

KubeShare: A Framework to Manage GPUs as First-Class and Shared Resources in Container Cloud

Ting-An Yeh, Hung-Hsin Chen, Jerry Chou National Tsing Hua University Hsinchu, Taiwan R.O.C.

HPDC '20, June 23–26, 2020, Stockholm, Sweden

Outline

- Motivations & Objectives
 - Introduction of Kubernetes & GPU
 - Why GPU sharing & first clas scheduling is important
 - Our contributions
- KubeShare Design & Implementation
- Experimental Evaluations
- Conclusions

Container Cloud

- Container offers many advanvatages over virtual machine
 - Fast launch time
 - Higher deployment density
 - Less performance degradation
- **Kubernetes** is the primary platform to build container cloud
 - Hide infrastructure details from developers
 - Provide several automation features:
 - auto-scalability
 - self-healing
 - rolling update and rollback
 - service discovery and load balancing
 - **Pod** (a set of containers) is the basic execution unit

Which container orchestration platform do you primarily use?

A quarterly report on developer trends in the cloud by Digital Ocean

https://devopscube.com/docker-container-clustering-tools/

Graphics Processing Unit

- GPUs provide tremendous throughput powered by massive parallelism
- Significant performance accelerations are shown in many applications, especially for deep learning and scientific computing workload
- Widely installed in world's fast supercomputers and clouds

https://www.researchgate.net/figure/Comparison-of-CPU-versus-GPU-architecture_fig2_231167191

4

Motivations of GPU Sharing

- But GPUs are expensive, and often under-utilized
 - Code developing phase Ο
 - Off-peak service hours Ο
 - Limited data transfer bandwidth \bigcirc
 - Bounded by host/cpu performance Ο

GPU sharing can effiectively maximize GPU utilization

GPU 1	GPU 2	GPU
		Pod / Application 40%
Pod / Application 30%	Pod / Application 40%	Pod / Application 30%
Dedicated GPU Allocation		GPU Sharing

GPU Sharing

Challenges of GPU Sharing

- CUDA compute capability 2.0+ support task parallelism, but only from single process/application context
 - No explicit resource management control from applications and host
 - Resoruce oversubscription cause performance degradation and program failure
- Recent research work on GPU sharing aims to improve GPU throughput and fairness, but not from user resource allocation aspect
 - FLEP, GPUShare, Disengaged Scheduling, ConVGPU, TimeGraph, ...
- Kubernetes has no GPU sharing & isolation
 - GPU device can only be dedicatedly assigned to a *Pod*
- GPUs are **not first class schedulable resources** in **Kubernetes**
 - User cannot request for a specific GPU device from Kubernetes

- What is a first class entity?
 - Users or resource manager (scheduler) can request specific GPU devices for their pods
 - The assignment is done implicitly by a node deamon (kubelet) in Kubernetes
- Implicit and late binding in Kubernetes
 - Resource manager schedules requests at node level.
 - Pod to GPU binding is delayed after scheduling decision was made

- What is a first class entity?
 - Users or resource manager (scheduler) can request specific GPU devices for their pods
 - The assignment is done implicitly by a node deamon (kubelet) in Kubernetes.
- Implicit and late binding in Kubernetes
 - Resource manager schedules requests at node level.
 - Pod to GPU binding is delayed after scheduling decision was made

node daemon choose the GPU to bind

9

- Why first class is important?
 - Performance interference problem
 - **Resource fragmentation problem**
 - GPU allocation is indivisble between devices for a pod
 - Scheduler is only aware of the aggregated node capacity

KubeShare Contributions

 Objectives: Enable GPU sharing in Kubernetes, and provide <u>first class GPU</u> <u>scheduling</u> to address <u>utilization</u>, <u>fragmentation</u> and <u>interference</u> problems

11

Outline

- Motivations & Objectives
- KubeShare Design & Implementation
 - Device Plugin Framework
 - vGPU creation & management
 - Shared GPU pod requirement & scheduling
 - GPU resource control & elastic allocation
- Experimental Evaluations
- Conclusions

KubeShare-DevMgr: vGPU Creation

- KubeShare-DevMgr creates vGPU and provides GPU identity
 - **vGPU** is a logic GPU resoruce entity that can be shared and identified in KubeShare
 - Different from native GPU, vGPU can be fractional allocated by users
 - vGPU is also created by a pod

node1 daemon		node2 daemon		
				_
NVIDIA Container Runtime		NVIDIA Container Runtime		
GPU-A	GPU-B	GPU-C	GPU-D	

- KubeShare-DevMgr creates vGPU and provides GPU identity
 - GPU is acquired from Kubernetes through the **device plugin framework**

Pods with GPU request created by going through device plugin framework

2

node1 daemon		node2 daemon	
	Pod vGPU1	Pod vGPU2	
NVIDIA Container Runtime		NVIDIA Container Runtime	
GPU-A	GPU-B	GPU-C	GPU-D

- KubeShare-DevMgr creates vGPU and provides GPU identity
 - **GPUID** is the identifier of a vGPU assigned by **KubeShare**
 - **UUID** is the identifier of a GPU returns by **device plugin**

Pods with GPU request

- KubeShare-DevMgr creates vGPU and provides GPU identity
 - The GPUID can be used at scheduling phase to co-locate pods on a new created vGPU

- KubeShare-DevMgr creates vGPU and provides GPU identity
 - The group of vGPUs managed by KubeShare is called **vGPU Pool**

Pods with GPU request

KubeShare-DevMgr: SharePod Creation

vGPU2: qrs

= GPU-C

Users request a shared GPU by creating a SharePod with GPUID

Users request a shared GPU by creating a SharePod with GPUID

Users request a shared GPU by creating a SharePod with GPUID

• KubeShare is compatible with NVIDIA GPU device plugin management

- GPUs outsides vGPU pool still mamanged by NVIDIA GPU device plugin framework
- Introduce minimum impact to the exisiting cluster management
- Users can choose to attach GPUs on pods through KubeShare or the NVIDIA GPU device plugin

Pod1 and Pod2 share the same GPU

vGPU Lifecycle & vGPU Pool Management

- Phases of vGPU:
 - creation: a vGPU just allocated from Kubernetes and joins vGPU pool
 - active: a vGPU attached to one or multiple sharePods
 - idle: a vGPU without being attached to any sharePod
 - deletion: a vGPU released by KubeShare and leaves vGPU pool

vGPU Lifecycle & vGPU Pool Management

- Tradeoff between Idle and Deletion
 - Our implementation choose on-demand because the creation overhead is limited

KubeShare-Sched: Resource Requirement & Scheduling

Resource Requirement Specifications

- KubeShare-Sched schedules SharePods by deciding their GPUID & nodeName
- Rich and Easy-to-use user specifications on GPU: <u>usage</u>, <u>locality</u> & <u>identity</u>

Scheduling Locality: Affinity

• Affinity forces containers with the same label scheduled on the same GPU

Scheduling Locality: Affinity

- Affinity forces containers with the **same label** scheduled on the **same GPU**
- Affinity can be used to reduce communication or data transfer overhead

Scheduling Locality: Anti-Affinity

• Anti-affinity forces containers with the same label scheduled on different GPUs

Scheduling Locality: Anti-Affinity

- Anti-affinity forces containers with the same label scheduled on different GPUs
- It can be used to mitigate performance interference on shared GPU

Scheduling Locality: Exclusion

• Exclusion avoids GPU sharing among containers with different labels

Scheduling Locality: Exclusion

- Exclusion avoids GPU sharing among containers with different labels
- Exclusion can be used to **dedicate GPU for specific users/applications**
 - A commonly seen requirement for performance sensitive workload

new request

vGPU Device Library: Resource Control & Isolation

Resource Sharing Model

Compute resource: time sharing

Usage = (accumulated execution time in a sliding window) / (length of the sliding window) Ο

- Memory resource: space sharing
 - Usage = total allocated memory size on GPU device memory 0
 - Memory can be oversubscriped using NIVIDIA unified memory 0

GPU memory space		
SharePod A	SharePod B	
2048MiB	4096MiB	

Resource Control Mechanism

- Method: intercept CUDA library calls using LD_PRELOAD
 - A pod can only launch GPU kernels when it receives a token from scheduler
 - A pod can only allocate GPU memory when it doesn't exceed size limit

Category	Function Name	
Compute	cuLaunchKernel	
Compute	cuLaunchGrid	
Memory	cuMemAlloc	
Memory	cuArrayCreate	
Intercepted CUDA Functions		

Elastic Allocation

- More flexible resource allocation specifications for GPU time
 - **Request**: the **minimum** resource usage
 - Limit: the maximum resource usage
- Idle compute capacity can be shared without violating user requirements
 - Achieve higher GPU utilization

name	gpu_request	gpu_limit
Job A	0.4	0.7
Job B	0.6	0.8

Outline

- Motivations & Objectives
- KubeShare Design & Implementation
- Experimental Evaluations
 - Experiment Setup
 - System Throughput Improvment
 - GPU Utilization Improvement
 - Mitigation of Performance Interference
 - Overhead & Scalability
- Conclusions

Experiment Setup

- Kubernetes clusters
 - 8 AWS p3.8xlarge instances
 - 36 cores (Intel Xeon E5-2686 v4), 244 GB RAM, 4 NVIDIA Tesla V100 16GB on each instance
- Compared container cloud platforms
 - KubeShare: Kubernetes with KubeShare extension
 - Kubernetes: Kubernetes native installation
- Workload: TensorFlow DeepLab V3 model inference
 - Its GPU consumption is positive correlative to #clients, so a single job may not fully utilize a GPU
 - We control the size (GPU utilization) of jobs by adjusting their concurrent client numbers
- Performance metrices
 - Application throughput: job completion per minutes
 - GPU utilization: average allocated GPU capacity

48

System Throughput Improvement

• Observe system throughput under various workload patterns

(a) Job frequency.

• KubeShare achieved higher throughput when workload is high enough to share GPUs

(b) GPU demand mean.

 More GPU sharing opportunities when job size is smaller

(c) GPU demand variance.

• Variance of job size doesn't affect the throughput improvement much

GPU Utilization Improvement

Observe average GPU utilization during workload execution

Interference Mitigation: Workloads

- Anti-affinity can be used to mitigate performance interference
 - Label all jobs B with the same color, and set the anti-affinity constraint on the label
 - Jobs B will not be scheduled on the same GPU

Ο

• But Anti-affinity will also reduce GPU sharing opportunities

Interference Mitigation: Results

• Adjust the severity of interference by adjusting the job mixing ratio

Overhead on Pod Creation

- KubeShare needs to create vGPU before launching shared pod
 - The overhead is bounded and can be reduced by vGPU reservation
 - Using reservation-based vGPU allocation can reduce the delay to only 15%

KubeShare only take 15% more pod creation time than Kubernetes when vGPU is already created/reserved

Overhead on Scheduling

• Our scheduling algorithm is **scalable and efficient** for large-scale systems

the time for scheduling is less than 400 ms with 100 pods in the system

Conclusions

- **KubeShare** is the first work that makes GPUs become first-class and shared resources in Kubernetes to address the utilization and performance interference problems
- Users are able to specify their GPU resource requirements with usage, locality, identity constraints in KubeShare
- A series of resource management techniques were provided: on-demand vGPU creation, locality aware scheduling and elastic resource allocation
- Our design ensures KubeShare is compatible with existing Kubernetes components & NVIDIA GPU device plugin management
- Our experiments prove KubeShare can significantly improve GPU utilization and system throughput with little overhead
- Our implementation is available at https://github.com/NTHU-LSALAB/KubeShare