Skip to content

Naagar/Normalizing_Flow_3x3_inv

Repository files navigation

OpenReview

PAPER: link

Accepted: 4th workshop TPM 2021 (UAI-21) TPM-21

Implementation of improvements for generative normalizing flows and more specifically Glow.

We extend the 1x1 convolutions used in glow to convolutions with any kernel size and we introduce a new coupling layer.

This work is adapted from Emerging Convolutions for Generative Normalizing Flows:

Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging Convolutions for Generative Normalizing Flows. International Conference on Machine Learning, 2019.

Method

Why CInC?

Flow module

module

Image interpolation sample

Changing Hair Color, original: right Changing smile Removing the glasses Gradually changing the age parameter

Requirements

The pip_installs script can be used to install all the required packages using pip.

Download datasets

CIFAR10 is automatically downloaded. Galaxy images need to be downloaded here.

ImageNet 32x32 and 64x64 was downloaded from the link on the Glow github: https://storage.googleapis.com/glow-demo/data/{dataset_name}-tfr.tar with imagenet-oord as dataset_name.

How to start reading the code?

The quad coupling layer is defined on line 409 of the model.py file. The convolution is defined on line 463 of the conv2d/conv2d.py file. The corresponding inversion operation can be found in conv2d/inverses/inverse_cython.py and conv2d\inverses\inverse_op_cython.pyx.

Experiments

To get infos regarding the parameter use python3 train.py -h.

CIFAR-10 results

Emerging:

mpiexec -n 2 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 3 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001

Glow:

mpiexec -n 2 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 2 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001

3x3 convolution:

mpiexec -n 2 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 7 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001

3x3 convolution and quad-coupling:

mpiexec -n 2 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 7 --flow_coupling 2 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --epochs 4001
ImageNet 32x32 results

This command lines assumes that the variable DATA_PATH contains the path to the imagenet dataset.

Emerging:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 32 --n_level 3 --depth 48 --flow_permutation 3 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH

Glow:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 32 --n_level 3 --depth 48 --flow_permutation 2 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH

3x3 convolution:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 32 --n_level 3 --depth 48 --flow_permutation 7 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH

3x3 convolution and quad-coupling:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 32 --n_level 3 --depth 48 --flow_permutation 7 --flow_coupling 2 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH
ImageNet 64x64 results

Emerging:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 64 --n_level 4 --depth 48 --flow_permutation 3 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH

Glow:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 64 --n_level 4 --depth 48 --flow_permutation 2 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH

3x3 convolution:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 64 --n_level 4 --depth 48 --flow_permutation 7 --flow_coupling 1 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH

3x3 convolution and quad-coupling:

mpiexec -n 4 python3 train.py --problem imagenet-oord --image_size 64 --n_level 4 --depth 48 --flow_permutation 7 --flow_coupling 2 --seed 0 --learnprior --lr 0.001 --n_bits_x 8 --data_dir $DATA_PATH

Sample time results

Emerging:

mpiexec -n 1 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 3 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --sample

Glow:

mpiexec -n 1 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 2 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --sample

3x3 convolution:

mpiexec -n 1 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 7 --flow_coupling 1 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --sample

3x3 convolution and quad-coupling:

mpiexec -n 1 python3 train.py --problem cifar10 --image_size 32 --n_level 3 --depth 32 --flow_permutation 7 --flow_coupling 2 --seed 2 --learnprior --lr 0.001 --n_bits_x 8 --sample

have a question?, contact: sandeep.nagar@research.iiit.ac.in

About

Implementation of CInC Flow paper, TensorFlow.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published