B = < Y

.:,_!!s*

"mﬂ%"f NATIONAL TSING HUA UNIVERSITY

KubeShare: A Framework to Manage
GPUs as First-Class and Shared
Resources In Container Cloud

Ting-An Yeh, Hung-Hsin Chen, Jerry Chou
National Tsing Hua University
Hsinchu, Taiwan R.O.C.

HPDC '20, June 23-26, 2020, Stockholm, Sweden

Outline

Motivations & Objectives
o Introduction of Kubernetes & GPU
o Why GPU sharing & first clas scheduling is important
o Our contributions

KubeShare Design & Implementation

Experimental Evaluations

Conclusions

Container Cloud

e Container offers many advanvatages over

virtual machine
o [Fast launch time

o Higher deployment density
o Less performance degradation

e Kubernetes is the primary platform to build

container cloud

o Hide infrastructure details from developers
o Provide several automation features:

m auto-scalability
m self-healing

m rolling update and rollback
m service discovery and load balancing
o Pod (a set of containers) is the basic execution unit

Which container orchestration platform do you
primarily use?

B Kubernetes 42%
B Docker Swarm 35%
OpenShift by Red Hat 5%
B Apache Mesos 3%
Marathon 2%
Neomad by HashiCorp 2%
Bl CoreOS Tectonic 1%
Other 12%

\ 4

A quarterly report on developer trends in the cloud by Digital Ocean

An ocean of
user containers

e -| 0 !

Kubernetes
Master

== —
- -
Node Node
- L I
[— I
L J

Scheduled and packed
dynamically onto nodes

kubernetes container cluster
https://devopscube.com/docker-container-clustering-tools/

https://www.digitalocean.com/currents/june-2018/

Graphics Processing Unit

e GPUs provide tremendous throughput powered by massive parallelism

e Significant performance accelerations are shown in many applications,
especially for deep learning and scientific computing workload

e Widely installed in world’s fast supercomputers and clouds

Speedups by GPU and Network
s (speedups geometrically averaged over frameworks)

40

1 More than 40x speedup

on DL applications II

’\.
+v-x°§{\+.x°e

30

T]

Cache 1
DRAM DRAM]
CPU GPU IIII

cpu vs gpu
https://www.researchgate.net/figure/Comparison-of-CPU-versus-GPU-architecture_fig2_231167191

Speedup over CPU

20

10

4

machine learning training GPU benchmark
https://www.microway.com/hpc-tech-tips/deep-learning-benchmarks-nvidia-tesla-p100-16gb-pcie-tesla-k80-tesla-m40-gpus/

M Tesiakso M Teslamao M Tesia Pl00

Motivations of GPU Sharing

e But GPUs are expensive, and often under-utilized

@)

@)
@)
@)

Code developing phase
Off-peak service hours
Limited data transfer bandwidth ‘OOO N 0 Oi
Bounded by host/cpu performance

e GPU sharing can effiectively maximize GPU utilization

GPU 1 GPU 2 GPU

Pod / Application
40%

N Pod / Application N
Pod / Application 40% Pod / Application

30% 30%

Dedicated GPU Allocation GPU Sharing

o

OO O Q o O . .
oO_ 0O e
OO (@]

bottleneck

D
workload
o

Challenges of GPU Sharing

e CUDA compute capability 2.0+ support task parallelism, but only from

single process/application context

o No explicit resource management control from applications and host
o Resoruce oversubscription cause performance degradation and program failure

e Recent research work on GPU sharing aims to improve GPU throughput

and fairness, but not from user resource allocation aspect
o FLEP, GPUShare, Disengaged Scheduling, ConVGPU, TimeGraph, ...

e Kubernetes has no GPU sharing & isolation
o GPU device can only be dedicatedly assigned to a Pod

e GPUs are not first class schedulable resources in Kubernetes
o User cannot request for a specific GPU device from Kubernetes

First Class Schedulable Entity

e Whatis a first class entity? i Pod A -
o Users or resource manager (scheduler) can GPU=1 GPU=1 |

request specific GPU devices for their pods --------oommmmmomm o !

o The assignment is done implicitly by a node |
deamon (kubelet) in Kubernetes ;

e Implicit and late binding in Kubernetes — ----------------rormro oo !
o Resource manager schedules requests at

node level. Node1l Pod B Node2 Pod A
. . . GPU=1 GPU=1
o Pod to GPU binding is delayed after
| node2 daemon |

scheduling decision was made | nodel daemon kK

First Class Schedulable Entity

e Whatis a first class entity? i Pod A -
o Users or resource manager (scheduler) can GPU=1 GPU=1 |

request specific GPU devices for their pods “----------mommommm oo !

o The assignment is done implicitly by a node

deamon (kubelet) in Kubernetes. Scheduler
e Implicit and late binding in Kubernetes — =------------mmmommmmmm oo |
o Resource manager schedules requestsat ~ _____________.. _________ i ,
node level. Node1l Pod B Node2 Pod A
. . . GPU=1 GPU=1
o Pod to GPU binding is delayed after

scheduling decision was made | nodel daemon |

node daemon choose the GPU to bind

slowdown

First Class Schedulable Entity

1

e Why first class is important?

o Performance interference problem
m Pods have different resource usage

patterns

A B c D

high interference combination

More resource contention
between A&B or C&D

slowdown

1

A Cc B D

low interference combination

Less resource contention
between A&C or D&B

1

P B Pod D !
GPU 0.6 '

1

1

<€)

1

1

1

1

1

1

1

: Pod A

' GPU 0.4 Pod C (Pod E Pod G

' GPU=0.6 GPU=0.7 GPU=0.7
1

1

Resource manage:

GPU 1 GPU 2

i [Scheduler |
E Nodel i E Node2 i
! nodel daemon | node2 daemon l
el e Tealel
a9l sac oy lor Jl e Jl o]

First Class Schedulable Entity

. Pod A
o Performance interference problem JFodc JpodE Jpods
o Resource fragmentation problem = -oooomomooooooooooooooooooiooooooooooooofooooo- .
m GPU allocation is indivisble ;
between devices for a pod | Scheduler

e Why first class is important? o reauest T ome,) (g i

m Scheduleris only aware of the " 7 7777mmmmmmrmmmmmmmm e nsmmm gt n s
aggregated node capacity .. AR SR ,

1 1

Nodel '+ Node2 !
| nodel daemon | | | node2 daemon |
I I

A B : .1 :

0 0 D 1 1

' 0.6 ' 04 |, 0.7 0.6 0.7 |

4 6 ! | I — !

| |

1 1

1 1

1 1

I I

! !

1

1

1

1

1

1

:

1

| E F G
| | |
1

1

1

1

1

1

1

1

KubeShare Contributions

e Objectives: Enable GPU sharing in Kubernetes, and provide first class GPU
scheduling to address utilization, fragmentation and interference problems

KubeShare-Sched:
mitigate fragmentation &
interference problem

KubeShare-DevMgr:
create vGPU, and
provide GPU identity

vGPU Device Library:
control GPU usage and
allow elastic GPU sharing.

([Client J\
€& submit sharefPod reduest 4

mmmmmme | @submi =n: ; W appp—————

L kube-apiserver ¥ i [A] [A] 1
M M pp Pp
-_—_—— = = - —_— e e = €@ ©) Create/Delete | !
1 © Sched(led sharePod 1 r 1
1 sharePpd I SharePod SharePod 1
KubeShare -] with GPUID KubeShare- Attach & init vGPU container container . 1
1 1 Native

Sched DevMgr | Pod 1
1 Query l@@ I “[Device library] 1
1 VGPU @ Retrieve GPU’s UUID | Create/Delete 'Y O vepu 7T : !
1 info vGPU -1--""" ehbetalbedel ikttt bt j 1
1 vGPU pool (stored in etcd) =TT ' 1
- M GPU] 1
! [vGPU] [vGPU] - t 1
| O e — © Register vGPU 1 - - "

KubeShare [vGPU] [vGPU] [vGPU] by creating 1 [kubelet] [GPU device plugin]
Controllers <GPUID,UUID> L & e e e m —m — — — —

-

Worker node

Outline

Motivations & Objectives

KubeShare Design & Implementation
o Device Plugin Framework
o VGPU creation & management
o Shared GPU pod requirement & scheduling
o GPU resource control & elastic allocation

Experimental Evaluations

Conclusions

12

Background: Kubernetes Device Plugin Framework

[Client]

4 . 1
I kube-apiserver I

current section in the architecture

SN SO —. ' ! App App I
—-—— —l— ittty Rt 1@ © Create/Delete 1 p . |
chedu - N
: © sharePod AW sharePod : SharePod SharePod |
: KubeShare- with GPUID KubeShare- I@ Attach & init vGPU : container container Native I
: Sched DevMgr i ~ 7\ / E I
|@Query } :e@ \—:—-[Device library] I
| VGPU @ Retrieve GPUs UUID| | Create/Delete T NS TR } |
| info vGPU 4Ty |
vGPU pool (stored in etcd) PP . ~ |
: k" . GPU I
' [VGPU } | vapu J VGPU K1 ! I
I @ Register vGPU | |
KubeShare [vGPU H vGPU] by creating | [kubelet] [GPU device plugin]I
Controllers <GPUID,UUID> L o D D D e e e e e e = = = = =

Worker node

13

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

11
Submit |
Podl |

4

kube-apiserver
node:

GPU: 4
Pod1l:

GPU request: 2

14

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

@
Submit |
Podl |

4

kube-apiserver
node: (2)
GPU: 4 [TTTToTos * kube-scheduler
Pod1: Schedule Pod
GPU request: 2 accordingto ————————————]
cluster state | no device identity at |
: scheduling phase |

S M G S S S ——|

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
nodel:

GPU: 4
Pod1:

:G GPU request: 2
Submit nodeName: nodel
Podl |

\ 4 Update schedule 1

. 1
) decision to cluster state,
kube-apiserver 1

node: (2)
GPU: 4 [T mmmme- » kube-scheduler
Pod1: Schedule Pod
GPU request: 2 according to e |
cluster state | no device identity at |

| scheduling phase :

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

c
. o g Z
ku(tj)elaplserver qE) Q < S
nodel: - o
9]
GPU: 4 o S S0 ® :%
, Pod1: Create — 0 9~
@ GPU request: 2 container % < é o
Submit | nodeName: nodel o 5 C
Podl 7'y <
\ 4 Update schedule I
) decision to cluster state |
kube-apiserver !
node: (2]
SPU: 4 'S';'(;'I'F"'d* kube-scheduler | NVIDIA Container Runtime |
Pod1: chedule Po
GPU request: 2 according to ———————————— I | GPU-A || GPU-B || GPU-C || GPU-D |
cluster state | no device identity at |

; I
| scheduling phase 17

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

|
node daemon decides |
device binding :

I
. o Allocate Request: O =
kube-apiserver c N A B C<D <
nodel: 1O _ _____~AbB o o U
(4] S O " a9
GPU: 4 (& _______ S = © 3
. POdl: Create | m E G)
@ GPU request: 2 container % < c o
Submit | nodeName: nodel S % c
Podl | c
\ 4 Update schedule I
) decision to cluster state |
kube-apiserver !
node: (2]
cPU: 4 e 'd* kube-scheduler | NVIDIA Container Runtime |
Pod1: chedule Po
GPU request: 2 according to r—e—————————— 1 | CPU-A || GPU-B || GPU-C || GPU-D |
cluster state | no device identity at |

. I
| scheduling phase 18

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

node daemon decides |

device binding :
C ____________ .
i o Allocate Request: Oz
kube-apiserver c N A B C<D <
nodel: c 1@ ______Ab________ 5 O
i o s O » a2 Y
N L T o) PSR o o>
odl:
‘0 GPU request: 2 oreae 1D @ | Allocate Response: =0
NVIDIA_VISIBLE_DEVICES=A,B S
Podl | c . | :
\ 4 Update schedule I
) decision to cluster state |
kube-apiserver 1
node: (2]
SPU: 4 'S';'(;'I'I; 'd" kube-scheduler | NVIDIA Container Runtime |
Pod1: chedule Po
GPU request: 2 according to —F—————————— | | GPU-A || GPU-B || GPU-C || GPU-D |
cluster state | no device identity at |

| scheduling phase : 19

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

| node daemon decides !

: device binding |
c
. o Allocate Request: Oz
kube-apiserver c N A B C<D <
nodel: o c 1@ ______Ab________ » 5O
GPU: 4 & _______ IR o 3
Pod1: Create — Q) . 6 Y
i] : _ v Allocate Response: = @
@ GPU request: 2 container g < | Envi Variabl é o
L . vironment Variable=
Submit nodeName: nodel Q \ “NVIDIA_ VISIBLE_DEVICES=A,B" 5 C
1 c \ — — !
Podl | A P\
v Update schedule 1 v
KUb } decision to cluster state | 1 Pod1 container]
ube-apiserver 1
node - o |NVIDIS_VISIBLE_DEVICES=A,B
PU: 4 e 'd" kube-scheduler | NVIDIA Container Runtime |
Pod1: chedule Po
GPU request: 2 according to i | [cPuA |[cPuB |[GPuC |[GPUD |
cluster state | no device identity at |

| scheduling phase : 20

Background: Kubernetes Device Plugin Framework

e Device plugin framework: support custom computing resource (GPU, FPGA).

11
Submit |
Podl |

4

kube-apiserver
node:

GPU: 4
Pod1:

GPU request: 2

Update schedule !
decision to cluster state

kube-apiserver
GPU: 4

GPU request: 2
nodeName:

Implicit & Late

Create
container

nodel

I_ _____________ a
| node daemon decides

Allocate Response:

Environment Variable=
“NVIDIA_VISIBLE_DEVICES=A,B"

(]
uibn|d aalnag
Nd9 VIAIAN

Schedule Pod

kube-scheduler

Pod1 container
NVIDIS_VISIBLE_DEVICES=A,B

NVIDIA Container Runtime |

accordingto -

cluster state | no device identity at
scheduling phase |

—_

| GPU-A

|l GPu-B ||

GPU-C || GPuU-D |

21

KubeShare-DevMgr: vGPU Creation

[Client

)

‘ . 1
I kube-apiserver I

SN SO —. ' ! App App I
—-—— —l— —m e T m— === 1@ © Create/Delete 1 p . |
chedu - ~
: © sharePod il sharePod : SharePod SharePod |
: KubeShare- with GPUID KubeShare- I@ Attach & init vGPU : container container — I
: Sched DevMgr i 7\ / Pod I
|@Query Y, :@@ \—:—-[Device library] I
] VGPU @ Retrieve GPU’s UUIDI Create/Delete R vepu T !
| info vGPU I et |
vGPU pool (stored in etcd) T . |
: k" L3 GPU I
| [veru | vepu | [vepu ki : : I
I © Register vGPU | |
KubeShare [vGPU H vGPU] by creating | [kubelet] [GPU device plugin]I
Controllers <GPUID,UUID> L - 0 e e - - = — =

Worker node

22

vGPU Creation

e KubeShare-DevMgr creates vGPU and provides GPU identity

o VGPU is alogic GPU resoruce entity that can be shared and identified in KubeShare
o Different from native GPU, vGPU can be fractional allocated by users
o VGPU is also created by a pod

fkube—apiserver \

nodel: | nodeldaemon || node2 daemon
GPU: 2 request GPU by _

node2: Kubernetes native KubeShare
GPU: 2 Pod as vGpy__| DevMgr

Pod VGPU1: Rilnitainlr*~aulaiaiiaie VGPU : GPUID = UUID

GPU request: 1 Q “““““““““““““““
nodeName: nodel | NVIDIA Container Runtime | | NVIDIA Container Runtime |

Pod vGPU2: | epua |[epue][cpuc || cPubD |
GPU request: 1

K nodeName: nodeZJ

23

vGPU Creation

e KubeShare-DevMgr creates vGPU and provides GPU identity

o GPU is acquired from Kubernetes through the device plugin framework

//;ube—apiserver ‘\\

nodel:
GPU: 2
node2:
GPU: 2
Pod vGPU1:
GPU request: 1
nodeName: nodel
Pod vGPU2:
GPU request: 1

request GPU by
Kubernetes native
Pod as vGPU

\\¥ nodeName: nodei//

KubeShare-

DevMgr
VGPU : GPUID = UUID

Pods with GPU request
e created by going through
device plugin framework

| nodeldaemon || node2 daemon

Pod Pod
VvGPU1 VGPU2

| NVIDIA Container Runtime | | NVIDIA Container Runtime |

| cpua || epuB || ePuc || cepPuD

24

vGPU Creation

e KubeShare-DevMgr creates vGPU and provides GPU identity
o GPUID is the identifier of a vGPU assigned by KubeShare

o UUID is the identifier of a GPU returns by device plugin Pods with GPU request
e created by going through
[\ device plugin framework
kube-apiserver
nodel: | nodeldaemon || node2 daemon
GPU: 2 request GPU by _ .
node2: Kubernetes native | KubeShare retrieve GPU — —
GPU: 2 Pod as vGPU Devigr UUIDs from Pod [vGPU1][VGPU2 }
Pod VGPU1: s mmm - VGPU : GPUID = UUID -
GPU request: 1 Q ottt o 9
nodeName: nodel xgEB;; ; gEB:CB: | NVIDIA Container Runtime || NVIDIA Container Runtime |
Pod vGPUZ: [crua |[erus |[eruc |[crup |
GPU request: 1

\\¥ nodeName: nodei//

25

vGPU Creation

e KubeShare-DevMgr creates vGPU and provides GPU identity

o The GPUID can be used at scheduling phase to co-locate pods on a new created vGPU

//;ube—apiserver ‘\\

nodel:
GPU: 2
node2:
GPU: 2
Pod vGPU1:
GPU request: 1
nodeName: nodel
Pod vGPU2:
GPU request: 1

request GPU by
Kubernetes native
Pod as vGPU

\\¥ nodeName: nodei//

GPU ldentifier

KubeSh*re—
DevMgr

vGPU : GPUID = UUID
VvGPUl: xyz = GPU-B
vGPU2: grs = GPU-C

@ 2ssign unique GPUID as device

Pods with GPU request
o created by going through
device plugin framework

| nodel daemon

node2 daemon

retrieve GPU
UUIDs from Pod

[

Pod
VvGPU1

I

Pod
VGPU2

]

| NVIDIA Container Runtime ||

NVIDIA Container Runtime |

| GPu-A

GPU-B

GPU-C

GPU-D

identifier for every vGPUs

26

vGPU Creation

e KubeShare-DevMgr creates vGPU and provides GPU identity
o The group of vGPUs managed by KubeShare is called vGPU Pool

//;ube—apiserver ‘\\

nodel:
GPU: 2
node2:
GPU: 2
Pod vGPU1:
GPU request: 1
nodeName: nodel
Pod vGPU2:
GPU request: 1

request GPU by
Kubernetes native
Pod as vGPU

\\¥ nodeName: nodei//

KubeShare-
DevMgr

vGPU : GPUID = UUID
VvGPU1l: xyz = GPU-B
vGPU2: grs = GPU-C

@ =ssign unique GPUID as device

Pods with GPU request
o created by going through
device plugin framework

| nodeldaemon ||

node2 daemon

retrieve GPU
UUIDs from Pod

Pod
VGPU2

VvGPU |
Pool |

| NVIDIA Container Runtime ||

NVIDIA Container Runtime |

I

epuB || cepuc ||

GPU-D

identifier for every vGPUs

27

KubeShare-DevMgr: SharePod Creation

[Client]

‘ . 1
I kube-apiserver I

S it b !) G : App App |
el e reate/Delete
I]_ @ Scheduled 1 sharePod 1 (N () I
I sharePod AW I SharePod Share_Pod |
: KubeShare- with GPUID KubeShare- I@ Attach & init vGPU : container container Native I
| Sched DevMgr i 7\ - Pod I
|@Query y :e@ \—L-ll Device library] I
| VGPU @ Retrieve GPU’s UUIDI : Create/Delete 1T vepu T ! !
| info vGPU ety 1
vGPU pool (stored in etcd) -7 . |
: k" L3 GPU I
| [veru][vepu | Lveru It : I
I @ Register vGPU | |
KubeShare [vGPU H vGPU] by creating | [kubelet] [GPU device plugin]I
Controllers <GPUDD,UUID> L o e e e e e e m = = =

Worker node

28

SharePod Creation

e Users request a shared GPU by creating a SharePod with GPUID

/Sharepodl.) A SharePod == A pod that attaches a sharedGPU (vGPU)

gpu_req: 0.4
node: nodel
GPUID: xyz | nodel daemon |
SharePod2:
gpu_req: 0.6
node: nodel
GPUID: xyz

N [Pod }H[pod]

node2 daemon

\ , GPU1
‘. submit SharePod | .

NVIDIA Container Runtime NVIDIA Container Runtime |

@ with GPUID “xyz”
\

\ | cpPua || GPU-B GPuc || cpPuD |
\
|

KubeShare-

DevMgr

VvGPU : GPUID = UUID

VGPULl: xyz = GPU-B

vGPU2: grs = GPU-C 29

SharePod Creation

e Users request a shared GPU by creating a SharePod with GPUID
\

K

SharePodl:
gpu_req: 0.4
node: nodel
GPUID: xyz

SharePod2:

gpu_req: 0.6

node: nodel

GPUID: xyz

_

\

\ submit SharePod

@ with GPUID “xyz”
\

\
\

|
KubeShare-
DevMgr
VvGPU : GPUID = UUID
VGPULl: xyz = GPU-B
vGPU2: grs = GPU-C

-

///;;dlz

gpu_req: 0.4
GRU—request:

node: nodel |

nodel daemon

node2 daemon

GPUID: xyz
env:
NVIDIA_VISIBLE_DEVICES=GPU-B

Pod2:

gpu_req: 0.6 [
GRU—request:

Pod
VGPU1

node: nodel

NVIDIA Container Runtime

NVIDIA Container Runtime

GPUID: xyz |

env: | cpPua ||

GPU-B

cPuc || ePuD

\ NVIDIA_VISIBLE_DEVICES= GPuy

? create Pod with environment variable
-7 “NVIDIA_VISIBLE_DEVICES” to restrict
GPU visibility in containers
(without going through device plugin again)

If the vGPU named “xyz” doesn't exist, a
new VGPU is created and assigned with

the GPUID “xyz”.

30

SharePod Creation

e Users request a shared GPU by creating a SharePod with GPUID

(. N

[voa N

SharePod1: D1 and Bads <hara the cama (DI | :
gpu_req: 0.4 gpu_req: 0.4 :__I?(_)fj_l_?[]fj_l?_o_d_z__S_h_a_r?_t_h_e_??_n_“_a_(_BI_DH_J
node: nodel GPY-—request:
GPUID: xyz node: nodel | nodel daemon || node2 daemon
SharePod2: GPUID: xyz o Podl Pod?
- env: 0 0
gpu_l_’eq- 0.6 PO el =% | NVIDIA VISIBLE_ NVIDIA_VISIBLE_
node: nodel NVIDIA_VISIBLE_DEVICES=GPU-B run containers | pevices=cpu-g DEVICES=GPU-B
GPUID: xyz Podz2: in cluster
N gpu_req: 0.6 Pod }[Pod }
N _ GRU—request: GPU1L GPU2
‘. submit SharePod node: nodel - -
0\\With GPUID“xyz” GPUID: Xyz | NVIDIA Container Runtime || NVIDIA Container Runtime |
\ env: | cpPua || GPU-B || epuc || cpPuD |
* \ NVIDIA_\/ISIBLE_DE\/ICES:GPU—B/
KubeShare- ® --—
DevMgr _.--"" create Pod with environment variable
VGPU : GPUID = UUID “NVIDIA_VISIBLE_DEVICES” to
VGPUL: xyz = GPU-B restrict GPU visibility in containers
VGPU2: qrs = GPU-C 31

SharePod Creation

e KubeShare is compatible with NVIDIA GPU device plugin management

(@)

GPUs outsides vGPU pool still
mamanged by NVIDIA GPU device
plugin framework

Introduce minimum impact to the
exisiting cluster management

Users can choose to attach GPUs
on pods through KubeShare or the
NVIDIA GPU device plugin

nodel daemon || node2 daemon

=~

Pod1 Pod2
NVIDIA_VISIBLE_ NVIDIA VISIBLE_ vGPU
DEVICES=GPU-B DEVICES=GPU-B
q Pod

native
Pod1l

NVIDIA Cont!iiner Runtime

VGPU1L] [VGPU2
| | |
| |

i

GPU-D

GPUs outside of vGPU Pool still can be
acquired by native Pods going through
device plugin framework.

32

vGPU Lifecycle & vGPU Pool Management

e Phases of vGPU:

o creation: a vGPU just allocated from Kubernetes and joins vGPU pool
o active: a vGPU attached to one or multiple sharePods
o idle: a vGPU without being attached to any sharePod
o deletion: a vGPU released by KubeShare and leaves vGPU pool
| nodel daemon | | node2 daemon |
KubeShare-DevMgr [Pod1 } [Pod2 } idle
vGPU : GPUID = UUID NVIDIA_VISIBLE_ NVIDIA_VISIBLE_ phase
_____________________ DEVICES=GPU-B DEVICES=GPU-B
VGPU2: grs = GPU-C Pod Pod <_deletion
vGPU3: = GPU-A VvGPU1 VGPU2 vGPU4 phase
NVIDIA Container Ryntime || NVIDIA Container Runtime |
reatioh [cPua || GPU-B || epuc || cpPuD |
phase

33

vGPU Lifecycle & vGPU Pool Management

e Tradeoff between Idle and Deletion
o Our implementation choose on-demand because the creation overhead is limited

Reservation based allocation On-demand based allocation
keep idle vGPU to handle delete idle vGPU immediately
future request R
Idle vGPU Deletion
"
(%) Reduce pod creation time 2t) Increase pod creation time

\O8

++) GPUs in vGPU Pool cannot be " GPU can be re-allocated by
~ utilized by native Pod, which may native Pod to provide better
result in lower resource utilization allocation flexibility

p p
\

KubeShare-Sched: Resource Requirement &
Scheduling

[Client

1@ © Create/Delete

] current section in the architecture

© gﬁgfgpuézd N | sharePod
[KubeShare- with GPUID| KubeShare- 1@ Attach & init vGPU
Sched DevMgr {

@ Query JAY /)

VGPU @ Retrieve GPU’s UUIDI : Create/Delete

info vGPU _

vGPU pool (stored in etcd) - -7
L

_____ [very ” very Jﬂf , @ Register vGPU
KubeShare [vGPU H vGPU] by creating
Controllers <GPUID, UUID>

App App
{ N [
SharePod SharePod
container container
\

v

Device library

- e = e e e = e

GPU

Worker node

35

Resource Requirement Specifications

e KubeShare-Sched schedules SharePods by deciding their GPUID & nodeName
e Rich and Easy-to-use user specifications on GPU: usage, & identity

vGPU Pool State

GPU Compute Demand

GPU Memory Demand

KubeShare-Sched <:[—— }

Affinity Label

Anti-Affinity Label

Exclusion Label

GPUID

SharePodSpec I
_________ - 36

- O S S S S S S B e e .
(N N N N

Scheduling Locality: Affinity

e Affinity forces containers with the same label scheduled on the same GPU

new request

SharePod5:
affinity:
green
: o
SharePod1: SharePod2: | SharePod5: : SharePod3: SharePod4:
affinity: affinity: | affinity: | affinity: affinity:
red green | green |
| |
& N y
vGPU1] [vGPU2]

37

Scheduling Locality: Affinity

e Affinity forces containers with the same label scheduled on the same GPU
e Affinity can be used to reduce communication or data transfer overhead

new request

SharePod5:
affinity:

green

short distance for

commumication

o7 TS =~
¥ PR T

short distance for
commumication

- ~<

¥ A |
~ \
SharePodl: SharePod2: (SharePod5: : SharePod3: SharePod4:
affinity: affinity: | affinity: | affinity: affinity:
red green | green |
| |
- .~ y
vGPU1] [vGPU2]

38

Scheduling Locality: Anti-Affinity

e Anti-affinity forces containers with the same label scheduled on different GPUs

new request

SharePod5:
anti-affi:

green

4 \\:§ _________ \ ~N
SharePodl: SharePod2: | SharePod5: : SharePod3: SharePod4:
anti-affi: anti-affi: | anti-affi: | anti-affi: anti-affi:
red green | green } red
\ L _ J
vGPU1] [vGPU2

39

Scheduling Locality: Anti-Affinity

e Anti-affinity forces containers with the same label scheduled on different GPUs

It can be used to mitigate performance interference on shared GPU

new request

SharePod5:
anti-affi:
green
high performance
interference_ _ _ _ _ _ _ _ ______\o_____________
po-TTTTTTTT N T A
4 high performance | 3 h
SharePod1: SharePod2: interference | SharePod5: | SharePod3: SharePod4:
anti-affi: anti-affi: |[€-------—-—---—--- > anti-affi: | anti-affi: anti-affi:
red green | green } red
g L y J
vGPU1] [vGPU2

40

Scheduling Locality: Exclusion

e Exclusion avoids GPU sharing among containers with different labels

new request

SharePod5:
exclusion:

green

e (o \ R
SharePod1: SharePod2: | SharePod5: : SharePod3: SharePod4:
exclusion: exclusion: || exclusion: | exclusion: exclusion:
green green | green } red red
g e _ J
vGPU1] [vGPU2

Scheduling Locality: Exclusion

e Exclusion avoids GPU sharing among containers with different labels

e Exclusion can be used to dedicate GPU for specific users/applications

o A commonly seen requirement for performance sensitive workload
new request

SharePod5:
exclusion:
green

reserved for user green Jz/// reserved for user red
T >

II(AW |I \
i SharePod1: SharePod2: (SharePod5: :i i SharePod3: SharePod4:

! exclusion: exclusion: || exclusion: |' exclusion: exclusion:

! green green | green }: ! red red

AN e S Y,
] VGPU1] [VGPU2

42

vGPU Device Library: Resource Control & Isolation

Client . . .
[il) current section in the architecture
J @ Submit sharePod request
1 kube-apiserver I N 1
S B App App I
—-—— —l— ittty Rt 1@ © Create/Delete 1 p . |
che e ~
: © sharePod AW sharePod : Share'Pod Share_Pod |
KubeShare- with GPUID KubeShare- I@ Attach & init vGPU container container o I
I Sched DevMgr } I J \ / ;‘g&’e I
:@Query oo \—:—-[Device library] I
] VGPU O Retrieve GPU’s UUIDI : Create/Delete s T wepu T ! !
| info vGPU ety e |
vGPU pool (stored in etcd) ro--- . |
: k" L3 GPU I
' VGPU || vGPU J VGPU [i ,
I [} ‘ Q @ Register vGPU | :
KubeShare [VGPU H VGPU] by creating I [kubelet] [GPU device plugin]I
Controllers <GPUID,UUID> L & o e e e e e = = = = =

Worker node

Resource Sharing Model

e Compute resource: time sharing
o Usage = (accumulated execution time in a sliding window) / (length of the sliding window)

GPU compute request
SharePod A: 0.7
SharePod B: 0.3

sliding window 10ms

<

L
>

A

B

A

B

A

— > —> > —> —>

ms

3ms

7ms

3ms

7ms

time

e Memory resource: space sharing

o Usage = total allocated memory size on GPU device memory
o Memory can be oversubscriped using NIVIDIA unified memory

GPU memory space

SharePod A
2048MiB

SharePod B
4096MiB

n
>

44

Resource Control Mechanism

Method: intercept CUDA library calls using LD_PRELOAD

O A pod can only launch GPU kernels
when it receives a token from scheduler

O A pod can only allocate GPU memory/ Pod Pod @ \
\ Node

when it doesn’t exceed size limit ,
Process A Process B
i Lt 4 L Token-based
Category Function Name PU Device Library Intercep >
3 Scheduler
Compute cuLaunchKernel Y .
CUDA Library || || CUDA Librany dispatch token
Compute cuLaunchGrid based on usage
allocations
Memory cuMemAlloc GPU Driver
1 V

Memory cuArrayCreate
\ 4
Intercepted CUDA Functions \ Physical GPU /5

Elastic Allocation

e More flexible resource allocation specifications for GPU time
o Request: the minimum resource usage
o Limit: the maximum resource usage

e Idle compute capacity can be shared without violating user requirements
o Achieve higher GPU utilization

m= fotal == JobA = Job B

100
90

limitB: 0.8

limit A: 0.7

80
name gpu_request gpu_limit B request B: 0.6
E
pos 60 REER e
Job A 0.4 0.7 S e request A: 0.4
2 w L -
Job B 0.6 0.8 5 e

20

time 46

Outline

Motivations & Objectives
KubeShare Design & Implementation

Experimental Evaluations

Experiment Setup

System Throughput Improvment

GPU Utilization Improvement
Mitigation of Performance Interference
Overhead & Scalability

© O O O O

Conclusions

47

Experiment Setup

e Kubernetes clusters
o 8 AWS p3.8xlarge instances
o 36 cores (Intel Xeon E5-2686 v4), 244 GB RAM, 4 NVIDIA Tesla V100 16GB on each instance
e Compared container cloud platforms
o KubeShare: Kubernetes with KubeShare extension
o Kubernetes: Kubernetes native installation
e Workload: TensorFlow DeeplLab V3 model inference
o Its GPU consumption is positive correlative to #clients, so a single job may not fully utilize a GPU
o We control the size (GPU utilization) of jobs by adjusting their concurrent client numbers
e Performance metrices

o Application throughput: job completion per minutes
o GPU utilization: average allocated GPU capacity

80

60

40 1

GPU utilization(%)

20

................ 48

1 2 3 45 6 7 8 9 1011121314 1516
number of clients

throughput (job completions per minute)

120

100

80

60

40 4

201

System Throughput Improvement

e Observe system throughput under various workload patterns

—— Kubernetes
—— KubeShare

1 2

3 4 5 6 7
the normalized job arrival frequency

(a) Job frequency.

8

throughput (job completions per minute)

140 4

120 1

100 A

80 1

60

40

—— Kubernetes
—— KubeShare

0 20 30 40 50 60 70 BO 90 100
the mean of job size (i.e., GPU usage percentage)

(b) GPU demand mean.

o L=}
=] =]
L

-~
o
L

' v
o [=]
"

throughput (job completions per minute
(7] [=)]
(=] [=]

/\/\/\/\/

—— Kubernetes
—— KubeShare

1 2 3 4 5] 7 8 9 10

the normalized variance of job size

(c) GPU demand variance.

49

GPU Utilization Improvement

e Observe average GPU utilization during workload execution

100

Workload: ——— Kubernetes (GPU utilization) -~ KubeShare (# of active GPU)

GPU demand mean 30% —— KubeShare (GPU utilization)

GPU demand variance 2 80 - /\r% »
60 / ;

Average Utilization

number of active GPUs

average utilfzation\of active GPUs(%)

KubeShare > Kubernetes
(>70%) (<30%) \m »
: LR P T il
’ / ™ time (seconds) \/Q' }\J
Number of active GPUs _ _
KubeShare < Kubernetes Completion Time
(< 30) (always 32) KubeShare < Kubernetes

(<230s) (>310s) 50

Interference Mitigation: Workloads

e Anti-affinity can be used to mitigate performance interference
o Label all jobs B with the same color, and set the anti-affinity constraint on the label
o Jobs B will not be scheduled on the same GPU

e But Anti-affinity will also reduce GPU sharing opportunities

o GPU cannot be shared between jobs B
2.0

(" \(\()
GPU demand 18- GPU GPU GPU

A: 50%, B: 50% 1.70 1.70

1.6 A

slowdown

1.4 1

1.2

1.0

Interference Mitigation: Results

e Adjust the severity of interference by adjusting the job mixing ratio

high utilization (enough A for sharing)
/ low interference (anti-affinity on B)

o
o

—— KubeShare with anti-affinity
—— KubeShare without anti-affinity
—— Kubernetes

[o4] o
(=] w

=

~J
(%]

igh utilization (always sharing)
mpre interference (no anti-affinity
to avoid sharing on B)

high utilization (always sharing)
high interference (sharing on B)

~
o

>
o
1

low utilization (no sharing on B)
low interference (anti-affinity on B)

w
w

throughput {jobf/r/npletions per minute)

N\

Al JObB——»00 01 02 03 04 05 06 07 08 09 1.0«——AlJobA
job mixing ratio (i.e., percentage of job A in the workload) -

Overhead on Pod Creation

e KubeShare needs to create vGPU before launching shared pod

KubeShare only take 15%
more pod creation time than
Kubernetes when vGPU is
already created/reserved

normalized|pod creation time (relative to Kubernetes)

4.0
—— KubeShare (with vGPU creation)
354 — KubeShare (w/o vGPU creation)
—— Kubernetes (normalized time)
——=- Kubernetes (absolute time)
3.0 - ey
Y !
, /T
2.5 - "'\’;\l‘y
s l\’\’
!_l W
2.0 - Y
A L
ot
1.5 A A Ny
. ”Jﬁ.d
10_N ..-’\’ A.ﬂhAAAnn
. o T g

T

[o4]

)]

1 10 20 30 40 50 60 70 80 90 100
number of concurrent pod creations

=
Y] +

(=)
o

lute pod creation time (seconys)

F2

a

the actual time delay
(with vGPU creation) still
only takes less than a
few seconds

KubeShare takes 2x pod
creation than Kubernetw
when vGPU needs to be
created on-demand
53

Overhead on Scheduling

e Our scheduling algorithm is scalable and efficient for large-scale systems

—— original data
3504 - trend

the time for scheduling
Is less than 400 ms with
100 pods in the system

micro seconds
N
wn
o

the time complexity of *°°1___ : e :
. . . . 0 10 20 30 40 50 60 70 80 90 100
SChedUI|ng a|gOrIthm IS ||near number of SharePods in the system
to # of pods in the system

54

Conclusions

KubeShare is the first work that makes GPUs become first-class and shared
resources in Kubernetes to address the utilization and performance
interference problems

Users are able to specify their GPU resource requirements with usage,
locality, identity constraints in KubeShare

A series of resource management techniques were provided: on-demand
vGPU creation, locality aware scheduling and elastic resource allocation

Our design ensures KubeShare is compatible with existing Kubernetes
components & NVIDIA GPU device plugin management

Our experiments prove KubeShare can significantly improve GPU utilization
and system throughput with little overhead

Our implementation is available at https://github.com/NTHU-LSALAB/KubeShare

55

https://github.com/NTHU-LSALAB/KubeShare

	KubeShare: A Framework to Manage GPUs as First-Class and Shared Resources in Container Cloud
	Outline
	Container Cloud
	Graphics Processing Unit
	Motivations of GPU Sharing
	Challenges of GPU Sharing
	First Class Schedulable Entity
	First Class Schedulable Entity
	First Class Schedulable Entity
	First Class Schedulable Entity
	KubeShare Contributions
	Outline
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	KubeShare-DevMgr: vGPU Creation
	vGPU Creation
	vGPU Creation
	vGPU Creation
	vGPU Creation
	vGPU Creation
	KubeShare-DevMgr: SharePod Creation
	SharePod Creation
	SharePod Creation
	SharePod Creation
	SharePod Creation
	vGPU Lifecycle & vGPU Pool Management
	vGPU Lifecycle & vGPU Pool Management

	KubeShare-Sched: Resource Requirement & Scheduling
	Resource Requirement Specifications
	Scheduling Locality: Affinity
	Scheduling Locality: Affinity
	Scheduling Locality: Anti-Affinity
	Scheduling Locality: Anti-Affinity
	Scheduling Locality: Exclusion
	Scheduling Locality: Exclusion
	vGPU Device Library: Resource Control & Isolation
	Resource Sharing Model
	Resource Control Mechanism
	Elastic Allocation
	Outline
	Experiment Setup
	System Throughput Improvement
	GPU Utilization Improvement
	Interference Mitigation: Workloads
	Interference Mitigation: Results
	Overhead on Pod Creation
	Overhead on Scheduling
	Conclusions

