
Copyright © 2010 National Renewable Energy Laboratory

SolTrace

mwagner
Text Box
This is the SolTrace help menu from SolTrace 2012 compiled as a PDF. This was created using HelpNDoc. We will continue to develop the documentation using the HelpNDoc software, and changes noted herein should be made in the original HelpNDoc file.

This file contains annotations indicating areas that need attention as part of the documentation update.

SolTrace

2 / 57

Table of contents

Introduction .. 3
Migrating to 2010 .. 4
Methodology ... 6
Basic Use .. 9
Defining the Sun .. 11
Geometry .. 12
Optical Properties .. 21
Tracing ... 23
Visualization .. 25
Exporting Data .. 27
SolScript Automation ... 29

Data Variables ... 31
Flow Control ... 34
Arrays of Data ... 39
Function Calls .. 41
Input, Output, and System Access ... 44
Function Libraries .. 46

Types and Data ... 46
Input and Output ... 47
Math ... 50
String Manipulation .. 51
Matrices .. 52
SolTrace Library .. 53

References .. 56

SolTrace

3 / 57

Introduction

SolTrace is a software tool developed at the National Renewable Energy Laboratory
(NREL) to model solar power optical systems and analyze their performance. Although
originally intended for solar optical applications, the code can also be used to model and
characterize general optical systems. The creation of the code evolved out of a need to
model more complex optical systems than could be modeled with existing tools such as
OPTDSH (Steele et al., 1991) and CIRCE (Ratzel and Boughton, 1987).

The code utilizes a ray-tracing methodology (Spencer and Murty, 1962). The user selects
a given number of rays to be traced. Each ray is traced through the system while
encountering various optical interactions. Some of these interactions are probabilistic
in nature (e.g. selection of sun angle from sun angular intensity distribution) while
others are deterministic (e.g. calculation of ray intersection with an analytically
described surface and resultant redirection.) Such a code has the advantage over codes
based on convolution of moments in that it replicates real photon interactions and
therefore can provide accurate results for complex systems that cannot be modeled
otherwise. The disadvantage is longer processing time. Accuracy increases with the
number of rays traced and larger ray numbers means more processing time. Also,
complex geometries translate into longer run times. However, the required number of
rays is also a function of the desired result. For example, fewer rays (and therefore less
time) are needed to determine relative changes in optical efficiency for different sun
angles on a given solar concentrator than say are needed to accurately assess the flux
distribution on the receiver of that same concentrator. Thus the responsibility is on the
user to use the code wisely and efficiently.

The application is written in C++ and uses the cross-platform wxWidgets toolkit,
allowing it to run on Windows, Linux/Unix, and Mac OS X operating systems. The core
tracing procedures are separated from the graphical user interface, and allow for the
incorporation of the calculation code into other systems and applications. SolTrace
scales exceptionally well to run on computers with multiple processors, as each
individual ray can be computed independently of the others. Computers with 8
processors will generally experience close to an 8x speedup over a single processor, but
this trend can be limited by various factors including the specific nature of a particular
geometry or other computer hardware limitations (memory, etc).

SolTrace

4 / 57

Created with the Personal Edition of HelpNDoc: Easy CHM and documentation editor

Migrating to 2010

Overview

In 2010, SolTrace was completely recoded from the ground up to improve performance,
utilize parallel processing techniques, update the user interface, and provide the
framework for future interoperability with other modeling tools. This upgrade greatly
expands the capability of the model to analyze large optical systems and perform
complex batch simulations using the built-in scripting language. The new version is
written in C++ using the wxWidgets graphical user interface toolkit, and can run on
Windows and Mac OS X systems. The previous version, having been written in the
Delphi programming environment could only run on Windows and experienced some
compatibility issues even across versions of Windows. Screenshots of both versions are
included below for comparison.

https://www.helpndoc.com
mwagner
Sticky Note
Replace graphic

mwagner
Pencil

SolTrace

5 / 57

Figure. Previous versions of SolTrace (Delphi)

mwagner
Pencil

mwagner
Pencil

SolTrace

6 / 57

Figure. New version of SolTrace (C++/wxWidgets)

Importing Old Projects

Importing old projects in the (*.stp) file format is not possible at this time. Rather, a
user must manually import the individual *.sun, *.opt, and *.geo files that comprise a
complete system geometry. We provide a sample script called importgeo.ss (click on the
Automation tab and open it by double-clicking it in the file browser on the left side) that
will read a multi-stage .geo file and import the stage and element data, overwriting
existing system geometry. It is expected that this script will work correctly in most
cases, but may not fully import all stage properties (Virtual, trace through, multi-hit
etc...)

Note on Visualization

Currently, no 3-D flux charts are available, and the contour plotting is somewhat more
limited than in the original Delphi version. We are actively investigating ways to
improve visualization in the new version of SolTrace.

Created with the Personal Edition of HelpNDoc: Full-featured Documentation generator

Methodology

In SolTrace, an optical system is organized into “stages” within a global coordinate
system. A stage is loosely defined as a section of the optical geometry which, once a ray

https://www.helpndoc.com
mwagner
Pencil

mwagner
Pencil

mwagner
Pencil

SolTrace

7 / 57

exits the stage, will not be re-enter ed by the r ay on the r emainder of i t ʼs path thr ough
the system. A complete system geometry may consist of one or more stages. It is
incumbent on the user to define the stage geometry accordingly. The motivation behind
the stage concept is to employ efficient tracing and therefore save processing time and
allow for a modular representation of a system. The other significant benefit of stages is
that they can also be saved and employed in other system geometries without the need
for recalculating element positions and orientations.

A stage is comprised of “elements”. Each element consists of a surface, an optical
interaction type, an aperture shape and, if appropriate, a set of optical properties. The
location and orientation of stages are defined within the global coordinate system
whereas the location and orientation of elements are specified within the coordinate
system of the particular stage in which they are defined. Stages can be one of two types:
optical or virtual. An optical stage is defined as one that physically interacts with the
rays. Conversely, a virtual stage is defined as one that does not physically interact with
the rays. The virtual stage is useful for determining ray locations and directions at
various positions along the optical path without physically affecting ray trajectory.
Elements defined within a virtual stage therefore have no optical properties because
they do not interact with the rays. Optical stages consist of elements which interact
with the rays potentially altering their trajectories. These elements have optical
properties and interaction types associated with them. Beyond this, optical and virtual
stages are identical in how they are defined and used. Stages can be duplicated and
moved around as groups of elements and then saved for use in other system geometries.

SolTrace uses three right-handed coordinate systems: the global coordinate system, the
stage coordinate system and the element coordinate system. These are illustrated in
Figure 1a. Each element in a stage has a local coordinate system (i.e. location and
orientation) defined relative to the stage coordinate system. Each stage has a
coordinate system defined relative to the global coordinate system. As shall be
described later, the direction of the sun is defined relative to the global coordinate
system. Currently, the sun direction is input in either vector form, or in time-of-day,
day-of-year format with latitude specified. Light rays are generated from the sun and
then traced sequentially through each stage in the geometry. The position and direction
of each ray in each stage is stored in memory for later processing and output.

The NREL High Flux Solar Furnace is shown as an example of a multi-stage, multi-
element system in Figure 1b. Note the global (black), stage (red) and element (blue)
coordinate systems. In this example, there are a total of three stages. The first stage is
comprised of one flat rectangular reflective element (the heliostat). In this case, the
element coordinate system lies directly on top of the stage coordinate system. The
second stage is the primary concentrator consisting of twenty-five hexagonal reflective
elements each having spherical curvature. One of the twenty-five individual element
coordinate systems is shown to the upper right of the stage coordinate system. The
third and final stage is the sample stage (a rectangular flat target) in the HFSF control
room. Again, the element coordinate system occupies the same location and orientation
as the stage coordinate system in this case. The details of element/stage definition are
presented later.

SolTrace

8 / 57

Figures 1a-b. SolTrace Coordinate Systems

The stage and element coordinate systems are translated from the global coordinate
system and stage coordinate system origins respectively and then oriented via three
Euler angle rotations. These rotations are shown in Figure 2.

mwagner
Sticky Note
Figures are accurate, but a little grainy and could stand to be improved. If someone with an eye for graphics has time, this would be a good contribution.

SolTrace

9 / 57

Figure 2. Generation of (x, y, z) system from the (/x, /y, /z) system after translation of
origin.

The first rotation is by angle a about the y-axis, the second rotation by angle b about the
x-axis and the last rotation by angle g about the z-axis. After translation of the child
coordinate system origin from the parent coordinate system, these three rotations
completely specify the orientation of the child coordinate system within the parent. The
first two rotations are automatically determined by specifying a point in the parent
coordinate system toward which the z-axis of the child coordinate system is aligned.
The last rotation of the child coordinate system about the z-axis is then specified.

Created with the Personal Edition of HelpNDoc: Free Qt Help documentation generator

Basic Use

Upon opening the SolTrace application, the main window opens with an empty project,
as shown below.

https://www.helpndoc.com

SolTrace

10 / 57

Figure. Empty project upon opening SolTrace application

A SolTrace project file contains a complete set of inputs that define a model or analysis.
This includes information about the sun shape and position, a set of surface optical
interaction properties, and all the elements for each stage in the system. The data is
stored in a plain text formatted file with the "*.stinput" extension. The results of a ray
trace are not stored in this file, nor are externally defined surface types such those
described by VSHOT data (discussed later). As a result, the .stinput files are generally
quite small.

The icon toolbar across the top of the main window allow the user to move between
various data input and output pages, shown below.

Figure. SolTrace Navigation Toolbar

The first three pages (Sun Shape, Optics, Geometry) are used to define the system. The
Perform Ray Trace page is the place to configure the number of rays desired, the number
of computer processors to use, and other simulation related parameters.

After a trace has completed successfully, the Visualize and Export pages are populated
with the calculated ray intersection data. Several graphing options are included, as well
as the ability to save the raw intersection data in comma-separated value (CSV) format,

mwagner
Sticky Note
Update figure

mwagner
Pencil

mwagner
Sticky Note
Make consistent with the current UI

SolTrace

11 / 57

or to export directly to Microsoft Excel on Windows computers.

The Automation page exposes advanced scripting features that allow a user to
programmatically control SolTrace to configure the geometry of complex systems with
hundreds of elements (i.e. a heliostat field for a power tower), or to post-process the
calculated intersection points. Some example scripts are provided, include one that can
import old format *.geo files from previous versions (pre-2009) of SolTrace.

Created with the Personal Edition of HelpNDoc: Free Kindle producer

Defining the Sun

Two characteristics completely define the “sun” as the light source: the angular intensity
dist r ibut ion of l ight acr oss the sunʼs disk (referred to as the sunshape) and the sunʼs
position. The area in the upper left of the window shown in Figure 5 is the first step in
defining the sunshape. Three options are available. The first two are commonly used
probabilistic distributions. Although the sunshape varies widely with terrestrial
location, sky conditions and time and is neither truly Gaussian nor pillbox in nature,
this approximation is adequate for a large class of problems. The parameter defining a
Gaussian dist r ibut ion for t he sunʼs disk is t he hal f-angle s. The parameter for the
pillbox, being a flat distribution, is simply the half-angle width.

The third option allows the use to define the sunshape profile as a series of intensity
datum points (Neumann et al., 2002). Since the sunshape is axisymmetric, only half of
the profile (fr om the sunʼs center t o t he edge) is required. This can be manually entered
into the table seen in the lower left corner of the window. This table becomes available
when the user selects "User defined" option. The number of datum points in the half
profile is entered in the box to the right. The profile is entered as a set of datum points:
t he angular posi t ion fr om the sunʼs center in mi l l i r adians (starting with 0) and the
corresponding relative intensity at that position. The intensity values can be in any
units because the code scales the distribution to a peak of unity. Once entered into the
table, the profile can be stored in a file for future use and later retrieved using the
Import and Export buttons. The sun shape plot automatically updates as data is entered
into the shape table.

Once the sunshape has been defined, all that remains is to determine the sun direction.
One option is to define a point in the global coordinate system such that a vector from
this point to the global coordinate system origin defines the sun direction. The other
option is to define a particular site latitude and time (day of year and local hour.) From
this information, the sun direction is determined assuming the z-axis of the global
coordinate system points due north and the y-axis points towards zenith. This is
important to remember when defining the optical geometry.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
mwagner
Sticky Note
"Automation page" is deprecated. We now use the script window under the file menu.

mwagner
Cross-Out

SolTrace

12 / 57

Figure 5. Defining the Sun Shape and Position

Created with the Personal Edition of HelpNDoc: Easily create EPub books

Geometry

Defining System Geometry

Once the sun is defined, the user can proceed to the next step – defining the optical
geometry to analyze. The system geometry is defined on the "Configure Geometry"
page, shown below. The

https://www.helpndoc.com/feature-tour
mwagner
Sticky Note
Update

mwagner
Sticky Note
Not sure what is going on here.. incomplete documentation. Expand or consolidate with the following material.

mwagner
Text Box
This section requires substantial effort. We should first introduce the geometry features, including the process of adding, removing, or inserting stages, then the process of adding geometry. The HFSF example given below can follow the general discussion. This section should be reorganized to more logically follow the workflow process in SolTrace. A suggested outline could be:
* Defining system geometry
 - Adding, inserting, and removing stages
 * Stage properties (discuss virtual stage, multiple hits per ray, and trace through options)
 * Stage global coordinates, including Edit Z rotation dialog
 * Data transfer options
 - Element editing
 * Insert, append, delete, delete all
 * Z rotation dialog
 * Aperture options (good documentation below)
 * Surface options (ditto)
 * Optics (ditto)
 - Example with HFSF

mwagner
Pencil

SolTrace

13 / 57

Figure 6. Optical geometry definition input page.

The input page is shown with data already entered for the sake of example. The form
can now be used to design every aspect of the optical problem to be analyzed. First,
stages can be added and removed using the buttons at the top of the page. Using the
Import and Export buttons, specific stages can be saved and recalled later as needed.
Each stage is displayed as a tab, much like worksheets in a spreadsheet. For each stage,
there is a set of stage properties, position and orientation information in the global
coordinate system, as well as a table of optical elements.

Calculation Procedure for Multiple Stages

Three stages have been defined in this example which is actually that of the NREL High
Flux Solar Furnace shown in Figure 1b. The first two stages are of the optical type (i.e.
contain actual optical elements that interact with light). Stage 1 consists of the primary
heliostat which redirects sunlight to the concentrator (Stage 2.) The last stage is a
virtual stage consisting simply of a flat target for the resultant flux distribution
generated at the focus of the concentrator in Stage 2. Light rays will ultimately be
traced from the sun to Stage 1 then to Stage 2 and finally to Stage 3. This assumes that
once rays leave a stage they cannot physically re-enter that stage again by any
combination of the stages following (a reiteration of the stage definition.) The user
must carefully design the optical system such that the stages meet this criteria
otherwise incorrect results will be obtained.

Before proceeding to the checkout buttons at the bottom of the window, mention should
be made of t he checkbox labeled ‘Tr ace Thr oughʼ which appear s (already checked by
default) at the top of each optical stage worksheet (with the exception of Stage 1 if it is
an optical stage.) Simply put, if this box is checked it means that rays continue to be
traced through the rest of the system even if they miss all the elements of this particular
stage. If not checked, then rays which miss this stage completely are no longer traced
through the rest of the system. More information on the tracing procedure is available

mwagner
Sticky Note
Replace

mwagner
Sticky Note
Poor writing

SolTrace

14 / 57

in the 'Tracing' section.

Stage Position and Orientation

The first set of three inputs is the location (in x,y,z) of the stage coordinate system origin
within the global coordinate system. The set of four numbers below this determines the
orientation of the stage coordinate system within the global coordinate system. The first
three numbers of this set define a special point within the global coordinate system. A
vector from the stage origin to this point defines the z-axis of the stage coordinate
system. The last degree of freedom to be defined is then the rotation of the stage
coordinate system about this z-axis. This is entered as the fourth number in degrees (Z
Rotation). Every stage must have these parameters defined within the global coordinate
system.

Element Definition

Elements can be added and removed from the stage by using the appropriate Insert,
Append, and Delete buttons located above the main element data table. Each element is
defined on one row of the table, is identified by its row number and by the stage in which
it exists.

It is possible that the user may want to “turn on” or “turn off” certain elements within a
stage while doing different traces for comparison purposes. Rather than deleting all the
data for a particular element and then having to re-enter it again later, the "En."
checkbox can be used to enable and disable elements. If checked (the default), the
element is included as part of the geometry, if unchecked the element is ignored.

The next three columns are the x,y,z coordinates of the element coordinate system origin
within the stage coordinate system. The next three columns define the x,y,z coordinates
of a special point within the stage called the aim point. A vector from the element origin
to this aim point defines the z-axis of the element coordinate system. The ninth column
i s t he r otat ion of t he element coor dinate system about i t ʼs z-axis in degrees. This set of
seven numbers describing the location and orientation of the element within the stage is
exactly analogous to the set described above for the stage within the global coordinate
system.

Apertures

The aperture column contains the description of the projected shape of the element
opening in a plane perpendicular to the element z-axis. An example of a circular
aperture is shown in Figure 8.

SolTrace

15 / 57

Figure 8. Aperture description

A variety of aperture shapes is available. The column entry is a text string that encodes
the aperture description. The code format for the different apertures is shown in Table
1. The code can be entered manually as a string of text. A code begins with a lower case
letter denoting the type of aperture shape, followed by a hyphen, and then a list of eight
numbers separated by commas. Some aperture shapes require all eight parameters,
while others may only require one. Shape parameters that are unused can be set to 0
and are ignored. The program prevents the user from entering an incorrect string code.
An option to manually entering the code is to click on the “Aperture” button above the
table. When clicked, a dialog pops up to help a user set the aperture for the currently
selected element in the table, shown below.

Aperture Type Code
Circular c-# (# = diameter of circular aperture)

Hexagonal h-# (# = diameter of the circle which
circumscribes a hexagonal aperture)

Triangular t-# (# = diameter of the circle which
circumscribes an equilateral triangle)

Rectangular r-#1,#2 (#1,#2 = width, height of
rectangle)

Annular a-#1,#2,#3 (#1,#2,#3 = inner radius, outer
radius, included angle in degrees; #1 <

#2 , 0 < #3 < 360)
Single Axis Curvature Section l-#1,#2,#3 (#1,#2,#3 = distance to inner

edge in x dir, distance to outer edge in
x dir, length of section in y dir; #1 < #2)

Table 1. Some aperture types and corresponding codes

mwagner
Sticky Note
Need to add "irregular triangle" and "irregular quadrilateral" options

SolTrace

16 / 57

Figure 9. Aperture definition window

The drop-down list at the top of this sub-window contains a list of all the available
aperture options. Selecting one displays a graphical description of the aperture and
entry boxes for entering the relevant parameters for that aperture. Clicking on “OK”
automatically enters the correct string code for the selected aperture into the aperture
type column.

Surfaces

Each element's surface is defined by a text code in the "Surface" column of the table,
similar to how the aperture is defined. A variety of surface options are available. Table
2 lists the surface options and respective text codes.

Surface Type Code
Parabolic p-#1,#2 (#1,#2 = 1/radii of curvature in x

, y directions of a parabolic surface)
Spherical s-#1,#2 (#1,#2 = 1/radii of curvature in x ,

y directions of a spherical surface)
Other (hyperboloid, ellipsoids) o-#1,#2,#3 (#1,#2 = 1/radii of curvature in

x, y directions, #3 = k parameter for
other surfaces)

Flat f
Conical c-#1 (#1 = half angle of conical surface)

Zernike Series *.mon (surface described by Zernike
series equation with coefficients in file

“*.mon”)

mwagner
Sticky Note
Replace

mwagner
Sticky Note
Make sure naming and text match UI

SolTrace

17 / 57

VSHOT Data Set *.sht (surface described by VSHOT
data file “*.sht”)

Finite Element Data Set *.fed (surface described by finite
element data file “*.fed”)

General Spencer & Murty Equation g-#1,#2,#3,#4,#5,#6,#7,#8 (#1,#2= 1/radii of

curvature in x , y directions, #3= k , #4-8

= a1-5)
Cylinder t-#1 (#1 = 1 / radius of curvature; use in

conjunction with aperture code “l-
0,0,#2” where #2 is length of cylinder)

Polynomial Series (rotationally
symmetric)

*.ply (surface described by coefficients
of polynomial equation in file “*.ply")

Cubic Spline Interpolation (rotationally
symmetric)

*.csi (surface described by discrete
data points and 1st derivative boundary

conditions in file “*.csi”)
Table 2. Surface types and corresponding codes

The “Zernike Series” surface type is described by
 k i

 Z(X, Y) = S S Bij Xj Yi-j, k = order of monomial
 i=0 j=0

The Zernike series file format is (wher e N is t he or der and the Bʼs ar e the coeffi cients):

N
B0,0

B1,0

B1,1

B2,0

B2,1

B2,2

.

.

.
BN,N

There are a total of (N+1)(N+2)/2 coefficients for the Zernike Series.

The “General Spencer & Murty” formulation is
 N

F = Z – cr2/[1 + (1 - kc2r2)1 / 2] - S a ir2i = 0, where N need not exceed 5 in most
cases (and in

 i=1

fact has been hardwired to this number.)

If terms a i are omitted from this equation above, it reduces to the “Other” equation
representing revolved conic sections. For surfaces described by “Other” or “General
Spencer & Murty”, the above general equation reduces to

mwagner
Pencil

mwagner
Sticky Note
These 2 no longer supported

SolTrace

18 / 57

F = Z – c (r2 + kZ2)/2 = 0, where c = 1/radius of curvature at vertex, r2 = X2 + Y2

k determines the surface type according to the following:

For k< 0 surface is a hyperboloid

For k = 0, surface is a paraboloid

For 0 < k< 1, surface is a hemi-ellipsoid of revolution about major axis

For k= 1, surface is a hemisphere

For k> 1, surface is a hemi-ellipsoid of revolution about minor axis

Surfaces specified by “Spherical” , “Parabolic” or “Conical” are subsets of the more
general “Other” surface type designation which in turn is a subset of the even more
general “General Spencer & Murty” formulation.

The Polynomial Series option is described by the equation
 N

Z(r) = S Ci ri , where r = (X2 + Y2)1/2

 i=0

A surface described by this choice is rotationally symmetric. The polynomial series file
format is (wher e N is t he or der and Cʼs ar e the coeffi cients):

N
C0

C1

C2

.

.

.
CN

A surface described by Cubic Spline Interpolation of a data point set (ri , Zi) is also
rotationally symmetric. The data required are the data points themselves and the
derivatives (or slopes) at the first and last points (boundary conditions). The cubic
spline interpolation file format is (where N is the number of data points):

N
r1 Z1

r2 Z2

.

.

.
rN ZN

dZ/dr at point 1 dZ/dr at point N

Special considerations for specifying the aperture and surface types exist and are listed
below:

mwagner
Cross-Out

SolTrace

19 / 57

1) It was originally intended that spherical and parabolic surfaces could have different
curvature in the x and y directions. Unfortunately, this was never implemented, and
the framework for specifying these was never removed. Thus, for ‘sʼ and ‘pʼ sur faces,
the 2nd parameter must be equal to 1st parameter or equal to zero (see item 2 below).

2) The only aperture type allowed for single axis curvature surfaces specified by ‘p-#,0ʼ
or ‘s-#,0ʼ i s t he ‘l ʼ t ype aper tur e. Other aperture types, such as rectangular (‘r ʼ t ype),
will not work with single axis curvature surfaces.

3) Except for VSHOT, Zernike monomial and FEA surface descriptions (all of which can
be asymmetric), only rotationally symmetric surfaces, planes, trough sections and
cylinders can be described by the above analytical formulations.

4) The cylindrical surface (t ype ‘t ʼ) r equi r es the ‘l ʼ aper tur e to be speci fied wi th the fi r st
two parameters set equal to 0 and the third being the length of the cylinder: ‘l-
0,0,l engthʼ.

5) The FEA surface description has not been fully implemented and so is not described.
6) The VSHOT file format is not described as this type of file is only available through

NREL testing.
7) If tracing rays into a closed surface such as a cylinder it is recommended that a

“virtual” window be placed at the end (or entrance) to the cylinder. This can be
accomplished with a flat circular element of optic type = 1 (i.e. refractive surface)
where the refraction indices for both the front and back side of the element are both
= 1 (i.e. zero refraction),the transmissivity = 1.0 (i.e. perfect transmission) and the
optical errors are set to very small values (e.g. <0.001 mrad). This surface does not
physically interact with the rays (i.e. does not affect their path), but corrects for
numerical problems associated with ray origins being far from the entrance to the
cylinder. It also provides a convenient surface to flux map the entrance and compare
with the exit.

As in the case of the aperture type description, an alternative to manually entering the
surface code is to click on the “Surface” button in the “Define” section above the
workbook. This button becomes available when the cursor is moved to the surface type
column . Doing so brings up the small sub-window shown in Figure 10. The surface type
can be selected via the dropdown box at the top of the window. As different types are
selected, a graphical description appears complete with the appropriate set of input
parameter boxes on the right side of the window. Entering the correct parameters and
clicking on the “OK” button results in the correct code appearing as the column entry.

mwagner
Cross-Out

mwagner
Cross-Out

mwagner
Text Box
Specifying The Optical Interaction
* Interaction options - reflection / refraction
* Choosing the optics

SolTrace

20 / 57

Figure 10. Surface definition window

Optical Properties

Each element can have a distinct set of optical parameters that define how rays interact
with the surface. In the "Interaction" column, the user can select between Refraction
and Reflection. Other types of interactions may become available in the future,
including Aperture Stop, Diffraction via Transmission, and Diffraction via Reflection.
Currently, only the reflective and refractive interaction types have been validated, even
though parameters for the other optic types are available on the optical property
definition window.

Optical Interaction Type Code
Refraction 1
Reflection 2
Aperture Stop 3
Diffraction via Transmission 4
Diffraction via Reflection 5

Table 3. Optical interaction types and corresponding numeric codes

The optical properties are referenced by name. A SolTrace project may have many sets
of optical property defined each with a unique name. These are defined on the "Define
Optics" input page, and are discussed in the next section in the manual. Once the
appropriate property sets are defined, the "Optics" column on the element table can be
filled in with the name of the optical properties for that element. Clicking the "Optics..."
button above the table will pop up a small dialog listing all the optical property sets
defined in the system, and by selecting one and clicking "OK", the name will be entered
into the appropriate table cell.

mwagner
Sticky Note
Update

mwagner
Sticky Note
This should be a new section on par with the "Geometry" section

mwagner
Pencil

mwagner
Sticky Note
Why do we have these options in the interface and documentation if they are not supported?! Remove.

mwagner
Pencil

SolTrace

21 / 57

For virtual stages, the interaction type and optical properties are ignored and do not
need to be initialized.

Created with the Personal Edition of HelpNDoc: Full-featured Help generator

Optical Properties

Optical properties are defined on the second input page, shown below. Each SolTrace
project may have numerous optical property sets defined. Use the Add and Remove
buttons to add new sets of optical properties. Each optical property set contains a
separate set of parameters for the front and back of the surface, accessed by the
corresponding tabs. Optical property sets can be saved and retrieved later using the
Import and Export buttons.

Figure. Optical property setup input page.

For refractive optics, only the transmissivity and the real component of the refraction
indices are relevant and used at this time. The imaginary refractive index will not be
discussed. A real physical refractive component is actually constructed from two
elements or surfaces. In Figure 13 for example, a plane of glass consists of two surfaces
(or elements) separated by the glass media between. A ray passes from one media (air
for example) through one surface (or element) to the glass media, is refracted and then
passes through the other surface back to the air. The first element would be defined
with the index of refraction of air on the back side and the index of refraction of glass on
the front side. The second surface would be defined with the index of refraction of glass

https://www.helpndoc.com/feature-tour
mwagner
Sticky Note
Update

SolTrace

22 / 57

on the back side and the index of refraction of air on the front side. Surfaces other than
flat would construct lenses.

Figure 13. A glass plane is actually constructed from two separate elements.

The transmissivity is the fraction of rays (0 to 1.0) that pass through an element. So, if in
the above example the glass plane transmits 98% then one of the elements should be
defined with a transmissivity of 0.98 and the other 1.0 or both could be defined with
transmissivities of 0.99. Currently, for refractive surfaces there is no reflective
component.

For reflective optics, one element is usually sufficient to model a mirror since no
transmission is allowed. The relevant parameter is the reflectivity and the element still
possesses both back and front side values.

For both refractive and reflective optics another set of optical parameters applies. In
addition to the effects of the element surface shape on ray direction, two random errors
can be included which affect ray interaction at the surface of an element. They are
surface slope error and surface specularity. Both are illustrated in Figure 14 for the
case of a reflective surface with Gaussian error distribution. Surface slope error is a
macro feature while specularity is a micro structure effect. The total error is given by

soptical = (4sslope
2 + sspecularity

2)1/2

If the pillbox distribution is used than replace s with the half-width of the pillbox.

soptical is in terms of the reflected vector. By Snel l ʼs Law a slope er r or of q results in a

reflected vector error of 2q. Specularity error is already in terms of the reflected vector.

 Thus the factor of 4 on the sslope term.

SolTrace

23 / 57

Figure 14. Illustration of surface slope and surface specularity error

Select the distribution type in the box on the lower left of the window and enter
appropriate values for the R.M.S. errors to the right. soptical cannot be equal to zero
otherwise an error occurs. Therefore, at least one of the two error components should
be non-zero. If the user does not wish to include either one of these errors, they can be
switched off later before the ray tracing begins. For now, always include some positive
value for at least one of these errors.

Created with the Personal Edition of HelpNDoc: Create cross-platform Qt Help files

Tracing

Overview

When the user specifies a certain number of rays to be traced (how this is done will be
described later), rays continue to be randomly generated until that number of
intersections has occurred somewhere on the elements of Stage 1. A vector is calculated
which connects the origin of Stage 1 and the source (e.g. the sun) and ray locations are
generated on a plane normal to this vector and within a circle which just encompasses
all the projected shapes of the elements within Stage 1. This narrows down the random
ray generation region and saves time. The actual application of the sun direction and the
sunshape occurs after these intersections have been determined, not before as might be
expected. Mathematically it makes no difference when they are applied, but
functionally it is more efficient to do so in this way in order to eliminate needless ray
generation and, subsequently, time. Once the requested number of rays has intersected
Stage 1 somewhere, they are traced to subsequent stages. The ‘Tr ace Thr oughʼ checkbox
thus never appears on the Stage 1 worksheet, because the requested ray number always
intersects Stage 1 somewhere.

In certain optical systems, the optical path can fold back on itself. An example would be
that of the solar furnace described in Figure 1. A heliostat (Stage 1) reflects sunlight
back to a primary concentrator (Stage 2) which in turn focuses and redirects the light
back to a target (Stage 3). In this case, Stage 3 could actually lie between Stages 1 and 2.
 SolTr ace does not ‘knowʼ t his fact. It only knows sequential stage numbers. After the

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

SolTrace

24 / 57

first stage, when a ray leaves a subsequent stage it is automatically traced to the next
stage (i f t he ‘Tr ace Thr oughʼ box is checked) regardless of whether the ray hit an
element within the stage or missed all the elements completely. Thus, if the ‘Trace
Thr oughʼ box was checked for Stage 2 and a ray was traced that actually missed all the
elements of Stage 2 it would continue to be traced to the target in Stage 3 rather than
exiting the system completely which is the physical reality. Since the last known ray
location and direction was in Stage 1, the ray would continue to be traced to Stage 3 and
would intersect on the backside of the target in Stage 3 which is not the physical reality.
 I f t he “Tr ace Thr oughʼ box had been unchecked for Stage 2 then this ray would have
been handled correctly. Upon missing all elements of Stage 2, it would have been logged
as missed and not traced further.

Figure 15. The trace setup parameters

The first input box is the number of rays to be traced. Recall from previous discussions
that this many rays will actually interact with elements of Stage 1. The code randomly
generates rays on a plane normal to the vector linking the sun with origin of Stage 1.
The rays are generated within a circle large enough to just encompass the projected
images of all the elements in Stage 1 as seen from the sun. The code continues to
generate rays until the requested rays have fallen on elements of Stage 1. The code
tallies the total number of rays generated within the circle, both those that fell on an
element and those that did not, divides this number into the area of the circle and
multiplies the result by the Direct Normal Insolation value in the second input box.
This results in a unit power/ray value subsequently used to calculate efficiencies and
flux intensities. A seed for the Random Number Generator is internally calculated and
is based of a psedorandom computation using the current CPU clock time as a driver.

The maximum number of rays to generate allows the user to limit the maximum number
of rays generated, regardless of how many have actually hit Stage 1. This prohibits a
trace to spin forever due to an implausibly defined geometry. To avoid hitting this limit
in normal operation, it is incumbent upon the user to make sure the number is large
enough.

SolTrace allocates memory as it needs it during the trace. Before the trace actually

mwagner
Sticky Note
Replace

SolTrace

25 / 57

begins, SolTrace calculates the amount of memory it believes is sufficient to do the trace
based on the requested ray number and on the assumption that each ray will hit each
stage once. It then does one large allocation of memory. It cannot anticipate the
possibility of multiple bounces of a ray or rays within a stage. If SolTrace runs out of
memory, it begins to grab memory as it needs it from that point forward. This can
drastically reduce execution speed. If the user can anticipate this fact, the number of
initial memory blocks can be increased with this spin button thereby minimizing or even
eliminating these subsequent memory calls and thus execution time.

For computers with multiple processors, SolTrace automatically dispatches threads to
concurrently trace rays. By default, it dispatches as many threads as there are
processors in the computer. However, the user may elect to only use one processor or
two to leave others free for other tasks, or to asses performance characteristics.

Upon click the "Start new trace" button, a progress dialog will prop up that gives
statistics about the current status of the ray tracing procedure. On computers with
multiple processors, each processor's progress is shown separately, along with aggregate
statistics about the number of rays being traced per second and the total elapsed time.

When the trace has completed, the results are automatically loaded into the
visualization and data export modules. Simply click the appropriate toolbar buttons to
view graphs or export the data to CSV files or Excel.

Created with the Personal Edition of HelpNDoc: Easy to use tool to create HTML Help files and Help web sites

Visualization

At this time, there are basically three different plot types available within SolTRACE.
The 3-D ray intersection and path plot, projected XY, YZ, and XZ scatter plots of
intersection points, and a 2-D flux distribution contour plot. Figure 16 is an example of
a scatter plot showing ray intersections for a single element Stage 1 consisting of a
parabolic mirror and a single element Stage 2 consisting of a flat target at the focus of
the parabolic mirror. At the upper right of the plot window, the user will notice two
boxes, one ent i t led ‘Stagesʼ and the other ent i t led ‘Elementsʼ. In the Stage box will be a
list of the stages within the system. I ni t ial l y t he ‘Element ʼ box wi l l be empty. Clicking
on (or selecting) one or more of the stages within the stage list displays within the
‘Element ʼ box the l i st of elements for each of t he selected stages. I n t he ‘Element ʼ box ,
the selected stages are shown in gray. A ‘Vʼ or an ‘Oʼ next t o t he stage number indicates
whether it is a virtual or optical stage type. Below each stage entry is the list of
elements within that stage with check boxes next to them. The surface type for each
element is also indicated. See Table x for the alphanumeric code designation. The last
pieces of infor mat ion shown in the ‘Element ʼ box ar e the number of inter sect ion point s
for each stage and for each element within each stage. Note that one ray can have
multiple intersections with one or more surfaces. One can select more than one stage if
desi r ed r esul t ing in t he elements for each stage being displayed in t he ‘Element ʼ box as
shown. At the bot tom of t he ‘Stageʼ l i st ar e two but tons whose pur pose is
straightforward. One selects all the stages with one click, the other unselects all stages
with one click. The user can select ray intersections for specific elements to be plotted
by checking the boxes next to the elements of interest. The buttons below this box also
perform the same function as the previous two for the stage list.

Once the elements of interest have been selected, the user can now choose how to
display the ray intersections. Directly aboce the stage list is a box for selecting the

https://www.helpndoc.com/help-authoring-tool
mwagner
Sticky Note
Add explanation of "Include sun shape", "Include optical errors", and add new documentation for "Point focus system." I will add files with description for the lattermost option to the GitHub issue separately.

mwagner
Cross-Out

mwagner
Inserted Text
two

mwagner
Cross-Out

mwagner
Sticky Note
Update description to be consistent with the "Intersections" page

SolTrace

26 / 57

coordinate system to be used for the plot. If elements from multiple stages have been
selected, then clearly the global coordinate system would be the logical choice.
However, if a set of elements within one stage is selected, the user may wish to plot the
ray intersections in the coordinate system for that stage. The same holds true if only
one element was selected, the user may wish to plot the results in the coordinate system
for that element. The "Final intersections only" checkbox to the right allows the user to
display all ray intersections including multiple bounces or just the absorbed or final ray
intersections (intersection before ray exits a stage) within a particular stage. There are
three options available to the user for displaying the ray intersections. The first is
displaying them all as one series or color. Another is to plot ray intersections at each
individual element (regardless of stage) as separate series or colors. The last option is
to plot ray intersections within each stage as separate series or colors. Ray paths for
individual rays can also be shown as lines connecting ray intersection points (useful for
tracking ray paths through complicated multiple bounce geometries). Each ray has a
number associated with it from 1 to the number of requested rays. Specific ray numbers
can be plotted or a range of ray numbers (e.g. ‘1,2,5,6-10ʼ). Clicking on ‘Ray Numbers:ʼ
makes the text box available for entering the ray numbers of interest. Rays paths are
shown in black with the exception of rays that miss the last displayed stage. The last leg
of a ray path that ultimately misses the last displayed stage is shown in white as it exits.

Figure 16

Some statistical information is displayed once the plot is complete. The r.m.s. radius of
the distribution from the coordinate system origin and the r.m.s deviation are displayed
together with the centroid of the distribution relative to the coordinate system origin.

mwagner
Sticky Note
Replace

SolTrace

27 / 57

This information is only meaningful for intersections on a flat plane.

Other plot types can be selected using the dropdown below the stage and element check
lists. Both the surface plot and the contour plot are designed for flux distributions on a
plane and therefore require that the data be for one element with either a flat or
cylindrical surface in the element coordinate system. A cylindrical element is “rolled
out flat” for plotting purposes. The program will not allow a surface or contour plot if 1)
more than one element is selected, 2) a coordinate system other than the element
coordinate system is selected, or 3) the element surface is not flat or cylindrical. The
number of bins in the x and y directions must be entered. The program calculates the
minimum and maximum extents in both directions and uses these by default for plotting,
however the user can enter other minimums and maximums as desired. Below the
plotting buttons, some statistical information on the flux distribution is displayed. Peak
flux, verage flux and the r.m.s radius of the flux distribution are displayed in both the
units chosen by the user and also in suns (units of the direct normal irradiance value
enter ed in t he ‘Tr aceʼ for m.)

Figure. Flux contour plot with statistics.

Created with the Personal Edition of HelpNDoc: Easily create Web Help sites

Exporting Data

Upon completion of a trace, the raw intersection point data can be viewed and exported
on the "Export Data" page.

https://www.helpndoc.com/feature-tour
mwagner
Sticky Note
Add a new section for "Flux plots" and move discussion of the flux plots to the new section.

mwagner
Sticky Note
Replace

SolTrace

28 / 57

Figure 20. Handling raw data points

Tabular data of ray intersections and directions can be loaded into a worksheet by
clicking on the button in the upper left corner of the form. The purpose is to provide a
quick way to inspect the data for reasonableness and accuracy. The format seen here is
the exact way in which the data is saved to a text file. The data shown in the table is
what is saved as a CSV file or exported to Excel. So if a given geometry consisted of
three stages for example, then three separate files would have to be saved to capture all
ray interactions within that geometry. By default, the results for all stages are listed,
but the user can limit the display to only certain stages using the checkbox and input
above the data table. The coordinate system in which the data is to be cast is selected in
the upper right of the form.

Recal l t hat when the user selects a given r ay number in t he ‘Tr aceʼ for m, that number of
rays is generated somewhere on the elements of Stage 1. Each ray is numbered from one
to the requested ray number and can be identified and traced through the system by this
number. The table shown in Figure 20 is a table of intersections for each ray within a
particular stage. Each entry contains: 1) the x,y,z location of the ray intersection point
within the stage, cast in whatever coordinate system the user chose, 2) the direction
cosines of the ray as it entered the stage, 3) the element number within the stage that the
ray hit, 4) the associated stage number, and 5) the ray number. If a particular ray had
multiple intersections within a stage then there will be multiple entries for that ray
number showing the path that it took through that particular stage before exiting. If a
ray missed all elements of the stage completely then there will be a zero in the element
number column signifying this occurrence. I f t he ‘t r ace thr oughʼ for t hat stage was
turned off, then that ray number will no longer show up in any of the following stage
data lists as it is considered a lost ray. If the element number is negative for a
particular ray intersection, it means that the ray in fact hit this element but was
absorbed. Similarly, this ray ceases to be traced though the rest of the system and so
will not show up in subsequent stage data lists.

This data is provided so that it can be processed outside of SolTrace with other plotting
packages, heat transfer/radiation analysis programs, etc.

Created with the Personal Edition of HelpNDoc: iPhone web sites made easy

https://www.helpndoc.com/feature-tour/iphone-website-generation
mwagner
Sticky Note
Update

SolTrace

29 / 57

SolScript Automation

The SolTrace automation capabilities use the simple Scriptlet language engine. This is the same scripting
language used by the Solar Advisor Model (SAM) tool, although several built-in functions are provided
for working directly with SolTrace projects. For the purposes of SolTrace, the script language and
associated working environment will be referred to as SolScript.

1.1 Entering a SolScript Program

SolScript is included by default in every installation of SolTrace, and is accessed from the 'Automation'
tab on the top navigation toolbar.

SolScript files are not attached to or saved with SolTrace *.stinput files. Rather they are stand-alone
text files with the *.ss extension. The automation page in SolTrace includes a folder browser for locating
and opening script files, and a multi-tab editor that allows the user to work on several script files at
once. The text area below the editor window is the output screen where messages and data from the
script are displayed. A screenshot of the environment is included below.

To run a script, press the forward arrow button on the toolbar above the editor. This will cause the

mwagner
Text Box
This entire section is out of date. SolTrace now uses LK scripting with custom functions. The routines are documented in the script window function reference. To update this section, add description of how to create/open an LK file, then add a listing of the available functions and their documentation. The listing can pretty much be pulled directly from the function reference window in LK. We can also remove a lot of the background material on language usage and syntax, and refer users to the LK documentation at https://github.com/NREL/lk/blob/develop/doc/lk_guide.pdf.

SolTrace

30 / 57

script in the active text editor to be loaded and interpreted by the Scriptlet engine. If there are any
syntax errors in the program, SolTrace will list the errors in the message window and require the user to
fix them before proceeding. If you have typed something incorrectly, the first error location displayed is
nearest the point in the source code where the typo occured.

If your code is syntactically correct, SolTrace will run it and display and send any output that your script
may create to the messages window.

1.2 Hello world!

As with any new language, the traditional first program is to print the words "Hello, world!" on the
screen, and the SolScript version is listed below.

out("Hello, world!\n")

Notable features:

1. The out command generates output from the script

2. The text to output is enclosed in double-quotes

3. To move to a new line, the symbol \n is used

To run Hello world, type it into a new SolScript script, and press the 'Run' button on the toolbar. Now
we will learn some more about variables and program control in SolScript.

1.3 Why SolScript instead of VBA?

Since SolScript is so similar in functionality and syntax to Visual Basic, you might wonder why we didn't
simply use a VBA language engine. Visual Basic for Applications (VBA) is a closed source Microsoft
product that is very tightly integrated into the Office suite of applications, and while there are some freely
available interpreters for subsets of VB-like languages, we decided that they would not suit our
purposes well enough.

SolScript is close enough to VBA in general syntax and program structure to make it easily
understandable by people familiar with VBA, but with some differences and additional functionality to
alleviate some of the more annoying aspects of VBA programming. By developing our own script
engine, we have been able to integrate it very tightly into the SolTrace environment for maximum ease of
use.

Some notable points of departure from VBA include:

1. 'for' loop syntax follows the C / Perl convention

2. Array arithmetic is automatically performed (array * array results in element by element
multiplication)

3. 'elseif' statement formatting is similar to PHP

4. No distinction between functions and procedures

Created with the Personal Edition of HelpNDoc: Generate Kindle eBooks with ease

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

SolTrace

31 / 57

Data Variables

2.1 General Syntax

SolScript is a programming language that is similar in style to Visual Basic. Each program statement is
generally placed on a line by itself, and the end-of-line marks the end of the statement. However, unlike
Visual Basic, there is no facility to split a long statement across multiple lines.

Blank lines may be inserted between statements. While they have no meaning, they can help make a
script easier to read. Spaces can also be added or removed nearly anywhere, except for in the middle
of a word. The following statements all have the same meaning.

out("Hello 1\n")
 out ("Hello 2\n")
out ("Hello 3\n")

Comments are lines in the program code that are ignored by SolScript. They serve as a form of
documentation, and can help other people (and you!) more easily understand what the script does.
Comments begin with the single-quote ' character, and continue to the end of the line.

' this program creates a greeting
out("Hello, world!\n") ' display the greeting to the user

2.2 Variables

Variables store information while your script is running. SolScript variables share many characteristics
with other computer languages.

1. Each variable stores a single value

2. Variables do not need to be "declared" in advance of being used

3. There is no distinction between variables that store text and variables that store numbers

Variable names may contain letters, digit, and the underscore symbol. A limitation is that variables
cannot start with a digit. Unlike some languages like C and Perl, SolScript does not distinguish between
upper and lower case letters in a variable (or subroutine) name. As a result, the name myData is the
same as MYdata.

Values are assigned to variables using the equal sign =. Some examples are below.

Num_Modules = 10
ArrayPowerWatts = 4k
Tilt = 18.2
system_name = "Super PV System"
Cost = "unknown"
COST = 1e6
cost = 1M

A second assignment to a variable erases its previous value. As shown above, decimal numbers can be
written using scientific notation or engineering suffixes. The last two assignments to Cost are the same
value. Recognized suffixes are listed in the table below. Note that suffixes are case-sensitive.

SolTrace

32 / 57

Name Suffix Multiplier

Tera T 1e12

Giga G 1e9

Mega M 1e6

Kilo k 1e3

Milli m 1e-3

Micro u 1e-6

Nano n 1e-9

Pico p 1e-12

Femto f 1e-15

Atto a 1e-18

Table 1: Recognized Engineering Suffixes

2.3 Arithmetic

SolScript supports the four basic operations +, -, *, and /. The usual algebraic precendence rules are
followed, so that multiplications are performed before additions. Parentheses are also understood and
can be used to change the default order of operations.

More complicated operations like raising to a power and performing modulus arithmetic are possible
using built-in function calls in the standard SolScript library.

Examples of arithmetic operations:

battery_cost = cost_per_kwh * battery_capacity

' multiplication takes precedence
degraded_output = degraded_output - degraded_output * 0.1

' use parentheses to subtract before multiplication
cash_amount = total_cost * (1 - debt_fraction/100.0)

2.4 Simple Input and Output

You can use the built-in out and outln functions to write data to the console window. The difference is
that outln automatically appends a newline character to the output. To output multiple text strings or
variables, use the + operator, or separate them with a comma.

array_power = 4.3k
array_eff = 0.11
outln("Array power is " + array_power + " Watts.")
outln("It is " + (array_eff*100) + " percent efficient.")
outln("It is ", array_eff*100, " percent efficient.") ' same as above

SolTrace

33 / 57

The console output generated is:

Array power is 4300 Watts.
It is 11 percent efficient.

Use the in function to read input from the user. You can optionally pass a message to in to display to
the user when the input popup appears. The user can enter either numbers or text, and SolScript will
perform any type conversions if needed (and if possible).

cost_per_watt = in("Enter cost per watt:") ' Show a message. in() also is
fine.
notice("Total cost is: " + cost_per_watt * array_power + " dollars")

The notice function works like out, except that it displays a popup message box on the computer
screen.

2.5 Data Types and Conversion

SolScript supports four basic types of data, although most conversions between types happen
automatically.

Type Conversion Function Valid Values

Integer Number integer() +/- approx. 2 billion

Double-precision Decimal Number double() 1e-308 to 1e308, with infinity

Boolean boolean() true or false (1 or 0)

Text Strings string() Any length text string

Table 2: Intrinsic SamUL Data Types

Sometimes you have two numbers in text strings that you would like to multiply. This can happen if you
read data in from a text file on the computer, for example. Since it does not make sense to try to
multiply text strings, you need to first convert the strings to numbers. To convert a variable to a double-
precision decimal number, use the double function, as below.

a = "3.5"
b = "-2"
c1 = a*b ' this will cause an error when you click 'Run'
c2 = Double(a) * Double(b) ' this will assign c2 the number value of -7

You can also use integer to convert a string to an integer or truncate a decimal number, or the
string function to explicitly convert a number to a string variable.

If you need to find out what type a variable currently has, use the typeof function to get a description.

a = 3.5
b = -2
c1 = a+b ' this will set c1 to -1.5
c2 = String(Integer(a)) + String(b) ' c2 set to text "3-2"

SolTrace

34 / 57

outln(typeof(a)) ' will display "double"
outln(typeof(c2)) ' will display "string"

2.6 Special Characters

Text data can contain special characters to denote tabs, line endings, and other useful elements that are
not part of the normal alphabet. These are inserted into quoted text strings with escape sequences,
which begin with the \ character.

Escape Sequence Meaning

\n New line

\t Tab character

\r Carriage return

\" Double quote

\\ Backslash character

Table 3: Text String Escape Sequences

So, to print the text "Hi, tabbed world!", or assign c:\Windows\notepad.exe, you would have
to write:

outln("\"Hi,\ttabbed world!\"")
program = "c:\\Windows\\notepad.exe"

Created with the Personal Edition of HelpNDoc: Produce online help for Qt applications

Flow Control

3.1 Comparison Operators

SolScript supports many ways of comparing data. These types of tests can control the program flow
with branching and looping constructs that we will discuss later.

There are six standard comparison operators that can be used on most types of data. For text strings,
"less than" and "greater than" are with respect to alphabetical order.

Comparison Operator

Equal ==

Not Equal !=

Less Than <

Less Than or Equal <=

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

SolTrace

35 / 57

Greater Than >

Greater Than or Equal >=

Table 4: Comparison Operators

Examples of comparisons:

divisor != 0
state == "oregon"
error <= -0.003
"pv" > "csp"

Single comparisons can be combined by boolean operators into more complicated tests.

1. The not operator yields true when the test is false. It is placed before the test whose result is to
be notted.
Example: not (divisor == 0)

2. The and operator yields true only if both tests are true.
Example: divisor != 0 and dividend > 1

3. The or operator yields true if either test is true.
Example: state == öregon" or state == "colorado"

The boolean operators can be combined to make even more complex tests. The operators are listed
above in order of highest precedence to lowest. If you are unsure of which test will be evaluated first,
use parentheses to group tests. Note that the following statements have very different meanings.

state_count > 0 and state_abbrev == "CA" or state_abbrev == "OR"
state_count > 0 and (state_abbrev == "CA" or state_abbrev == "OR")

3.2 Branching

Using the comparison and boolean operators to define tests, you can control whether a section of code
in your script will be executed or not. Therefore, the script can make decisions depending on different
circumstances and user inputs.

3.2.1 if Statements

The simplest branching construct is the if statement. For example:

if (tilt < 0.0)
 outln("Error: tilt angle must be 0 or greater")
end

Note the following characteristics of the if statement:

1. The test condition is placed in parentheses after the if keyword.

2. The following program lines include the statements to execute when the if test succeeds.

3. For the sake of program readability, the statements inside the if are indented. The program will
still be correct if they are not indented, but then the script becomes much harder to understand

SolTrace

36 / 57

and debug.

4. The construct concludes with the end keyword.

5. When the if test fails, the program statements inside the if-end block are skipped.

3.2.2 else Construct

When you also have commands you wish to execute when the if test fails, use the else clause. For
example:

if (power > 0)
 energy = power * time
 operating_cost = energy * energy_cost
else
 outln("Error, no power was generated.")
 energy = -1
 operating_cost = -1
end

3.2.3 Multiple if Tests

Sometimes you wish to test many conditions in a sequence, and take appropriate action depending on
which test is successful. In this situation, use the elseif clause. Be careful to spell it as a single word,
as both else if and elseif can be syntactically correct, but have different meanings.

if (angle >= 0 and angle < 90)
 text = "first quadrant"
elseif (angle >= 90 and angle < 180)
 text = "second quadrant"
elseif (angle >= 180 and angle < 270)
 text = "third quadrant"
else
 text = "fourth quadrant"
end

You do not need to end a sequence of elseif statements with the else clause, although in most cases
it is appropriate so that every situation can be handled. You can also nest if constructs if needed.
Again, we recommend indenting each "level" of nesting to improve your script's readability. For
example:

if (angle >= 0 and angle < 90)
 if (print_value == true)
 outln("first quadrant: " + angle)
 else
 outln("first quadrant")
 end
end

3.2.4 Single line ifs

Sometimes you only want to take a single action when an if statement succeeds. To reduce the amount
of code you must type, SolScript accepts single line if statements, as shown below.

if (azimuth < 0) outln("Warning: azimuth < 0, continuing...")

if (tilt > 90) tilt = 90 ' set maximum tilt value

SolTrace

37 / 57

You can also use an else statement on single line if. Like the if, it only accepts one program
statement, and must be typed on the same program line. Example:

if (value > average) outln("Above average") else outln("Not above average")

3.3 Looping

A loop is a way of repeating the same commands over and over. You may need to process each line of
a file in the same way, or sort a list of names. To achieve such tasks, SolScript provides two types of
loop constructs, the while and for loops.

Like if statements, loops contain a "body" of program statements followed by the end keyword to
denote where the loop construct ends.

3.3.1 while Loops

The while loop is the simplest loop. It repeats one or more program statements as long as a logical test
holds true. When the test fails, the loop ends, and the program continues execution of the statements
following the loop construct. For example:

while (done == false)
 ' process some data
 ' check if we are finished and update the 'done' variable
end

The test in a while loop is checked before the body of the loop is entered for the first time. In the
example above, we must set the variable done to false before the loop, because otherwise no data
processing would occur. After each iteration ends, the test is checked again to determine whether to
continue the loop or not.

3.3.2 Counter-driven Loops

Counter-driven loops are useful when you want to run a sequence of commands for a certain number of
times. As an example, you may wish to display only the first 10 lines in a text file.

There are four basic parts of implementing a counter-driven loop:

1. Initialize a counter variable before the loop begins.

2. Test to see if the counter variable has reached a set maximum value.

3. Execute the program statements in the loop, if the counter has not reached the maximum value.

4. Increment the counter by some value.

For example, we can implement a counter-driven loop using the while construct:

i = 0 ' use i as counter variable
while (i < 10)
 outln("value of i is " + i)
 i = i + 1
end

3.3.3 for Loops

The for loop provides a streamlined way to write a counter-driven loop. It combines the counter

SolTrace

38 / 57

initialization, test, and increment statements into a single line. The script below produces exactly the
same effect as the while loop example above.

for (i = 0; i < 10; i = i+1)
 outln("value of i is " + i)
end

The three loop control statements are separated by semicolons in the for loop statement. The
initialization statement (first) is run only once before the loop starts. The test statement (second) is run
before entering an iteration of the loop body. Finally, the increment statement is run after each
completed iteration, and before the test is rechecked. Note that you can use any assignment or
calculation in the increment statement.

Just like the if statement, SolScript allows for loops that contain only one program statement in the
body to be written on one line. For example:

for (val=57; val > 1; val = val / 2) outln("Value is " + val)

3.3.4 Loop Control Statements

In some cases you may want to end a loop prematurely. Suppose under normal conditions, you would
iterate 10 times, but because of some rare circumstance, you must break the loop's normal path of
execution after the third iteration. To do this, use the break statement.

value = double(in("Enter a starting value"))
for (i=0; i<10; i=i+1)
 outln("Value is " + value)
 if (value < 0)
 break
 end
 value = value / 3.0
end

In another situation, you may not want to altogether break the loop, but skip the rest of program
statements left in the current iteration. For example, you may be processing a list of files, but each one is
only processed if it starts with a specific line. The continue keyword provides this functionality.

for (i=0; i<file_count; i=i+1)
 file_header_ok = false

 ' check if whether current file has the correct header

 if (file_header_ok == false)
 continue
 end

 ' process this file
end

The break and continue statements can be used with both for and while loops. If you have nested
loops, the statements will act in relation to the nearest loop structure. In other words, a break statement
in the body of the inner-most loop will only break the execution of the inner-most loop.

3.4 Quitting

SolScript script execution normally ends when there are no more program statements to run at the end

SolTrace

39 / 57

of the program. However, sometimes you may need to halt early, if the user chooses not to continue an
operation, for example.

The exit statement will end the SolScript script immediately. For example:

if (yesno("Do you want to quit?") == true)
 outln("Aborted.")
 exit
end

The yesno function call displays a message box on the user's screen with yes and no buttons, showing
the given message. It returns true if the user clicked yes, or false otherwise.

Created with the Personal Edition of HelpNDoc: Easy CHM and documentation editor

Arrays of Data

Often you need to store a list of related values. For example, you may need to refer to the price of
energy in different years. Or you might have a table of state names and capital cities. In SolScript, you
can use arrays to store these types of collections of data.

4.1 Initializing and Indexing

An array is simply a list of variables that are indexed by numbers. Each variable in the array is called an
element of the array, and the position of the element within the array is called the element's index. The
index of the first element in an array is always 0.

To access array elements, enclose the index number in square brackets immediately following the
variable name. Unlike many computer languages, SolScript does not require you to declare or allocate
space for the array data in advance.

names[0] = "Sean"
names[1] = "Walter"
names[2] = "Pam"
names[3] = "Claire"
names[4] = "Patrick"

outln(names[3]) ' output is "Patrick"
my_index = 2
outln(names[my_index]) ' output is "Pam"

You can also initialize a fixed array using the array command provided in SamUL. Simply separate
each element with a comma. There is no limit to the number of elements you can pass to array.

names = array("Sean", "Walter", "Pam", "Claire", "Patrick")
outln("First: " + names[0])
outln("All: " + names)

Note that calling the typeof function on an array variable will return ärray" as the type description, not
the type of the elements. This is because SolScript is not strict about the types of variables stored in an
array, and does not require all elements to be of the same type.

4.2 Array Length

Sometimes you do not know in advance how many elements are in an array. This can happen if you are

https://www.helpndoc.com

SolTrace

40 / 57

reading a list of numbers from a text file, storing each as an element in an array. After the all the data has
been read, you can use the length function to determine how many elements the array contains.

count = length(names)

4.3 Processing Arrays

Arrays and loops naturally go together, since frequently you may want to perform the same operation on
each element of an array. For example, you may want to find the total sum of an array of numbers.

numbers = array(1, -3, 2.4, 9, 7, 22, -2.1, 5.8)

count = length(numbers)
sum = 0
for (i=0; i<count; i=i+1)
 sum = sum + numbers[i]
end

The important feature of this code is that it will work regardless of how many elements are in the array.

4.4 Multidimensional Arrays

As previously noted, SolScript is not strict with the types of elements stored in an array. Therefore, a
single array element can even be another array. This allows you to define matrices with both row and
column indexes, and even three dimensional arrays.

To create a multi-dimensional array, simply separate the indices with commas between the square
brackets. For example:

data[0,0] = 3
data[0,1] = -2
data[1,0] = 5
data[2,0] = 1

nrows = length(data) ' result is 4
ncols = length(data[0]) ' result is 2

row1 = data[0] ' extract the first row

x = row1[0] ' value is 3
y = row1[1] ' value is -2

4.5 Managing Array Storage

When you define an array, SolScript automatically allocates sufficient computer memory to store the
elements. If you know in advance that your array will contain 100 elements, for example, it can be much
faster to allocate the computer memory before filling the array with data. Use the allocate command
to make space for 1 or 2 dimensional arrays.

data = allocate(3,2) ' a matrix with 3 rows and 2 columns
data[2,1] = 3

prices = allocate(5) ' a simple 5 element array

As before, you can extend the array simply by using higher indexes. However, if you know in advance
how many more elements you will be adding, it can be faster to use the resize command to reallocate

SolTrace

41 / 57

computer memory to store the array. resize preserves any data in the array, or truncates data if the
new size is smaller than the old size.

data = allocate(5)
outln(length(data))
resize(data, 10)
outln(length(data))

resize(data, 2, 4)
outln(length(data))
outln(length(data[0]))

Created with the Personal Edition of HelpNDoc: Easily create Help documents

Function Calls

It is usually good progamming practice to split a larger program up into smaller sections, often called
procedures, functions, or subroutines. A program may be easier to read and debug if it is not all thrown
together, and you may have common blocks of code that appear several times in the program.

5.1 User Functions

A function is simply a named chunk of code that may be called from other parts of the script. It usually
performs a well-defined operation on a set of variables, and it may return a computed value to the
caller.

Functions can be written anywhere in your script, including after they are called. If a function is never
called by the program, it has no effect.

5.1.1 Definition

Consider the very simple procedure listed below.

function show_welcome()
 outln("Thank you for choosing SolTrace.")
 outln("This text will only be displayed at the start of the script.")
end

Notable features:

1. Use the function keyword to define a new function.

2. The name immediately follows. Valid function names can have letters, digits, and underscores,
but cannot start with a digit.

3. The empty parentheses after the name indicate that this function takes no parameters.

4. The end keyword closes the function definition.

To call the function from elsewhere in the code, simply write the function's name, followed by the
parentheses.

' show a message to the user
show_welcome()

https://www.helpndoc.com/feature-tour

SolTrace

42 / 57

5.1.2 Returning a Value

A function is generally more useful if it can return information back to the program that called it. In this
example, the function will not return unless the user enters ÿes" or "no" into the input dialog.

function require_yes_or_no()
 while(true)
 answer = in("Destroy everything? Enter yes or no:")
 if (answer == "yes") return true
 if (answer == "no") return false
 outln("That was not an acceptable response.")
 end
end

' call the input function
result = require_yes_or_no() ' returns true or false
if (not result)
 outln("user said no, phew!")
 exit
else
 outln("destroying everything...")
end

The important lesson here is that the main script does not worry about the details of how the user is
questioned, and only knows that it will receive a true or false response. Also, the function can be
reused in different parts of the program, and each time the user will be treated in a familiar way.

5.1.3 Parameters

In most cases, a function will accept arguments when it is called. That way, the function can change its
behavior, or take different inputs in calculating a result. Analagous to mathematical functions, SolScript
functions can take arguments to compute a result that can be returned. Arguments to a function are
given names and are listed between the parentheses on the function definition line.

For example, consider a function to determine the minimum of two numbers:

function minimum(a, b)
 if (a < b) return a else return b
end

' call the function
count = 129
outln("Minimum: " + minimum(count, 77))

In SolScript, changing the value of a function's named arguments will modify the variable in the calling
program. Instead of passing the actual value of a parameter a, SolScript always passes a reference to
the variable in the original program. The reference is hidden from the user, so the variable acts just like
any other variable inside the function.

Because arguments are passed by reference (as in Fortran, for example), a function can "return" more
than one value. For example:

function sumdiffmult(s, d, a, b)
 s = a+b
 d = a-b
 return a*b
end

SolTrace

43 / 57

sum = -1
diff = -1
mult = sumdiffmult(sum, diff, 20, 7)

outln("Sum: " + sum + " Diff: " + diff + " Mult: " + mult) ' will output 27,
13, and 140

5.1.4 Variable Scope

Generally, variables used inside a function are considered "local", and cannot be accessed from the
caller program. For example:

function triple(x)
 y = 3*x
end

triple(4)
outln(y) ' this will fail because y is local to the triple function

As we have seen, we can write useful functions using arguments and return values to pass data into and
out of functions. However, sometimes there are some many inputs to a function that it becomes very
cumbersome to list them all as arguments. Alternatively, you might have some variables that are used
throughout your program, or are considered reference values or constants. For these situations, you can
define variables to be global in SamUL, and then they can be used inside functions and in the main
program. For example:

global pi = 3.1415926

function circumference(r)
 return 2*pi*r
end

function deg2rad(x)
 return pi/180*x
end

outln("PI: " + pi)
outln("CIRC: " + circumference(3))
outln("D2R: " + deg2rad(180))

Common programming advice is to minimize the number of global variables used in a program.
Sometimes the are certainly necessary, but too many can lead to mistakes that are harder to debug and
correct, and can reduce the readability and maintainability of your script.

5.2 Built-in SolScript Functions

Throughout this guide, we have made use of built-in functions like in, outln, and others. These
functions are included with SolScript automatically, and called in exactly the same way as user functions.
Like user functions, they can return values, and sometimes they modify the arguments sent to them.
Refer to the "Standard Library" section at the end of this guide for documentation on each function's
capabilities, parameters, and return values.

Created with the Personal Edition of HelpNDoc: Easy EPub and documentation editor

https://www.helpndoc.com

SolTrace

44 / 57

Input, Output, and System Access

SolScript provides a variety of standard library functions to work with files, directories, and interact with
other programs. So far, we have used the in, out, and outln functions to accept user input and
display program output in the runtime console window. Now we will learn about accessing files and
other programs.

6.1 Working with Text Files

To write data to a text file, use the writetextfile function. writetextfile accepts any type of
variable, but most frequently you will write text stored in a string variable. For example:

data = ""
for (i=0;i<10;i=i+1) data = data + "Text Data Line " + string(i) + "\n"
ok = writetextfile("C:/test.txt", data)
if (not ok) outln("Error writing text file.")

Reading a text file is just as simple with the readtextfile function.

mytext = ""
if (not readtextfile("C:/test.txt", mytext))
 outln("could not read text file.")
else
 outln("text data:")
 out(mytext)
end

While these functions offer an easy way to read an entire text file, often it is useful to be able to access it
line by line. SolScript provides many additional functions for working with files. Use the open function
to open a file.

f = open("C:/test.txt", "r")
line = ""
while (not eof(f))
 readln(f, line)
 outln("My Text Line='" + line + "'")
end

close(f)

In the example above, the second parameter to open specifies whether to open the file for reading
("r"), writing ("w"), or appending ("a"). Then, we keep reading lines from the file denoted by f until we
have reached the end of the file. This is determined by calling the eof function in the while loop
condition. Each line is read by the readln function and the line variable is filled in with the current line
of text. To write to a file, use the corresponding writeln function.

Another way to access individual lines of a text file uses the split function to return an array of text
lines. For example:

mytext = ""
readtextfile("C:/test.txt", mytext)
lines = split(mytext, "\n")
outln("There are " + length(lines) + " lines of text in the file.")
if (length(lines) > 5) outln("Line 5: '", lines[5], "'")

SolTrace

45 / 57

6.2 File System Functions

Suppose you want to run SAM with many different weather files, and consequently need a list of all the
files in a folder that have the .tm2 extension. SolScript provides the directorylist function to help
out in this situation. If you want to filter for multiple file extensions, separate them with commas.

file_names = directorylist("C:/Windows", "dll") ' could also use "txt,dll"
outln("Found " + length(file_names) + " files that match.")
outln(unsplit(file_names, "\n"))

To list all the files in the given folder, leave the extension string empty or pass in "*".

Sometimes you need to be able to quickly extract the file name from the full path, or vice versa. The
functions filenameonly and dirnameonly extract the respective sections of the file name, returning
the result.

To test whether a file or directory exist, use the direxists or fileexists functions. Examples:

path = "C:/SAM/2009.8.13/samsim.dll"
dir = dirnameonly(path)
name = filenameonly(path)
outln("Path: " + path)
outln("Name: " + name + " Exists? " + fileexists(path))
outln("Dir: " + dir + " Exists? " + direxists(dir))

6.3 Standard Dialogs

To facilitate writing more interactive scripts, SolScript includes various dialog functions. We have
already used the notice and yesno functions in previous examples.

The choosefile function pops up a file selection dialog to the user, prompting them to select a file.
choosefile will accept three optional parameters: the path of the initial directory to show in the dialog,
a wildcard filter like "*.txt" to limit the types of files shown in the list, and a dialog caption to display
on the window. Example:

file = choosefile("c:/SAM", "*.dll", "Choose a DLL file")
if (file == "")
 notice("You did not choose a file, quitting.")
 exit
else
 if (not yesno("Do you want to load:\n\n" + file)) exit

 ' proceed to load .dll file
 outln("Loading " + file)
end

6.4 Calling Other Programs

Suppose you have a program on your computer that reads an input file, makes some complicated
calculations, and writes an output file.

There are two very similar ways to call external programs: the system and shell functions. They are
identical except that shell pops up an interactive system command window and runs the program in it.
Both functions will wait until the called program finishes before returning to SolScript, so that the
program runs synchronously. Examples:

SolTrace

46 / 57

system("notepad.exe") ' run notepad and wait
shell("ipconfig /all > c:/test.txt")
output = ""
readtextfile("c:/test.txt", output)
outln(output)

Each program runs in a folder that the program refers to as the working directory. Sometimes you may
need to switch the working directory to conveniently access other files, or to allow an external program
to run correctly.

working_dir = cwd() ' get the current working directory
chdir("C:/windows") ' change the working directory
outln("cwd=" + cwd())
chdir(working_dir) ' change it back to the original one
outln("cwd=" + cwd())

Created with the Personal Edition of HelpNDoc: Generate EPub eBooks with ease

Function Libraries

The functions described in this section comprise the SolScript standard library of function calls for data
manipulation, operating system access, and calculation.

Created with the Personal Edition of HelpNDoc: Free PDF documentation generator

Types and Data

Type/Data Manipulation

TypeOf (<VARIANT>):STRING
Returns a description of the argument type.

Integer (VARIANT):INTEGER
Converts the variable to an integer number.

Double (VARIANT):DOUBLE
Converts the variable to a double-precision floating point number.

Boolean (VARIANT):BOOLEAN
Converts the variable to a boolean.

String (...):STRING
Converts the given variables to a string.

IntegerArray (STRING):ARRAY
Converts a string delimited by {;, \t\n} to an integer array.

DoubleArray (STRING):ARRAY
Converts a string delimited by {;, \t\n} to a double-precision floating point array.

Length (ARRAY):INTEGER
Return the length of an array.

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com

SolTrace

47 / 57

Array (...):ARRAY
Creates an array out of the argument list.

Allocate (INTEGER:PRIMARY, [INTEGER:SECONDARY]):ARRAY
Creates an empty array with the specified dimensions.

Resize (<ARRAY>, INTEGER:PRIMARY, [INTEGER:SECONDARY]):NONE
Resizes an array or 2D matrix.

Append (<ARRAY>, ...):NONE
Appends one or more items to an array.

Prepend (<ARRAY>, ...):NONE
Prepends one or more items to an array.

Created with the Personal Edition of HelpNDoc: Create HTML Help, DOC, PDF and print manuals from 1 single
source

Input and Output

Input/Output

Out (...):NONE
Print data to the output device.

OutLn (...):NONE
Print data to the output device followed by a newline.

Print (STRING:Format, ...):NONE
Print formatted data to the output device using an extended 'printf' syntax.

In (...):STRING
Request input from the input device, showing an optional prompt.

Notice (...):NONE
Show a message dialog.

YesNo (...):BOOLEAN)
Show a Yes/No dialog. Returns true if yes was clicked

ChooseFile ([STRING:Initial dir], [STRING:Filter], [STRING:Caption]):STRING
Show a file selection dialog, with optional parameters.

Open (STRING:File, STRING:Mode):INTEGER
Opens a file for reading 'r', writing 'w', or appending 'a'.

Close (INTEGER:FileNum):NONE
Closes a file.

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool

SolTrace

48 / 57

Seek (INTEGER:FileNum, INTEGER:Offset, INTEGER:Origin):INTEGER
Sets the position in an open file.

Tell (INTEGER:FileNum):INTEGER
Returns the current file position.

Eof (INTEGER:FileNum):BOOLEAN
Determines whether a file is at the end.

Write (INTEGER:FileNum, ...):BOOLEAN
Writes data as text to a file.

WriteN (INTEGER:FileNum, VARIANT data, INTEGER: NumChars):BOOLEAN
Writes character data to a file.

WriteLn (INTEGER:FileNum, VARIANT data):BOOLEAN
Writes a line to a file as a string.

ReadN (INTEGER:FileNum, <STRING>:Data, INTEGER:NumChars):BOOLEAN
Reads characters from a file.

ReadLn (INTEGER:FileNum, <STRING>:Line):BOOLEAN
Reads a line from a file, returning false if no more lines exist.

ReadFmt (INTEGER:filenum, STRING:format=[idgefxsb]*, STRING:delimiters, ...
VALUE ARGUMENT LIST):BOOLEAN
Reads a data line from a file with the given sequence of types and delimiters. Number of value
arguments must equal number of characters in format string

OpenWF (STRING:file, [ARRAY:header info]):INTEGER
Opens a weather (TM2, TM3, EPW) file for reading.

ReadWF (INTEGER:filenum, ARRAY:y|m|d|h|gh|dn|df|wind|tdry|twet|relhum|pres
or [INTEGER:y, INTEGER:m, INTEGER:d, INTEGER:h, DOUBLE:gh, DOUBLE:dn,
DOUBLE:df, DOUBLE:wind, DOUBLE:tdry, DOUBLE:twet, DOUBLE:relhum,
DOUBLE:pres]):BOOLEAN
Reads a line of data from a weather file.

CustomizeTMY3 (STRING:Source tmy3 file, STRING:Target tmy3 file,
[STRING:Column name=gh|dn|df|tdry|twet|wind|pressure|relhum,
ARRAY:Values(8760)]*):BOOLEAN
Overwrites columns of 8760 data in a TMY3 file and writes a new file.

WriteTextFile (STRING:Filename, VARIANT data):BOOLEAN
Writes a file of text data to disk. Returns true on success.

ReadTextFile (STRING:Filename, <STRING>:Data):BOOLEAN
Reads a text file from disk, returning true on success.

GetHomeDir (NONE):STRING
Returns the current user's home directory.

Cwd (NONE):STRING

SolTrace

49 / 57

Returns the current working directory.

ChDir (STRING: Path):BOOLEAN
Change the current working directory.

DirectoryList (STRING:Path, STRING:Comma-separated extensions,
[BOOLEAN:Include folders]):ARRAY
Enumerates all the files in a directory that match a comma separated string of extensions.

System (STRING):INTEGER
Run a system command, returning the process exit code.

Shell (STRING):BOOLEAN
Run a system command in a new console window. Returns true on success.

FileNameOnly (STRING:Path):STRING
Returns only the file name portion of a full path.

DirNameOnly (STRING:Path):STRING
Returns only the directory portion of a full path.

Extension (STRING:File):STRING
Returns the extension of a file.

DirExists (STRING:Path):BOOLEAN
Returns true if the specified directory exists.

FileExists (STRING:Path):BOOLEAN
Returns true if the specified file exists.

CopyFile (STRING:File1, STRING:File2):BOOLEAN
Copies file 1 to file 2.

RenameFile (STRING:File1, STRING:File2):BOOLEAN
Renames file 1 to file 2.

DeleteFile (STRING:File):BOOLEAN
Deletes the specified file.

MkDir (STRING:Path):BOOLEAN
Creates a directory including the full path to it.

RmDir (STRING:Path):BOOLEAN
Deletes a directory and everything it contains.

Decompress (STRING:Archive, STRING:Target):BOOLEAN
Decompresses an archive file (ZIP, TAR, TAR.GZ, GZ).

HttpGet (STRING:Url):STRING
Performs an HTTP web query and returns the result as plain text.

HttpDownload (STRING:Url, STRING:LocalFile):BOOLEAN

SolTrace

50 / 57

Downloads a file form the web, showing a progress dialog.

Created with the Personal Edition of HelpNDoc: Easily create PDF Help documents

Math

Math

Mod (INTEGER, INTEGER):INTEGER
Returns the remainder after X is divided by Y

Abs (NUMBER):NUMBER
Absolute value of the number.

Min (NUMBER, NUMBER *or* ARRAY):NUMBER
Returns the smaller of two values, or the smallest in an array.

Max (NUMBER, NUMBER *or* ARRAY):NUMBER
Returns the larger of two values, or the largest in an array

Ceil (NUMBER):DOUBLE
Returns the number rounded up to the nearest integer.

Floor (NUMBER):DOUBLE
Returns the number rounded down to the nearest integer.

Sqrt (NUMBER):DOUBLE
Returns the square root of a number.

Pow (NUMBER:X, NUMBER:Y):DOUBLE
Returns 'X' raised to the 'Y' power.

Exp (NUMBER):DOUBLE
Returns the exponential value, base 'e'.

Log (NUMBER):DOUBLE
Returns the logarithm of a number, base 'e'.

Log10 (NUMBER):DOUBLE
Returns the logarithm of a number, base 10.

Sin (NUMBER):DOUBLE
Returns the sine of a radian value.

Cos (NUMBER):DOUBLE
Returns the cosine of a radian value.

Tan (NUMBER):DOUBLE
Returns the tangent of a radian value.

https://www.helpndoc.com/feature-tour

SolTrace

51 / 57

ASin (NUMBER):DOUBLE
Returns the arcsine of a number in radians.

ACos (NUMBER):DOUBLE
Returns the arccosine of a number in radians.

ATan (NUMBER):DOUBLE
Returns the arctangent of a number in radians.

ATan2 (NUMBER:Y, NUMBER:X):DOUBLE
Returns the arctangent of 'Y'/'X' in radians.

IsNan (DOUBLE):BOOLEAN
Returns true if the number is NAN.

NanVal (NONE):DOUBLE
Returns NAN.

UnifRand (NONE):DOUBLE
Returns a random number with uniform distribution (0..1).

NormRand (NONE):DOUBLE
Returns a random number with normal distribution around 0.

Created with the Personal Edition of HelpNDoc: iPhone web sites made easy

String Manipulation

String Manipulation

StrPos (STRING, STRING:Search):INTEGER
Returns the first position of the search string, or -1 if not found.

StrRPos (STRING, STRING:Search):INTEGER
Returns the first position of the search string from the right, or -1 if not found.

StrLeft (STRING, INTEGER:N):STRING
Returns the left 'N' character string.

StrRight (STRING, INTEGER:N):STRING
Returns the right 'N' character string.

StrLower (STRING):STRING
Returns a lower case version of the string.

StrUpper (STRING):STRING
Returns an upper case version of the string.

https://www.helpndoc.com/feature-tour/iphone-website-generation

SolTrace

52 / 57

StrMid (STRING, INTEGER:Start, [INTEGER:Count]):STRING
Returns the substring from the specified start position, of length 'count'. If 'count' is not supplied, the
remainder of the string is returned.

StrLen (STRING):INTEGER
Returns the length of a string.

StrReplace (STRING, STRING:s0, STRING:s1):STRING
Returns a string with all instances of 's0' replaced with 's1'.

StrCmp (STRING:s0, STRING:s1):INTEGER
Case-sensitive comparison. Returns 0 if equal, positive if s0 comes before s1, and negative if s1 comes
before s0.

StrICmp (STRING:s0, STRING:s1):INTEGER
Case-insensitive comparison. Returns 0 if equal, positive if s0 comes before s1, and negative if s1
comes before s0.

StrGCh (STRING, INTEGER:position):STRING
Gets the character at the specified position.

StrSCh (STRING, INTEGER:position, STRING:char):NONE
Sets the character at the specified position.

Split (STRING, STRING:delimiters):ARRAY
Splits the string into an array.

Unsplit (ARRAY, STRING:delimiters):STRING
Unsplits an array into a string.

Format (STRING:Format, ...):STRING
Formats data into a string using an extended 'printf' syntax.

Created with the Personal Edition of HelpNDoc: Free help authoring tool

Matrices

Matrix Functions

euler3 (ARRAY:Origin, ARRAY:Aimpoint, DOUBLE:Z rotation):ARRAY
Calculates 3D Euler angles.

reftoloc (ARRAY:euler):MATRIX
Returns 3x3 transform matrix from euler angles from ref to loc.

loctoref (ARRAY:euler):MATRIX
Returns 3x3 transform matrix from euler angles from loc to ref.

tr2local (ARRAY:Posref, ARRAY:Cosref, ARRAY:Origin, MATRIX:Rreftoloc,

https://www.helpndoc.com/help-authoring-tool

SolTrace

53 / 57

<ARRAY:Posloc>, <ARRAY:Cosloc>):NONE
Transforms a point from a reference frame to a local frame.

tr2reference (ARRAY:Posloc, ARRAY:Cosloc, ARRAY:Origin, MATRIX:Rloctoref,
<ARRAY:Posref>, <ARRAY:Cosref>):NONE
Transforms a point from a local frame to a reference frame.

v3 ([DOUBLE:x, DOUBLE:y, DOUBLE:z]):ARRAY
Returns a 3 element vector, optionally with values.

dot3 (ARRAY:a, ARRAY:b):DOUBLE
Returns the dot product of two 3 element vectors.

transpose3x3 (MATRIX): MATRIX
Returns the transpose of a 3x3 matrix.

mxv3 (MATRIX:M, ARRAY:V):ARRAY
Returns matrix M multiplied by vector V in 3 dimensions.

Created with the Personal Edition of HelpNDoc: Free help authoring tool

SolTrace Library

SolTrace Functions

st_filename (NONE):STRING
Returns the current SolTrace project file name.

st_screen (INTEGER:Screen number):NONE
Switch the currently visible SolTrace screen.

st_save ([STRING:File name]):BOOLEAN
Saves the current SolTrace project to disk. A file name can be optionally specified.

st_close (NONE):NONE
Closes the current SolTrace project without checking if it was modified.

st_open (STRING:File name):BOOLEAN
Open a SolTrace project file from the disk.

st_num_stages (NONE):INTEGER
Returns the number of stages in the system geometry

st_add_stage (STRING:Stage name):INTEGER
Add a stage to the system geometry

st_delete_stage (STRING:Stage name):NONE
Deletes a stage from the system geometry

https://www.helpndoc.com/help-authoring-tool

SolTrace

54 / 57

st_clear_stages (NONE):NONE
Deletes all stages from the system geometry

st_stage_flags (INTEGER:stage num, [ARRAY:virtual|multihit|tracethrough *or*
BOOLEAN:virtual, BOOLEAN:multihit, BOOLEAN:tracethrough]):[ARRAY]
Sets stage flags.

st_stage_name (INTEGER:stage num, [STRING:name]):[STRING]
Gets or sets the stage name.

st_stage_xyz (INTEGER:stage num, [ARRAY:xyz *or*
DOUBLE:x,DOUBLE:y,DOUBLE:z]):[ARRAY]
Gets or sets the stage origin X Y Z.

st_stage_aim (INTEGER:stage num, [ARRAY:axayaz *or*
DOUBLE:ax,DOUBLE:ay,DOUBLE:az]):[ARRAY]
Gets or sets the stage aim point AX AY AZ

st_stage_zrot (INTEGER:stage num, [DOUBLE:zrot]):[DOUBLE]
Gets or sets the stage Z rotation.

st_sun_pointsource ([BOOLEAN:pt src]):[BOOLEAN]
Gets or sets whether the sun is a point-source.

st_sun_shape ([STRING:shape]):[STRING]
Gets or sets the sun shape: Gaussian, Pillbox, User defined.

st_sun_sigma ([DOUBLE:Sigma]):[DOUBLE]
Gets or sets the sun sigma parameter.

st_sun_halfwidth ([DOUBLE:Halfwidth]):[DOUBLE]
Gets or sets the sun halfwidth parameter.

st_sun_xyz ([ARRAY:xyz *or* DOUBLE:x, DOUBLE:y, DOUBLE:z]):[ARRAY]
Gets or sets the X Y Z location of the sun.

st_sun_ldh ([ARRAY:ldh *or* DOUBLE:l, DOUBLE:d, DOUBLE:h]):[ARRAY]
Gets or sets the Latitude,Day,Hour specification of the sun position.

st_ldh_to_xyz (ARRAY:ldh):ARRAY
Converts the Latitude,Day,Hour representation to X,Y,Z coordinates.

st_sun_setuserdata (ARRAY:x, ARRAY:y):NONE
Sets the sun shape data points.

st_sun_getuserdata (<ARRAY:x>, <ARRAY:y>):NONE
Gets the sun shape data points.

st_num_optics (NONE):INTEGER
Returns the current number of optical property sets.

st_add_optic ([STRING:name]):NONE
Adds a new optical property set, optionally with a name.

SolTrace

55 / 57

st_delete_optic (INTEGER:index):NONE
Deletes the specified optical property set.

st_clear_optics (NONE):NONE
Deletes all optical property sets.

st_optic_name (INTEGER:idx [, STRING:name]):[STRING]
Gets or sets the name of the specified optical property set.

st_optic_property (INTEGER:idx, STRING:'front' or 'back', STRING:property
name(s), VARIANT LIST:property values...):ARRAY
Gets or sets a variety of optical properties.

st_optic_property_list (NONE):ARRAY
Returns a list of all valid optical property names.

st_active_stage ([INTEGER:stage num]):[INTEGER]
Gets or sets the current active stage in the system for using element manipulation functions.

st_num_elements (NONE):INTEGER
Returns the current number of elements.

st_add_elements (INTEGER):INTEGER
Adds the specified number of elements to the table.

st_delete_element (INTEGER):INTEGER
Deletes the element at the specified index.

st_clear_elements (NONE):NONE
Clears the element table.

st_element_xyz (INTEGER:index [,DOUBLE:x,DOUBLE:y,DOUBLE:z *or* ARRAY:xyz]):
[ARRAY]
Gets or sets the X,Y,Z origin for the specified element.

st_element_aim (INTEGER:index [,DOUBLE:ax,DOUBLE:ay,DOUBLE:az *or*
ARRAY:axayaz]):[ARRAY]
Gets or sets the AX,AY,AZ aim point for the specified element.

st_element_zrot (INTEGER:index [,DOUBLE:zrot]):[DOUBLE]
Gets or sets the Z rotation for an element.

st_element_aperture (INTEGER:index [, ARRAY:aperture data]):[ARRAY]
Gets or sets the aperture data for an element.

st_element_surface (INTEGER:index [, ARRAY:surface data]):[ARRAY]
Gets or sets the surface data for an element.

st_element_interaction (INTEGER:index [, STRING:Reflection or Refraction]):
[STRING]
Gets or sets the interaction type for an element.

SolTrace

56 / 57

st_element_optic (INTEGER:index [, STRING:optic type name]):[STRING]
Gets or sets the optic type for an element.

st_element_comment (INTEGER:index [, STRING:name]):[STRING]
Gets or sets the comment for an element.

st_setup_trace ([ARRAY *or* INTEGER:nrays, INTEGER:nmaxrays,
INTEGER:nmemblocks, INTEGER:ncpucores]):[ARRAY]
Gets or sets trace parameters.

st_trace (NONE):NONE
Run the ray trace algorithm.

st_export_csv (STRING:File name):BOOLEAN
Export all ray intersection data as a CSV file.

st_num_intersect (NONE):INTEGER
Returns the number of ray intersections.

st_ray_xyz (INTEGER:index [, <DOUBLE:x>, <DOUBLE:y>, <DOUBLE:z>]):BOOLEAN or
ARRAY
Returns X,Y,Z location data for a given intersection point. Fills in x,y,z parameters or returns array.

st_ray_cos (INTEGER:index [, <DOUBLE:x>, <DOUBLE:y>, <DOUBLE:z>]):BOOLEAN or
ARRAY
Returns X,Y,Z cosine angles for a given intersection point. Fills in cosine x,y,z parameters or returns
array.

st_element_map (INTEGER:idx):INTEGER
Returns the element number for a given intersection point.

st_stage_map (INTEGER:idx):INTEGER
Returns the stage number for a given intersection point.

st_ray_num (INTEGER:idx):INTEGER
Returns the ray number for a given intersection point.

st_sun_ray_count (NONE):INTEGER
Returns the number of sun rays generated.

st_count_intersections (INTEGER:stage_num, INTEGER:element_num):INTEGER)
Returns the number of ray intersections for an element. (0-based index numbers)

st_sun_extent (NONE):INTEGER
Returns the calculated extent of the sunshape.

Created with the Personal Edition of HelpNDoc: Benefits of a Help Authoring Tool

References

https://www.helpauthoringsoftware.com

SolTrace

57 / 57

Steele, C.R., Balch, C.D., Jorgensen G.J., Wendelin, T. and Lewandowski, A., 1991,
“Membrane Dish Analysis: A Summary of Structural and Optical Analysis Capabilities,”
NREL/TP-253-3432, National Renewable Energy Laboratory, Golden, CO.

Ratzel, A.C., and Boughton, B.D., 1987, “CIRCE.001: A Computer Code for Analysis of
Point-Focus Concentrators with Flat Targets,” SAND86-1866, Sandia National
Laboratories, Albuquerque, NM.

Spencer, G.H., and Murty, M.V.R.K., 1962, “General Ray-Tracing Procedure,” Journal of
the Optical Society of America, Vol, 52, June, pp.672-678.

Neumann, A., A. Witzke, S.A. Jones, G. Schmitt, "Representative Terrestrial Solar
Brightness Profiles," Journal of Solar Energy Engineering, 124, pp. 198-204, May, 2002.

Created with the Personal Edition of HelpNDoc: Free HTML Help documentation generator

https://www.helpndoc.com

	Introduction
	Migrating to 2010
	Methodology
	Basic Use
	Defining the Sun
	Geometry
	Optical Properties
	Tracing
	Visualization
	Exporting Data
	SolScript Automation
	Data Variables
	Flow Control
	Arrays of Data
	Function Calls
	Input, Output, and System Access
	Function Libraries
	Types and Data
	Input and Output
	Math
	String Manipulation
	Matrices
	SolTrace Library

	References

