break;
case 'G': /* direct horizontal Irradiance [W/m^2] */
input = 3; /* diffuse horizontal Irrad. [W/m^2] */
directirradiance = atof(argv[++i]);
diffuseirradiance = atof(argv[++i]);
break;
case 'E': /* Erbs model based on the */
input = 4; /* global-horizontal irradiance [W/m^2] */
globalirradiance = atof(argv[++i]);
break;
case 'i':
timeinterval = atof(argv[++i]);
break;
default:
sprintf(errmsg, "unknown option: %s", argv[i]);
usage_error(errmsg);
}
else
usage_error("bad option");
if (month && !tsolar && fabs(s_meridian-s_longitude) > 45*M_PI/180)
fprintf(stderr,"%s: warning: %.1f hours btwn. standard meridian and longitude\n",
progname, (s_longitude-s_meridian)*12/M_PI);
/* dynamic memory allocation for the pointers */
if ( (c_perez = calloc(5, sizeof(double))) == NULL )
{ fprintf(stderr,"Out of memory error in function main"); return 1; }
printhead(argc, argv);
computesky();
printsky();
return 0;
}
void computesky()
{
int j;
float *lv_mod; /* 145 luminance values */
float *theta_o, *phi_o;
double dzeta, gamma;
double normfactor;
double erbs_s0, erbs_kt;
/* compute solar direction */
if (month) { /* from date and time */
int jd;
double sd;
jd = jdate(month, day); /* Julian date */
sd = sdec(jd); /* solar declination */
if (tsolar) /* solar time */
st = hour;
else
st = hour + stadj(jd);
if(timeinterval) {
if(timeinterval<0) {
fprintf(stderr, "time interval negative\n");
exit(1);
}
if(fabs(solar_sunrise(month,day)-st)<=timeinterval/120) {
st= (st+timeinterval/120+solar_sunrise(month,day))/2;
if(suppress_warnings==0)
{ fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
}
if(fabs(solar_sunset(month,day)-st)<timeinterval/120) {
st= (st-timeinterval/120+solar_sunset(month,day))/2;
if(suppress_warnings==0)
{ fprintf(stderr, "Solar position corrected at time step %d %d %.3f\n",month,day,hour); }
}
if((st<solar_sunrise(month,day)-timeinterval/120) || (st>solar_sunset(month,day)+timeinterval/120)) {
if(suppress_warnings==0)
{ fprintf(stderr, "Warning: sun position too low, printing error sky at %d %d %.3f\n",month,day,hour); }
altitude = salt(sd, st);
azimuth = sazi(sd, st);
print_error_sky();
exit(0);
}
}
else
if(st<solar_sunrise(month,day) || st>solar_sunset(month,day)) {
if(suppress_warnings==0)
{ fprintf(stderr, "Warning: sun altitude below zero at time step %i %i %.2f, printing error sky\n",month,day,hour); }
altitude = salt(sd, st);
azimuth = sazi(sd, st);
print_error_sky();
exit(0);
}
altitude = salt(sd, st);
azimuth = sazi(sd, st);
daynumber = (double)jdate(month, day);
}
if (!cloudy && altitude > 87.*M_PI/180.) {
if (suppress_warnings==0) {
fprintf(stderr,
"%s: warning - sun too close to zenith, reducing altitude to 87 degrees\n",
progname);
}
altitude = 87.*M_PI/180.;
}
sundir[0] = -sin(azimuth)*cos(altitude);
sundir[1] = -cos(azimuth)*cos(altitude);
sundir[2] = sin(altitude);
/* calculation for the new functions */
sunzenith = 90 - altitude*180/M_PI;
/* compute the inputs for the calculation of the light distribution over the sky*/
if (input==0) /* P */
{
check_parametrization();
diffuseirradiance = diffuse_irradiance_from_sky_brightness(); /*diffuse horizontal irradiance*/
directirradiance = direct_irradiance_from_sky_clearness();
check_irradiances();
if (output==0 || output==2)
{
diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
directilluminance = directirradiance*direct_n_effi_PEREZ();
check_illuminances();
}
}
else if (input==1) /* W */
{
check_irradiances();
skybrightness = sky_brightness();
skyclearness = sky_clearness();
check_parametrization();
if (output==0 || output==2)
{
diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
directilluminance = directirradiance*direct_n_effi_PEREZ();
check_illuminances();
}
}
else if (input==2) /* L */
{
check_illuminances();
illu_to_irra_index();
check_parametrization();
}
else if (input==3) /* G */
{
if (altitude<=0)
{
if (suppress_warnings==0)
fprintf(stderr, "Warning: sun altitude < 0, proceed with irradiance values of zero\n");
directirradiance = 0;
diffuseirradiance = 0;
} else {
directirradiance=directirradiance/sin(altitude);
}
check_irradiances();
skybrightness = sky_brightness();
skyclearness = sky_clearness();
check_parametrization();
if (output==0 || output==2)
{
diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
directilluminance = directirradiance*direct_n_effi_PEREZ();
check_illuminances();
}
}
else if (input==4) /* E */ /* Implementation of the Erbs model. W.Sprenger (04/13) */
{
if (altitude<=0)
{
if (suppress_warnings==0 && globalirradiance > 50)
fprintf(stderr, "Warning: global irradiance higher than 50 W/m^2 while the sun altitude is lower than zero\n");
globalirradiance = 0; diffuseirradiance = 0; directirradiance = 0;
} else {
erbs_s0 = solar_constant_e*get_eccentricity()*sin(altitude);
if (globalirradiance>erbs_s0)
{
if (suppress_warnings==0)
fprintf(stderr, "Warning: global irradiance is higher than the time-dependent solar constant s0\n");
globalirradiance=erbs_s0*0.999;
}
erbs_kt=globalirradiance/erbs_s0;
if (erbs_kt<=0.22) diffuseirradiance=globalirradiance*(1-0.09*erbs_kt);
else if (erbs_kt<=0.8) diffuseirradiance=globalirradiance*(0.9511-0.1604*erbs_kt+4.388*pow(erbs_kt,2)-16.638*pow(erbs_kt,3)+12.336*pow(erbs_kt,4));
else if (erbs_kt<1) diffuseirradiance=globalirradiance*(0.165);
directirradiance=globalirradiance-diffuseirradiance;
printf("# erbs_s0, erbs_kt, irr_dir_h, irr_diff: %.3f %.3f %.3f %.3f\n", erbs_s0, erbs_kt, directirradiance, diffuseirradiance);
printf("# WARNING: the -E option is only recommended for a rough estimation!\n");
directirradiance=directirradiance/sin(altitude);
}
check_irradiances();
skybrightness = sky_brightness();
skyclearness = sky_clearness();
check_parametrization();
if (output==0 || output==2)
{
diffuseilluminance = diffuseirradiance*glob_h_diffuse_effi_PEREZ();/*diffuse horizontal illuminance*/
directilluminance = directirradiance*direct_n_effi_PEREZ();
check_illuminances();
}
}
else { fprintf(stderr,"error at the input arguments"); exit(1); }
/* normalization factor for the relative sky luminance distribution, diffuse part*/
if ( (lv_mod = malloc(145*sizeof(float))) == NULL)
{
fprintf(stderr,"Out of memory in function main");
exit(1);
}
/* read the angles */
theta_o = defangle_theta;
phi_o = defangle_phi;
/* parameters for the perez model */
coeff_lum_perez(radians(sunzenith), skyclearness, skybrightness, coeff_perez);
/*calculation of the modelled luminance */
for (j=0;j<145;j++)
{
theta_phi_to_dzeta_gamma(radians(*(theta_o+j)),radians(*(phi_o+j)),&dzeta,&gamma,radians(sunzenith));
*(lv_mod+j) = calc_rel_lum_perez(dzeta,gamma,radians(sunzenith),skyclearness,skybrightness,coeff_perez);
/* fprintf(stderr,"theta, phi, lv_mod %f\t %f\t %f\n", *(theta_o+j),*(phi_o+j),*(lv_mod+j)); */
}
/* integration of luminance for the normalization factor, diffuse part of the sky*/
diffnormalization = integ_lv(lv_mod, theta_o);
/*normalization coefficient in lumen or in watt*/
if (output==0)
{
diffnormalization = diffuseilluminance/diffnormalization/WHTEFFICACY;
}
else if (output==1)
{
diffnormalization = diffuseirradiance/diffnormalization;
}
else if (output==2)
{
diffnormalization = diffuseilluminance/diffnormalization;
}
else {fprintf(stderr,"Wrong output specification.\n"); exit(1);}
/* calculation for the solar source */
if (output==0)
solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)))/WHTEFFICACY;
else if (output==1)
solarradiance = directirradiance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
else
solarradiance = directilluminance/(2*M_PI*(1-cos(half_sun_angle*M_PI/180)));
/* Compute the ground radiance */
zenithbr=calc_rel_lum_perez(0.0,radians(sunzenith),radians(sunzenith),skyclearness,skybrightness,coeff_perez);
zenithbr*=diffnormalization;
if (skyclearness==1)
normfactor = 0.777778;
if (skyclearness>=6)
{
F2 = 0.274*(0.91 + 10.0*exp(-3.0*(M_PI/2.0-altitude)) + 0.45*sundir[2]*sundir[2]);
normfactor = normsc()/F2/M_PI;
}
if ( (skyclearness>1) && (skyclearness<6) )
{
S_INTER=1;
F2 = (2.739 + .9891*sin(.3119+2.6*altitude)) * exp(-(M_PI/2.0-altitude)*(.4441+1.48*altitude));
normfactor = normsc()/F2/M_PI;
}
groundbr = zenithbr*normfactor;
if (dosun&&(skyclearness>1))
groundbr += 6.8e-5/M_PI*solarradiance*sundir[2];
groundbr *= gprefl;
if(*(c_perez+1)>0)
{
if(suppress_warnings==0)
{ fprintf(stderr, "Warning: positive Perez parameter B (= %lf), printing error sky\n",*(c_perez+1));}
print_error_sky();
exit(0);
}
return;
}
double solar_sunset(int month,int day)
{
float W;
extern double s_latitude;
W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
return(12+(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
}
double solar_sunrise(int month,int day)
{
float W;
extern double s_latitude;
W=-1*(tan(s_latitude)*tan(sdec(jdate(month, day))));
return(12-(M_PI/2 - atan2(W,sqrt(1-W*W)))*180/(M_PI*15));
}
void printsky()
{
printf("# Local solar time: %.2f\n", st);
printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
if (dosun&&(skyclearness>1))
{
printf("\nvoid light solar\n");
printf("0\n0\n");
printf("3 %.3e %.3e %.3e\n", solarradiance, solarradiance, solarradiance);
printf("\nsolar source sun\n");
printf("0\n0\n");
printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
} else if (dosun) {
printf("\nvoid light solar\n");
printf("0\n0\n");
printf("3 0.0 0.0 0.0\n");
printf("\nsolar source sun\n");
printf("0\n0\n");
printf("4 %f %f %f %f\n", sundir[0], sundir[1], sundir[2], 2*half_sun_angle);
}
/* print colored output if activated in command line (-C). Based on model from A. Diakite, TU-Berlin. Implemented by J. Wienold, August 26 2018 */
if (color_output==1 && skyclearness < 4.5 && skyclearness >1.065 )
{
fprintf(stderr, " warning: sky clearness(epsilon)= %f \n",skyclearness);
fprintf(stderr, " warning: intermediate sky!! \n");
fprintf(stderr, " warning: color model for intermediate sky pending \n");
fprintf(stderr, " warning: no color output ! \n");
color_output=0;
}
if (color_output==1)
{
printf("\nvoid colorfunc skyfunc\n");
printf("4 skybright_r skybright_g skybright_b perezlum_c.cal\n");
printf("0\n");
printf("22 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f\n", diffnormalization, groundbr,
*(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
sundir[0], sundir[1], sundir[2],skyclearness,locus[0],locus[1],locus[2],locus[3],locus[4],locus[5],locus[6],locus[7],locus[8],locus[9],locus[10]);
}else{
printf("\nvoid brightfunc skyfunc\n");
printf("2 skybright perezlum.cal\n");
printf("0\n");
printf("10 %.3e %.3e %lf %lf %lf %lf %lf %f %f %f \n", diffnormalization, groundbr,
*(c_perez+0),*(c_perez+1),*(c_perez+2),*(c_perez+3),*(c_perez+4),
sundir[0], sundir[1], sundir[2]);
}
}
void print_error_sky()
{
sundir[0] = -sin(azimuth)*cos(altitude);
sundir[1] = -cos(azimuth)*cos(altitude);
sundir[2] = sin(altitude);
printf("# Local solar time: %.2f\n", st);
printf("# Solar altitude and azimuth: %.1f %.1f\n", altitude*180/M_PI, azimuth*180/M_PI);
printf("\nvoid brightfunc skyfunc\n");
printf("2 skybright perezlum.cal\n");
printf("0\n");
printf("10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 %f %f %f \n", sundir[0], sundir[1], sundir[2]);
}
void printdefaults() /* print default values */
{
printf("-g %f\t\t\t# Ground plane reflectance\n", gprefl);
if (zenithbr > 0.0)
printf("-b %f\t\t\t# Zenith radiance (watts/ster/m^2\n", zenithbr);
else
printf("-t %f\t\t\t# Atmospheric betaturbidity\n", betaturbidity);
printf("-a %f\t\t\t# Site latitude (degrees)\n", s_latitude*(180/M_PI));
printf("-o %f\t\t\t# Site longitude (degrees)\n", s_longitude*(180/M_PI));
printf("-m %f\t\t\t# Standard meridian (degrees)\n", s_meridian*(180/M_PI));
}
void usage_error(char* msg) /* print usage error and quit */
{
if (msg != NULL)
fprintf(stderr, "%s: Use error - %s\n\n", progname, msg);
fprintf(stderr, "Usage: %s month day hour [...]\n", progname);
fprintf(stderr, " or: %s -ang altitude azimuth [...]\n", progname);
fprintf(stderr, " followed by: -P epsilon delta [options]\n");
fprintf(stderr, " or: [-W|-L|-G] direct_value diffuse_value [options]\n");
fprintf(stderr, " or: -E global_irradiance [options]\n\n");
fprintf(stderr, " Description:\n");
fprintf(stderr, " -P epsilon delta (these are the Perez parameters) \n");
fprintf(stderr, " -W direct-normal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
fprintf(stderr, " -L direct-normal-illuminance diffuse-horizontal-illuminance (lux)\n");
fprintf(stderr, " -G direct-horizontal-irradiance diffuse-horizontal-irradiance (W/m^2)\n");
fprintf(stderr, " -E global-horizontal-irradiance (W/m^2)\n\n");
fprintf(stderr, " Output specification with option:\n");
fprintf(stderr, " -O [0|1|2] (0=output in W/m^2/sr visible, 1=output in W/m^2/sr solar, 2=output in candela/m^2), default is 0 \n");
fprintf(stderr, " gendaylit version 2.5 (2018/04/18) \n\n");
exit(1);
}
double normsc() /* compute normalization factor (E0*F2/L0) */
{
static double nfc[2][5] = {
/* clear sky approx. */
{2.766521, 0.547665, -0.369832, 0.009237, 0.059229},
/* intermediate sky approx. */
{3.5556, -2.7152, -1.3081, 1.0660, 0.60227},
};
register double *nf;
double x, nsc;
register int i;
/* polynomial approximation */
nf = nfc[S_INTER];
x = (altitude - M_PI/4.0)/(M_PI/4.0);
nsc = nf[i=4];
while (i--)
nsc = nsc*x + nf[i];
return(nsc);
}
void printhead(int ac, char** av) /* print command header */
{
putchar('#');
while (ac--) {
putchar(' ');
fputs(*av++, stdout);
}
putchar('\n');
}
/* Perez models */
/* Perez global horizontal luminous efficacy model */
double glob_h_effi_PEREZ()
{
double value;
double category_bounds[10], a[10], b[10], c[10], d[10];
int category_total_number, category_number, i;
check_parametrization();
/*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_effi_PEREZ \n"); */
/* initialize category bounds (clearness index bounds) */
category_total_number = 8;
category_bounds[1] = 1;
category_bounds[2] = 1.065;
category_bounds[3] = 1.230;
category_bounds[4] = 1.500;
category_bounds[5] = 1.950;
category_bounds[6] = 2.800;
category_bounds[7] = 4.500;
category_bounds[8] = 6.200;
category_bounds[9] = 12.01;
/* initialize model coefficients */
a[1] = 96.63;
a[2] = 107.54;
a[3] = 98.73;
a[4] = 92.72;
a[5] = 86.73;
a[6] = 88.34;
a[7] = 78.63;
a[8] = 99.65;
b[1] = -0.47;
b[2] = 0.79;
b[3] = 0.70;
b[4] = 0.56;
b[5] = 0.98;
b[6] = 1.39;
b[7] = 1.47;
b[8] = 1.86;
c[1] = 11.50;
c[2] = 1.79;
c[3] = 4.40;
c[4] = 8.36;
c[5] = 7.10;
c[6] = 6.06;
c[7] = 4.93;
c[8] = -4.46;
d[1] = -9.16;
d[2] = -1.19;
d[3] = -6.95;
d[4] = -8.31;
d[5] = -10.94;
d[6] = -7.60;
d[7] = -11.37;
d[8] = -3.15;
for (i=1; i<=category_total_number; i++)
{
if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
category_number = i;
}
value = a[category_number] + b[category_number]*atm_preci_water +
c[category_number]*cos(sunzenith*M_PI/180) + d[category_number]*log(skybrightness);
return(value);
}
/* global horizontal diffuse efficacy model, according to PEREZ */
double glob_h_diffuse_effi_PEREZ()
{
double value;
double category_bounds[10], a[10], b[10], c[10], d[10];
int category_total_number, category_number, i;
check_parametrization();
/*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function glob_h_diffuse_PEREZ \n"); */
/* initialize category bounds (clearness index bounds) */
category_total_number = 8;
//XXX: category_bounds > 0.1
category_bounds[1] = 1;
category_bounds[2] = 1.065;
category_bounds[3] = 1.230;
category_bounds[4] = 1.500;
category_bounds[5] = 1.950;
category_bounds[6] = 2.800;
category_bounds[7] = 4.500;
category_bounds[8] = 6.200;
category_bounds[9] = 12.01;
/* initialize model coefficients */
a[1] = 97.24;
a[2] = 107.22;
a[3] = 104.97;
a[4] = 102.39;
a[5] = 100.71;
a[6] = 106.42;
a[7] = 141.88;
a[8] = 152.23;
b[1] = -0.46;
b[2] = 1.15;
b[3] = 2.96;
b[4] = 5.59;
b[5] = 5.94;
b[6] = 3.83;
b[7] = 1.90;
b[8] = 0.35;
c[1] = 12.00;
c[2] = 0.59;
c[3] = -5.53;
c[4] = -13.95;
c[5] = -22.75;
c[6] = -36.15;
c[7] = -53.24;
c[8] = -45.27;
d[1] = -8.91;
d[2] = -3.95;
d[3] = -8.77;
d[4] = -13.90;
d[5] = -23.74;
d[6] = -28.83;
d[7] = -14.03;
d[8] = -7.98;
category_number = -1;
for (i=1; i<=category_total_number; i++)
{
if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
category_number = i;
}
if (category_number == -1) {
if (suppress_warnings==0)
fprintf(stderr, "Warning: sky clearness (= %.3f) too high, printing error sky\n", skyclearness);
print_error_sky();
exit(0);
}
value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*cos(sunzenith*M_PI/180) +
d[category_number]*log(skybrightness);
return(value);
}
/* direct normal efficacy model, according to PEREZ */
double direct_n_effi_PEREZ()
{
double value;
double category_bounds[10], a[10], b[10], c[10], d[10];
int category_total_number, category_number, i;
/*if ((skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup) && suppress_warnings==0)
fprintf(stderr, "Warning: skyclearness or skybrightness out of range in function direct_n_effi_PEREZ \n");*/
/* initialize category bounds (clearness index bounds) */
category_total_number = 8;
category_bounds[1] = 1;
category_bounds[2] = 1.065;
category_bounds[3] = 1.230;
category_bounds[4] = 1.500;
category_bounds[5] = 1.950;
category_bounds[6] = 2.800;
category_bounds[7] = 4.500;
category_bounds[8] = 6.200;
category_bounds[9] = 12.1;
/* initialize model coefficients */
a[1] = 57.20;
a[2] = 98.99;
a[3] = 109.83;
a[4] = 110.34;
a[5] = 106.36;
a[6] = 107.19;
a[7] = 105.75;
a[8] = 101.18;
b[1] = -4.55;
b[2] = -3.46;
b[3] = -4.90;
b[4] = -5.84;
b[5] = -3.97;
b[6] = -1.25;
b[7] = 0.77;
b[8] = 1.58;
c[1] = -2.98;
c[2] = -1.21;
c[3] = -1.71;
c[4] = -1.99;
c[5] = -1.75;
c[6] = -1.51;
c[7] = -1.26;
c[8] = -1.10;
d[1] = 117.12;
d[2] = 12.38;
d[3] = -8.81;
d[4] = -4.56;
d[5] = -6.16;
d[6] = -26.73;
d[7] = -34.44;
d[8] = -8.29;
for (i=1; i<=category_total_number; i++)
{
if ( (skyclearness >= category_bounds[i]) && (skyclearness < category_bounds[i+1]) )
category_number = i;
}
value = a[category_number] + b[category_number]*atm_preci_water + c[category_number]*exp(5.73*sunzenith*M_PI/180 - 5) + d[category_number]*skybrightness;
if (value < 0) value = 0;
return(value);
}
/*check the range of epsilon and delta indexes of the perez parametrization*/
void check_parametrization()
{
if (skyclearness<skyclearinf || skyclearness>skyclearsup || skybrightness<skybriginf || skybrightness>skybrigsup)
{
/* limit sky clearness or sky brightness, 2009 11 13 by J. Wienold */
if (skyclearness<skyclearinf){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky clearness too low (%lf)\n", skyclearness); */
skyclearness=skyclearinf;
}
if (skyclearness>skyclearsup){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky clearness too high (%lf)\n", skyclearness); */
skyclearness=skyclearsup-0.001;
}
if (skybrightness<skybriginf){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky brightness too low (%lf)\n", skybrightness); */
skybrightness=skybriginf;
}
if (skybrightness>skybrigsup){
/* if (suppress_warnings==0)
fprintf(stderr,"Range warning: sky brightness too high (%lf)\n", skybrightness); */
skybrightness=skybrigsup;
}
return; }
else return;
}
/* validity of the direct and diffuse components */
void check_illuminances()
{
if (directilluminance < 0) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: direct illuminance < 0. Using 0.0\n"); }
directilluminance = 0.0;
}
if (diffuseilluminance < 0) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: diffuse illuminance < 0. Using 0.0\n"); }
diffuseilluminance = 0.0;
}
if (directilluminance+diffuseilluminance==0 && altitude > 0) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: zero illuminance at sun altitude > 0, printing error sky\n"); }
print_error_sky();
exit(0);
}
if (directilluminance > solar_constant_l) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: direct illuminance exceeds solar constant\n"); }
print_error_sky();
exit(0);
}
}
void check_irradiances()
{
if (directirradiance < 0) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: direct irradiance < 0. Using 0.0\n"); }
directirradiance = 0.0;
}
if (diffuseirradiance < 0) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: diffuse irradiance < 0. Using 0.0\n"); }
diffuseirradiance = 0.0;
}
if (directirradiance+diffuseirradiance==0 && altitude > 0) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: zero irradiance at sun altitude > 0, printing error sky\n"); }
print_error_sky();
exit(0);
}
if (directirradiance > solar_constant_e) {
if(suppress_warnings==0)
{ fprintf(stderr,"Warning: direct irradiance exceeds solar constant\n"); }
print_error_sky();
exit(0);
}
}
/* Perez sky's brightness */
double sky_brightness()
{
double value;
value = diffuseirradiance * air_mass() / ( solar_constant_e*get_eccentricity());
return(value);
}
/* Perez sky's clearness */
double sky_clearness()
{
double value;
value = ( (diffuseirradiance + directirradiance)/(diffuseirradiance) + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180 ) / (1 + 1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) ;
return(value);
}
/* diffus horizontal irradiance from Perez sky's brightness */
double diffuse_irradiance_from_sky_brightness()
{
double value;
value = skybrightness / air_mass() * ( solar_constant_e*get_eccentricity());
return(value);
}
/* direct normal irradiance from Perez sky's clearness */
double direct_irradiance_from_sky_clearness()
{
double value;
value = diffuse_irradiance_from_sky_brightness();
value = value * ( (skyclearness-1) * (1+1.041*sunzenith*M_PI/180*sunzenith*M_PI/180*sunzenith*M_PI/180) );
return(value);
}
void illu_to_irra_index()
{
double test1=0.1, test2=0.1, d_eff;
int counter=0;
diffuseirradiance = diffuseilluminance*solar_constant_e/(solar_constant_l);
directirradiance = directilluminance*solar_constant_e/(solar_constant_l);
skyclearness = sky_clearness();
skybrightness = sky_brightness();
check_parametrization();
while ( ((fabs(diffuseirradiance-test1)>10) || (fabs(directirradiance-test2)>10)
|| (!(skyclearness<skyclearinf || skyclearness>skyclearsup))
|| (!(skybrightness<skybriginf || skybrightness>skybrigsup)) )
&& !(counter==9) )
{
test1=diffuseirradiance;
test2=directirradiance;
counter++;
diffuseirradiance = diffuseilluminance/glob_h_diffuse_effi_PEREZ();
d_eff = direct_n_effi_PEREZ();
if (d_eff < 0.1)
directirradiance = 0;
else
directirradiance = directilluminance/d_eff;
skybrightness = sky_brightness();
skyclearness = sky_clearness();
check_parametrization();
}
return;
}
static int get_numlin(float epsilon)
{
if (epsilon < 1.065)
return 0;
else if (epsilon < 1.230)
return 1;
else if (epsilon < 1.500)
return 2;
else if (epsilon < 1.950)
return 3;
else if (epsilon < 2.800)
return 4;
else if (epsilon < 4.500)
return 5;
else if (epsilon < 6.200)
return 6;
return 7;
}
/* sky luminance perez model */
double calc_rel_lum_perez(double dzeta,double gamma,double Z,double epsilon,double Delta,float coeff_perez[])
{
float x[5][4];
int i,j,num_lin;
double c_perez[5];
if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
{
fprintf(stderr,"Error: epsilon out of range in function calc_rel_lum_perez!\n");
exit(1);
}
/* correction de modele de Perez solar energy ...*/
if ( (epsilon > 1.065) && (epsilon < 2.8) )
{
if ( Delta < 0.2 ) Delta = 0.2;
}
num_lin = get_numlin(epsilon);
for (i=0;i<5;i++)
for (j=0;j<4;j++)
{
x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
/* fprintf(stderr,"x %d %d vaut %f\n",i,j,x[i][j]); */
}
if (num_lin)
{
for (i=0;i<5;i++)
c_perez[i] = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
}
else
{
c_perez[0] = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
c_perez[1] = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
c_perez[4] = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
c_perez[2] = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
c_perez[3] = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
}
return (1 + c_perez[0]*exp(c_perez[1]/cos(dzeta)) ) *
(1 + c_perez[2]*exp(c_perez[3]*gamma) +
c_perez[4]*cos(gamma)*cos(gamma) );
}
/* coefficients for the sky luminance perez model */
void coeff_lum_perez(double Z, double epsilon, double Delta, float coeff_perez[])
{
float x[5][4];
int i,j,num_lin;
if ( (epsilon < skyclearinf) || (epsilon >= skyclearsup) )
{
fprintf(stderr,"Error: epsilon out of range in function coeff_lum_perez!\n");
exit(1);
}
/* correction du modele de Perez solar energy ...*/
if ( (epsilon > 1.065) && (epsilon < 2.8) )
{
if ( Delta < 0.2 ) Delta = 0.2;
}
num_lin = get_numlin(epsilon);
/*fprintf(stderr,"numlin %d\n", num_lin);*/
for (i=0;i<5;i++)
for (j=0;j<4;j++)
{
x[i][j] = *(coeff_perez + 20*num_lin + 4*i +j);
/* printf("x %d %d vaut %f\n",i,j,x[i][j]); */
}
if (num_lin)
{
for (i=0;i<5;i++)
*(c_perez+i) = x[i][0] + x[i][1]*Z + Delta * (x[i][2] + x[i][3]*Z);
}
else
{
*(c_perez+0) = x[0][0] + x[0][1]*Z + Delta * (x[0][2] + x[0][3]*Z);
*(c_perez+1) = x[1][0] + x[1][1]*Z + Delta * (x[1][2] + x[1][3]*Z);
*(c_perez+4) = x[4][0] + x[4][1]*Z + Delta * (x[4][2] + x[4][3]*Z);
*(c_perez+2) = exp( pow(Delta*(x[2][0]+x[2][1]*Z),x[2][2])) - x[2][3];
*(c_perez+3) = -exp( Delta*(x[3][0]+x[3][1]*Z) )+x[3][2]+Delta*x[3][3];
}
return;
}
/* degrees into radians */
double radians(double degres)
{
return degres*M_PI/180.0;
}
/* radian into degrees */
double degres(double radians)
{
return radians/M_PI*180.0;
}
/* calculation of the angles dzeta and gamma */
void theta_phi_to_dzeta_gamma(double theta,double phi,double *dzeta,double *gamma, double Z)
{
*dzeta = theta; /* dzeta = phi */
if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1 && (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi) < 1.1 ) )
*gamma = 0;
else if ( (cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi)) > 1.1 )
{
printf("error in calculation of gamma (angle between point and sun");
exit(1);
}
else
*gamma = acos(cos(Z)*cos(theta)+sin(Z)*sin(theta)*cos(phi));
}
double integ_lv(float *lv,float *theta)
{
int i;
double buffer=0.0;
for (i=0;i<145;i++)
{
buffer += (*(lv+i))*cos(radians(*(theta+i)));
}
return buffer*2*M_PI/144;
}
/* enter day number(double), return E0 = square(R0/R): eccentricity correction factor */
double get_eccentricity()
{
double day_angle;
double E0;
day_angle = 2*M_PI*(daynumber - 1)/365;
E0 = 1.00011+0.034221*cos(day_angle)+0.00128*sin(day_angle)+
0.000719*cos(2*day_angle)+0.000077*sin(2*day_angle);
return (E0);
}
/* enter sunzenith angle (degrees) return relative air mass (double) */
double air_mass()
{
double m;
if (sunzenith>90)
{
if(suppress_warnings==0)
{ fprintf(stderr, "Warning: air mass has reached the maximal value\n"); }
sunzenith=90;
}
m = 1/( cos(sunzenith*M_PI/180)+0.15*exp( log(93.885-sunzenith)*(-1.253) ) );
return(m);
}