

Report on the Radio Testing

For

Semtech Neuchatel SARL

on

Corecell version 3

Report no. TRA-051134-47-04B

2020-12-14

Report Number: TRA-051134-47-04B Issue: B

> REPORT ON THE RADIO TESTING OF A Semtech Neuchatel SARL Corecell Version 3 WITH RESPECT TO SPECIFICATION ETSI EN 300 220-2 V3.1.1 (2017-02)

TEST DATE: 2020-08-12 to 2020-09-08

Written by:

Steven Garwell Radio Test Engineer

John Charters Department Manager - Radio

Approved by:

Date:

2020-12-14

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED RF907 3.0

1 Revision Record

Issue Number	Issue Date	Revision History
А	2020-12-09	Original
В	2020-12-14	Amended customer address and minor technical updates.

2 Summary

TEST REPORT NUMBER:	TRA-051134-47-04B
WORKS ORDER NUMBER:	TRA-051134-00
PURPOSE OF TEST:	Testing of radio equipment construction per article 3.2 of the RE-Directive 2014/53/EU
TEST SPECIFICATION:	EN 300 220-2 V3.1.1
EQUIPMENT UNDER TEST (EUT):	Corecell version 3
EUT SERIAL NUMBER:	EU
MANUFACTURER/AGENT:	Semtech Neuchâtel Sàrl
ADDRESS:	Route des Gouttes d'Or 40 Neuchâtel CH-2000 Switzerland
ADDRESS: CLIENT CONTACT:	Neuchâtel CH-2000
	Neuchâtel CH-2000 Switzerland Tim Cooper 🕿 +41 32 700 29 41 46
CLIENT CONTACT:	Neuchâtel CH-2000 Switzerland Tim Cooper ☎ +41 32 700 29 41 46 ⊠ tcooper@semtech.com

2.1 Test Summary

Test Method and Description	Requirement Clause	Applicable to this equipment	Result / Note
Operating frequency	4.2.1		Note 1
Unwanted emissions in the spurious domain	4.2.2		PASS
TX effective radiated power	4.3.1	\boxtimes	PASS
TX maximum e.r.p. spectral density	4.3.2		Note 2
TX duty cycle	4.3.3	\boxtimes	Note 1
TX occupied bandwidth	4.3.4	\boxtimes	PASS
TX out of band emissions	4.3.5	\boxtimes	PASS
TX transient power	4.3.6	\boxtimes	PASS
TX adjacent channel power	4.3.7		Note 3
TX behaviour under low voltage conditions	4.3.8		Note 7
TX adaptive power control	4.3.9		Note 4
TX FHSS	4.3.10		Note 5
TX short term behaviour	4.3.11		Note 2
RX sensitivity	4.4.1		Note 6
Clear channel assessment threshold	4.5.2		Note 6
Polite spectrum access timing parameters	4.5.3		Note 6
RX blocking	4.4.2	\boxtimes	PASS
Adaptive frequency agility	4.5.4		Note 2

Notes:

Note 1: Manufacturer declaration (See Appendix A)

Note 2: Not applicable to the operating band.

Note 3: Not applicable operating channel width greater than 25 kHz.

Note 4: Not applicable none adaptive.

Note 5: Not applicable not a frequency hopping device.

Note 6: Not applicable not a polite spectrum device.

Note 7: Not a battery operated device.

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set-up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards

3 Contents

1 Revision Record	
2 Summary	
2.1 Test Summary	
 Contents Introduction 	
5 Test Specifications	
5.1 Normative References	
5.2 Deviations from Test Standards	10
6 Glossary of Terms	11
6.1 Acronyms, symbols and abbreviations	11
6.2 Block diagrams	12
7.1 EUT Identification	
7.2 System Equipment	
7.3 EUT Mode of Operation	
7.3.1 Transmissions 7.3.2 Reception	
7.3.2 Reception 7.4 EUT Radio Parameters	
7.4 EOT Radio Parameters	
7.5 EUT Description	
8 Modifications	
9 EUT Test Setup	
9.1 Block Diagram	
9.2 General Set-up Photograph	
10 General Technical Parameters	17
10.1 Normal Conditions	
10.2 Extreme Test Conditions	17
11 Unwanted emissions in the spurious domain	18
11.1 Definition	18
11.1.1 Unwanted emissions for a TX mode	18
11.1.2 Unwanted emissions for all other modes	
11.2 Test Parameters	
11.3 Conducted Measurement	
11.3.1 Test Method	
11.3.2 Test Equipment	
11.3.3 Test Results 11.4 Radiated Measurement.	
11.4 Radiated Measurement	
11.4.2 Test Equipment	
11.4.3 Test Results	
12 Effective radiated power	
12.1 Definition	
12.2 Test Parameters	
12.3 Conducted measurement	
12.3.1 Test Method	29
12.3.2 Test Equipment	30
12.3.3 Test Results	30
Occupied bandwidth	
12.4 Definition	
12.5 Test Parameters	
12.6 Test Method	
12.6.1 Test Equipment	
12.7 Test Results	
13 TX out of band emissions	
13.1 Deminuon	
13.3 Test Method	
13.4 Test Equipment	
14 Transient power	
14.1 Definition	
14.2 Test Parameters	
14.3 Test Method	
	40
14.4 Test Equipment	
14.4 Test Equipment 14.5 Test Results 15 Blocking	49 50

15.	.1 Definition	
15.	2 Test Parameters	
	3 Test Method	
15.4	4 Test Equipment	
	5 Test Results	
16 N	Measurement Uncertainty	
	Appendix A	

4 Introduction

This report TRA-051134-47-04B presents the results of the Radio testing on a, Semtech Neuchatel SARL Corcell Version 3 to specification EN 300 220-2 V3.1.1 Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; Part 2: Harmonized Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU for non-specific radio equipment.

The testing was carried out for Semtech Neuchatel SARL by Element, at the address detailed below.

Element Hull	\boxtimes	Element Skelmersdale
Unit E		Unit 1
South Orbital Trading Park		Pendle Place
Hedon Road		Skelmersdale
Hull		West Lancashire
HU9 1NJ		WN8 9PN
UK		UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

5 Test Specifications

5.1 Normative References

- ETSI EN 300 220-2 V3.1.1 (2017-02) Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; Part 2: Harmonized Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU for non-specific radio equipment.
- ETSI EN 300 220-1 V3.1.1 (2017-02) Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; Part 1: Technical characteristics and methods of measurement.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

6 Glossary of Terms

6.1	Acronyms, symbols and abbreviations
§	Denotes a section reference from the standard, EN 300 220-1, not this document
§§	Denotes a section reference from the standard, EN 300 220-2, not this document
ĂĊ	Alternating Current
AFA	Adaptive Frequency Agility
AM	Amplitude Modulated
BW	Bandwidth
С	Celcius
CW	Continuous Wave
dB	Decibels
dBm	dB relative to 1 milliwatt
DC	Direct Current
DSSS	
EIRP	Equivalent Isotropically Radiated Power
emf	electromotive force
EN	European Normative document
erp	Effective Radiated Power
EUT	Equipment Under Test
f	Frequency
FHSS	Frequency hopping spread spectrum
Hz	Hertz
IF	Intermediate Frequency
ITU	International Telecommunication Union Listen Before Talk
LBT LO	Local Oscillator
m	metre
max	Maximum
min	Minimum
N/A	Not Applicable
No.	Number
NRI	National Radio Interface
OCW	Operating Channel Width (i.e. the channel spacing)
PCB	Printed Circuit Board
PDF	Portable Document Format
PSA	Polite Spectrum Access
RE-D	Radio Equipment Directive
R&TT	E Radio and Telecommunications Terminal Equipment
RE	Radio Equipment
RF	Radio Frequency
RH	Relative Humidity
RMS	Root Mean Square
Rx	Receiver
S	Second
SRD	Short Range Device
Tx	Transmitter
UKAS	- 5
V	Volt
W	Watt
Ω	Ohm

6.2 Block diagrams

Block diagrams are used in this report to illustrate test set-ups. Each major item of test or support equipment is contained in a block representing a separate physical unit and labelled accordingly. Physical connections, e.g. leads, between units are drawn in solid lines. Other, e.g. over the air, connections are drawn with dashed lines. The arrows indicate the direction of propagation of the signal required in order for the measurement to be taken at the measurement point. They do not signify that propagation in the opposite direction is somehow prevented. Where the environment around specific units is controlled, e.g. use of a shielded chamber, the boundary between the controlled and uncontrolled areas is drawn with a dotted line.

7 Equipment Under Test

7.1 EUT Identification

- Name: Corecell version 3
- Serial Number: EU
- Model Number: Corecell version 3
- Software Revision: Conducted Version 1.0

Radiated 30 MHz to 1 GHz - Version 1.0 Radiated 1 GHz to 6 GHz - Version 1.1

Build Level / Revision Number: Prototype

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

- Raspberry Pi
- Host Board
- Laptop Computer

7.3 EUT Mode of Operation

7.3.1 Transmissions

The mode of operation for Transmit tests was as follows:-

The EUT was programmed via test scripts to transmit on the selected channel.

7.3.2 Reception

The mode of operation for Receive tests was as follows:-

The EUT was programmed via test scripts to receive on the selected channel.

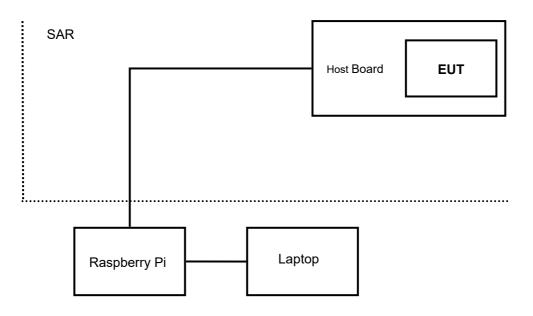
7.4 EUT Radio Parameters

7.4.1 General

Bands of operation:	868 MHz to 868.6 MHz	869.4 MHz to 869.65 MHz
Frequencies of operation:	868.100 MHz	869.525 MHz
Modulation type:	LoRa Chirp Spread Spectrum	LoRa Chirp Spread Spectrum
Channel bandwidth:	200 kHz	200 kHz
Declared output power:	14 dBm	27 dBm
Antenna type and gain:	0 dBi	0 dBi
Nominal Supply Voltage:	3.3 Vdc regulated from 5 Vdc (via USB) supplied to host	3.3 Vdc regulated from 5 Vdc (via USB) supplied to host

7.5 EUT Description

The EUT is an 868 MHz radio with a single antenna and category 2 receiver.


8 Modifications

Software change to version 1.1_the software was amended by the manufacturer.

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

.

9.2 General Set-up Photograph

The following photograph shows basic radiated EUT set-up:-

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied to the module was 3.3 Vdc this was regulated by the host board which was powered by 5 Vdc via USB.

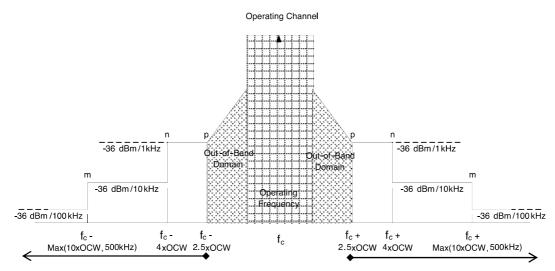
10.2 Extreme Test Conditions

Where extreme temperatures are required to be tested the following extremes were used:

Applicable	Category	Range
	Category I (General)	-20 to +55 C
	Category II (Portable)	-10 to +55 C
	Category III (Equipment for normal indoor use)	+5 to +35 C
	Category IV (Automotive)	-40 to +125 C
	Declared by provider	-40 C to + 85 C

Where extreme voltages are required to be tested the following extremes were used:

Applicable	Category	Range
	Mains (single nominal voltage)	230 V ac ± 10%
	Regulated lead-acid	12 V x1.3 max. 12 V x0.9 min.
	Other battery types	3.2 V max. 3 V x0.85 min.
	Other (including multi-ranging mains)	2.5 Vdc to 3.6 Vdc (via host board)


11 Unwanted emissions in the spurious domain

11.1 Definition

11.1.1 Unwanted emissions for a TX mode

Spurious emissions are unwanted emissions in the spurious domain at frequencies other than those of the Operating Channel and it's Out Of Band Domain. The relevant spurious domain is shown in Figure 7.

Figure 7: Spectrum Mask for Unwanted Emissions in the Spurious Domain with reference BW

11.1.2 Unwanted emissions for all other modes

Spurious radiations from the EUT are components, at any frequency, radiated by the equipment and antenna.

11.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Chamber 3
Test Standard and Clause:	ETSI EN 300 220-1 V3.1.1 (2017-02), Clause 5.9
Operating Bands:	h1.5: 868 MHz to 868.6 MHz h1.7: 869.4 MHz to 869.65 MHz
Frequencies Measured:	868.1 MHz, 868.5 MHz and 869.525 MHz
Modulation:	D-M2
Deviations From Standard:	Substitution antennas used are Log Periodic / Bi-conical in lieu of Standard Dipole antennas
Measurement BW:	300 Hz (9 kHz – 150 kHz) 10 kHz (150 kHz – 25 MHz)
	100 kHz (25 MHz - 1 GHz);
	1 MHz (1GHz-12.75GHz)
Measurement Detector:	Below 1 GHz: RMS (max. held)
	Above 1 GHz: RMS (max. held)

Environmental Conditions (Normal Environment)

Radiated

Temperature: 24 °C	Standard Requirement: +15 °C to +35 °C
Humidity: 69 %RH	Standard Requirement: 20%RH to 75%RH
Supply: 3.3 Vdc	3.3 Vdc (via host board)

Test Limits

The power of any unwanted emission in the spurious domain shall not exceed the values given in Table 19.

Table 19. Spurious domain emission minus							
Frequency	47 MHz to 74 MHz	Other	Frequencies				
	87,5 MHz to 118 MHz 174 MHz to 230 MHz	frequencies below 1 000	above 1 000 MHz				
State	470 MHz to 790 MHz	MHz					
Tx mode	-54 dBm	-36 dBm	-30 dBm				
RX and all other modes	-57 dBm	-57 dBm	-47 dBm				

Table 19: Spurious domain emission limits

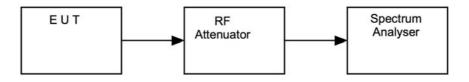
11.3 Conducted Measurement

11.3.1 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii-a, the RF spectrum of the EUT was observed. Additional filtering (with calibrated path losses taken into account) was added prior to the analyser, where necessary, to prevent overload.

The measurements were performed with EUT set at its maximum power setting and repeated in its standby condition and receive only modes.

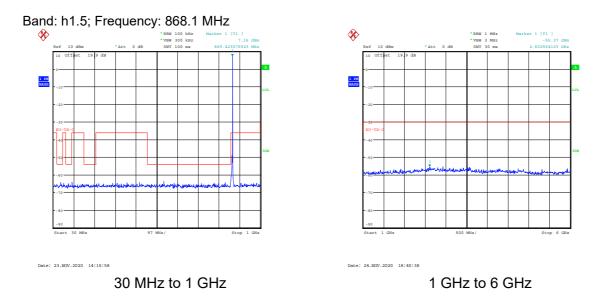
Reduced RBW settings were used close to the carrier in accordance with the specification.

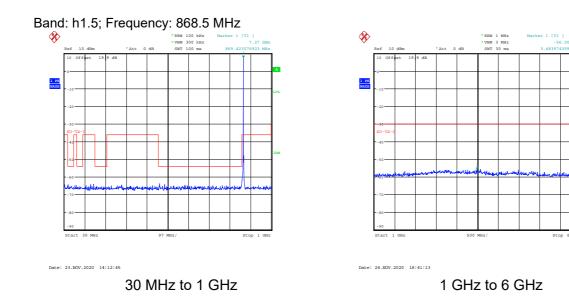

[1] Emissions are detected within 10 dB of the specified limit between 1.5 GHz and 4 GHz

Measurements were made over the range 25 MHz to 6 GHz.

[2] Other cases

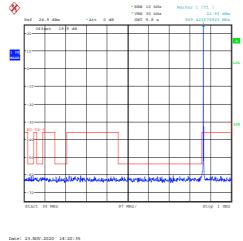
Measurements were made over the range 25 MHz to 4 GHz.


Figure vii-a Test Setup

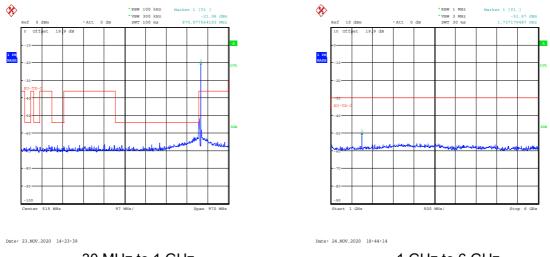

11.3.2 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU46	REF910	2021-11-16
Tuneable Notch Filter 0.5GHz - 1GHz	K&L Microwave Inc	3TNF-500/1000-N	U710	Cal In Use
Attenuator	AtlanTechRF Microwave	20 dB SMA	U632	Cal in use

11.3.3 Test Results

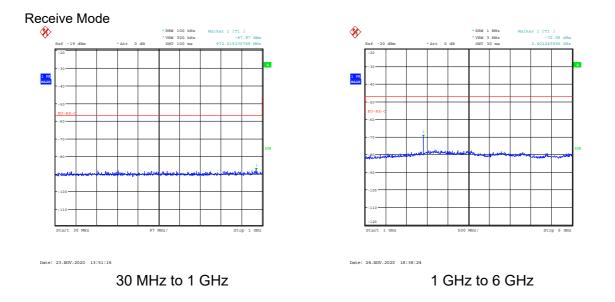


Frequency: 868.1 MHz; Modulation: LoRa					
Emission	Frequency (MHz)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Result
No significant emissions within 10 dB of the limit					PASS



Frequency: 868.5 MHz; Modulation: LoRa					
Emission	EmissionEmissionLimitMargin(MHz)(dBm)(dBm)(dB)				
No significant emissions within 10 dB of the limit					PASS

Band: h1.7; Frequency: 869.525 MHz



Note: The above plot was taken without a notch filter and in a reduced bandwidth to meet the system measurement noise floor. This was taken to show that no emissions were present without the use of the filter.

1 GHz to 6 GHz

Frequency: 869.525 MHz; Modulation: LoRa					
Emission	EmissionEmissionLimitMargin(MHz)(dBm)(dBm)(dB)				
No significant emissions within 10 dB of the limit					PASS

EUT Receive Mode					
Emission	Frequency (MHz)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Result
No significant emissions within 10 dB of the limit					PASS

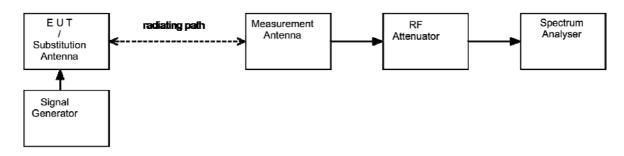
11.4 Radiated Measurement.

11.4.1 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii-b, the RF spectrum of the EUT was observed as the EUT was rotated through 360 degrees.

The measurements were performed with EUT set at its maximum power setting and repeated at its minimum power setting and in the standby condition.

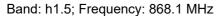
The EUT was substituted with a known generator and antenna and for the same level achieved at the analyser, the effective radiated power was recorded.

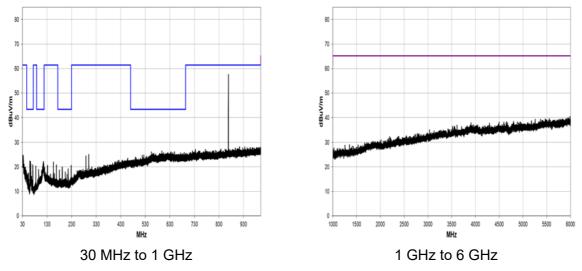

[1] Emissions are detected within 10 dB of the specified limit between 1,5 GHz and 4 GHz

Measurements were made over the range 25 MHz to 6 GHz.

[2] Other cases

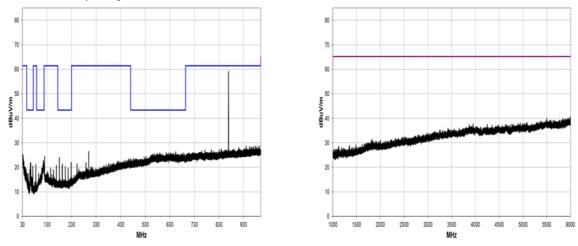
Measurements were made over the range 25 MHz to 4 GHz.


Figure vii-b Test Setup

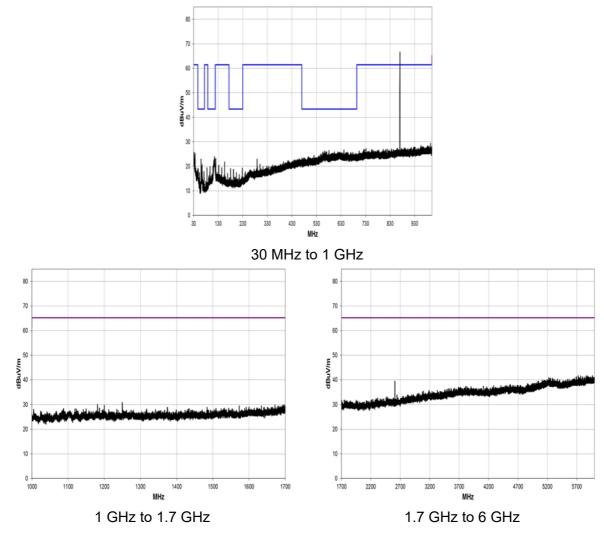


11.4.2 Test Equipment

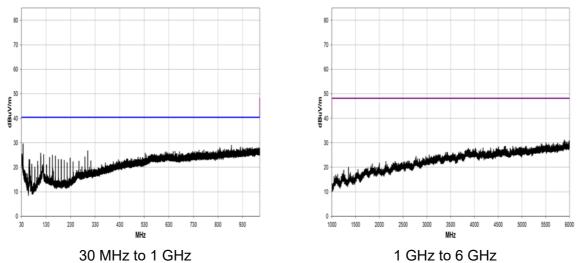
Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSU26	REF909	2021-07-09
Receiver	R&S	ESVS10	L352	2020-09-26
Bilog	Chase	CBL611/A	U573	2021-09-19
Log Periodic Ant	Chase	UPA6108	L203	2022-06-16
Pre Amp	Watkins Johnson	6201-69	U372	2021-02-26
Pre Amp	Agilent	8449	L572	2020-10-15
1-18GHz Horn	EMCO	3115	L139	2021-07-16
1-18GHz Horn	EMCO	3115	U223	2021-11-05
Radio Chamber - PP	Rainford EMC	ATS	REF940	2021-12-09


11.4.3 Test Results

Frequency: 868.1 MHz; Modulation: LoRa					
Emission	Result				
No significant emissions within 10 dB of the limit					PASS


Band: h1.5; Frequency: 868.5 MHz

30 MHz to 1 GHz


Frequency: 868.5 MHz; Modulation: LoRa					
Emission	Frequency (MHz)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Result
No significant emissions within 10 dB of the limit					PASS

Band: h1.7; Frequency: 869.525 MHz

Frequency: 869.525 MHz; Modulation LoRa						
Emission	Frequency (MHz)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Result	
No significant emissions within 10 dB of the limit					PASS	

Receive Mode

EUT Receive Mode					
Emission	Frequency (MHz)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Result
No significant emissions within 10 dB of the limit					PASS

12 Effective radiated power

12.1 Definition

The effective radiated power (e.r.p.) is the power radiated in the direction of the maximum radiated power under specified conditions of measurements for any condition of modulation. For equipment with a permanent or temporary antenna connection it may be taken as the power delivered from that connector taking into account the antenna gain.

12.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ETSI EN 300 220-1 V3.1.1 (2017-02), Clause 5.2
Operating Bands:	h1.5: 868 MHz to 868.6 MHz
Frequencies Measured:	h1.7 869.4 MHz to 869.65 MHz 868.1 MHz, 868.5 MHz and 869.525 MHz
Modulation:	Off
Measurement Distance:	3m to front face of EUT / At antenna port
EUT Height:	1.5m
Measurement Antenna Height:	1-4m
Antenna Polarisation:	Vertical and Horizontal
Deviations From Standard:	Substitution antennas used are Log Periodic / Bi-conical in lieu of Standard Dipole antennas
Measurement Antenna Types and Standard Reference Bandwidths:	30MHz – 1000MHz - Bi-log Hybrid antenna, 100kHz BW
Temperature Extreme Environment Test Range:	-40 C to + 85 C
Voltage Extreme Environment Test Range (High / low):	2.5 Vdc to 3.6 Vdc (via host board)

Extreme Environment test Levels

T _{nominal}	22 °C
T _{minimum}	-40 °C
T _{maximum}	+85 °C
V _{nominal}	3.3 Vdc
Vminimum	2.5 Vdc
V _{maximum}	3.6 Vdc

Test Limits

The effective radiated power shall not be greater than the value shown in table C1.

Frequency Bands	Power/Magnetic Field	Spectrum access and mitigation requirements	Modulation / maximum occupied bandwidth	ECC/ERC Deliverable	Notes
868-868.6 MHz	25 mW e.r.p.	≤ 1% duty cycle or LBT+AFA	Not specified		
869.4-869.65 MHz	500 mW e.r.p.	≤ 10% duty cycle or LBT+AFA	Not specified		

Table C.1: Regulatory Parameters

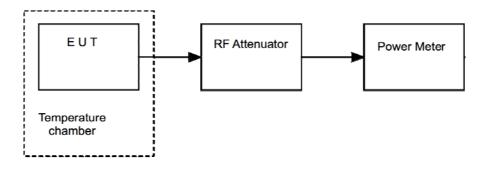
12.3 Conducted measurement

12.3.1 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i-a, the power of the EUT was measured at the antenna port / test fixture and the result calculated by taking into account any cable and attenuator calibration factors and adding the declared antenna gain.

[1] D-M1 test signal available

The measurements were performed with no modulation and with the EUT set at its highest output power.


[2] Peak measurements

In the case of non-constant envelope modulation, a peak detector was used.

[3] RMS measurements

Where required (no unmodulated measurement possible), the power was measured using spectrum analyser in the relevant bandwidth with RMS detector and max hold.

Figure i-a Test Setup

12.3.2 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSW	*	2021-07-23
Attenuator	AtlanTechRF Microwave	20 dB SMA	U632	Cal in use
Temperature Chamber	ETS-S1000CHS	ETS	U522	Use L426
Temperature Indicator	Digitron	2038T	TRLS377	2021/05/18
Power Supply	ISO-Tech	IPS-303DD	U515	Use REF976
Multimeter	Agilent	34405a	REF976	2020-11-21

• Rental Unit, serial number 101805_calibration due 23rd July 2021

12.3.3 Test Results

	Band: h1.5; Frequency: 868.1 MHz							
Test Environment		Measured Power (dBm)	Antenna Gain (dBi)	E.R.P. (W)	Result			
T _{nominal}	V _{nominal}	13.07	0	0.020	PASS			
T	Vminimum	12.44	0	0.018	PASS			
Tminimum	V _{maximum}	11.73	0	0.015	PASS			
т.	Vminimum	13.08	0	0.020	PASS			
I maximum	V _{maximum}	13.10	0	0.020	PASS			

	Band: h1.5; Frequency: 868.5 MHz							
Test Environment		Measured Power (dBm)	Antenna Gain (dBi)	E.R.P. (W)	Result			
T _{nominal}	V _{nominal}	13.64	0	0.023	PASS			
т	Vminimum	12.54	0	0.018	PASS			
T _{minimum}	V _{maximum}	11.98	0	0.016	PASS			
т	Vminimum	12.88	0	0.019	PASS			
I maximum	V _{maximum}	12.75	0	0.019	PASS			

	Band: h1.7; 869.525 MHz							
Test Environment		Measured Power (dBm)	Antenna Gain (dBi)	E.R.P. (W)	Result			
T _{nominal}	V _{nominal}	25.92	0	0.391	PASS			
T	V _{minimum}	22.27	0	0.169	PASS			
Tminimum	V _{maximum}	25.72	0	0.373	PASS			
т	Vminimum	21.57	0	0.144	PASS			
Tmaximum	V _{maximum}	23.44	0	0.221	PASS			

Occupied bandwidth

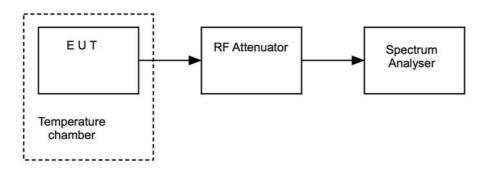
12.4 Definition

The occupied bandwidth (OBW) is the frequency range in which 99% of the total mean power of a given emission falls. The maximum occupied bandwidth includes all associated side bands above the appropriate emissions level and the frequency error or drift under extreme conditions.

12.5 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ETSI EN 300 220-1 V3.1.1 (2017-02), Clause 5.6
Operating Bands:	h1.5: 868 MHz to 868.6 MHz
Frequencies Measured:	h1.7: 869.4 MHz to 869.65 MHz 868.1 MHz, 868.5 MHz and 869.525 MHz
EUT Modulation:	D-M2
Declared OCW:	200 kHz
Deviations From Standard:	None
Temperature Extreme Environment Test Range:	-40 °C to +85 °C as declared
Voltage Extreme Environment Test Range (High / low):	2.5 Vdc to 3.6 Vdc (via host board)
Measurement Detector:	RMS

Test Limits


The Operating Channel (OC) shall be declared and shall reside entirely within the Operational Frequency Band.

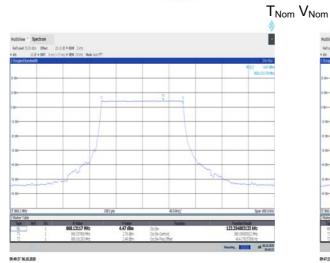
The Maximum Occupied Bandwidth at 99% shall reside entirely within the Operating Channel defined by F_{low} and F_{high} .

12.6 Test Method

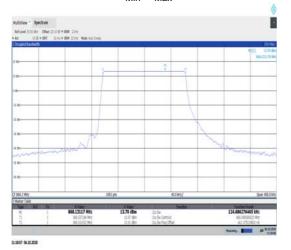
With the EUT setup as per section 9 of this report and connected as per Figure iv, the bandwidth of the EUT was measured on a spectrum analyser.

Figure iv Test Setup

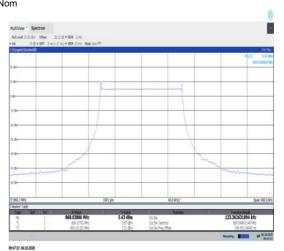

12.6.1 Test Equipment

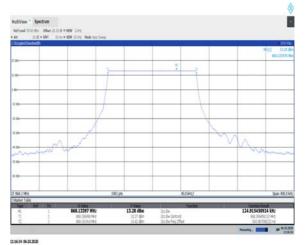

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSW	*	2021-07-23
Temperature Chamber	ETS-S1000CHS	ETS	U522	Use L426
Temperature Indicator	Digitron	2038T	TRLS377	2021/05/18
Attenuator	AtlanTechRF Microwave	20 dB SMA	U632	Cal in use
Power Supply	ISO-Tech	IPS-303DD	U515	Use REF976
Multimeter	Agilent	34405a	REF976	2020-11-21

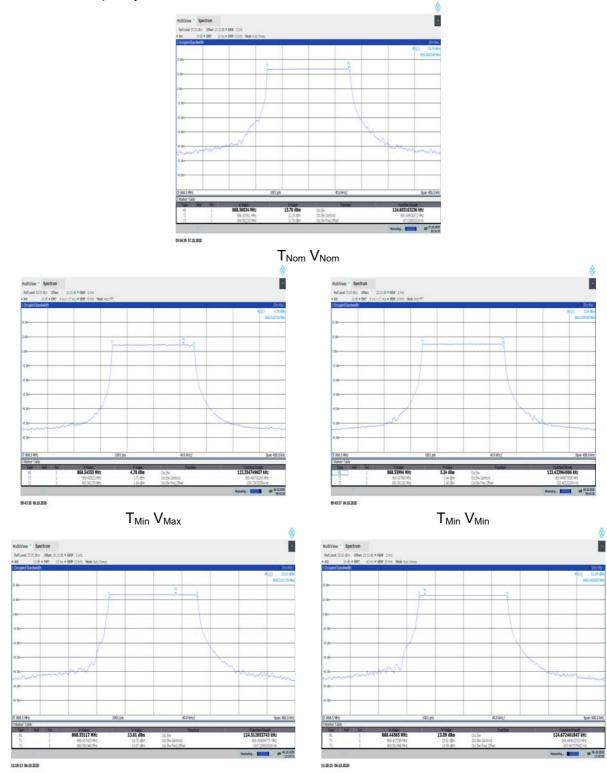
• Rental Unit, serial number 101805_calibration due 23rd July 2021


12.7 Test Results

Band: h1.5; Frequency: 868.1 MHz





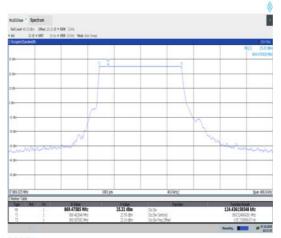


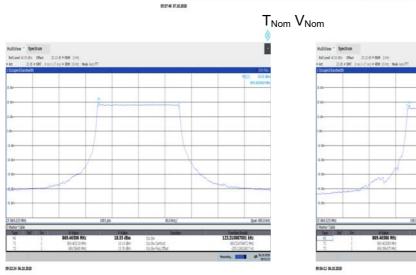
 $T_{\text{Max}} \, V_{\text{Min}}$

Band: h1.5; Frequency: 868.1 MHz; Modulation: LoRa							
Test Environment		Measured 99% Bandwidth (kHz)	Frequency Error (kHz)	Within Operating Channel	Result		
T _{nominal}	Vnominal	124.556	N/A	YES	PASS		
T	V _{minimum}	123.362	N/A	YES	PASS		
l minimum	V _{maximum}	123.355	N/A	YES	PASS		
т	Vminimum	124.916	N/A	YES	PASS		
I maximum	V _{maximum}	124.686	N/A	YES	PASS		

Maximum Occupied Bandwidth							
Centre Frequency (MHz)Lowest Fl (MHz)Highest Fh (MHz)Maximum Occupied Bandwidth (kHz)Within Ope Channe					Result		
868.1	868.036998	868.162203	125.205000	YES	PASS		

Band: h1.5; Frequency: 868.5 MHz

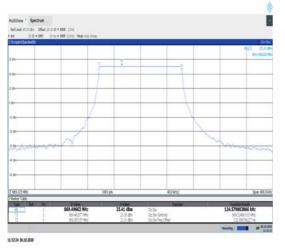


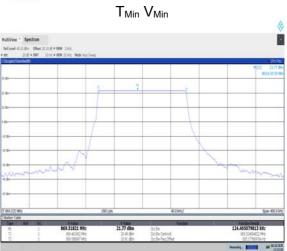


Band: h1.5; Frequency: 868.5 MHz; Modulation: LoRa							
Test Environment		Measured 99% Bandwidth (kHz)	Frequency Error (kHz)	Within Operating Channel	Result		
T _{nominal}	Vnominal	124.604	N/A	YES	PASS		
т	V _{minimum}	123.424	N/A	YES	PASS		
Tminimum	V _{maximum}	123.355	N/A	YES	PASS		
т	Vminimum	124.672	N/A	YES	PASS		
I maximum	V _{maximum}	124.513	N/A	YES	PASS		

Maximum Occupied Bandwidth					
Centre Frequency (MHz)	Lowest Fl (MHz)	Highest Fh (MHz)	Maximum Occupied Bandwidth (kHz)	Within Operating Channel	Result
868.5	868.437296	868.562235	124.939000	YES	PASS

Band: h1.7; Frequency: 869.525 MHz





16.12 (

 $\mathsf{T}_{\mathsf{Max}}\,\mathsf{V}_{\mathsf{Max}}$

 $\mathsf{T}_{\mathsf{Max}}\,\mathsf{V}_{\mathsf{Min}}$

11:27:00 06:10.2020

Band: h1.7; Frequency: 869.525 MHz; Modulation: LoRa							
Test Environment		Measured 99% Bandwidth (kHz)	Frequency Error (kHz)	Within Operating Channel	Result		
T _{nominal}	Vnominal	124.436000	N/A	YES	PASS		
T _{minimum}	V _{minimum}	123.417000	N/A	YES	PASS		
	V _{maximum}	123.311000	N/A	YES	PASS		
Tmaximum	Vminimum	124.405000	N/A	YES	PASS		
	V _{maximum}	124.580000	N/A	YES	PASS		

Maximum Occupied Bandwidth							
Centre Frequency (MHz) Lowest FI (MHz) Highest Fh (MHz) (MHz)		Maximum Occupied Bandwidth (kHz) Within Operation Channel		Result			
869.525	869.462492	869.587157	124.665000	YES	PASS		

13 TX out of band emissions

13.1 Definition

Two OOB domains are defined, one for Operating Channel (see § Figure 5) and one for Operational Frequency band (see § Figure 6).

The spectrum masks for these two OOB domains may overlap.

Unwanted emissions in the Out Of Band domain are those falling in the frequency range immediately below the lower, and above the upper, frequency of the Operating Channel. The OOB domain includes both frequencies outside the Operating Channel within the Operational Frequency Band and frequencies outside the Operational Frequency Band.

The relevant Out Of Band domain is shown in § Figure 5 and applies within the Operational Frequency Band.

Specific limits apply at frequencies immediately above and below the Operational Frequency Band as shown in § Figure 6.

NOTE: f_{low_OFB} is the lower edge of the Operational Frequency Band F_{high_OFB} is the upper edge of the Operational Frequency Band

13.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ETSI EN 300 220-1 V3.1.1 (2017-02), Clause 5.8
Operating Bands:	h1.5: 868 MHz to 868.6 MHz h1.7: 869.4 MHz to 869.65 MHz
Frequencies Measured:	868.1 MHz, 868.5 MHz and 869.525 MHz
EUT Modulation:	D-M2
Declared OCW:	200 kHz
Deviations From Standard:	None
Temperature Extreme Environment Test Range:	-40 °C to +85 °C as declared
Voltage Extreme Environment Test Range	2.5 Vdc to 3.6 Vdc (via host board)
(High / low): Measurement Detector:	RMS

Environmental Conditions (Normal Environment)

Temperature: 24 °C	Standard Requirement: +15 °C to +35 °C
Humidity: 48 %RH	Standard Requirement: 20%RH to 75%RH
Supply: 3.3 Vdc	3.3 Vdc (via host board)

Test Limits

The EUT emissions level in OOB domains for the Operating Channel and the Operational Frequency Band shall be less or equal to Table 15 spectrum mask.

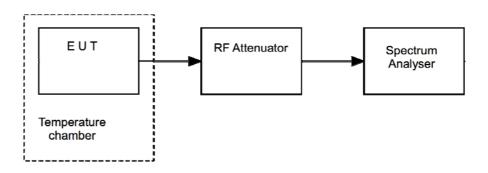
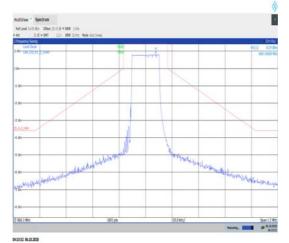

Domain	Frequency Range	RBWREF	Max power limit				
	$f \le f_{Iow_OFB} - 400 \text{ kHz}$	10 kHz	-36 dBm				
	$f_{low_OFB} - 400 \text{ kHz} \le f \le f_{low_OFB} - 200 \text{ kHz}$	1 kHz	-36 dBm				
OOB limits	$f_{low_OFB} - 200 \text{ kHz} \le f \le f_{low_OFB}$	1 kHz	See § Figure 6				
applicable to Operational	F = f _{low_OFB}	1 kHz	0 dBm				
Frequency Band	F = f _{high_OFB}	1 kHz	0 dBm				
(See § Figure 6)	$f_{high_OFB} < f \le f_{high_OFB} + 200 \text{ kHz}$	1 kHz	See § Figure 6				
	f_{high_OFB} + 200 kHz ≤ f ≤ f_{high_OFB} + 400 kHz	1 kHz	-36 dBm				
	f _{high_OFB} + 400 kHz ≤ f	10 kHz	-36 dBm				
	$f = f_c - 2.5 \text{ x OCW}$	1 kHz	-36 dBm				
	$f_c - 2.5 \text{ x OCW} \leq f \leq f_c - 0.5 \text{ x OCW}$	1 kHz	See § Figure 5				
OOB limits applicable to	$f = f_c - 0.5 \text{ x OCW}$	1 kHz	0 dBm				
Operating Channel (See § Figure 5)	$f = f_c + 0.5 x OCW$	1 kHz	0 dBm				
(0 0 <i>)</i>	$f + 0.5 \text{ x OCW} \le f \le f_c + 2.5 \text{ x OCW}$	1 kHz	See § Figure 5				
	$f = f_c + 2.5 \times OCW$	1 kHz	-36 dBm				
NOTE: f is the measurement frequency; f _c is the Operating Frequency; f _{low_OFB} is the lower edge of the Operational Frequency Band; f _{high_OFB} is the upper edge of the Operational Frequency Band; OCW is the operating channel bandwidth.							

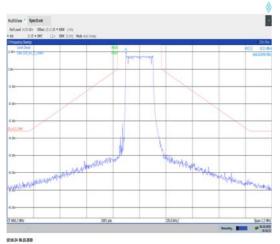
Table 15: Emission limits in the Out Of Band domains

13.3 Test Method

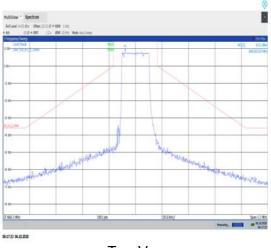
With the EUT setup as per section 9 of this report and connected as per Figure vi, the RF spectrum from the EUT was measured on a spectrum analyser, after calibrating for path losses.


Figure vi Test Setup

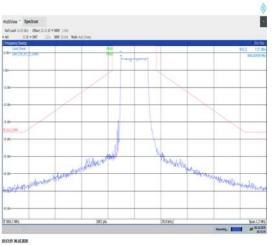
13.4 Test Equipment

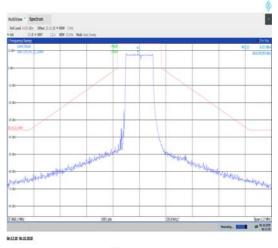

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSW	*	2021-07-23
Attenuator	AtlanTechRF Microwave	20 dB SMA	U632	Cal in use
Temperature Chamber	ETS-S1000CHS	ETS	U522	Use L426
Temperature Indicator	Digitron	2038T	TRLS377	2021/05/18
Power Supply	ISO-Tech	IPS-303DD	U515	Use REF976
Multimeter	Agilent	34405a	REF976	2019-01-17

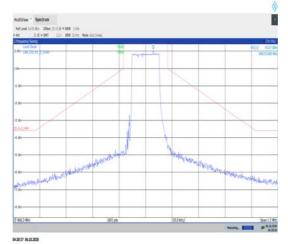
• Rental Unit, serial number 101805_calibration due 23rd July 2021

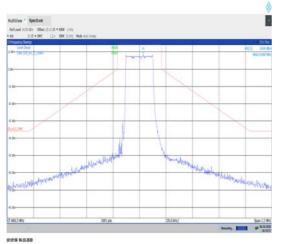


Band: h1.5; Frequency: 868.1 MHz out of band operating channel masks

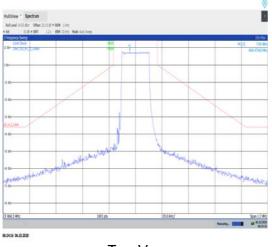




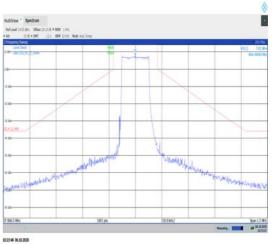

 $T_{Max} V_{Min}$

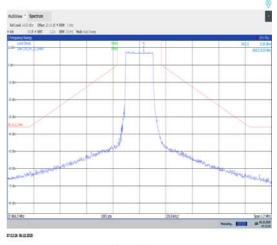


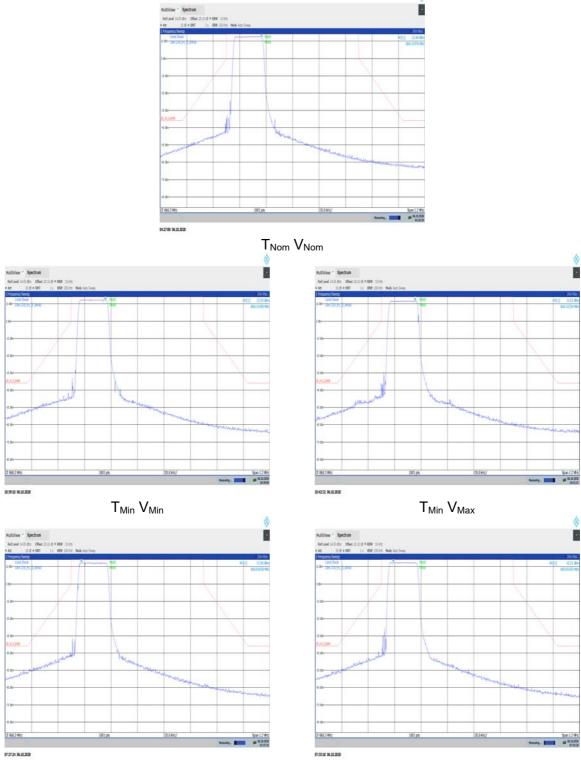
 $\mathsf{T}_{\mathsf{Max}}\,\mathsf{V}_{\mathsf{Max}}$

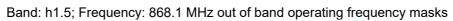


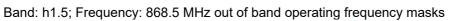
Band: h1.5; Frequency: 868.5 MHz out of band operating channel masks

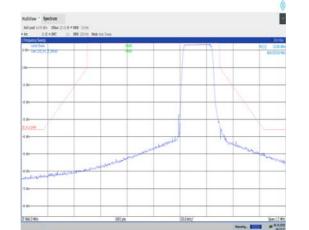


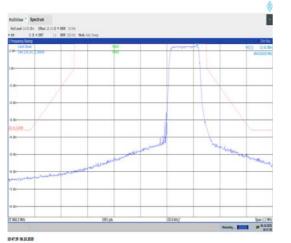


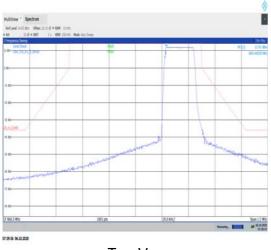


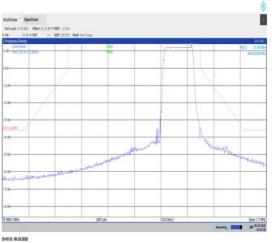



 $\mathsf{T}_{\mathsf{Max}}\,\mathsf{V}_{\mathsf{Max}}$

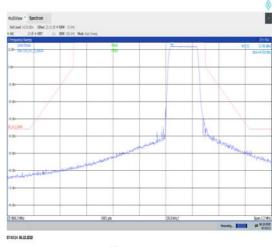


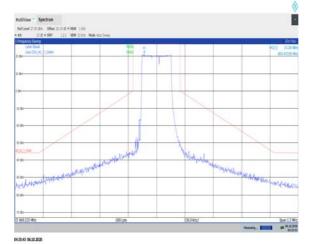

 $T_{\text{Max}} \, V_{\text{Min}}$

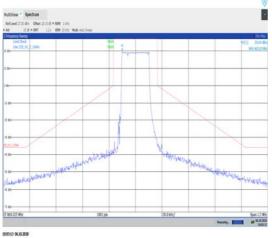




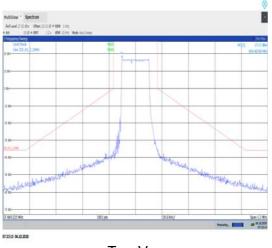
04:29:37 06:10:2020

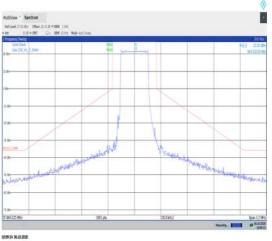


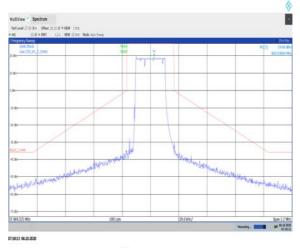


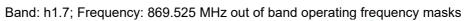


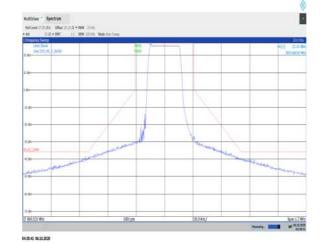
 $\mathsf{T}_{\mathsf{Max}}\,\mathsf{V}_{\mathsf{Max}}$


Band: h1.7; Frequency: 869.525 MHz out of band operating channel masks



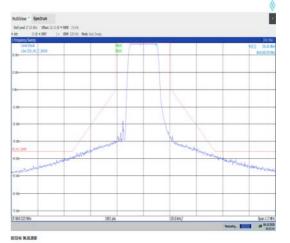


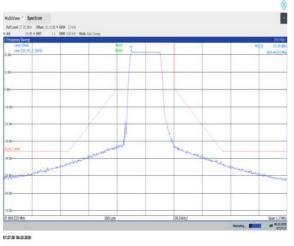


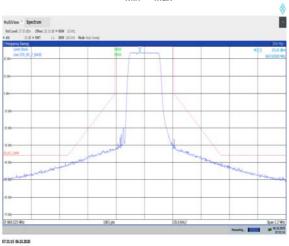




 $\mathsf{T}_{\mathsf{Max}}\,\mathsf{V}_{\mathsf{Max}}$







 $T_{Max} V_{Min}$

 $T_{Max} V_{Max}$

14 Transient power

14.1 Definition

Transient power is the power falling into adjacent spectrum due to switching the transmitter on and off during normal operation (e.g. cyclic keying during data transmission).

14.2 Test Parameters

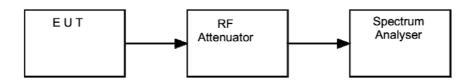
Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ETSI EN 300 220-1 V3.1.1 (2017-02), Clause 5.10
Operating Bands:	h1.5: 868 MHz to 868.6 MHz h1.7: 869.4 MHz to 869.65 MHz
Frequencies Measured:	868.1 MHz, 868.5 MHz and 869.525 MHz
Modulation:	On / Switching
Deviations From Standard:	None
Measurement bandwidth:	3 / 100 / 300 kHz
Measurement detector:	RMS
OCW:	200 kHz

Environmental Conditions (Normal Environment)

Temperature: 24 °C	Standard Requirement: +15 °C to +35 °C		
Humidity: 48 %RH	Standard Requirement: 20%RH to 75%RH		
Supply: 3.3 Vdc	3.3 Vdc (via host board)		

Test Limits

The transient power shall not exceed the values given in Table 23.


Table 23: Transmitter Transient Power Limits

Absolute offset from centre frequency	RBW _{REF}	Peak power limit applicable at all measurement points
≤ 400 kHz	1 kHz	0 dBm
> 400 kHz	1 kHz	-27 dBm

14.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii the transmitter transient characteristic was measured.

Figure viii Test Setup

14.4 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSW	*	2021-07-23
Attenuator	AtlanTechRF Microwave	20 dB SMA	U632	Cal in use

• Rental Unit, serial number 101805_calibration due 23rd July 2021

14.5 Test Results

	Band: h1.5; Frequency: 868.1 MHz; Modulation: LoRa						
Measurement frequency (MHz)	Frequency offset (kHz)	RBW (kHz)	RBW _{REF} (kHz)	Measured level in RBW (dBm)	Power in RBWREF (dBm)	Result	
866.8000	-1300.00	300	1	-42.7	-67.5	PASS	
867.6000	-500.00	100	1	-47.8	-67.8	PASS	
867.9000	-200.00	10	1	-43.8	-53.8	PASS	
867.9970	-103.00	1	1	-42.8	-42.8	PASS	
868.2030	103.00	1	1	-42.0	-42.0	PASS	
868.3000	200.00	10	1	-43.7	-53.7	PASS	
868.6000	500.00	100	1	-47.7	-67.7	PASS	
869.4000	1300.00	300	1	-40.3	-65.1	PASS	

Band: h1.5; Frequency: 868.1 MHz; Modulation: LoRa						
Measurement frequency (MHz)	Frequency offset (kHz)	RBW (kHz)	RBW _{REF} (kHz)	Measured level in RBW (dBm)	Power in RBWREF (dBm)	Result
867.2000	-1300.00	300	1	-41.9	-66.6	PASS
868.0000	-500.00	100	1	-48.7	-68.7	PASS
868.3000	-200.00	10	1	-43.9	-53.9	PASS
868.3970	-103.00	1	1	-42.3	-42.3	PASS
868.6030	103.00	1	1	-42.2	-42.2	PASS
868.7000	200.00	10	1	-44.1	-54.1	PASS
869.0000	500.00	100	1	-47.7	-67.7	PASS
869.8000	1300.00	300	1	-39.7	-64.4	PASS

Band: h1.7; Frequency: 869.525 MHz; Modulation: LoRa						
Measurement frequency (MHz)	Frequency offset (kHz)	RBW (kHz)	RBW _{REF} (kHz)	Measured level in RBW (dBm)	Power in RBWREF (dBm)	Result
868.2250	-1300.00	300	1	-29.8	-54.6	PASS
869.0250	-500.00	100	1	-35.8	-55.8	PASS
869.3250	-200.00	10	1	-32.0	-42.0	PASS
869.4220	-103.00	1	1	-30.3	-30.3	PASS
869.6280	103.00	1	1	-29.5	-29.5	PASS
869.7250	200.00	10	1	-31.3	-41.3	PASS
870.0250	500.00	100	1	-36.0	-56.0	PASS
870.8250	1300.00	300	1	-27.9	-52.7	PASS

15 Blocking

15.1 Definition

Blocking is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted input signal at any frequencies other than those of the spurious responses or the adjacent channels or bands.

15.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ETSI EN 300 220-1 V3.1.1 (2017-02), Clause 5.18
Receiver Category:	2
Receiver Bandwidth:	200 kHz
Frequencies Measured:	868.1 MHz and 868.5 MHz
Modulation:	D-M2
Error Correction:	Off
Deviations From Standard:	None
Temperature Extreme Environment Test Range:	N/A
Voltage Extreme Environment Test Range:	N/A

Environmental Conditions (Normal Environment)

Temperature: 23 °C	Standard Requirement: +15 °C to +35 °C
Humidity: 52 %RH	Standard Requirement: 20%RH to 75%RH
Supply: 3.3 Vdc	3.3 Vdc (via host board)

Test Limits

The blocking levels at the specified frequency offsets shall be equal to or greater than the limits Table 42, except at frequencies where spurious responses are found.

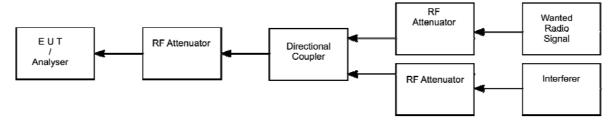

Poquiromont	Limits	
Requirement	Receiver category 2	
Blocking at ±2 MHz from OC edge fhigh and flow	≥ -69 dBm	
Blocking at ±10 MHz from OC edge fhigh and flow	≥ -44 dBm	
Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -44 dBm	

Table 42: Blocking level parameters for RX category 2

15.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure xvi, the wanted signal (Gen A) was set to 3dB above the specified receiver threshold. The blocking signal (Gen B) was then introduced at increasing levels until the performance criteria was exceeded and measured by replacing the EUT with a spectrum analyser.

Figure xvi Test Setup

15.4 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	R&S	FSW	*	2021-07-23
Signal Generator	R&S	SMB100A	U677	2021-01-10
Attenuator	AtlanTechRF Microwave	10 dB SMA	U633	Cal in use
Variable Attenuator	HP	8496B	RFG470	Cal In use

• Rental Unit, serial number 101805_calibration due 23rd July 2021

15.5 Test Results

Receive Mode; 868.1 MHz						
Carrier	Gen A Gen B		Limit	Margin	Result	
frequency offset (MHz)	Carrier RSL (dBm)	Interfering frequency (MHz)	Maximum Interfering Ievel (dBm)	(dBm)	(dB)	
5% of Fc	-94.00	911.50500	-9.49	-44	≥ -44	PASS
10	-94.00	878.20000	-9.48	-44	≥ -44	PASS
2	-94.00	870.20000	-15.57	-69	≥ -69	PASS
-2	-94.00	866.20000	-14.60	-69	≥ -69	PASS
-10	-94.00	858.20000	-9.82	-44	≥ -44	PASS
-5% of Fc	-94.00	824.69500	-9.49	-44	≥ -44	PASS

Receive Mode; 868.5 MHz						
Carrier	rier Gen A Gen B		В	Limit	Margin	Result
frequency offset (MHz)	Carrier RSL (dBm)	Interfering frequency (MHz)	Maximum Interfering Ievel (dBm)	(dBm)	(dB)	
5% of Fc	-94.00	911.92500	-9.60	-44	≥ -44	PASS
10	-94.00	878.60000	-9.53	-44	≥ -44	PASS
2	-94.00	870.60000	-16.70	-69	≥ -69	PASS
-2	-94.00	866.60000	-17.75	-69	≥ -69	PASS
-10	-94.00	858.60000	-9.85	-44	≥ -44	PASS
-5% of Fc	-94.00	825.07500	-9.58	-44	≥ -44	PASS

Note: Band h1.7; Frequency: 869.525 MHz is for downlink purposes only and does not have a receive function.

16 Measurement Uncertainty

Required Measurement Uncertainties

The following maximum measurement uncertainty requirements are defined in the standard:

Parameter	Uncertainty
Radio frequency	±1 x 10 ⁻⁷
RF power, conducted	±1,5 dB
Adjacent channel power	±3 dB
Conducted spurious emission of transmitter, valid up to 6 GHz	±3 dB
Conducted emission of receivers	±3 dB
Radiated emission of transmitter, valid up to 6 GHz	±6 dB
Radiated emission of receiver, valid up to 6 GHz	±6 dB
RF level uncertainty for a given BER	±1,5 dB
Temperature	±1 °C
Humidity	±10 %

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence:

[1] Frequency error

Uncertainty in test result (Power Meter) = **0.113ppm** Uncertainty in test result (Spectrum Analyser) = **0.265ppm**

[2] Average power, conducted

Uncertainty in test result (Power Meter) = **1.08dB** Uncertainty in test result (Spectrum Analyser) = **2.48dB** Uncertainty in test result (radiated) = **4.71dB**

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Transient power

Uncertainty in test result = 1.000dB

[5] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[6] Modulation bandwidth

Uncertainty in test result = **2.59% (frequency)** Uncertainty in test result = **1.32dB (amplitude)**

[7] Unwanted emissions in the spurious domain

Uncertainty in test result – Up to 8.1GHz = **3.31dB** Uncertainty in test result (radiated) = **4.75dB**

[8] Receiver sensitivity

Uncertainty in test result = **3.23dB**

[9] LBT threshold

Uncertainty in test result (level) = **3.23dB** Uncertainty in test result (time) = **7.98%**

[10] Adjacent channel selectivity

Uncertainty in test result = **1.24dB**

[11] Receiver blocking, conducted

Uncertainty in test result = **1.24dB**

[12] Spurious response rejection

Uncertainty in test result = 1.24dB

[13] Receiver spurious radiation

Uncertainty in test result – Up to 8.1GHz = **3.31dB** Uncertainty in test result (radiated) = **4.75dB**

17 Appendix A

1% Duty Cycle Enforcement:

There are two system elements used to ensure compliance with 1% duty cycle restriction of the EN3300 220. The Corecell Gateway transceiver is connected to a remote Network Server. The remote network server may control multiple Corecell Gateways.

Each Corecell Gateway can only receive instructions to transmit from the remote Network Server: which server stores a record of the downlink transmissions both sent, and any to be sent, by that Gateway.

Message transmissions are scheduled by the Network Server and sent to the Corecelll via a secure network connection with both the message (so duration) and precise time at which they are to be transmitted. The combination of precise scheduling by the network server and synchronisation between the Network Severer and Corecell Gateway ensures that a 1% duty cycle enforced in in each sub-band of operation.