
KubeShare: A Framework to Manage
GPUs as First-Class and Shared

Resources in Container Cloud
Ting-An Yeh, Hung-Hsin Chen, Jerry Chou

National Tsing Hua University
Hsinchu, Taiwan R.O.C.

HPDC ’20, June 23–26, 2020, Stockholm, Sweden

Outline

● Motivations & Objectives
○ Introduction of Kubernetes & GPU
○ Why GPU sharing & first clas scheduling is important
○ Our contributions

● KubeShare Design & Implementation

● Experimental Evaluations

● Conclusions

2

Container Cloud
● Container offers many advanvatages over

virtual machine
○ Fast launch time
○ Higher deployment density
○ Less performance degradation

● Kubernetes is the primary platform to build
container cloud
○ Hide infrastructure details from developers
○ Provide several automation features:

■ auto-scalability
■ self-healing
■ rolling update and rollback
■ service discovery and load balancing

○ Pod (a set of containers) is the basic execution unit
kubernetes container cluster

https://devopscube.com/docker-container-clustering-tools/ 3

A quarterly report on developer trends in the cloud by Digital Ocean

https://www.digitalocean.com/currents/june-2018/

Graphics Processing Unit
● GPUs provide tremendous throughput powered by massive parallelism
● Significant performance accelerations are shown in many applications,

especially for deep learning and scientific computing workload
● Widely installed in world’s fast supercomputers and clouds

cpu vs gpu
https://www.researchgate.net/figure/Comparison-of-CPU-versus-GPU-architecture_fig2_231167191

machine learning training GPU benchmark
https://www.microway.com/hpc-tech-tips/deep-learning-benchmarks-nvidia-tesla-p100-16gb-pcie-tesla-k80-tesla-m40-gpus/

More than 40x speedup
on DL applications

4

Motivations of GPU Sharing
● But GPUs are expensive, and often under-utilized

○ Code developing phase
○ Off-peak service hours
○ Limited data transfer bandwidth
○ Bounded by host/cpu performance

● GPU sharing can effiectively maximize GPU utilization

Dedicated GPU Allocation GPU Sharing

GPU 1

Pod / Application
30%

GPU 2

Pod / Application
40%

GPU

Pod / Application
30%

Pod / Application
40%

5

bottleneck

workload

Challenges of GPU Sharing
● CUDA compute capability 2.0+ support task parallelism, but only from

single process/application context
○ No explicit resource management control from applications and host
○ Resoruce oversubscription cause performance degradation and program failure

● Recent research work on GPU sharing aims to improve GPU throughput
and fairness, but not from user resource allocation aspect
○ FLEP, GPUShare, Disengaged Scheduling, ConVGPU, TimeGraph, ...

● Kubernetes has no GPU sharing & isolation
○ GPU device can only be dedicatedly assigned to a Pod

● GPUs are not first class schedulable resources in Kubernetes
○ User cannot request for a specific GPU device from Kubernetes

6

First Class Schedulable Entity
● What is a first class entity?

○ Users or resource manager (scheduler) can
request specific GPU devices for their pods

○ The assignment is done implicitly by a node
deamon (kubelet) in Kubernetes

● Implicit and late binding in Kubernetes
○ Resource manager schedules requests at

node level.
○ Pod to GPU binding is delayed after

scheduling decision was made

Resource manager

Node2Node1

Pod request
Pod B

GPU=1

GPU 1 GPU 2 GPU 3 GPU 4

node1 daemon

Pod B
GPU=1

Pod A
GPU=1

Pod A
GPU=1

node2 daemon

Scheduler
1

schedules Pod to node

7

First Class Schedulable Entity
● What is a first class entity?

○ Users or resource manager (scheduler) can
request specific GPU devices for their pods

○ The assignment is done implicitly by a node
deamon (kubelet) in Kubernetes.

● Implicit and late binding in Kubernetes
○ Resource manager schedules requests at

node level.
○ Pod to GPU binding is delayed after

scheduling decision was made

Resource manager

Node2Node1

Pod request
Pod B

GPU=1

GPU 1 GPU 2 GPU 3 GPU 4

node1 daemon

Pod B
GPU=1

Pod A
GPU=1

Pod A
GPU=1

node2 daemon

Scheduler
1

2

node daemon choose the GPU to bind 8

Node2Node1

First Class Schedulable Entity

Resource manager

Pod request

node1 daemon

Pod A
GPU=0.4

node2 daemon

Scheduler

Pod B
GPU=0.6

Pod C
GPU=0.6

Pod D
GPU=0.4

Pod E
GPU=0.7

Pod G
GPU=0.7

Pod F
GPU=0.6

GPU 1 GPU 2 GPU 3 GPU 4

A
0.
4

C
0.6

E
0.7

G
0.7

F
0.6

B
0.
6

D
0.4

9

Less resource contention
between A&C or D&B

More resource contention
between A&B or C&D

● Why first class is important?
○ Performance interference problem

■ Pods have different resource usage
patterns

Node2Node1

First Class Schedulable Entity
● Why first class is important?

○ Performance interference problem
○ Resource fragmentation problem

■ GPU allocation is indivisble
between devices for a pod

■ Scheduler is only aware of the
aggregated node capacity

Resource manager

Pod request

node1 daemon

Pod A
GPU=0.4

node2 daemon

Scheduler

Pod B
GPU=0.6

Pod C
GPU=0.6

Pod D
GPU=0.4

Pod E
GPU=0.7

Pod G
GPU=0.7

Pod F
GPU=0.6

GPU 1 GPU 2 GPU 3 GPU 4

A
0.
4

C
0.6

E
0.7

G
0.7

F
0.6

B
0.
6

D
0.4

10

KubeShare Contributions
● Objectives: Enable GPU sharing in Kubernetes, and provide first class GPU

scheduling to address utilization, fragmentation and interference problems

11

KubeShare-DevMgr:
create vGPU, and
provide GPU identity

KubeShare-Sched:
mitigate fragmentation &
interference problem

vGPU Device Library:
control GPU usage and
allow elastic GPU sharing.

Outline

● Motivations & Objectives

● KubeShare Design & Implementation
○ Device Plugin Framework
○ vGPU creation & management
○ Shared GPU pod requirement & scheduling
○ GPU resource control & elastic allocation

● Experimental Evaluations

● Conclusions

12

Background: Kubernetes Device Plugin Framework

current section in the architecture

13

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

❶

14

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

kube-scheduler
Schedule Pod
according to
cluster state

❶

❷

no device identity at
scheduling phase 15

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

kube-scheduler

kube-apiserver
node1:
GPU: 4

Pod1:
GPU request: 2
nodeName: node1

Schedule Pod
according to
cluster state

Update schedule
decision to cluster state

❶

❷

❸

no device identity at
scheduling phase 16

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

kube-scheduler

no
de

1
da

em
on

A,
 B

, C
, D

GPU-A
NVIDIA Container Runtime

GPU-B GPU-C GPU-D

N
VID

IA G
PU

D

evice Plugin

kube-apiserver
node1:
GPU: 4

Pod1:
GPU request: 2
nodeName: node1

Schedule Pod
according to
cluster state

Update schedule
decision to cluster state

Create
container❶

❷

❸

❹

no device identity at
scheduling phase 17

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

kube-scheduler

no
de

1
da

em
on

A,
 B

, C
, D

GPU-A
NVIDIA Container Runtime

GPU-B GPU-C GPU-D

N
VID

IA G
PU

D

evice Plugin

Allocate Request:
A, B❺

kube-apiserver
node1:
GPU: 4

Pod1:
GPU request: 2
nodeName: node1

Schedule Pod
according to
cluster state

Update schedule
decision to cluster state

Create
container❶

❷

❸

❹

no device identity at
scheduling phase

node daemon decides
device binding

18

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

kube-scheduler

no
de

1
da

em
on

A,
 B

, C
, D

GPU-A
NVIDIA Container Runtime

GPU-B GPU-C GPU-D

N
VID

IA G
PU

D

evice Plugin

Allocate Request:
A, B

Allocate Response:
Environment Variable=

“NVIDIA_VISIBLE_DEVICES=A,B”

❺

❻

kube-apiserver
node1:
GPU: 4

Pod1:
GPU request: 2
nodeName: node1

Schedule Pod
according to
cluster state

Update schedule
decision to cluster state

Create
container❶

❷

❸

❹

no device identity at
scheduling phase

node daemon decides
device binding

19

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

kube-scheduler

no
de

1
da

em
on

A,
 B

, C
, D

GPU-A
NVIDIA Container Runtime

GPU-B GPU-C GPU-D

N
VID

IA G
PU

D

evice Plugin

Allocate Request:
A, B

Allocate Response:
Environment Variable=

“NVIDIA_VISIBLE_DEVICES=A,B”

❺

❻

❼

kube-apiserver
node1:
GPU: 4

Pod1:
GPU request: 2
nodeName: node1

Schedule Pod
according to
cluster state

Update schedule
decision to cluster state

Create
container❶

❷

❸

❹

no device identity at
scheduling phase

node daemon decides
device binding

Pod1 container
NVIDIS_VISIBLE_DEVICES=A,B

20

Background: Kubernetes Device Plugin Framework
● Device plugin framework: support custom computing resource (GPU, FPGA).

kube-apiserver
node:
GPU: 4

Pod1:
GPU request: 2

Submit
Pod1

kube-scheduler

no
de

1
da

em
on

A,
 B

, C
, D

GPU-A
NVIDIA Container Runtime

GPU-B GPU-C GPU-D

N
VID

IA G
PU

D

evice Plugin

Allocate Request:
A, B

Allocate Response:
Environment Variable=

“NVIDIA_VISIBLE_DEVICES=A,B”

❺

❻

❼

kube-apiserver
node1:
GPU: 4

Pod1:
GPU request: 2
nodeName: node1

Schedule Pod
according to
cluster state

Update schedule
decision to cluster state

Create
container❶

❷

❸

❹

no device identity at
scheduling phase

node daemon decides
device binding

Pod1 container
NVIDIS_VISIBLE_DEVICES=A,B

Implicit & Late
Binding

21

KubeShare-DevMgr: vGPU Creation

current section in the architecture

22

vGPU Creation
● KubeShare-DevMgr creates vGPU and provides GPU identity

○ vGPU is a logic GPU resoruce entity that can be shared and identified in KubeShare
○ Different from native GPU, vGPU can be fractional allocated by users
○ vGPU is also created by a pod

KubeShare-
DevMgr
vGPU : GPUID = UUID

GPU-A

NVIDIA Container Runtime

GPU-B GPU-C GPU-D

node1 daemon

NVIDIA Container Runtime

node2 daemon
request GPU by

Kubernetes native
Pod as vGPU

❶

kube-apiserver
node1:
GPU: 2

node2:
GPU: 2

Pod vGPU1:
GPU request: 1
nodeName: node1

Pod vGPU2:
GPU request: 1
nodeName: node2

23

● KubeShare-DevMgr creates vGPU and provides GPU identity
○ GPU is acquired from Kubernetes through the device plugin framework

KubeShare-
DevMgr
vGPU : GPUID = UUID

Pod
vGPU1

GPU-A

NVIDIA Container Runtime

GPU-B GPU-C GPU-D

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

❷

❶

kube-apiserver
node1:
GPU: 2

node2:
GPU: 2

Pod vGPU1:
GPU request: 1
nodeName: node1

Pod vGPU2:
GPU request: 1
nodeName: node2

vGPU Creation

24

request GPU by
Kubernetes native

Pod as vGPU

Pods with GPU request
created by going through
device plugin framework

● KubeShare-DevMgr creates vGPU and provides GPU identity
○ GPUID is the identifier of a vGPU assigned by KubeShare
○ UUID is the identifier of a GPU returns by device plugin

KubeShare-
DevMgr
vGPU : GPUID = UUID

vGPU1: = GPU-B
vGPU2: = GPU-C

Pod
vGPU1

GPU-A

NVIDIA Container Runtime

GPU-B GPU-C GPU-D

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

retrieve GPU
UUIDs from Pod

❸❶

kube-apiserver
node1:
GPU: 2

node2:
GPU: 2

Pod vGPU1:
GPU request: 1
nodeName: node1

Pod vGPU2:
GPU request: 1
nodeName: node2

vGPU Creation

25

❷

request GPU by
Kubernetes native

Pod as vGPU

Pods with GPU request
created by going through
device plugin framework

● KubeShare-DevMgr creates vGPU and provides GPU identity
○ The GPUID can be used at scheduling phase to co-locate pods on a new created vGPU

KubeShare-
DevMgr
vGPU : GPUID = UUID

vGPU1: xyz = GPU-B
vGPU2: qrs = GPU-C

Pod
vGPU1

GPU-A

NVIDIA Container Runtime

GPU-B GPU-C GPU-D

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

kube-apiserver
node1:
GPU: 2

node2:
GPU: 2

Pod vGPU1:
GPU request: 1
nodeName: node1

Pod vGPU2:
GPU request: 1
nodeName: node2

GPU Identifier

vGPU Creation

26

retrieve GPU
UUIDs from Pod

❶

❷

❸

❹assign unique GPUID as device
identifier for every vGPUs

request GPU by
Kubernetes native

Pod as vGPU

Pods with GPU request
created by going through
device plugin framework

vGPU
Pool

● KubeShare-DevMgr creates vGPU and provides GPU identity
○ The group of vGPUs managed by KubeShare is called vGPU Pool

KubeShare-
DevMgr
vGPU : GPUID = UUID

vGPU1: xyz = GPU-B
vGPU2: qrs = GPU-C

kube-apiserver
node1:
GPU: 2

node2:
GPU: 2

Pod vGPU1:
GPU request: 1
nodeName: node1

Pod vGPU2:
GPU request: 1
nodeName: node2

Pod
vGPU1

GPU-A

NVIDIA Container Runtime

GPU-B GPU-C GPU-D

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

❹

Pods with GPU request
created by going through
device plugin framework

vGPU Creation

27

❷

retrieve GPU
UUIDs from Pod

❸❶

request GPU by
Kubernetes native

Pod as vGPU

assign unique GPUID as device
identifier for every vGPUs

KubeShare-DevMgr: SharePod Creation

current section in the architecture

28

SharePod Creation
● Users request a shared GPU by creating a SharePod with GPUID

KubeShare-
DevMgr
vGPU : GPUID = UUID

vGPU1: xyz = GPU-B
vGPU2: qrs = GPU-C

SharePod1:
gpu_req: 0.4
node: node1
GPUID: xyz

SharePod2:
gpu_req: 0.6
node: node1
GPUID: xyz

Pod
vGPU1

NVIDIA Container Runtime

GPU-B

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

GPU-DGPU-CGPU-A

submit SharePod
with GPUID “xyz”❶

29

A SharePod == A pod that attaches a sharedGPU (vGPU)

SharePod Creation
● Users request a shared GPU by creating a SharePod with GPUID

KubeShare-
DevMgr
vGPU : GPUID = UUID

vGPU1: xyz = GPU-B
vGPU2: qrs = GPU-C

SharePod1:
gpu_req: 0.4
node: node1
GPUID: xyz

SharePod2:
gpu_req: 0.6
node: node1
GPUID: xyz

Pod
vGPU1

NVIDIA Container Runtime

GPU-B

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

Pod1:
gpu_req: 0.4
GPU request:
node: node1
GPUID: xyz
env:

NVIDIA_VISIBLE_DEVICES=GPU-B

Pod2:
gpu_req: 0.6
GPU request:
node: node1
GPUID: xyz
env:

NVIDIA_VISIBLE_DEVICES=GPU-B

GPU-DGPU-CGPU-A

submit SharePod
with GPUID “xyz”

create Pod with environment variable
“NVIDIA_VISIBLE_DEVICES” to restrict

GPU visibility in containers
(without going through device plugin again)

❶

❷

30

If the vGPU named “xyz” doesn’t exist, a
new vGPU is created and assigned with
the GPUID “xyz”.

SharePod Creation
● Users request a shared GPU by creating a SharePod with GPUID

KubeShare-
DevMgr
vGPU : GPUID = UUID

vGPU1: xyz = GPU-B
vGPU2: qrs = GPU-C

SharePod1:
gpu_req: 0.4
node: node1
GPUID: xyz

SharePod2:
gpu_req: 0.6
node: node1
GPUID: xyz

Pod
vGPU1

NVIDIA Container Runtime

GPU-B

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

Pod1:
gpu_req: 0.4
GPU request:
node: node1
GPUID: xyz
env:

NVIDIA_VISIBLE_DEVICES=GPU-B

Pod2:
gpu_req: 0.6
GPU request:
node: node1
GPUID: xyz
env:

NVIDIA_VISIBLE_DEVICES=GPU-B

Pod1
NVIDIA_VISIBLE_
DEVICES=GPU-B

GPU-DGPU-C

Pod2
NVIDIA_VISIBLE_
DEVICES=GPU-B

GPU-A

submit SharePod
with GPUID “xyz”

create Pod with environment variable
“NVIDIA_VISIBLE_DEVICES” to

restrict GPU visibility in containers

❶

❷

❸

run containers
in cluster

Pod1 and Pod2 share the same GPU

31

vGPU
Pool

SharePod Creation
● KubeShare is compatible with NVIDIA GPU device plugin management

○ GPUs outsides vGPU pool still
mamanged by NVIDIA GPU device
plugin framework

○ Introduce minimum impact to the
exisiting cluster management

○ Users can choose to attach GPUs
on pods through KubeShare or the
NVIDIA GPU device plugin

Pod
vGPU1

NVIDIA Container Runtime

GPU-B

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

Pod1
NVIDIA_VISIBLE_
DEVICES=GPU-B

GPU-DGPU-C

Pod2
NVIDIA_VISIBLE_
DEVICES=GPU-B

GPU-A

GPUs outside of vGPU Pool still can be
acquired by native Pods going through

device plugin framework.

native
Pod1

32

Pod1 and Pod2 share the same GPU

vGPU Lifecycle & vGPU Pool Management

KubeShare-DevMgr
vGPU : GPUID = UUID

vGPU1: xyz = GPU-B
vGPU2: qrs = GPU-C
vGPU3: _____ = GPU-A

Pod
vGPU1

NVIDIA Container Runtime

GPU-B

node1 daemon

NVIDIA Container Runtime

node2 daemon

Pod
vGPU2

Pod1
NVIDIA_VISIBLE_
DEVICES=GPU-B

GPU-DGPU-C

Pod2
NVIDIA_VISIBLE_
DEVICES=GPU-B

GPU-A

Pod
vGPU3

creation
phase active

phase

idle
phase

Pod
vGPU4

deletion
phase

● Phases of vGPU:
○ creation: a vGPU just allocated from Kubernetes and joins vGPU pool
○ active: a vGPU attached to one or multiple sharePods
○ idle: a vGPU without being attached to any sharePod
○ deletion: a vGPU released by KubeShare and leaves vGPU pool

33

vGPU Lifecycle & vGPU Pool Management
● Tradeoff between Idle and Deletion

○ Our implementation choose on-demand because the creation overhead is limited

vGPU DeletionIdle

● Reduce pod creation time

● GPUs in vGPU Pool cannot be
utilized by native Pod, which may
result in lower resource utilization

● Increase pod creation time

● GPU can be re-allocated by
native Pod to provide better
allocation flexibility

Reservation based allocation
keep idle vGPU to handle
future request

On-demand based allocation
delete idle vGPU immediately

34

KubeShare-Sched: Resource Requirement &
Scheduling

current section in the architecture

35

SharePodSpec

Resource Requirement Specifications
● KubeShare-Sched schedules SharePods by deciding their GPUID & nodeName
● Rich and Easy-to-use user specifications on GPU: usage, locality & identity

vGPU Pool State

GPU Compute Demand

GPU Memory Demand

Affinity Label

Anti-Affinity Label

Exclusion Label

GPUID

nodeNameKubeShare-Sched

36

GPUID

Scheduling Locality: Affinity
● Affinity forces containers with the same label scheduled on the same GPU

vGPU1

new request

SharePod1:
affinity:
red

SharePod2:
affinity:
green

SharePod5:
affinity:
green

vGPU2

SharePod3:
affinity:
orange

SharePod4:
affinity:
orange

SharePod5:
affinity:
green

37

Scheduling Locality: Affinity
● Affinity forces containers with the same label scheduled on the same GPU
● Affinity can be used to reduce communication or data transfer overhead

vGPU1

new request

SharePod1:
affinity:
red

SharePod2:
affinity:
green

SharePod5:
affinity:
green

vGPU2

SharePod3:
affinity:
orange

SharePod4:
affinity:
orange

SharePod5:
affinity:
green

short distance for
commumication

short distance for
commumication

38

Scheduling Locality: Anti-Affinity
● Anti-affinity forces containers with the same label scheduled on different GPUs

vGPU1

new request

SharePod1:
anti-affi:
red

SharePod2:
anti-affi:
green

SharePod5:
anti-affi:
green

vGPU2

SharePod3:
anti-affi:
orange

SharePod4:
anti-affi:
red

SharePod5:
anti-affi:
green

39

Scheduling Locality: Anti-Affinity
● Anti-affinity forces containers with the same label scheduled on different GPUs
● It can be used to mitigate performance interference on shared GPU

vGPU1

new request

SharePod1:
anti-affi:
red

SharePod2:
anti-affi:
green

SharePod5:
anti-affi:
green

vGPU2

SharePod3:
anti-affi:
orange

SharePod4:
anti-affi:
red

SharePod5:
anti-affi:
green

high performance
interference

high performance
interference

40

Scheduling Locality: Exclusion
● Exclusion avoids GPU sharing among containers with different labels

vGPU1

new request

SharePod1:
exclusion:
green

SharePod2:
exclusion:
green

vGPU2

SharePod3:
exclusion:
red

SharePod4:
exclusion:
red

SharePod5:
exclusion:
green

SharePod5:
exclusion:
green

41

Scheduling Locality: Exclusion
● Exclusion avoids GPU sharing among containers with different labels
● Exclusion can be used to dedicate GPU for specific users/applications

○ A commonly seen requirement for performance sensitive workload

vGPU1

new request

SharePod1:
exclusion:
green

SharePod2:
exclusion:
green

vGPU2

SharePod3:
exclusion:
red

SharePod4:
exclusion:
red

SharePod5:
exclusion:
green

SharePod5:
exclusion:
green

reserved for user green reserved for user red

42

vGPU Device Library: Resource Control & Isolation

current section in the architecture

43

Resource Sharing Model

● Compute resource: time sharing
○ Usage = (accumulated execution time in a sliding window) / (length of the sliding window)

● Memory resource: space sharing
○ Usage = total allocated memory size on GPU device memory
○ Memory can be oversubscriped using NIVIDIA unified memory

A B
7ms 3ms

A B
7ms 3ms

A
7ms

GPU compute request
SharePod A: 0.7
SharePod B: 0.3

sliding window 10ms

time

SharePod A
2048MiB

SharePod B
4096MiB

GPU memory space

44

Node

Resource Control Mechanism

Process A
LD_PRELOAD=vGPU-Lib

GPU Driver

Physical GPU

Process B
LD_PRELOAD=vGPU-Lib

Token-based
Scheduler

Pod Pod

CUDA Library CUDA Library

● Method: int ercept CUDA library calls using LD_PRELOAD
○ A pod can only launch GPU kernels

when it receives a token from scheduler

○ A pod can only allocate GPU memory
when it doesn’t exceed size limit

Category Function Name

Compute cuLaunchKernel

Compute cuLaunchGrid

Memory cuMemAlloc

Memory cuArrayCreate

Intercepted CUDA Functions

vGPU Device Library Intercept

45

dispatch token
based on usage
allocations

Elastic Allocation
● More flexible resource allocation specifications for GPU time

○ Request: the minimum resource usage
○ Limit: the maximum resource usage

● Idle compute capacity can be shared without violating user requirements
○ Achieve higher GPU utilization

name gpu_request gpu_limit

Job A 0.4 0.7

Job B 0.6 0.8

limit A: 0.7
limit B: 0.8

request B: 0.6

request A: 0.4

46

Outline

● Motivations & Objectives

● KubeShare Design & Implementation

● Experimental Evaluations
○ Experiment Setup
○ System Throughput Improvment
○ GPU Utilization Improvement
○ Mitigation of Performance Interference
○ Overhead & Scalability

● Conclusions
47

Experiment Setup
● Kubernetes clusters

○ 8 AWS p3.8xlarge instances
○ 36 cores (Intel Xeon E5-2686 v4), 244 GB RAM, 4 NVIDIA Tesla V100 16GB on each instance

● Compared container cloud platforms
○ KubeShare: Kubernetes with KubeShare extension
○ Kubernetes: Kubernetes native installation

● Workload: TensorFlow DeepLab V3 model inference
○ Its GPU consumption is positive correlative to #clients, so a single job may not fully utilize a GPU
○ We control the size (GPU utilization) of jobs by adjusting their concurrent client numbers

● Performance metrices
○ Application throughput: job completion per minutes
○ GPU utilization: average allocated GPU capacity

48

System Throughput Improvement

● KubeShare achieved higher
throughput when workload is
high enough to share GPUs

● More GPU sharing opportunities
when job size is smaller

● Variance of job size doesn’t affect
the throughput improvement much

49

● Observe system throughput under various workload patterns

GPU Utilization Improvement

Workload:
GPU demand mean 30%
GPU demand variance 2

Completion Time
KubeShare < Kubernetes

(<230s) (>310s)

Average Utilization
KubeShare > Kubernetes

(>70%) (<30%)

Number of active GPUs
KubeShare < Kubernetes

(< 30) (always 32) 50

● Observe average GPU utilization during workload execution

● Anti-affinity can be used to mitigate performance interference
○ Label all jobs B with the same color, and set the anti-affinity constraint on the label
○ Jobs B will not be scheduled on the same GPU

● But Anti-affinity will also reduce GPU sharing opportunities
○ GPU cannot be shared between jobs B

Interference Mitigation: Workloads

GPUGPU GPUGPU demand
A: 50%, B: 50%

51

avoided by anti-affinity

Interference Mitigation: Results

All Job B All Job A

low utilization (no sharing on B)
low interference (anti-affinity on B)

high utilization (always sharing)
high interference (sharing on B)

high utilization (always sharing)
more interference (no anti-affinity

to avoid sharing on B)

high utilization (enough A for sharing)
low interference (anti-affinity on B)

52

● Adjust the severity of interference by adjusting the job mixing ratio

Benefit of sharing outweigh
the impact of interference

Best results achieved
when sharing without
interference

Overhead on Pod Creation

KubeShare only take 15%
more pod creation time than
Kubernetes when vGPU is
already created/reserved

KubeShare takes 2x pod
creation than Kubernetw
when vGPU needs to be

created on-demand

the actual time delay
(with vGPU creation) still

only takes less than a
few seconds

53

● KubeShare needs to create vGPU before launching shared pod
○ The overhead is bounded and can be reduced by vGPU reservation
○ Using reservation-based vGPU allocation can reduce the delay to only 15%

Overhead on Scheduling

the time for scheduling
is less than 400 ms with
100 pods in the system

the time complexity of
scheduling algorithm is linear

to # of pods in the system

54

● Our scheduling algorithm is scalable and efficient for large-scale systems

Conclusions
● KubeShare is the first work that makes GPUs become first-class and shared

resources in Kubernetes to address the utilization and performance
interference problems

● Users are able to specify their GPU resource requirements with usage,
locality, identity constraints in KubeShare

● A series of resource management techniques were provided: on-demand
vGPU creation, locality aware scheduling and elastic resource allocation

● Our design ensures KubeShare is compatible with existing Kubernetes
components & NVIDIA GPU device plugin management

● Our experiments prove KubeShare can significantly improve GPU utilization
and system throughput with little overhead

● Our implementation is available at https://github.com/NTHU-LSALAB/KubeShare 55

https://github.com/NTHU-LSALAB/KubeShare

	KubeShare: A Framework to Manage GPUs as First-Class and Shared Resources in Container Cloud
	Outline
	Container Cloud
	Graphics Processing Unit
	Motivations of GPU Sharing
	Challenges of GPU Sharing
	First Class Schedulable Entity
	First Class Schedulable Entity
	First Class Schedulable Entity
	First Class Schedulable Entity
	KubeShare Contributions
	Outline
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	Background: Kubernetes Device Plugin Framework
	KubeShare-DevMgr: vGPU Creation
	vGPU Creation
	vGPU Creation
	vGPU Creation
	vGPU Creation
	vGPU Creation
	KubeShare-DevMgr: SharePod Creation
	SharePod Creation
	SharePod Creation
	SharePod Creation
	SharePod Creation
	vGPU Lifecycle & vGPU Pool Management
	vGPU Lifecycle & vGPU Pool Management

	KubeShare-Sched: Resource Requirement & Scheduling
	Resource Requirement Specifications
	Scheduling Locality: Affinity
	Scheduling Locality: Affinity
	Scheduling Locality: Anti-Affinity
	Scheduling Locality: Anti-Affinity
	Scheduling Locality: Exclusion
	Scheduling Locality: Exclusion
	vGPU Device Library: Resource Control & Isolation
	Resource Sharing Model
	Resource Control Mechanism
	Elastic Allocation
	Outline
	Experiment Setup
	System Throughput Improvement
	GPU Utilization Improvement
	Interference Mitigation: Workloads
	Interference Mitigation: Results
	Overhead on Pod Creation
	Overhead on Scheduling
	Conclusions

