Skip to content
This repository has been archived by the owner on Aug 3, 2021. It is now read-only.

NVIDIA/OpenSeq2Seq

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
March 25, 2019 14:22
July 10, 2019 15:37
October 30, 2019 07:55
April 30, 2019 17:12
September 23, 2018 16:17
April 18, 2018 14:32

License Documentation

OpenSeq2Seq

OpenSeq2Seq: toolkit for distributed and mixed precision training of sequence-to-sequence models

OpenSeq2Seq main goal is to allow researchers to most effectively explore various sequence-to-sequence models. The efficiency is achieved by fully supporting distributed and mixed-precision training. OpenSeq2Seq is built using TensorFlow and provides all the necessary building blocks for training encoder-decoder models for neural machine translation, automatic speech recognition, speech synthesis, and language modeling.

Documentation and installation instructions

https://nvidia.github.io/OpenSeq2Seq/

Features

  1. Models for:
    1. Neural Machine Translation
    2. Automatic Speech Recognition
    3. Speech Synthesis
    4. Language Modeling
    5. NLP tasks (sentiment analysis)
  2. Data-parallel distributed training
    1. Multi-GPU
    2. Multi-node
  3. Mixed precision training for NVIDIA Volta/Turing GPUs

Software Requirements

  1. Python >= 3.5
  2. TensorFlow >= 1.10
  3. CUDA >= 9.0, cuDNN >= 7.0
  4. Horovod >= 0.13 (using Horovod is not required, but is highly recommended for multi-GPU setup)

Acknowledgments

Speech-to-text workflow uses some parts of Mozilla DeepSpeech project.

Beam search decoder with language model re-scoring implementation (in decoders) is based on Baidu DeepSpeech.

Text-to-text workflow uses some functions from Tensor2Tensor and Neural Machine Translation (seq2seq) Tutorial.

Disclaimer

This is a research project, not an official NVIDIA product.

Related resources

Paper

If you use OpenSeq2Seq, please cite this paper

@misc{openseq2seq,
    title={Mixed-Precision Training for NLP and Speech Recognition with OpenSeq2Seq},
    author={Oleksii Kuchaiev and Boris Ginsburg and Igor Gitman and Vitaly Lavrukhin and Jason Li and Huyen Nguyen and Carl Case and Paulius Micikevicius},
    year={2018},
    eprint={1805.10387},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}