
Formulation and Modifications for SolTrace Speed Improvement

Mike Wagner
Tim Wendelin

July 25, 2018

1



DRAFT 1 SOLTRACE HIERARCHY

1 SolTrace Hierarchy

SolTrace consists of a user interface (UI) and an underlying computation core, called “coretrace”.
The UI provides input forms where the user can set simulation parameters, construct geometries,
and configure optical and surface characteristics. Several data structures are instantiated and
maintained by the interface, and these structures are used to construct the data structures that
are required by coretrace to run a simulation. Because coretrace can be called independently from
the UI via the application programming interface (API), or it can be called in a multi-threading
environment, the structures used by the interface must be separate from those used by coretrace.
Consequently, the UI data structures duplicate much of the coretrace structure.

When coretrace is invoked, the UI maps user input to the coretrace structure via the coretrace
API. The general layout of the interface with respect to its data structures and coretrace is shown
in Figure 1.

The SolTrace data flow process begins with initialization of the main program and interface
window (MyApp and MainWindow). The MainWindow instance creates instances of each
interface page that become members of the MainWindow object. In Figure 1, class names are
indicated in boldface at the top of each box while the member name given to an instance of the
class is given in plain font at the bottom of each box. Shown in gray are UI form objects that
provide interfacing functionality. Shown in orange are the data structures that are constructed
from the input that the user provides. The primary data structure is of type Project and has
members SunC, Optical, Stage, and RayData. Structures that have multiple potential
instances are collected in a C++ “vector” and are instantiated dynamically. The Stage data
structure also has a member structure of individual optical elements of type TElement.

When a simulation is executed, the Project data structure is passed to the
RunTraceMultiThreaded() function that prepares the simulation. Next, the data structure is
mapped onto the analogous coretrace data structure shown in blue. If multiple threads are
required, the st context t structure is multiply instantiated. The resulting ThreadList objects
each call their respective st sim run() functions where the Trace() algorithm is subsequently
executed.

2



DRAFT 1 SOLTRACE HIERARCHY

Figure 1: UI layout, data structures, and relationship to coretrace.

3



DRAFT 1 SOLTRACE HIERARCHY

F
ig

u
re

2

4



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

2 Dynamic Grouping Methodology and Formulation

2.1 Background

As outlined in Figure 2, SolTrace generates solar rays with a vector defined by the position of the
sun-shape profile and at random positions within a rectangular box surrounding all elements
within the first stage. This procedure mimics the physical behavior of photons striking a region of
interest, where each ray has a unit vector whose components depend on the position of the sun
and a probability density function describing the apparent shape of the sun. SolTrace identifies
the intersection between a given ray and an element by testing whether a randomly generated ray
collides with any element in the first stage. Because SolTrace is a generalized ray-tracing tool, it
is possible that a ray’s projected path may either intersect multiple elements, a single element, or
no elements at all. Consequently, each generated ray must be tested against each element in the
stage to ensure that an intersection is not in fact preempted by another intersection with an
element that shadows the first positive test.

Power tower systems are relatively sparse in terms of land occupancy fraction – that is, the ratio
of mirror surface area to total land area inside the SolTrace bounding box is relatively small. A
randomly generated ray is therefore not likely to strike any element in the stage, but this fact can
only be determined after testing each element in the stage for intersection.

Once a valid ray-element intersection has been detected, the reflected ray may potentially strike
another element within the first stage, so a second exhaustive series of intersection tests must be
executed. Any number of first-stage ray intersections is possible for a generalized geometry, but
for power tower systems, multiple first-stage intersections is most likely due to inter-heliostat
blocking (i.e., a ray reflects off a first heliostat and then strikes the back of an adjacent heliostat).

Power tower systems with tens or hundreds of thousands of geometrical elements in the first stage
therefore incur a tremendous computational expense to identify sun rays that will ultimately be
reflected out of the stage toward the receiver. For a typical heliostat field with 100,000 first-stage
elements, only 1 in 4-5 rays strikes an element, and each successful ray requires no less than two
full passes through the list of elements for intersection testing. In total, each ray that reaches the
receiver for the typical case requires somewhere between 200,000 - 600,000 intersection tests. As a
result, a corresponding ray-trace simulation running 1M rays (receiver hits) on a dual-core (4
thread) laptop with Intel i7 2.6 GHz processors can require 4 hours or more to complete.

In this paper, we develop a methodology to significantly reduce computation time while
preserving the fidelity and robustness of the ray-tracing approach in SolTrace. The premise
underlying the speed improvement is that the primary computational expense lies in testing each
stage element for intersection when in fact only certain elements that are near the position of the
randomly generated solar ray need to be tested for intersection. By substantially reducing the
number of elements that are in the hit-test loop, reflected rays can very quickly be identified.
However, a method must first be developed for quickly identifying heliostats that may potentially
interact with a ray or the computational expense will simply shift from intersection testing to
proximity testing and sorting.

2.2 Model premise and conceptual description

While SolTrace provides general ray-tracing functionality, several problem features provide an
opportunity for speed enhancement. Firstly, the elements within a particular geometry are fixed

5



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

in place throughout the simulation. Secondly, rays originate from a relatively narrow angular
window such that incoming rays are virtually collimated. Lastly, (for point focus systems such as
power towers) light is reflected toward a narrow spatial region, and light that is not reflected
toward this region is not of particular interest because it has been “lost” from the system.

The speed improvement technique works by creating localized groups of elements, a small subset
of which are retrieved for intersection testing based on the position of the random sun ray.
Groups are generated before the ray-trace simulation begins, and the groups must be developed
such that an incoming ray could plausibly (i.e., without knowing the exact position of the ray)
strike any element in the group. The difficulty in developing meaningful groups lies in the fact
that geometrical elements exist in three dimensional space, as shown for a randomly generated
element field in Figure 3 (left). Here, assume that sun rays originate from a narrow window
around the “camera position” of the Figure 3 plot. It is apparent that an element may interdict a
sun ray from striking another element that is not close in proximity in x, y, z space. Therefore,
grouping of elements based on x, y, z proximity is not generally meaningful.

Instead, elements are grouped by their projection onto the plane normal to the sun vector, as
illustrated in Figure 3 (right). In this view, the coordinates of each element are expressed in two
dimensions, and proximity in the transform space is meaningful in anticipating
element-to-element interactions.

Figure 3: A random set of elements shown in 3D space (left) and projected onto a 2D plane whose
normal vector is the sun vector (right).

Elements are grouped into small zones that are sufficiently large to contain the largest local
element, but small enough that the number of elements in each group is minimized. Zones are not
necessarily uniform in size, but are constructed based on the position and size of the local
elements. The location of each zone is specified using a binary address that corresponds to
halving subdivisions in each coordinate dimension. The location code specifies whether the
position in question is on the positive side (1) or negative side (0) of the subdividing line, and
alternating characters in the code correspond to alternating coordinate system dimensions. For
example, a zone location code of “1101” indicates a zone (in cartesian coordinates) that is on the
positive side of an x-axis subdivision, then positive of a y-axis subdivision, then negative of
x-axis, then positive of y-axis, as shown in Figure 4. Note that as the length of the code increases,

6



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

the precision of the specified zone increases.

Figure 4: Zone position corresponding to code “1101” in a cartesian mesh.

The discussion to this point has presented the motivation and background for sorting elements
based on their projection onto the sun normal vector plane. This projection is beneficial in quickly
identifying local groups for potential intersection with a sun ray, but once the element is reflected,
the initial grouping is no longer relevant. However, point focus systems concentrate light toward a
small region, and a similar projection can be made in polar coordinates to identify elements that
might potentially block reflected light. The polar projection places the “camera view” at the
receiver position, and groups heliostats based on proximity from this perspective. Figure 5 shows
an example of the sun projection mesh (Fig. 5a) and of the receiver projection mesh (Fig. 5b).

(a) Sun-projection mesh in cartesian coordinates. (b) Receiver-projection mesh in polar coordinates.

Figure 5

Figure 5b plots the mesh from the view of the receiver, where a view downward corresponds to
the center region of the plot, and a view toward the horizon corresponds to the outer radial
positions on the plot. The finer meshing near the perimeter of the plot captures the effect of the
smaller apparent size of the heliostats near the horizon (that are farther away in the field), and

7



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

the smaller azimuthal angular span occupied by elements near the equatorial latitudes of a polar
coordinate system. The outer radius of the plot is the horizon. Note that mesh elements are
variable in size, and the mesh is densest in regions where heliostat elements are present.

2.2.1 Zone attributes

Each zone is defined by a unique binary code, and the zones are constructed recursively (i.e., the
function that subdivides a zone calls itself until the subdivision requirements have been met), and
any particular zone may have up to two child zones. A zone may alternatively have no child zones
but instead contain a list of elements that lie within it. To understand this structure, reconsider
the example mesh in Figure 4 above. Here, there are five zone instances:

1. the full bounding box,

2. the positive-x half of (1),

3. the positive-y half of (2), which is the upper-right quarter of (1),

4. the negative-x half of (3),

5. the positive-y half of (4).

By convention, only terminal nodes (node #5 in this example) can contain elements, whereas
intermediate nodes contain children nodes. Terminal nodes may be empty if a region does not
contain elements.

2.2.2 Parsing the zonal mesh

When a random sun ray is generated, the position of the ray in the cartesian projection is
translated into a binary code according to the method previously discussed. The algorithm parses
the zonal mesh, following the map of subdivisions in accordance with the sun ray positional code.
When an address leads to a terminal zone, any elements contained are subsequently tested for
intersection with the ray. Elements that are positioned within a particular zone may extend into a
neighboring zone, so all adjacent zones are also identified and their elements tested for
intersection.

2.3 Formulation

The element grouping method provides two main algorithms – one for initial mesh development
and another for retrieval of elements based on a ray location. Note that the methods are not
dependent on the coordinate system used.

2.3.1 Mesh definition

The mesh is developed ad hoc by subdividing the field as elements are added with the following
procedure. First, the mesh starts as a single node encompassing the entire bounding area under
consideration. The elements are sorted according to their apparent size in the coordinate system.
For cartesian coordinates, the apparent size is equal to the physical element size (maximum

8



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

diameter). Each element is added to the mesh in sequence, and the mesh subdivides until the
resulting zone size would be smaller after subdivision than the element that is being added. At
this point, the node is flagged as a terminal node, and the element is added to the list of local
elements.

For subsequent element additions, a terminal node cannot be subdivided, so an element that is
smaller than one that has already been added to a terminal node will not cause additional
subdivision. This process creates a “tree” structure, where branches from a given node correspond
to smaller subdivided nodes within the “parent” node. When a subdivision takes place, only the
half of the subdivision containing the new element will have a new node created. This maintains a
minimally sparse tree. After a number of elements have been added, further additions traverse
the existing tree, only creating new nodes as needed where none have previously been defined.

The final step in defining the mesh is to post-process each element to add neighboring elements to
the list of those checked when a ray strikes a zone. This is done by testing for the existence of
neighbor zones that are offset by ±1 in each coordinate direction in the binary code. Algorithm 1
shows pseudo-code for generation of the mesh.

2.3.2 Zone retrieval

Given a particular ray location, retrieving the corresponding zone is fairly straightforward using a
recursive algorithm. The ray position is first expressed as a binary code, and this code implicitly
provides instructions on how to traverse the tree mesh developed in the previous subsection. The
code characters are defined according to Table 1.

Table 1: Characters contained in a location code

Character Description
1 Traverse along the positive direction subdivision
0 Traverse along the negative direction subdivision

x
The current node does not subdivide in the specified dimension,
continue to the next dimension

t The current node is terminal and can contain data

To retrieve an element, a code is passed to the processing algorithm. The algorithm inspects the
code at the first character. If the character equals 1, the algorithm calls itself with reference to the
positive direction child node, and if 0, with reference to the negative direction child node. This
recursive call increments through the code, calling the appropriate child along the way. If the
character is x, only one child is available and it is called recursively. If the character is t, or if the
requested child (1, 0, or x is not defined, the algorithm finally returns all the way back up through
the recursive call tree with a reference to the terminal node (or a null reference if no node exists).
This algorithm is computationally efficient and covers the various cases introduced by nonuniform
zone size, sparse meshing, variable quantities of elements in each zone, and independence from the
coordinate system that is used. The algorithm is summarized in pseudo-code in Algorithm 2.

2.4 Results

The speed improvement algorithm was tested for a variety of power tower systems to demonstrate
the flexibility of the methodology. The cases that were investigated are summarized in Table 2.

9



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

Algorithm 1 Mesh construction

1: AddElement(head node, element location code, 0, element)
2: procedure AddElement(node, code, index, element)
3: x0 is lower x-direction zone limit
4: x1 is upper x-direction zone limit
5: xc = x0+x1

2
6: y0 is lower y-direction zone limit
7: y1 is upper y-direction zone limit
8: yc = y0+y1

2
9: Del is element’s apparent diameter

10: if node is terminal or index is past the end of code then
11: Add element to node’s element list; Flag zone as terminal
12: return
13: end if
14: if Current dimension is x then
15: Wzone,x = x1−x0

2

16: Wzone,y = y1−y0

2
17: if Del > Wzone,x then
18: if A child node does not exist in the proposed split direction then
19: Create a new node node′

20: if code[index] == 1 then . Splitting in the positive direction
21: New node range is x0 = cx, x1 = x1, y0 = y0, y1 = y1
22: AddElement(node′, code, index + 1, element)
23: return
24: else
25: New node range is x0 = x0, x1 = xc, y0 = y0, y1 = y1
26: AddElement(node′, code, index + 1, element)
27: return
28: end if
29: else
30: AddElement(Existing node, code, index + 1, element)
31: return
32: end if
33: else
34: A split is not allowed in the x direction, but check for allowed splits in the y direction
35: if Del > Wzone,y then
36: if A child node does not exist then
37: Create a new node node′

38: New node range is x0 = x0, x1 = x1, y0 = y0, y1 = y1
39: AddElement(node′, code, index + 1, element)
40: return
41: else
42: AddElement(Existing node, code, index + 1, element)
43: return
44: end if
45: else
46: Add element to node’s element list; Flag zone as terminal
47: return
48: end if
49: end if
50: else
51: ... Replicate algorithm for x dimension, swapping x and y terms
52: end if
53: end procedure

10



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

Algorithm 2 Zone retrieval

1: procedure Process(node, code, index)
2: c = code[index] . the current character equals the code string at the index
3: if c == 1 then
4: return Process(child node 1, code, index+1)
5: else if c == 0 then
6: return Process(child node 0, code, index+1)
7: else if c == x then
8: return Process(child node, code, index+1)
9: else . (c == t, terminal node)

10: return Address of this node
11: end if
12: end procedure

Each simulation was executed with 100,000 receiver ray intersections using 4 threads on an
Intel®Xeon®2.4 GHz processors running Windows Server 2012®(x64 architecture). Although
the machine on which the simulations were executed is capable of up to 22 parallel threads, we
limited the simulation to 4 threads to emulate the performance of a typical laptop computer,
which at the time of writing contains a dual-core processor with up to 4 threads. The values
reported are from a single simulation, although in reality there is a distribution of run times with
some negligibly small standard deviation. Field layouts for cases 1, 4, 5, and 6 are shown in
Figure 6. Cases 2 and 3 are permutations of case 1 and are not shown.

Table 2: Summary of test cases for SolTrace speed improvement.

Case # Elements Description Base Time Factor
[s] [s]

1 100,512 Default SolarPILOT case, 500MWt 11,672 6.7 1,742×

2 100,512
Same as case 1, afternoon sun position,
θ = 23◦, α = 253◦

8,325 6.4 1,300×

3 6,282 Default case with single-facet heliostats 926.9 2.5 370×
4 95,174 Ivanpah-like facility 6,531 9.6 680×
5 34,188 Hexagonal field with regular layout 5,447 6.1 893×

6 79,812
North field, mixed heliostat templates
(small inner, large outer)

6,683 6.2 1,078×

2.5 Verification

Model verification is straightforward in that the improved methodology should yield exactly the
same result as the original code. If implemented correctly, this methodology should result in any
particular ray intersecting with the same optical element in the same position as the original case.
Therefore, the methodology is verified if the calculated ray intersection table is identically
reproduced after implementation. The ray intersections are sensitive to sequence, and a single
incongruity will alter subsequent rays. In short, the final ray in the post-modification tool should
have the same position, ray number, and attributes as the final ray in the pre-modification
simulation. If the final rays match, all previous rays match and the methodology is verified. In all
test cases, the ray data was replicated exactly with final rays matching.

11



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

(a) Case 1

(b) Case 4

(c) Case 5
(d) Case 6

Figure 6

2.6 Conclusions and research impact

We have presented a methodology and implementation for improving the computational efficiency
of the SolTrace ray tracing algorithm and have demonstrated the significant improvement that
resulted from our effort. While the realized speed improvement depends on the computer
architecture and the scenario under consideration, each case that we tested resulted in an
improvement of at least 370×, with a maximum improvement of 1,732× and an average
improvement of 1,010×. We observe that the speed improvement is most pronounced for systems
with systems with higher quantities of heliostat field elements, and the improvement is
independent of sun position and layout technique.

The implications of this improvement are significant. Firstly, detailed ray-tracing simulations that
recently required days to run, or required expensive and robust computer hardware, can now be
run in a matter of seconds or minutes on readily available hardware. The flexibility of the ray

12



DRAFT 2 DYNAMIC GROUPING METHODOLOGY AND FORMULATION

tracing technique will allow users to quickly investigate novel heliostat or receiver geometries.
Quick simulation turnaround allows much broader parametric and optimization studies.

The methodology that has been developed can be implemented in ray tracing tools other than
SolTrace, as it has general applicability and offers a novel approach for quickly constructing and
retrieving element groups. In future work, we will improve the integration of the improved
SolTrace engine in SolarPILOT and SAM, where the flexibility of ray-tracing can enhance the
technology modeling options that are currently available.

13


