Permalink
Switch branches/tags
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
2372 lines (2325 sloc) 125 KB
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 127684, 2362]
NotebookOptionsPosition[ 126176, 2305]
NotebookOutlinePosition[ 126531, 2321]
CellTagsIndexPosition[ 126488, 2318]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Prepare", "Subsection",
CellChangeTimes->{{3.613235720969769*^9, 3.6132357218732357`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetDirectory", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}]], "Input",
CellChangeTimes->{{3.613235716589903*^9, 3.613235736045939*^9}}],
Cell[BoxData["\<\"/Users/leima/GitHub/neutrino/MMA\"\>"], "Output",
CellChangeTimes->{{3.61323573649958*^9, 3.6132357388747997`*^9},
3.6132401199844313`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"imgSize", "=", "800"}], ";"}]], "Input",
CellChangeTimes->{{3.613235708571293*^9, 3.613235711122562*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Effect of Gravitation", "Section",
CellChangeTimes->{{3.6132315508074007`*^9, 3.613231553934761*^9}}],
Cell[CellGroupData[{
Cell["\<\
Deflection of Light Around A Neutron Star\
\>", "Subsection",
CellChangeTimes->{{3.613231511340983*^9, 3.613231523653049*^9}}],
Cell[BoxData[
GraphicsBox[GeometricTransformationBox[GraphicsGroupBox[{
{AbsoluteThickness[1], StrokeForm[{RGBColor[0., 0., 0.], Opacity[1.]}],
EdgeForm[{RGBColor[0., 0., 0.], Opacity[1.]}], EdgeForm[None],
CircleBox[{0.3467066102756892, 0.5188410479323308}, \
{0.09103106786407228, 0.09103106786407211}]},
{AbsoluteThickness[1], StrokeForm[{RGBColor[0., 0., 0.], Opacity[1.]}],
EdgeForm[{RGBColor[0., 0., 0.], Opacity[1.], AbsoluteThickness[1]}],
EdgeForm[None],
ArrowBox[{{0.35127661933820775`, 0.5194357965225563}, {
0.8360610635113848, 0.5182462993421052}}]},
{AbsoluteThickness[1], StrokeForm[{RGBColor[0., 0., 0.], Opacity[1.]}],
EdgeForm[{RGBColor[0., 0., 0.], Opacity[1.], AbsoluteThickness[1]}],
EdgeForm[None],
ArrowBox[{{0.35127661933820775`, 0.5182462993421051}, {
0.35127661933820775`, 0.9253774083646615}}]}, InsetBox[
StyleBox[Cell["x",
GeneratedCell->False,
CellAutoOverwrite->False,
CellBaseline->Baseline,
TextAlignment->Left],
FontSize->18,
Background->GrayLevel[1.]], {0.8554883302005012, 0.5}, {Left, Baseline},
Alignment->{Left, Top}], InsetBox[
StyleBox[Cell["z",
GeneratedCell->False,
CellAutoOverwrite->False,
CellBaseline->Baseline,
TextAlignment->Left],
FontSize->18,
Background->GrayLevel[
1.]], {0.30097705200501257`, 0.9312881813909774}, {Left, Baseline},
Alignment->{Left, Top}],
{AbsoluteThickness[0.5495408738576245],
Arrowheads[{{0.013121998990192037`, 1, {
GraphicsBox[{
EdgeForm[None],
Dashing[{}], {
FaceForm[
GrayLevel[1]],
PolygonBox[{{-0.6, 0}, {-1., 0.5}, {
0., 0}, {-1., -0.5}, {-0.6, 0}}],
LineBox[{{-0.6, 0}, {-1., 0.5}, {
0., 0}, {-1., -0.5}, {-0.6, 0}}]}}], 0}}}], StrokeForm[{
RGBColor[0., 0., 0.], Opacity[1.]}], EdgeForm[{RGBColor[0., 0., 0.],
Opacity[1.], AbsoluteThickness[1]}], EdgeForm[None],
ArrowBox[{{0.5547364505012531, 0.5194357965225562}, {0.5554266525689222,
0.587589579417293}}]}, InsetBox[
StyleBox[Cell["momentum of photons",
GeneratedCell->False,
CellAutoOverwrite->False,
CellBaseline->Baseline,
TextAlignment->Left],
FontSize->18,
Background->GrayLevel[1.]], {0.5527686403508771, 0.6098721157964028}, {
Left, Baseline},
Alignment->{Left, Top}], InsetBox[
StyleBox[Cell["b",
GeneratedCell->False,
CellAutoOverwrite->False,
CellBaseline->Baseline,
TextAlignment->Left],
FontSize->18,
Background->GrayLevel[
1.]], {0.4288259711779449, 0.36446340460526316`}, {Left, Baseline},
Alignment->{Left, Top}],
{AbsoluteThickness[1], StrokeForm[{RGBColor[0., 0., 0.], Opacity[1.]}],
EdgeForm[{RGBColor[0., 0., 0.], Opacity[1.]}], EdgeForm[None],
LineBox[{{0.34670661027568916`, 0.3926588933270675}, {
0.3467066102756893, 0.35179746240601484`}}]},
{AbsoluteThickness[1], StrokeForm[{RGBColor[0., 0., 0.], Opacity[1.]}],
EdgeForm[{RGBColor[0., 0., 0.], Opacity[1.]}], EdgeForm[None],
LineBox[{{0.5547364505012531, 0.3926588933270676}, {0.5547364505012531,
0.3531852091165413}}]},
{AbsoluteThickness[1], Arrowheads[{{0.01000000000000001, 1, {
GraphicsBox[{
EdgeForm[None],
Dashing[{}],
LineBox[{{{-1, 0.5}, {0, 0}, {-1, -0.5}}, {{0, 0.5}, {
0, -0.5}}}]}], 0}}}], StrokeForm[{RGBColor[0., 0., 0.],
Opacity[1.]}], EdgeForm[{RGBColor[0., 0., 0.], Opacity[1.],
AbsoluteThickness[1]}], EdgeForm[None],
ArrowBox[{{0.48706727756892226`, 0.37292205122180444`}, {
0.552768640350877, 0.37292205122180444`}}]},
{AbsoluteThickness[1], Arrowheads[{{0.01000000000000001, 1, {
GraphicsBox[{
EdgeForm[None],
Dashing[{}],
LineBox[{{{-1, 0.5}, {0, 0}, {-1, -0.5}}, {{0, 0.5}, {
0, -0.5}}}]}], 0}}}], StrokeForm[{RGBColor[0., 0., 0.],
Opacity[1.]}], EdgeForm[{RGBColor[0., 0., 0.], Opacity[1.],
AbsoluteThickness[1]}], EdgeForm[None],
ArrowBox[{{0.40248081140350883`, 0.37292205122180444`}, {
0.35127661933820775`, 0.37292205122180444`}}]}}], {{{{
1.3497299590694847`, 0.}, {0.,
1.3497299590694842`}}, {-0.09643183360617058, -0.38549181217318795`}}}],
ContentSelectable->True,
ImagePadding->{{0., 0.}, {0., 0.}},
ImageSize->{513.12109375, 383.},
PlotRange->{{0., 1.3333333333333335`}, {0., 1.}},
PlotRangePadding->Automatic]], "Input",
CellChangeTimes->{{3.613235886487927*^9, 3.613236011937389*^9}, {
3.613236063236926*^9, 3.613236142861417*^9}, {3.613236195230743*^9,
3.6132362263507853`*^9}}],
Cell[TextData[{
"The equation for deflection angle of a tangent neutrino ",
"at z=rz ",
"with a impact parameter b is ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"-", "\[Theta]"}], "=",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"2", "G", " ", "M"}],
SuperscriptBox["c", "2"]], " ",
RowBox[{
SuperscriptBox[
SubscriptBox["\[Integral]",
RowBox[{"-", "\[Infinity]"}]], "rz"],
RowBox[{
FractionBox["b",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["z", "2"], "+",
SuperscriptBox["b", "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]], "dz"}]}]}], "-",
FractionBox[
RowBox[{"2", "G", " ", "M"}],
RowBox[{"b", " ",
SuperscriptBox["c", "2"]}]]}]}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Text",
CellChangeTimes->{{3.613231560976969*^9, 3.6132315691273746`*^9}, {
3.613231690059071*^9, 3.6132317609344177`*^9}, {3.613231843614709*^9,
3.613231864380094*^9}, {3.613232759522436*^9, 3.6132328040805407`*^9}, {
3.613233340300915*^9, 3.613233353867587*^9}, {3.613233553955413*^9,
3.613233622345585*^9}, {3.613234505748797*^9, 3.613234505748867*^9}, {
3.613234582300137*^9, 3.613234582598185*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"2", "G", " ",
RowBox[{"M", "/",
RowBox[{"c", "^", "2"}]}], " ",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox["b",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"z", "^", "2"}], "+",
RowBox[{"b", "^", "2"}]}], ")"}],
RowBox[{"3", "/", "2"}]]], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "Infinity"}], ",", "rz"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"z", "\[Element]", "Reals"}], ",",
RowBox[{"b", "\[Element]", "Reals"}], ",",
RowBox[{"rz", "\[Element]", "Reals"}], ",",
RowBox[{"rz", ">", "0"}], ",",
RowBox[{"b", "\[NotEqual]", "0"}]}], "}"}]}]}], "]"}]}], "-",
RowBox[{"2", " ", "G", " ",
RowBox[{
RowBox[{"M", "/", "b"}], "/",
RowBox[{"c", "^", "2"}]}]}]}], "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.613232812511965*^9, 3.6132328672053957`*^9}, {
3.613232905669106*^9, 3.6132329686389503`*^9}, {3.613233024200994*^9,
3.613233054333971*^9}, {3.613233289738542*^9, 3.613233313098694*^9}, {
3.613233358379456*^9, 3.6132333643068027`*^9}, {3.613234576224348*^9,
3.6132345764852667`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"2", " ", "G", " ", "M", " ", "rz"}],
RowBox[{"b", " ",
SuperscriptBox["c", "2"], " ",
SqrtBox[
RowBox[{
SuperscriptBox["b", "2"], "+",
SuperscriptBox["rz", "2"]}]]}]]], "Output",
CellChangeTimes->{{3.613232839883361*^9, 3.61323286764921*^9}, {
3.613232920320428*^9, 3.613232974338663*^9}, {3.613233031401092*^9,
3.613233055904956*^9}, {3.6132333027922983`*^9, 3.613233314946697*^9},
3.6132333652626762`*^9, {3.6132345780175543`*^9, 3.613234585874539*^9},
3.613240120951931*^9}]
}, Open ]],
Cell["\<\
Check the dimension here. G M/b has the dimension Energy/Mass, So the overall \
dimension is 1 which is right.\
\>", "Text",
CellChangeTimes->{{3.613233326459971*^9, 3.6132333273961773`*^9}, {
3.613233384763548*^9, 3.613233385244721*^9}, {3.613233452444683*^9,
3.6132335293053827`*^9}}],
Cell["\<\
We would like to see the effect of b and rz. The numerical value of 2GM/c^2 \
can be calculated.
Solar mass 1.988435\[Times]10^30
Neutron star has about 1.4 Solar mass approximately
Gravitational constant 6.67\[Times]10^-11 newton square meters per kilogram \
squared\
\>", "Text",
CellChangeTimes->{{3.6132335412894363`*^9, 3.613233548569182*^9}, {
3.613233588490649*^9, 3.613233592720426*^9}, {3.6132336304011*^9,
3.613233653759672*^9}, {3.613233730247304*^9, 3.6132337355664988`*^9}, {
3.613233861000924*^9, 3.6132339210436897`*^9}, {3.613234054926031*^9,
3.613234072821735*^9}, {3.613234457116005*^9, 3.6132344575067863`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"const2GMOc2", "=",
RowBox[{"2", " ", "6.67", "\[Times]",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "11"}], ")"}]}], " ", "1.4", " ", "1.988435", "\[Times]",
RowBox[{
RowBox[{"10", "^",
RowBox[{"(", "30", ")"}]}], "/",
RowBox[{"(",
RowBox[{"9", " ",
RowBox[{"10", "^", "16"}]}], ")"}]}]}]}]], "Input",
CellChangeTimes->{{3.6132336597363234`*^9, 3.6132336984256363`*^9}, {
3.613233927463624*^9, 3.613234013894518*^9}, {3.613234078255987*^9,
3.6132340796280737`*^9}, {3.613234424916703*^9, 3.6132344460511217`*^9}}],
Cell[BoxData["4126.223562222222`"], "Output",
CellChangeTimes->{{3.6132340000656023`*^9, 3.613234016568719*^9},
3.6132340818209343`*^9, {3.613234446770957*^9, 3.613234448600357*^9},
3.6132401209727163`*^9}]
}, Open ]],
Cell["\<\
Define a function of deflection angle\
\>", "Text",
CellChangeTimes->{{3.61323402412292*^9, 3.613234029273898*^9}, {
3.613234332749276*^9, 3.6132343442662563`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"delta", "[",
RowBox[{"b_", ",", "rz_"}], "]"}], ":=",
RowBox[{"const2GMOc2", " ",
RowBox[{
RowBox[{"rz", "/",
SqrtBox[
RowBox[{
RowBox[{"b", "^", "2"}], "+",
RowBox[{"rz", "^", "2"}]}]]}], "/", "b"}]}]}]], "Input",
CellChangeTimes->{{3.613234348967828*^9, 3.6132343881153193`*^9}, {
3.6132345163849173`*^9, 3.613234519536254*^9}, {3.613234611818405*^9,
3.613234632672927*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Grid", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Text", "[",
RowBox[{"\"\<Impact Parameter in meters is\>\"", " ",
RowBox[{"Style", "[",
RowBox[{"b", ",", "Bold"}], "]"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{"\"\<Max z coordinate in Plot is\>\"", " ",
RowBox[{"Style", "[",
RowBox[{"rzMax", ",", "Bold"}], "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"delta", "[",
RowBox[{"b", ",", "rz"}], "]"}], ",",
RowBox[{"{",
RowBox[{"rz", ",", "1000", ",", "rzMax"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<rz / m\>\"", ",", "\"\<delta / radian\>\""}],
"}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "imgSize"}]}], "]"}], ",",
"SpanFromLeft"}], "}"}]}], "}"}], ",",
RowBox[{"Dividers", "\[Rule]",
RowBox[{"{",
RowBox[{"False", ",",
RowBox[{"2", "\[Rule]", "True"}]}], "}"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"b", ",", "10000", ",", "\"\<Impact Parameter\>\""}], "}"}],
",", "1000", ",", "1000000"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"rzMax", ",", "1000000", ",", "\"\<Plot Max Distance\>\""}],
"}"}], ",", "100000", ",", "100000000"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.613234402224587*^9, 3.613234406722495*^9}, {
3.6132344650126963`*^9, 3.613234482467802*^9}, {3.613234640961767*^9,
3.6132346759365664`*^9}, {3.613234711712453*^9, 3.613234715741935*^9}, {
3.6132347582302933`*^9, 3.613234817614558*^9}, {3.6132348619374313`*^9,
3.613234899065123*^9}, {3.613234935535521*^9, 3.613234984594027*^9}, {
3.613235065464087*^9, 3.613235115510325*^9}, {3.6132352675593853`*^9,
3.613235279148695*^9}, {3.613235700990122*^9, 3.613235702492502*^9}, {
3.6132363375381107`*^9, 3.613236351864024*^9}, {3.613236389840539*^9,
3.613236425701614*^9}, {3.613236492661777*^9, 3.6132368004989347`*^9}, {
3.613236848714487*^9, 3.61323699487442*^9}, {3.6132370331490183`*^9,
3.613237041602092*^9}}],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`b$$ = 10000, $CellContext`rzMax$$ = 1000000,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`b$$], 10000, "Impact Parameter"}, 1000, 1000000}, {{
Hold[$CellContext`rzMax$$], 1000000, "Plot Max Distance"}, 100000,
100000000}}, Typeset`size$$ = {800., {266.125, 271.875}},
Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ =
True, $CellContext`b$109664$$ = 0, $CellContext`rzMax$109665$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`b$$ = 10000, $CellContext`rzMax$$ =
1000000}, "ControllerVariables" :> {
Hold[$CellContext`b$$, $CellContext`b$109664$$, 0],
Hold[$CellContext`rzMax$$, $CellContext`rzMax$109665$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Grid[{{
Text["Impact Parameter in meters is" Style[$CellContext`b$$, Bold]],
Text[
"Max z coordinate in Plot is" Style[$CellContext`rzMax$$, Bold]]}, {
LogLinearPlot[
$CellContext`delta[$CellContext`b$$, $CellContext`rz], \
{$CellContext`rz, 1000, $CellContext`rzMax$$}, PlotRange -> Full, Frame ->
True, FrameLabel -> {"rz / m", "delta / radian"},
ImageSize -> $CellContext`imgSize], SpanFromLeft}},
Dividers -> {False, 2 -> True}],
"Specifications" :> {{{$CellContext`b$$, 10000, "Impact Parameter"},
1000, 1000000}, {{$CellContext`rzMax$$, 1000000,
"Plot Max Distance"}, 100000, 100000000}}, "Options" :> {},
"DefaultOptions" :> {}],
ImageSizeCache->{845., {325., 330.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{
3.613234483567415*^9, 3.613234527014488*^9, {3.6132346372864733`*^9,
3.613234676746182*^9}, {3.613234790215859*^9, 3.613234805524692*^9}, {
3.613234865564507*^9, 3.61323489961656*^9}, {3.6132349530753517`*^9,
3.613234991549869*^9}, {3.613235082700283*^9, 3.61323511625441*^9}, {
3.613235271535288*^9, 3.613235279832184*^9}, 3.613235748057226*^9, {
3.613236510332245*^9, 3.613236606621194*^9}, {3.613236672481291*^9,
3.613236801356968*^9}, {3.6132368541527987`*^9, 3.613236941110815*^9}, {
3.613236983427249*^9, 3.613236995342148*^9}, 3.613237042537045*^9,
3.6132401211295547`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"delta", "[",
RowBox[{"b", ",", "rz"}], "]"}], ",",
RowBox[{"{",
RowBox[{"b", ",", "10000", ",", "100000"}], "}"}], ",",
RowBox[{"{",
RowBox[{"rz", ",", "10000", ",", "100000"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<b\>\"", ",", "\"\<rz / m\>\"", ",", "\"\<delta / radian\>\""}],
"}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "imgSize"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6132354974102173`*^9, 3.613235691411049*^9}, {
3.6132358217026587`*^9, 3.61323585006393*^9}, {3.613237049370933*^9,
3.613237059911978*^9}}],
Cell[BoxData[
Graphics3DBox[GraphicsComplex3DBox[CompressedData["
1:eJyFnHVYVVvXtxUTRLEBAbsDFTvXBhUFFBQBPWJiN4KFgkGKSHd3SUhKlxIG
otKigFKKYIII5nd8v/Ub85Xneq73/LOuc7tYe6ybzdxrjznGGKdzUn2/UI8e
PUb36dGj17/HvrkhxT2u3RXg+PDnBNnNkcXcFG+71okDnhBvFS0+ODcpm1Op
fHRSSb2c+MvO3XGdZnHcyWED2o67vyCe/qHPiyC1UE55ysRlSrqviC/8FLVe
tsmXe5F7x/C5YwPxvha1ZRWTXLkTOnsyjye9Ju7XPLMu5bo91+PPf8/fEn9y
PrH/FEMrzsHbR97h1zvi723nvTAZZf4/fKj9R+JL3zmX9ZhqzGm3Htd5Pv4z
8TknDWp0tl3iJi5bYRKU0EY8r82qrSHTgHtnKRp0XPELi3OI5dyj0me525XP
cxdWdhAX3tuh7zlXn7s8JaLx9+FO4mtNrnrPearL4f/h9YdoT8UUm3LyjGPR
kHRpi7R88gz+YYPD7ZLOVPIMvsXqVIZncCx5Bl/r0rnMIDmMPINvy46bMn1B
AHkG39jLVkSh1pM8g6cIvn5N/OFMnsEzUzy+bc+zJ8/gb1szLLI2WJNn8NY7
NftO2V0jz+CyM9tmpb0yJc/ges+rFMZ+vUqewUXzdM/0Wn6ZPIOLnCquFTtw
kTzDX5+Eot6ucyvJM7hrxLDN70c9IM84ql03l7+vlU2ewZ3fv7VbMfc2eQaf
HWoxZ1D9LfIMPmNRfpVeUyh5Br+4RDxgqlkAeQafGdg4YstFb/IMbrdk8ZGo
H67kGdzskHq7/ktH8gw+x6QidVKqHXkGT5q/a8UL8xvkGfzJb8ntpzyukWf6
+570bc6iE2bkGXx/1rvwk6XG5BmeLrSoSCX8ZJ7B98X4fLonXEiewScJn74w
fdEd8oyjeZ/x65ZeTSHP4JMXmj/tlxNHnsF7bghsOuwZSZ7B9xdKGx06E0Ke
wRdfGHbKdWAAeQafK7vGIMzdmzyDK00TnrYz0o08gx+4mGGs+cKJPIPfHC/7
o7DKnjyD58iJ917aYEOewT0iTJQcu66TZ3D91EFLJLMtyDN8bLJ+HdDnxDPy
DH7d56XEu/mPyDO44zZVCc2zd8kz+ASVDU8nNKSRZxxDQq5Zfm1OIM/gSS9/
pF6dH0OewT3VD5ZMyA0nz+Amu9cPX9sSRJ7B1Qwfisop+ZNn8DM6p+Qm9/Am
z+B6Fv1XTAp2I8/gd5ZIvHGVdSbP4EebF/Qdt9eBPINbNChPGzHKjjyD73jb
u3rwsRvkGfft5B3yJjuWeQbXtTPoK9TOPINrHi63u6eWS57By7dn9Pf3ySDP
4MYHLuzdY3ebPOMoGb/SXyElljyDGyprpS+6Gkme6fOzsvZC3vZQ8gy+Z2Pc
+tjTgeQZPCHZ9+fHY37kGVx7iN2F8sFe5Bncta/IPJOlbuQZ3D+6rqSvtDN5
BpdtSS8dYuVAnsGH+O3MCjtkR55xf9un1JiaVTPP4EvU1t2debqIPIOrp27c
pf6GeQZfYKN4waE+kzyDb9v0or90aRJ5BhdV+ZIX9D6OPOOov8l93sWcaPIM
HvcmyVnyeDh5Bpd/N2N1okYweQa37f/oVK8xAeQZPPCXeOjxsb7kGVz20uPI
/J8e5Bn8nIxh2mRPV/IM3uPBIdX0R07kGTzmXNvC8jMO5Bn3sVz8fuK278wz
+P5L30PzHzHP4JvuXBQ7ppVHnsFrO48ZapRnkWfw+Dk/LJWKkskzeMigJ6Xb
G+PJM3h2q/BMsQ0x5BnHb10FG+dPiyDP4OUzmtc8/xhCnsFlYrQv23oEkmdw
yQu9ome0+pFn8El29W3qF7zJM3hWdGFZ10t38gxubnj52+1XLuQZXPhTwvvM
7U7kGfEmHtY8bje4ijyDL7g5Wc1/0GPyDK4UFqX/O5R5Bn9QclfBcG02eQa3
e7zMMMs+hTyDfzcWmy0bkUCewZf7/zN5slgseQafpPiyx1fvSPKM457g7IlW
m8LIM7is+PRLbxuCyDN4ROiQHnb/vs/hmdb7RJmhv+J9yTO4eeNMM8cPnuQZ
/FefyUO/FLiRZ/DpWQnz/WVc/vL8J66ymjzN6WP/9vyHLz3ZJ6Zj5d+e//C6
IAXxmsa/Pf/hTbdf6n6w+dvzH57Yum6YyszUvzz/4ff+Wde7QznxL89/+Ez/
xrDJt/72/IdX5k0unFQR9ZfnP/yw87XzwpfD//L85/hj+eetOb1C/vL8h49T
27BpnmzgX57/cPFzQYvrK/z+8vyHy/wsMR7zwPsvz3/47CHhF3WMPf7y/Ifv
lfFcaZfiSp7x+uN79TD6OoN5Bs+JvCZev5d5ps+TE5pj80bkk2dwb4/CyAkF
zDP4WDvFHZ2hzDP44qjFRRKPmGfwUev21qfPiyPP4Lean8h/q4kmz+DDn2tl
tF25SZ7BEwVPvH1/MM90/dn+CQOkg8gzeMevtQ7eKf7kGbyhrpflqdO+5Blc
zLj3OYdhXuQZXDfCcMxSOXfyjNdZfeJu46gFzDN4vzVbubgrzDN4yAT9PteX
Mc/g+3YtGNG7nXkGt6g77SYlmkaewYdclqgRWnybPIP7ib+cuyaAeQYXX39s
07DMW+QZ3EpktmjfnRHkGTz6Y35reGkoeab1eOO5Ke2tzDPFbx4s6GscQJ7B
9WqPD9My8CPP4JJmozIvXPImz+BiCqfux1t6kGdcT9z7baT6cuYZPKXCQsvF
lXkG7/NOtLrwH+YZPL2pIVpLIoc8gwsfzy8YuZN5Bo+eIzfVy455Bu8SPflY
6DfzDB4Z2S72YEUMeQa/P7V1/iDpSPIM/m3FhnZDuzDyDP6k5Ja1WVAweQbX
C35g8HJeIHmm74VTxa9enuhPnsE7d72UXpHvQ57Bq8Qm2W2440me8XOvFbiZ
YxSYZ3DB1PjHg28yz+C9w3ea7NNjnsGFlEUVRi1knsHT8iTPvPZnnsHvGL9R
DalinsF1qgrvaW6IJ8/gtbIzH920YZ7BL7ZtTvmaxTyD+3NZ/SbODyfP4Afl
Nfv1Ugwhz+B2BzIu3H3KPIOXr1RtTM9gnnHMaPkw8vc7X/IM/lu8vlK3xos8
49/dpbzNnykyz+DSMlphc1KYZ/Blwe6F/ubMM7it8LpxuarMM/ixIQX116uY
Z/Cfnx5p9JFMIs/gRo66Em9tmWfwQvlZ9weWMs/g5y4MOFC/IYo8g7d/TrGX
ucs8g4fmBchvLmWewZ+a6mwctDOIPIOHn7D79FUxgDyD37sn1XLA0I8843hn
1ggD85fe3PTf9ZqTHt8X4Gg/9tPZkasKyT+42tYXi+8PKuNGXVmlKeX/lbhE
3WUxDd9zdH1w7xfzHktOPEvXx8/lGTZ8bSssoeuD2xTlTfdYXUXXx9G6UmuA
ZY0PcbyOW2jETKudvnR9XK/P/KSHB0bfo/PBXTqmyGl/PkXn0/vnkF9g/eMS
ih8/t03abberjjfntmfNcMeIfAGOBgVW006OfMIVbj7nbd2nk7iv4tas2DGn
6Xz8e/wsuYjlbuV0Po4R0zbEnN7hQx7wc5nzZV6l9yyl8/HvuvvileV3nqLr
I14Xq9/3rriXU/z4uQfmQ2ZvCmDx4zqvA/OL5sc/ovPx73PTSvPNDfUpHlzn
6Z4Lxdlrqige/FzmKM50hpcPZ9ayKfmKaRHlJ0uKg67nWtznjC1/qV7JLqXX
HZ0Tu2SY4DZxytPeVdmi45bFKciUymevrKLzDXXX28qfjSSO89VKq1OfTEzk
hGLD5/fIqKXzZ5yW7bnTP5A4zr9Qfly7smc0tycga5ifdx2dv9dy7MuBPl7E
cf6gAzudlq0N4eSPTR+Yvb2Rzo+s/bx1cJYzcZwf9VG8tmCCPzduoXPfl1Jv
6PzOQL2Rk4bYE6d8uMjyax/He3I9u+X5i/g8/6v7R7rGeLA8f/9Hd+WT883p
fFwnmc9X43xwL2XFUevWO3Av/+W+M9m+QJPmClf/iSbEcb5NkdSEXy9suCey
Yztm3/hE5yfM8FnAqVwhjvNv6n2OPbHlOpftWPY5q4XtLxjECjUHihoSx/k3
vh5SGplizsV0Xv+gptLO9k1qHih/3XOeOM5vGvhgRM59E85vh6C19ibbjzDb
P1Ehac8Z4jh/4Ypiv8rdVzm7O1/enBRhf+8tBcZ7H77SI47zr39LF1qTc4ne
t/jcmFTfoNRRX0jvT3D/4maz4oI79D4Er0xPOlo9JpXeb+Aj97hq6AyJp/cV
+CyZXR83N0TS+wc885zH+rE2IfQ+ATeKlPu9WDSAfu/g0/n8OX7v4DlNUb7G
kW70+wUvePFwk/FrJ/o9Uj7fff9gkzf29PsCvy5j8czxpw39XsBrBY1T5w+y
Iv/g0sLqT3UeW5Bn8I1uEoJfo8zIMz6HF5atqPpRUESewb/ErZQojsglz+Cq
yq3rJnpkkGfwMplS0XHjbpNn8HVX5DLvjYglz+DPIuVvNA+JIM/gowM8tU+8
CSbP4Iv4/Dk8g3cc2KP47LAPeQY3ni6REfPanTxT3vuFZM5WZRfyDN7v8RnO
XtuRPIPLzt7z63qbHXkmPxv1NO2arckz5c8Hnum3z+E6ecZzzcATl2qeND8m
z+D2LXoS3xvzyDPlny3NRkX0yibP4A2dR6IGHkwmz+DHlg/f3jIpnjyDJ0/S
tH6YFU2ewbe0myzrPy2cPIMb8/lzeAYvdUuLOv3vcyM8g/8qWBqZuM+HPFM+
45mY+5q1HuQZ3H23nUNNswt5BvfT3rtZZbwTeQafO/X7oJon9uQZfGFU/YQp
abbkGc+JDUJvf3dufEKewaXnce/Lk/PJM+XDnQZYGtUyz+ARr6QWXhVPJc/g
S3sFVSVmJZBn8IDHBh8lnseQZ/CZhlNOh7+IIM/gffj8OTyDa/Q8Xxz/KZA8
g/vu3Dfklaw/eQbfVfb0wdIX3uQZvHPAo/LISR7kGdxjjbbtcDFX8gx+d4Wk
0/1zTuQZ/P64IXG5ig7kGc/dTgcHKJraMM/gN3xVO9epFJBncDX19vDll3LI
M3jBSXv5Cu008gz+IzpPTexXInmmvPT4lm/TB8SRZ8q3T6z+/X5kNHkGj+Xz
5/AMHn1sR1FORTB5Bk/L2dd0sjWAPIPf02mwuWvmR57BD2a2TRsl5k2ewd8s
2Rj3INmdPIO7rVs0tvC1C3kGTxxzwSrL2Ik843vM/OmLBHopzDO4VqxnokIC
8wwedDamVaeNeQa/5zS/l5p6OnkGfx84IP9jx23yDD7T3OeI0m/mGdxmx3Tx
nq23yDN4F58/h2dw9z5rDjadCyXP4APEfuuO1w0iz+DbbEyl7d/5k2fw6Qpf
pmiG+5JncO/vHteejvUiz+CzdbpGTxvnTp7BR8zo2yVu70Ke8b0w2lXF73wl
8wye+8bqbWjPe+QZ3MBE6kyUyh3yDG6f9qrH9sEZ5Bm8Uk7l97q0JPIMbiVS
N3Nmbjx5Bj97yuvp2KQY8kx5Lz5/Ds/g591X+0k8DyPP4Kmpj0OHZgeTZ/CL
T7d9sJ8WSJ6pzkLezrTghx95Bt91cJWMlrIPeQYPmHX0TcQkT/IMPr76nMtN
Pbe/PP/5nm0qnbbI/sPfnv/w81v0V0xc/rfn/8nn6a75cM32b89/uGCW2bfh
wX97/sO9EsNmPdyS/JfnP9wv4uQsoX0Jf3n+n/zzP1ZzErRi//L8h1fw+fP/
7fkPP6P9Q2igyM2/PP9PPrykYrdjXchfnv9w9akznNatDPrL8x8uVd+5ekCv
gL88/+H1lu9bSqT9/vL8h49VEJaf0+n1l+c/PEG93/x10zzIM/IWnQ9blOR6
PiXP4Jorx/usP8w8g89/O2axXy7zDB5Zd/L5GKlM8gwurO1v0VDGPIN/3GxS
ktPEPIPHvhvWMv858wwezefP4Rm8SbrJOkE0gjyDr38dG5xQHUqewePLhs5c
NSeYPIP3cz0dWPqWeab8eYpMXkUX8wweJWKau+Tf79HwDL7UYtixg0me5Bl5
oB8DTm79NIh5Bv91tHVY6Q3mmc6/tl6t/D3zDB765OSrIReYZ/ClKxzUHZan
kGfw+ftF9B3VE8kz+PFnqdnVSnHkGXwknz+HZ/C0uPKEfm+ZZ/BJX/3aeySF
kWdwwcwzmyp7hZBn8LlHB803Sgokz+D3QmNm52b6k2fwxcmaTY9F/Mgz5S+3
m9W+GuNNnpFX633nvNQLSeYZPC706DIunHmmfHvzvB71g++SZ3CBzL2hOgXM
M/iB8vcP+9szz+DZB3sWL4hknsE/ZF9Oeh7CPINH8PlzeAZ/VqTy+VdoJHkG
j+o8vXqPfjh5Bvd9Pl1DKIN5BvdbntFr3rEg8gxuomUhLX0igDyDLzxyfPWU
BOYZvO3LuhlZ+1m+CHnKLqUDgojxzDN4yT19F7Vs5hk8YJbVqNszmWfKb890
/zGwXxZ5BvdeX9B3dgXzDB7utmeW+lfmGfxT7tbDV74wz+A1fP4cnikPf+X0
mUCVKPIM7npsYruE+E3yDJ7ew+ig2q5Q8gz+fbOwfP2AYPJMcSbFC8mLBJJn
un5kpc3A9f7kGXz1Jlm1gTd8yTPydZ/39Z969Bn7HASfd/eayZoS5hn8Q6C5
fNIq5hl8tcMMR+HlzDN4QPC0os4hqeQZfLvHbbPMhbfJM7jitGs2JxbHk2fw
h3z+HJ4p/6/tfHT6M+YZvFSjqO/jYOYZPPBsxJjad8wz2xcQuj/HnXkGv5pe
0rrfmXkGn7Om7dbmUn/ySV41ldqOyNwjn+lexq5JnwsFzdnlhotc0sln+4b4
s+93PxQc0VBxz+yKJZ8z+Dy00KrfA8R6h5FPnZjhC7avuCcw2ftMseahH/n0
4PO0kgcG7JXTcCOfxUPPtt2XzBOYzm/a1yXhQD5F+DxYSbe84nU+/hGpxQ/1
V9uTz0w+/kjN514fr1iRzw4+/od6E2avnWZOPmX5+Bs/uaqe7WdMPg/w8X/x
0lYOtTMinz58/KK/jBU27TtPPpvmHKjdZ1km2Gswt2rlRZZ/w3F26+bkzg85
5HN0nUum59cSgVaccO2IH0nkM3XpbNkk2RLBuVtVR+wfxpBPTccC7+L9xQKv
OLOK24fDyOenll0D33s9FQTUqORPUwogn9arOw2FS58I1ld0ReQO9SKf0/j8
YWq3vGszH//ZUR8vRqe7kk8TPv5Sw4YF0f84ks8xfPxlXqd/lDfaks80Pv6S
76OfhlhdJ59b+PhvpMlf/q1oTj7b+PifRen8aiw1pnXAlo9/4iDf8497XyHP
IscCdSyfPBf8Y+Hj9MWJ5d9CcpcVB/V7LrjzyVNXag7Lv+EoO2Ppzudz08lz
zZljsc/PPBPscFgcO94ggTwbFPUe9zWyUrCzT7HTnLBo8jxiirfd0IYKgcEL
7VVzroeS59jLC3rISlUIHHM6Li48y/KcG7rVCcPzQD7+J8ufra9x9ibPoXz8
2u80uk5dcSPPq/j41TU03700ciLPtXz874qNtQ2U7cnzRT7+H/MaDtYetibP
4nz8uUdOVyyRsyTP8Xz8iUk/Tuknszyn2+aPn8sHvBK4mrkapj9i+bfGy+k3
94W+FPTTDRgk58nyb/Mir+l8VngpeKoZurJDPIs84zhSq+yN24Ik8uwtrBAk
1V4jkL491FKzkOU5l+hUDVs0o0ZwULV0j1sjy3OWpeqZqOtUC95kCm2cuDqE
PJ/qVicMz+58/KKGGimZe1j+rYmPf5/m5Fzzyd7keT4f/4Tca85VoW7kuTcf
v1PVkcSzfZzJsy8f/7yBny63DnQgz8v4+DUrb4svXGxLniv4+PVL2r7XTbEi
z9M/2cw/PLtB8HysnOvVdexz7byMdmvHg3pBQEdl3BBLln/LV5oSZHqgXvDN
pnLZZ2uWfxt2tk17qFC9oLhyr4fC0hTyjOOmlmNx8Uksz3mryOrhrCV1gth6
O4vBJ2+R55/ftpiklb4SrNur1X/xOZbnVOlWJwzPM/j49zsE9zENZPk3xO8Z
fkS+Z5AfeUb8ebamu5yOeJHn4Xz8vdcKLy496Uaedfj4XSaZXvGf4kyeY/j4
X4RXLJE57kCef/Hxd2oP9Ho9wY48p9vMOvtd/bVg+1nTuAGWzLNIWtcsy/dN
gqoPo5RWzmB5oa2v8xpHXm8SfNQ3/9F/DcsLBQ9z8A6a1CSQqCi8tjOF5Tnb
uJ2acjmNggWGh8JS57H8G45X5+jsGjchljzbunXkbuhsEChcMv4aPzqSPFf/
lzxnBh+/+xEhlSRnln9D/CbbzN+cOM3yb4g/8n6IYleeL3kO4ePPLbjlqGrh
SZ7b+fhnPJ5vnv2L5TkV+PgNFpjKne7vTJ7t+Pgz03vtOXKN5TlVZxYmWZ99
K1hcKOmRlMg8e211Oyk19K3AqvHE8hfezPNb031TwqOaBUGb/ZQlHzDPi2Ln
1C5Uahbo7xon9L6S5TnNqn+45Da8EWglb9F02sbybyXC91XVr7wRGOhf2MUp
svwbjiaTuS16qizPefK/5DnV+Ph1e9WL7RWw/BviP5Bl+1FCmOXfEL+Z2EnX
5btY/m0xH/++AqMNuzf4kGdzPv59urIvuhw8yHMpH//SL8sfPjjmSp7H8/G/
UtUL8Mpiec6XfLw7B25rflrGPMt2LIyNWvBO8EQmR3DqE/NsOL7X4WVPWwXL
H12bPXIW+x59X/Xx2PvHWgWL9mn8EE5geU7xi56VWv1bBTYn69eOkWf5t/2h
B+0aAlsEKvpy0x7PZvm3+JJ56/S4FsH1eJfb6wey/BuO3fOcOLbZyitfiWT5
N8S/9YVkTNNBln9D/GVHHj2+FRVAnh/w8e+abqk9Yi/Lv0nw8U8bvGu6ShPL
cx7g47fpXR+U7MHynAl8/FUT8+Xn32d5zpR4U5lnOz8KXg6M+ub9jnlGvItC
ljUOmsO+dwzK9r/5qP2D4Kj9u1Oa5//OC2nbfRBMVD5U6L+D5d/CJZaOap7x
QbDfRPBh3lfm+evqvsVnC94LLETMNsxsZZ7XnCq27L33veDUs42Z8Q+YZ8f/
kudM5eO/bOU47XVdOHnGcURF48N5riz/hvgnjRorlFzM8pzb+fj3iGl7pVz0
J883+fgXD9bxUv7B8pydfPy6Hx8qrHVieU5FPv63YQnnpoawPKexkMbKgI+f
BCctegcn/2ae//g5nPlJ0H5C3nTIbuYZ8Z6tSXYKj2Oe/3jr+OeT4MsvE9+W
OuZ5tHZrVMaUT4KmUp0lbtdY/m31v/GYfvko2D5CLH2KGcu/HbNI3q9y96PA
/3vjubkH/+88J+I/Wjnnd0oLy3Mi/jrNS8OXerP8G46qTlzxh2KW50T8A0If
nHqjz/JviL/LVHzD3WMs/7aGj/+f0S85w+3e5BnxnzWdoLtjK8tzqmyasOuo
cZvAzUerpXAgy1foHRReJrexTfDOrFPJz4x5djf6MLJLpk0wZ/8eg8iXzDPi
fTmgn8HcDSwv1BSeVmSe8lmQquS84cdP5vnP+2qDxWdBscX413uFWL5iQbmF
+XDNz4LKwIGGk5uZ5+3/Jc+5no//hGK9w8Qiln9D/Gtb3u5Ov8zyb4h/1c1K
/dI4lufEMXNb4Lf+aiz/9pqPf+K823eM5Vn+DfHrWimVt3WwPCfiHzRK3V+r
juU5h/t9vjx/+BfB9BeO479IMM/Lbldqf3/VLuh713eBeSDzrFOYuejOrXaB
44ptHyz7sHyFZV3QMEujdsEbZwkDsUDmGfGW1WoXPdzB8kLlg049HCnZLrg+
/kTVncPM86+JW0Krm9oE8jcDHiVq/t95TsQ/d5Zhpaody78h/tGxa5bWrmL5
N8QfeGnrXMezLP+G+JO/+W08Mpjl33AcNeFJctsv5rmCj99JX1bu3jyWf0P8
uuXaEl8UWZ6z+n2O38/gDgGXeDHm0zjmuXefMMNc/Q5BbPvUzpg05nmGlM1W
K/kOwQSLmcuNJjDP6nNPz1cX6xC43z91WLmZeT6/dttgyeovAtkF+h6Fkcwz
4h31fKvdgyzmuUB/8r2Q818EC2InP/4awzy//y95zho+/gV+kxWPLmJ5IcT/
1kDEcfR75hnxjxbIZX8cx/JCiH+290LTiWnMswEf/9dfUuMdQ1meE8db2rdM
xjxjnhF/5+3dTqssWZ4zZIV9Tv6iToH0EckVt/7Xft8jvp7uR5/d1kaPmef2
wzsMNEq+CraZDVYcu5x5luLrEpOKP8TvmsDybwou0+bWnfgq2Kz1M8zhPfN8
KFJsYPjyr4KP5sryX/ux/BviVXtdeW/mr/87z4n4a0Y6Rz4tYJ4R/wh9PykN
Y5Z/Q/z79N9ZySczz4hfqv55RH91ln9D/O6W66ckrWD5t8N8/Or+OQcOHmf5
t8d8vqvsqXvEdI+77Hsiz4vvVHoIbzhN3Ij/uTU32j0rNIzoOrb8vyupvlDp
VfKEPZ/zx48hwk7jbvoSD+Y9hMRmbRq9hP3ekSe8pvLWebSSH10fdWhxWg+z
f9ndobpl/Lvc09EHfnzLo3pL8Ke1SQoZsuVUzwy+YYKo1vm3KVTPDP4m2cSx
rjGG6plp/1NndVehbyjVM4Nn7R61u263P9Uzg4/KNu4T6+RB9czgs2NMwl+1
O1E9M+VBPUXc/3lvR/XM4O2t52P7NVtRPTM9p1ydfkB4nwXVM4M3mB0X13tl
QvXM9DkwxO2d0CjWFw9eeF7+zO1UI/KJv6dJeUZmw1fdJ5/gq5SlnGvvVZBP
8M867x/rCLLIJ3i+s6i05qBE8gn+pW5v2yGJaPIJfu6fntFjL4SQT3BzlfrU
/H+/18AnuK3IkaJoT0/ySd/znm1UfXbChXyC97yx4M0gBwfyCW7y5cInjWW2
5BPcWc60y9H7OvkET174YIT3J3PyCX4g4XDJtG8mVA8MHuV9LG3EjavkGeuT
q830joUbH5Jn8OiOF3LTYivJM7hz16g+fU1yyDN46/bjJstWJZNn8LmbBt5Y
FB9LnsGf7pujYF1xkzyDqyZ+u77xexB5Bv+xtOCbz2M/8gx+Rt1v84NLnuSZ
6ln8V2s21bqQZ3D1lQWuJmqO5Bnc+tbow8LGduQZPJSTyLO5doM8g0+Q3Ji9
sfEaeab4t+sEprw2I89Y78+Fcn20fVkdPviBdMnaFwuekWeqI5u7535WOZsz
AK4ZliR6Ky6VPNN1TlhEXS6LJ8/giy1UoxcaR5Nn8CtiClPzpcPIM/jOd7cU
ThoGkmfwBOGkib0G+JFn8No1GbMUyj3IM/ixnvW7MrJdyDP4QtkJenGmjuSZ
4s8Z29v3rR15BtdIFS2qcbEmz+CHioUHjBh5nTzj8/PfL9ifnAwfkWfwI/PE
qo9aMM/g0ruv7n9ZwOYMgOdvEs8fej2dPIO7q65atutaInkG97LVHKKcz+YM
gNt9yFYe8PAmeQbXiLp7obwsmDyDlw+4k3tVMoA8gw8Oy/QuPOVDnsGna0sl
WLxzJ89Uz9IkN3HwZhfyDL4rXmveuUOO5Jnq6EOdm/V725NncAuRm5LCQ23I
M55HxguiEkWHF5Fnqq+/kiAWl848gzv9PN275QzrfweXDR+zv/oDmzMAvvhV
sejGV2zOAPjIf45N9+zL+t/Bl4pO8Vg3JIo8g8994Xy16iWbMwDunmSnHNfK
5gyAR4hGeJx5xuYMgEeJxq1JL2VzBsCN9l0cotHC5gyAbxG5/6gojc0ZAK+v
m6KfLuVInsG7ylbJtLfYkWc8341JrPm96zLzDL7V7Pt0wSvmGVxdSst5RAfz
DH5d2yr1bU/W/055lA09Uva0sTkDtK8b+KTg4kDW/w5+JmCqm+0PNmcA/Plb
yXdeQWzOAPhw5729l15jcwbAr1ZfajutyuYMgGtVJ1YfOcfmDIAf7xG3YOsG
T/IM7j87f/SrejZnAHyTX0vgssHO5JnqakNaNsTHOZBnPC9jngA4npfTVst/
M+v7mPzjfMwlAMf5B2r33m4eWEW/F5yPuQTgtH97dEq/R96svxvnY14BOM6v
nSon9HkZ65PF+ZhjAI7zE5+3ZWw0YH33OB/zDcBx/imngl6nHVg/Ps7H3ANw
nB91U2xtfQebh4DzMQ8BHOf7La++ufMk69/H+f97TsIfjvPn3G6cemYS6+vH
+ZifAE55EeWNo33TWL8/zsdcBXCc3/Xq8ZkJXf70fsP5k/l5C+D0/UlXK/re
MTYfgPzwcxjAcX50jUAtO4rNDcD5Fvx8BnCc/2T+XLVZVmyeAO3/83MbwHH+
wbz2FtNGZ3rf4vtcV8ajLa/k2PsW3Don/Pkqafb+BE/fv+PEgXL2PgQfc+mf
4KFG7P0GfizYbFZYH9b/TnnUid8G9Z7A+t/B5/grXJtsweYMgLdM0pSsusbm
DIAfdHepD5/H5gyAW84TBAxID6bfI/jq/b8Mr79l8xzAv4tlzTzixuYMgC9e
dMTEcDObMwC+V3XduIJhbM4AeJnZOEMndVfyjO/H0WeSdEW0mGdwswXKNten
MM/go/e+NyzqxfpYwRdP0hg5OI55Bq/Us9jjasA8g7+3vnRHxYt5Br867bR1
byHWlw3OScc6ixiyOQP0/f6KZf2ysWzOAPjG3z9WrfdlcwbAZdL22FbdYfMc
wHtF3oz5uo/NGQBPbY3Ndyj1Ic/gaYvunB9r5EmewWeOnHr0W5AbeUa+oeG8
boSyHvMMHp+8Z67lHOYZXF6pwSF0KvMM3vNnj1eO1cwzuEZK9TfhKuYZfJLL
1HJrIdaXDV59y1+k51HmGbzew+e+uSqbMwD+5POdBsMPzDN4nJtKXtAhNmcA
3JoTfX/ZlM0ZAI+6c7b5qQybMwCu9+br0QJJNmcA3MnE1qPvfTbPgfK+HWfb
O6rdyTPyNyLSIvfWWjLP4CVj9J48XsQ8g09/vH5kvSLzDD5JrmJQYE/Wlw1+
/uy8B8+ms75s8Mhxdf8s/4d5Bg+I/7JeNI95Br/mdvyxvRDrywav/3JGSimY
zXMAj9jgLiYpxeYMUL/F1cKoB3PZnAHyoDdsZHIu8wyeu83ayyyFeQaflRTk
v7eLzXMAX36rXf/dLw/yjHzY84ji9vlezDO4VX5WYd4K5hm8z3b//M+7mGdw
m6xox4IxzDP4wlVSbSInmWfweXm1saMDmWfwzVfyrV2Hsv538CXWCpyQOvMM
flaqr0v/NWzOAPi+zGkpB1KYZ4pntmRrQyHzDJ6q2W/pP9pszgD4+3cTq4qU
2ZwB8LcK+zxnDWZzBsAb7DV0tIS9yDP1IZkXPGiPYPMEwK36m89sPc18grfn
tBnNXsJ8gs89+aHuexjzCX5zTvBsvTrmE9x8U456mCbzCb5iU+TMLa7MJ9WJ
N7yVTXzKfIKLuvxa3EuRzRMA//DJZ9CjLWyeAPhWEb2y9fXMJ/hT03LFhiLm
E3y57rFzkf3YPAHwkf88uXDhtxeHej7k645ZJLibFaRxqD8D728gtj00J5ZD
vRT4Wflvt3ZahXGo7wHXWWtR8LrVn0M9CnjBsK67w9d5cqifAC//suLM2RPO
HPahqT/Sf/3QrQdvcNh3BF8Y9kV9710LDvt84J47pDumzTDlsK8DLuCSLadr
XOWwjwJuVdR2bLDEJQ55c6rveJTRsvv0BQ71dsizHc3XGDVhbxKH+jBwC3lb
+Rs7YzjUA1HesmiofvuoMA71K+DzpC71mnYqgEO9BfiC72Ilm4Z7c9hPpbzi
bskVGgvsOOz/ga+W4CzkLa047FeBv1a2e7Iq0oLD/gq4v7remVN2phz2A8Bn
HRorW9rXmEN9G/Jdat9VuqQGJHCoZwIvfr/VeG15FIf6G+oD1li+u/B3CNfM
14uAf3p1uv740gAO+5TUZxkStcrmhD2HfTXwS/Mcni3sacNhHwh89gBDu6YR
1znsW4AfEep3dt8rcw71YdRHaCWfn3shlkM9E3iRWp/q/NkRHOpvwE+7JNzb
EhPMYT8PfEBfuZ5fRztw2H8Cf2OkNUPuhi2H/RLwH8qrhxXHWXGol0K+peT0
9sHin6M51PeAB5rO19tdHcZhHw58+PWwzVJ6Dhz2XcCrlB2u3lhkx6EeCHkG
4bhouTnpERz2k8BVbZTf3TFz4Cz59zf10/B1NW/4dQBcZO+ibcmF+RzqOKne
8Om25duasznUHYIntctLq29L5VAnBx4jcdzDfnYih7ou8Dcnpv5oPRzLoQ4J
3DY5v+WiTBSHeg7wO13jXA9NDuZM+HUAPOXNtw8fVAM47JeDT67etsyy05fW
AfBnqb30W8Z6cdiPBB/53OPmiBY3WgfAy0aeeDdhoQutA/i+wLU5nppXlsOh
zpK+N3lWnuzITaN1AHzJojU6Ydtv0zoA7iupe33qiThaB8B/Nygd+/AmmtYB
6r+5air9yjOQ1gHw5XcvHyma5k/rAPjUoyGTXVf70DoAvqavSGZ0tQetA+DX
K4z0p/10pXUAz+2CwPYi2eEZXB6/DoD3yxsd9lA3idYB+l4gm6Kmtz2eQ90Y
+Ln9r+O3r42hdYDmWPxsTtFcE0DrALhd/aCYrZP8aB2gOtaNetr9kr1oHQB3
3TRQQSnGnRvBrwN4HnaxuOX982QyrQPgx3REe9xalEDrAPiwJFHFvcKxtA6A
z/9QVWwg6U/rAPivebYTzhr40DoAPqhu6dhAVU/uC78O4LlxTbtbZYBQIq0D
4KaPp/RxTY/lsJ8NHpxhI99ziB+tA+DjDGoKmyu8aB3A85KeZk1Rq04ch31Z
8K6BrwYor/fhsC9L+7Tvdt49rl9KzwngHx7e1HYYcYHDfi2eH7Tsp+4qDark
sF8Lrsrvz+K5l55PGl+2ZChUcdiXBZ/U/0rj2Z3/vz78z98bXncY3++Qwfc5
UN3fWrU9ts+LONTPgW/7Hmp9y5DV84Ojnv8L3xeBzwu/UWrHQ8uecuhPAB/c
dKvFcWYehzo8cLFtPduVbLw51I2B73t84dXFI6yOnfah+Dp2zC/C58IumZrN
IwpLOPQ/gF8w6+gtll3AoV6f6um2WM/1GZ7NoX4RfPXFD5n7Ivw51NuBb173
XPP1em8O9VW071PZPz4njNV7g6PeG30s+Hw5aNLvtYlxGafB9zOAuzx4sf93
zX3uPF9/D977Qunu+KQczoevFwc/sGD0m9SGFA51luDnPPSai3YGcagLBP8y
VCrUvcOPQx0Y+IAGww2HQv59XuXrlsDHiisZTDViddQUJ19HjT4c6m/o0aRY
PqyCQz8J+Jttt6RHxj7k0P8Anu/XnLZO4i63lK93B++QzLv3e0Y6h/py8KAx
kss/hyZyqB8F16iWO55TFcKh3hH82K/OsjVjAjnU51G/7INR+ncW+HGoxwK3
ax1jMbTQk0P9E7jajckjIoe6UT0GOOqZ0XeEPLnGqDsrY20qOfTPgHtkFEWe
3viIQ78HuLPeLO2odbkc+hOo3lhhxfbmsZkc6unBhe5vG79aK4lD/Te4Qm3S
UD2POA51tOAjh2Q+tJcJ51D3Ce7VaG+lKxPMoc4PPLt8s0FYpz83n69LAy/R
jd14s8WH+8nXUYELJn4YMqvKg8vn635on8Vy+91OE1aHDI46ZJFu+wJL+H2B
ad32F3T4/YUN3fYF1Ph9gVPd8v/VfP5fpVueP47P81d3y+cH8/n8k93y9ll8
3t6xW769rNtc4u559e3/JX/ePU+OucTvu+XDu88lBsdcYqzbWI/H79vinb2s
mJvFr9vgbld9qnIVb3LoW8M6er3ZtELRs4TWZ/DfJxbdXmR2nzPi12dw6ZIG
Y8WcCFqfwc/vLlOzeBfKzeLXYcrXDdVSndpRSuswuNwbI5vbjx/QOgw++mCe
R4PpXVqHwWW+/Z58ZXQUh7phqhdtHFRWND2c1mHwbfcC6+63B3Pou8O6tc27
5LfXhnJOi19vwXv3NlwqPbSQu8Cvt+CFhT9ztVRzab0FHzP2ePCG01mcJL/e
glesTD+waU80hzpm8NIdSwM/b7xJ6y141ZrRSl5CoRzqRClvZqeVf2NtEIf+
QKrr3xYidSWggkOfG3j/GxmvlFQfcejLon6L3PULXw7Oo3UV/G5j0ScjxWwu
ll9XwU9/tglfuiKV1lXwl79X9Y26cYtDHTa40Xu/8GE6ERzqhinOlWIGNT9D
aV2l/tHFbf3LZgdzqMsEf2AV4bSlPIBDnx7Wiaqvah8CzIo49JWBDyuTOvfx
UR6HPiiqd5vbL+x3YTaHvh1weZXBcx8OTuPs+XWSzjeVvKd66jaXyK+T4OG7
X4fHb4rhUF8Ofih+9+ntuyNpnQTfHfP9/bQ3YRzqd8FLms/q9hYO4VBvSnMj
ClyFj/gFcqiPBB/+sd9kB2d/DnV4eE5T4+v08LwFPl5hyNv14plUJwkeFb5l
25mRCVQnCe4116HfAeNI1v/C861yNzfZygZTnST4UPvL4lfU/KhOEjy/YLbJ
rkp3qpMEl+Xr4rDugEs7fN/1Vdaant/AE/Sint/+fI2el+i+bicoR98wo+cN
cO+Dq3+fu29Mn7/glXq2KmkmV+jzBXw97w1+4G/mAPfkqLhk8gOu2D+l1uB9
LPkBb9u6LD5aMoL8UL+XR9mYonHB5Af8WuYv8YomP/IDbs3XucEDeET6ut6j
PezIA9WbiW7W9M69QR7AM1aKNLZMtCQP4H0EQlY2k83JA3jMlGt1H0NM6H7h
Y9mZMevG17N+VfDNninnO/vF0P2Ch+cWvRZVDaf7Be9nZXBY60QQ3S/4N77e
DPcF3mZ/WSOriPWZgo87H1hus8CW9Yshf7VDf2SjtRXdF9WzXZC/NO7SNYof
9zez97Ar+kPiKH76PbeE5/2qjKT4wZfH7rS7eTWU4gffwddxIU7wERtPVO8/
z/o06XV7NIlu32pHcYIb+mzzfS5jTfEgXqWt43IET1i/JNVfjXMQMpp8k+IB
38zXO+F16X2qYN22JJf1LYL7VzfnT862o+vj9cfVHjmQfoD1CYLP4et8aN3k
ueviJTFZT1gfPa5XxdermHXLd3XvI6M5diYhzje6WB8Z9RUpOve/KM/6Qahu
ZH/m5bVdrI8M/OfKXvJVAay/CbyntEdPvQjW3wT++oL652of1t8E7svXUWC9
Ard82B7xw5H1i1FervdVW8UerI8J/MxF1W/bylm/GMU/3jBlbC/WxwT+YPLl
uMp6D/IM3j7ApKRugRv5QVy/5uxWHHKF+QGPSzu7V/sq60sC33yice3Uuaxf
huadnBm3ePBy1pdEdQL/vBFLkGX9MuBv+boCeACvHW1Q7dDBPICv7ArX1cli
/VxUL7FmaHZiqi95oP4PQ19566tsnhL4G9uQZ5Gp7nS/eP36r5eiOz+y+wXP
WVFnZRLK7hc8ZP79gvZEdr/gEo8nOhuGs/sFX8nv79PzK89FJiy4FGjP+qfA
Px24Uj83mPVPgZsMlxPS/sH6p8Cblj89/mWsJ8WP1+k3/HvCFRHWpwC+znDU
0dEyrB8E/OYpQ3f3oaxPAbyO3zdHnOBDG65W2m5jfTHgusZZRsZarJ4ffK72
t7TjR7woHlwvc2tsr/LTLB5w14N9FzQeY/GAW/D7y9RnzfNbXvW7ZimxfgHw
qRsGxjS6edP18XN1R9Rl76Sy64Mv5vdVcR3wU2EBJcuifeh82qfj9w1fdcuD
DeXzYFSXz69b080PtG0SK2R9eTw3OPLjeO4Xl//Ig5XweTBcB3/Hk/O/t66U
ZPMlwF/LX1ISa79L1wcP+T3C0lfWi65P8ydGZMa1N7n+Rx5sE58Hw+vi70ap
sOadzQ42bwE88vmMgwdV2LwFcJl3Vwe6P8ykeMDFJ6+xktL3o3jAJdYW5jgN
8aJ4wP11OJ9s2f/MgznyeTDESfNdGh5qp0uwzwvwUZ+C95svYvMKwHNvvHUK
0GLzCsAr/CbtOtMnheKneWlT4/bnWgdQ/OAeA6+Jby/3pfhpnmvU+MFhtp4U
P/jhgRFFWoP+Mw/mzOfBcF/4u8moMtnyaze7L8o7FVTv6aph9wUenbo8Sao/
61sH19l+uvbkITYfAHxR+NO9gwYm0v2C3zik9SThcBDdL7hL3Mno/Z5sfil4
7JM257F+PnS/4DWHVyYalbP5peAb/eUtX0S7/kce7DyfB4MH/B1beGg1yDgx
D+A3emjIiv7DngfAvyWPfHDImnkAjzua+En6IuvfB9ft57+pSZr174N3PpCb
lTg1jvxQ3exwZxvFASHkBzzKZeShV1KB5If6/tXnTVeIZc+x4KGC8riInWzu
KPjQ9R4jzHqyfnzw5tGpZ1Sm/2ce7GW3fnysW93njoJ3nzsK3n3uKHj3uaPU
R9ht7ih497mj4Jg7Ss9bPO8+XxS8+3xR8O7zRcFndJsvCu7Tbb4o+Jxu80XB
R3abL4q47Mb5Brm9fULxgxtZj9q1KIM9xyLezDHDJaS+M//giSPGBA7fdo+u
Q/NT1/48zkWwfm3wo851KqMvhdL1cd8icbXDDvRnfabgqRKxg2cbsv5HcNf1
GscGP79DrwvuP189ccVF1r8MrsTNepSixPqXwSc3Ge1PcgumeODb6GuB9PJh
LB763imeP3GWG4sHPEP7/bozP9hzKbjbPtlhT9zY5wj4UB+ZXOW57HkbfLyG
vrjuTxYnPSfseFARvY71/4KXaxkKz/4WSPHjfTFips+RGdIsfvC4kT0m7b/F
4gdvzvnZsFmC9ZOCH2+TXqlVyfp2wVuPeGlaBbLPF3DznP2bu56w+6I5SQab
hFW8WL8t1aEtcorb08juC/xNa9fdCEfWbws+Wdr5zFGnALovvN+3TfXkKu6w
+wJ3CtbTejib3Re4ZvmJI+MHsT5ZcNNvJq+/1bDnT/BHYlpJQb/Z5wt4wKkB
Lbt3sL5X+r57d++kzqms7xV8dWz+CclTrO8V/O7XDM9jMqzvFTzo57J9h6RY
3yv4l8mPLqRuZ32v4OhX/X+YXViv
"], {{
{EdgeForm[None], GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJwtmXf8TuUbx5/n3PdDSMgKaRkNQohEtgqRjIpQiVJmRvxSGsiISqnQTpui
hSg0aBhRRpIIkVGRssfv/Xl9zh+X6/09znOe55xzX+tzn9utX9u+SSaTeZ5/
Av59fBH8+mwmcyp8KXwxXACuCVeG88M14EpwUbguXBMuAzeF68Gl4SZwXbgU
3Bi+HL4OHgc/BJ8OXw7XgM/ny++Gr+bYGVgjuA7H28Bj4QfhInAduDqcD64O
XwSfB7eAm8A7dV34BPZH1vdyDNul34rP4PdgxcGI344VhIviO3KdifBY+G/8
79g27EKOt8W34PglcEe4LXwKfIn+Hz4Xbg43hi+C28Et4Qvg6+Dm8G6sGJzg
a3G8H3w7XBPuA3eHh8Kz4Lfg++HZ8LvwA/BceCY8Hl4MfwpPgJfAn8GPwAvg
2fBY+HP4E3gIPBN+Ex4Oz4Hfg/8Hvw+/DY+BF8Fz4dHwQngO/BA8T+sCfhD+
BJ4FV4Fvh7vC1eFecDf4ssTvsSdcDe4J3wJfCveFe8A14N7wbXBtuD98B1wX
Hgj3ghvCQ+H+8M3wZPhxuB48CO4NXwEPhvvADeAhcD+4PnwP3Bf+XesYLoLf
pnUMF8Jv1TqGC+Kf4vxP4Y/gJ+H58IfwVPgLeD48Ap4Bvwb3gZ+GH4MHwS/A
T8OD4RfhZ+CH4enwNHhK+i7mwXfDU+En4QHwc/BT8ED4eXgSPDF95h+k71Hv
6B14JPwu/DrcDr4PHgS3hYfBA+Hb4PHwSPjWNNYehrvBj8Ij0vf+Cjw1jcd7
4QHwXfCT8KPwOPgDeHrWMal3eif8KPwhPAPuBT8Fj4d7w5PgCemaeQd+Fb4X
fhV+Dr4Pfg1+Ad6s+IHz4rconuEC+L+wknA+fJbzL4TPg/cpj8Cn4ROOXwSX
g3/F8sABvxHLKcTxv2ARPoltgvPic/gNWee549ifcAl8HvzPui58VOsVmIJ/
QufCleDyuh5cGa4AH1LMw6Xwh5WD4NLp+r8V7ggPg6cpt8J14G5wJ/g4VhE+
C/8fVhYugd+PlYFPxx/DKsBl8f9gpeHC+KNYefhM/L/YmXAx/BGsHFwG353v
mgCPgnvCL8OT0/WgtTcR3h4dY2Xwv0fHT2n8H1hjuCx+W3QslcJvio7VYvjf
omO1BH5LdEyWxO/GmsHn4HdgjeAz8buwpvDZ+K3RcXsGfifWBD4L3yf63t7i
5fSOvp834V7Rz/cN+Axe7jTOv4Zj7aPf5USOd4h+30/C3aPf68vwDdHrYxK8
D76Gz1bAt4t+309wfDVcieP58H9hzROv98PwHfiL8QewG7Xm8Juxy+Hi+O+w
M+GTXOf26DX6CvwP3IrjFfF7sZZwefz66Jx4mr4/Om8Wwq/BKsP58T9hVeGC
+HXRefZU/FrsYrgAfj/WGj4fX4xn8oJ+s55BdC0pgi+ac02/Cv4vuo5eiP8G
KwEf53duiM7FhfE/YufDp+B/wCrCefH/YtfCF+BXYuXhnJ5rdA0riv8bawGX
07PHroLPw+/BroTPxa/CKsB58N9j5eCIX4adBWfxK7Bz4IBfipVVQOKXY2fD
CX5jdC05Xe8nOjZe5V56RsfPNPi26Br/UvC1r+cyrbN+xt3hzqoL/F9h5djE
174Bvjbr7+wAt4KLw63hZspJcBv4qqxrumL8RngX1/lBtSn4njrD7bLuYVT3
r876nm6E22h9wN/BX+h3w0vhL+EDWFW4Il4N2Zvwi1mvhTvgm+F+8FvwS2kd
UY59Be4Pvw2/nPU7vAW+Iev10gPuAu/Q74BL4g9i1eDzVTui88+CxDlN/cwF
WfdOym9n4PfqnuFzsl4XN8PXZ/0+u8Idsl4XXeD28E3R9fVZnsn10Xn5KbhL
dD2eAneN7r2mwp2ja/Nk+AR8D9eqrpiLzt1Pc/yW6N7uefiu6Lz5Otwpun48
A98ZnRNfg2+N7vlegLtF914v6py09k3h79OIkUn83VhrMLiGzsfn4VgDuBbn
nMRqw1VVWzheH7406xi6Fr4SLga3gpvqHK45ir/rqPjgL8NVy7pXbARflnXO
aA9fo7oEN4Rr6/fAV8L14cKKabghXEhxDDeAT+f6k3Ue178d/zjHR2d9X+pd
x8G7M+5ft2EHUy6EzeSczfj38LMS17u3+Wcr/i9sC3YgZS6T+Q/bpzqJvZV+
9qesj+3E/kjP3ZV+9l9sL7YH259+r37Lu3x2Ff47PvuO8h9cXHUt/by+f0R0
jSye5tcBHLtL96t4zrjWFAtez6odRYNjWXVnT/q927ETfKYWvgp+J+d8Be8I
nmc0CxzBnuP6q/FLOfZY8G/Tb9yufKH/x/8RfD19tnBwvKu2T0nv5dus38NK
+Bu4R3Tv8ifnLkz8XYqhRYnzzB6Of626p3uGVyaOL8XcisSxuZfj3ysf6dkF
P+fD6bP+W7GNPzvrez2k35Zx/E5XTEafq8/8lr6zfek7OpQ+nx+VOzj3J/z3
6XV2pM9NtWINfpniDV4OL1ZcwSvgJarH8CZ4nWIb/h7+Ouv6sxZerjoN/wqv
VQ2G18MrFavwRnhNmgN/hlcpJuF18ArFLfwLvFrxFZz31JMUD5411IcUCs5v
6kP6RfdS+zj2K5+tojUI/wlfAR+F1yZ+bv/A6xLnsf3wxsT59j94U+J8eAD+
PfH6OQQfU6+RcZ3akcbyEY5vTpwnFdPbE+eHwxw/mMas6tfRNCeoVp5Ic4Xq
6Z40hxzj/L/SPKNa/F8a+6qD90fP0uor9qZ5Q/VkSPRMfpDjf6d54wR8IM0P
qo/H05qlOvsv3CyTcSMcXI9Uu57l7xsS9zMn07qmul8wPf+KrHsixd1N8EPR
M616pFOD87x6jALwTRn3MPmDa596iTLK0Rn3fiE416m3KRs896nfyxtcE9UL
xeCaq97mtOD6or6iZPD8qB61YHCtUd3PBdd09UV5gmu3+iXlkgNpPrqM4//L
uOepETwbqod5NLq/U59XIXj2VK+ivx+C/8f9Xhicf9TPVAqeSdW/1Q6elTQz
lQqeedUnnxs826rvvSR49lRvdnbwXK++t2rwrKqesFzw7K++6OLgeVZ9aQ+u
+xj8SNa5U7n79zRHKlcqJ3+YWN9Q7/pxdA+hflh98QbFOCfNSzwrqSZ+lFj3
UJ88N/FspXo6J/Hso954pHIT3JzrjA7uTxSjj8Dfwi05PjuxZqI6/nFiHUP9
9ijsG7gF54yFl8Gt9JyD88a16h+Da5NqVGv4CbhKdH/9Evwsv/nKYJ2nMsev
h5+Fq8J9g/WQevArac1TT94nWNOoC48Lzlet4ZnRc7Lq74Tg/HwdPD/xDKWe
ZHxw7mqjXhUeA1dS3xGssTSEBwZrL/WjdSGtjXv5nZ3hkfD96nPgEfB9cCf4
YXhY1rH1IDwU7qrnCD8At4fvhwer7iR+5gvgxxM/w4VwF3gUPBzuAA+H74Gv
hx+Ah2huSfxeFmWtFeh9fQ4P4zd/BjdRbgzWDaQfDA3WE3TuiGC9SPPC4GAt
qAE8SO9VsQ8PCdZ5GkX3R3qnX3H9D6O1EvVL9wVrTU3hh4P1KM0a9wdrR83g
B4J1D9XM4cH6kvqWq4N1Cc2jveH34Ms53iFY56kGL0k8I2uOW51Ye9RsuCax
Jvm2anviWVh93eLE87J6/i8Tz8Lq/X5MrFVqllyV5m3V3G2JtcpZWuOJdQbN
bp+ndVm1+4vEc716zq2J9cyZ8JbEeuZ78M7Eut/7cMdoXWM3/FvWtT5/1rOG
+qP1aVyrN1I/pvqrnkl1+YfEeqbmXM2aipExnP8LXA9+V9dMa4HqToPgNam1
uT6xLvoOx35OrKlOhzck1mZnKKYTayaalZYrhjLun5cl1jTUM6vv1rt4Q2s4
WAO5hHvqEhynNeCbg/tnaUhvR2te6tW7BusMNaP7X63Dj7lOz+A5RZrQjcH6
g2aXHvAb8KWc3z143qmlnBA8y1ymWA+ed2pH9zLqR9XbfJpYJ9G8oLlF84vm
iHzYnfAn+CLBmpV6tt1YS+VOji1NrOdoTtyVWDf+QHGTWEvRbLI/sX77MZwE
6zZz8Uc43gmeA/+TWBP+CD6cWBOeDe9LXGdVr7PBfaNqbpGceybFRem0jszD
D4/WjvXZAVq7HN+i2pXmYcXsvcFz4lb8C9Fa3ir4+ej8slL3GqxV/qZ1ETyT
bsM/Hq1FfBWsFytOZ/B3/zQ2lR9ei9bv1ukaaR+gHuONaI1yvc6NnlXUIzUK
1gmX4Z+Jzk1L4Rej9ccf4DbpOlHOfz1aM/2JY5WD8+TnegbR+wd6L49F6zNf
wi2DtVBd581obfRnuEmwxrgCPyFaV/kCbhysQy7HPxC9H6B31DFde1pvDdMa
pHh5KVoj+5Fj1wTrt+J2wfqknsODwX2+ctfc6P5bvf11wXrmGnzbYH1vrdZ+
Wr9Xw62CdWDxtGidVOe0x17P+DlUCa4d+v0XpbGsHuTdaO14E8cGRe9zKM8M
jNYflQfuid6PUe4aHL0fo7w0Jbom6TkMiNYuFfujojU9zbazo3OTctRb0fr1
Br2T6L0Nxc470brtL3oO0fsfWv8zojXcX7U+o/dvFDtDo/dmlAOnR+ueG+E6
wXle/VL/aD1XOeruaA1XOWpitL60RGsqWsv+Wu8zWuP+Bq4YXPsW4ssH18QF
+CeidbDF8HnBtfUzrfPoOVBzQbXgeq119V60jr8ZviC4Ri/CVw+uuYqRmsH1
Wte8Irgf+w5fN1hX1++ZFF3Lv4UvD9bV9ZtvCa65yo3nBOvzn+JrYaMzvsd6
wdqsPls/eH5X7DwdXe/1Xc0UVxnHddPgvYbvte6iNXqtvbuC9ym0TrI57xUp
l56S816O+qV8Oe8VqaZrvtUsqNn/ZPSekPK5BHPtOSlvH4rWvtWDaf5VnjiL
/z8YvQejHinJeQ9JuTpPzntOqt19ozVr1eXx0XqgYnxctB6o55w3570l9Wxf
R+trmoNCzvtbyvPfRmttmms+i9ZfNLvFnPefVBfy57zvpd7sSLTGrX7yWLRG
pv6hZM7zp3rXBbrPxHPfqTn3W+rxFkfrLJrpSuQ8G6uPLZzz3KvepnjOM6p6
4y+jNRrNhoVynpPVa5XNWR9Rn3lmznOyessyOc/D6oGPR+t0qqcLo7UkzapH
o/U+9bpfRWs9miUL5NwjqjdbFK1JaVYtnfMsrV63VM4zs/rtgjn3herZ5kdr
fNITxkZrsIqdO4P7QNXiR6K1d63P56L7Tq2xzsF7TMoJ6le2ZKwRTY3ufZV7
Z0XvD6nWfBKtD0rTGBmt+auuSefZlrE2IY1Ua09rsFPwvphqyphgHUCzRovg
vTDVtZuC99qU85sH9wzqFYdF7yWr5k6O7rlVg+6L3m9WvZ4XraVKP1kSrc1J
B7g1eD9LOW1OtB4qTaZX8N6fcsL70ftbqr9jovcylGdGR+9fKLd0C97/Un77
KHqPUHX2Nv2dcW78IHofUfX6/yFn7Ek=
"]], Polygon3DBox[CompressedData["
1:eJwtmnngVkMbhs/MnJQkRbSrFJWoqIS0WQuRyBq+kpLly74kWhVZ26QF7SlK
CymhhErZylqkJBSRXfjku6/u88d05jpz3vM773lnnud+7qlWt96d/huzLLtM
/+Q6npuybLSO14mn6cR/xUvFQ8UlS+g68bPi28T/avxy8Vzx7dxE45eK56h7
q3i3xm8RrxA/KC6t8evEr4iHiPcS3yFeIh4hnq/rbxAvEN8vnie+VbxS/JB4
H10/R8dt4u1qz6rfW+PL1L9X/VIav1b8svgecQnxYh0rib8IWbZQ9ztT4w+J
r9T5ieK7xe+Kx4jL6/pO4lHia8VTNd5P/J74MfH+Gp+p4xbxt2pz1b9e4/PV
H6b+XF1/l/gd8aPicrr+HPFI8TXiKRq/SfyG+AHx3hrvKB4hvlo8WeN3it8S
jxKX1Xhf8dvi0eL9xP3Fy8XjxM/p+gvET4l7i/8nvk28SvywuIyuL6Xjsfru
bXRus/o365rjxG15J4yJZ6o/SedyXd889/0mipO4mXi6+AlxEN8iPl79E3Vu
iz5/jHiG+k/qXNR4U/FE8djg+dBE/CTvL3i+HKU2Vjxc/I/67ZL5P7rXLvGp
4sfEl4v/EA8WfyR+XFxB97tH/DHPIz5QPET8CX9ffJD4IH3mCnEX3f8L9Rvn
vt8jwe+nkdoY3o/4b75L7vk6I3g+3ipuof5JOvel7nmjuIn4ePEG8S/6e/XU
r6Vzr2jsZ3FdcU3xy+JdOtZTa6xz7+n623WurbideJu4n7iT+CLxn+K+4tPF
ncQ/i39P/iz3eFVj1/PO1D9W5z7R+K8ab6j+YTq3lPWpdoT6TXXuA43v1HgN
9Svq3Isa+1FcU1xJvIT1pXa0+sfp3Hpd/0Py+iijc4s1dp1aA/Wb6Nz7Gr9J
3FTcQvyp+BpxffFR4rXia8WHi48Wr+P76n5v8r7V31fv86Tc63Fh8Pw9JXc8
WRS83g4WXyvuLt6uflW1q8RdxV+rX13tGvEV4m3qV1O7WtxN/A3PonaH+Abx
b+pXVOsuvlS8Rf0qaj2ZX+Kv1D87eX5epef7i3endp94QPD8a6fzvdS/Wu0H
8SBd/6HGJ+j8AXreC5PXy/XR87dz8vwniDKfmiffr2P087QWPyK+kN9WXEnt
SuKt7v+l+g1zj98X/DwN1O4V9w+e/yfnjpcvBMeTyuIerA/xVvVrMgfEPcTf
qd9S7Xnx7OD40iJ3vH4qOH63Fr9A7AyOpyfkjt8zg+NnW/Fi8bzg3+/U3PF1
cXD8ayNeROwLji+txAvFc4Lj+1nJ672nvu+fGqutdiPxT+M71a+l1ptx8Q71
6xLjiV/iX9SvRwzj/Yp/Vf8Q1gC/l/h79Q8jp/C+xT+rX4M5SzwXf6t+HWIs
8Vv8o/qHqt1MPhP/pP4Zer4HmW96vidzx9jng+cosfcktXuYPxofz9zg+TR+
t87V0dgwnk/cjzVILhH3FQ8SNxSPVztY/YN07nKNDeF51L9T5w7W2ODcc5U5
W42/xfsR9xFXEd/L9xPfJT5EPJTnF/clxoj7iy8SdxUHvgs5QzxQfIS4vZ77
DvHtavdr7GFykvqDNd6YuUjOC/6OR4uPS362TvrcCI09oNZH4wN07nCNHRv9
7vkNyokH5l6brNFSyY1YdlT0GDGjjvjv4FhCTDpU/L/gWHV88nc5V+dHip+h
Bef8bskxiFhUWbwqOp5WVjukiDevkofV365z/yG2EGfEX4svEy9nnZKfeUe5
78G9fhL3EL8prkKsFffMfU/u/WdwbHtLXF38GzEgd/6sX8Q38uVWPeM69VcH
59/XyUPiHeIrWFtqf4nLqy2NjsHEYmLwO+I++vxL6o9Uf4HGvhSvES8P1j+v
kefE34m7EQuK8ck6/7x4G3ks8zvgXRDTie21inzzBnlQ/e91rnvumFxb/Fdw
rG6RPLfO0/lR4qdpwRqmq8ZaJs/t8zX+qMbOiY6NxDRiGznrdOZmkct26die
fKjj3eLH1Ubo+nE61z75Nx7EXMz822+PzqX7M0819m10bjmAd5N7Dg7U9cMy
z01yzhHq50UuImcdLo7RuWy4Wj9dP0TnmjIXo2MpMZXYS04ll1cpcu1P0dql
so53iseq3R+swdomf+chwRqRdzGONRGs4U4UTxA/FKyRT06OEQ8Ga0ZiR9do
bYOmQds8pvFh4uHiNskaooH6qdAW5PT6rOXoXI9GIDeXL7QDMWqUPj8hc+zq
Fa2tyGHkshuitRs5idx0R3QsJ6ajzdGU48STMmtNNOh48eTM2hSNO0E8JbP2
PSE51nXWfUbnrgEe1/jUzLXBLPEs8TxyanIMQrvUj45NaEK0Q+lorfiE2khd
P17nTk+ec4PFD2Sei/yNe4JjMn8bTT5a/HhmrT5DPEX8tPhitK54qvgZ8SXJ
Gg3ts0+0dpuuNlnjs3TuouQ1y9rdu9C+a3SsJv5V1/TK/Uw8yxXRz7pax6ri
X4hxuTVYvULvoJ9/VOuofkUd39TYTh3PJt7ruEr8q47nEdt1XC3+TcfO4uo6
rhH/ruP55AId3yrWz4XEdh3fEf+h4wXiGjq+Lf5Xx8vJNTquy5k4eu861BW/
L96t42XiQ3VcK/5Bx7PEB+q4Upwn66EjxB+KD0rOt62i9QMxndjeXLxJvF9y
fj5G/Lk4JevpBuIPiGXJ+bl1tJ6qkJxfT4jWWwcm5+eW0fpm/+T8f7x4s/iA
5PzcIlqfl03WL83EG3PHgJOCYwyx4W+1LurX1vFdjV2VrE/6R9crPZP1SL/o
eqVHsr65O7oeqcf7DX5nvDtiErGoW3Ss6p6sX+6Krm9Y08QS6mHWOmue3Nkl
OhYQI8j1l0THjn90vFRcR8f3xL2S5+pA8ezcOY210zc6141l3gTXlNSW5BBy
ydrMtd0kfkfxevFQ8dXJc32Qzs/JPadZSzdGz3XWAGvl5ui1wRohVtwUvXaI
6aztO6NjPWuWtd8nei2XTNbHjcSfiPdK1pcNxR+LSyTr1SPFH4kP1jt6JrqG
HZhc81D7UBN9TI6Ke8q+bKPOna+xheK9xJ+LL8hdM1E7EfOIfaypNuqXjF5r
G3VsJS4RXd9wDbVPFv1Z/kZz4b/Bf3uTuLV4Lx2XkX91LCnepPELxS+KS4u/
FF+S+5q6wTUWn31N3Cj4nl+LXxc3Dv6b34ifi/ZFPtO5zuosEe8j3iruIp4X
9zxatkF8bu5npjZrlPm74D/srf4WnbtYYwvinmmYfSo+L3dOGEhsi84VxH9q
xXK849zPdKq4bPGszIEFwZ4JcwNNwd/6PVhroAH4bn8EawPm4HzGMs/NHRrv
oH4FHVdobN9k/dxU/Jm4THI91kT8aW59h9ZrLF4vLp1cjx0t3pBbX/Hb/xis
3QZE1w6sUdYqGqgm7zJYG30kPka8W/yS+CvxKeJ9dVye+52fJt6v+C3wgJYE
ex54Qyuj6+2dOrcot2ZCO63O7CXdF12rLMvsDeHJvCh+NbNXM5x5FlyjUqu+
JC6j/lc6d2luTXJisKZBq6BpzgmO0cTq2dEe1GbxQ/r8nGQ9gadCfpmX/Flq
fvL3/ORYxj25NzVPz0JPH6qxZ5P1CZ4K+XJWcv6n5kcPLBCfkTkmEhufTtZP
1PDon9nk7Mw1OvoITflasGZEa+J5lQqeg8zFrWrN1C+j420a+1DHw8T/6Jre
4meS9RieB/qEmpLakpxQO/mdlw72DPgt5urcyZk9E/JvJfHt4jbR9ftdamew
Nsip0TUstSwewF2FXutT1C+sBTwCvAJq3r7F7zW/mO/8vtSs1K7EfLxBatC5
xXzD+6IGpRYlB+A9opnXiTdk1tLUxNTGxHy8OGr+AYXeRK9RA88s9E3vYj7N
KvTx9YW+G1joWXIJnhHeETU23ibzf3KhV1hv1PD9C/2Mt0UN/lShz/BWqbHn
Fetzz3zU9TWC5zhrZZHOdctc86GvOub2K1eJq+mzHXL7hW+IK5ewh4KXwpqu
oc+elds/XKFzVTQ+Jrn+KVvEw7Nz+5UrxVV5tmQ9hQdE/fZYsh4qV8S7ccn1
UYXgemuS2qPqP6FzHTQ2PVlvUTNRT1HTU9ujGZqQe5L1+yHB9dfUZH1fp9Bj
U5L1ce1Cf00TH8laCa7HTs/tby4L9vvOyL2WWdMV8Vtz51ZybPUSnnPMz6rR
c5EY0zA4BhF70AftgzUsWvb55LmKJ0e9sDC5viUGEAteEF+c2cOj/nmu0L/c
g3oiFp8/XPcdIJ6RrIfxyKi/RiTXd1mRTxbpulLCzeKLeJfJ9WqZIl8MT65n
d2fOF48k137UgOSbUcn1Xl7k15HJ9Wgs8u9ocUXyY5EPJyXnXnIw9TAaalKh
l4nXaCa8XDxgtBQx/txgDUbsX1/EQ94JuQFNcFawpkUroBnODtawaAk0Rcci
fqI10Lhti/i6q9CspwZr6N1FDuocrGnJTeSg84I1FrkJDXhycA5DG85HZ2b2
5L9K1pDnB2tmtCXxGn1Fzf6teIzGh4ofFrdK1mynBGtmtBweHPUj9Rr1FRq7
nfgcfrNkTXxBoSfRymhm9GXXzFoaTd86OIeh9dH8rYJzOLUAmr5NcI5H61Mz
NA/WQDuLnNwsWAORqytF5xZyDLUrmv6YYM2D1sdv2sp3V/s6WeN3CK450P5o
crxQNBxanRritOAahtoCDY83So5H26PJ8c67Z9bqxHD8nl6ZYzs1A94jmpFa
Ao2Pl4lmRPvjFxGriFnlkzU5ewnUp2h19ON4coN4W/IaZa2uLfIp4pH6dlLm
+pU9A/YOJmbee2JNXVzcn7WGh7yoyPfs5eBRLi7yPfqaepj6F82L9qVexp9A
Q6Olqaepz6n/qY+pAdjrwNOlNmDPgL0D6nn2WvB8qe/xN6i30fPoC/QJ+h2/
BD8PTw3/Ak+YvQb2IPCK8TTxNsmRzZI9YvxA/D/8FTzDp6N/U35bcvQJwTGM
3E2M2Dt4TRM72BN5JXiPjL0S9kSWBsdI9krwrF8O3oPDyyYHkAuI+fcn5xBy
CTHzQfHDat9n3mNjvZATyA3knAfE3yT/dt+obU+OwcRiYjB7MXjyePNoxMrJ
muLIYM2B1hiU21+/oZgf1DvoN/QK+flKjR8crElWRHv+eP9o0urJMZ5Yj96j
PiLnkfvIccOSP8O7+SH4XjOT/zZ7JPiPY5Pr//2D9R73oNaaGH1vYjKxmZiL
9r+PGKT+FNaixncnr1X21Kj/T8tdC/GOedftcr9rfhN+G2qkDzLPeeb+CvHQ
zJ4V3tU/yWuZGEAsoNhADxMziB0xdywhZhA7iPnEfvxFao+QO7YQc4g9rKHN
4qei1xYeOF44NfqRzOfk2EIMIZb8LW6ZOeYQe54lpwV7lNdo7PVkrxgPGS/5
jeT6GA8ZL/mt5LXDGqJ+YQ5tEs+InltvJns7eD54P8Tc/qyl6Fi8OtlrwwPC
C1pWjOOx47WvSY7VeHJ4c+8ke214ctTjbyd7c3h41OOrkv0cPEe8x9eS63c8
erz6pcn+Jp4+3j5rYKN4WvTaeDVZi6JJ8cKXJ9f7eOx47buStQM1I/XYymQt
iCbEu2QOfiaeGj03/0quJdHz1HN/Jtea1JjUN+R0cjs5ndqwQu7cQk4ht+CZ
XBLsweClsKdyb7C/yV4LmghthIbCuy6ZO5cS44n1udqZmXMmubNU7thPTiO3
/ZZcP1ITUxuTb9oV+QGvCw+rZfCcxNtaH7wHHov5h+ZpX+RH8tMO3a9cZg+c
eo8183qwRmUt4SGdGeyR4S2xx8ZeGx5R/eT/MzAmeA+J/0vAnhn7GQMy+7mv
JPuT7JGwV8J+B/fgs+xXsOc/PXhPl/8LcKD632WOp7Oi90TYG2GO1UtudZP3
/Rgrm1uroHHQOil3rkazoF34/nw3viN6Y414R+aYyBrfj98rs2ZCO5XLrZ3Q
MGiZ8rm1DBoHrbNXbu2BBkILlc79bsjh5PJ9cudyNBZaq0xurYXGQmvtn1sr
oXnQPiVyayM0Ddpm39xaDA2GFjsgtzZCw6Bl3tN3eDSzp43fRUwjtrUtfn9i
/ufqT4/OBWhytDkaHq/0g2Ttj2eLdztTbZr6s3WuS/KeH3t/eH4Nkvfo2KvD
86uVrPnR/mh+vFk0KdoUTwFv4cXk3EiOZO+MmoHaAQ3LXg41CLUIMZ29oHXJ
/heeM34ue4ZXFfmG33ltcu5HA+D/vZ/sn+Gx47V3KOJNj+japkvx/W6J/m4f
JmuJPZpC/EVy7kcD4DWQv9n7o0bqlLvGotZC0+NFoenR9tTP1OPsYbKXiSd7
VPKeFvtdtTLv71BzUXtRs+E9bUzeK2PPBj/vc/FzmffQ8BfZH2I/qGZm74U9
sCrBe1zsjZHzyH3UdHgfxCRiE54D3tMW3e+1zJ4L3gs5gN9ycHRu2JRci1OT
4y29m7wXwh4IeyGbk3MHHhVe1UfJ/iN7Duw9fJZcS1NT4z++lLwfyB4pe6UT
kp+Vd8C7WJysPdGg7C+yx1YteI+Rvbcnk/cXOcfYxGTtUD14/+vjZP+VPQ72
OjjHGJ9hr4w9YfaG8awbJe+5VQ3eM2Mv7uXk/TL2YNmLpcai1qLGwtt8PPla
3jHvmhqLWouaDC/yieRn5Z7cG82Ddj2u0ELtc2s3NBvajZqN2o0aES/10+L9
s+eBv7skWVuiMdk7Xp/sNeA54Ad/Ip6Wec+GvZsNyf4xeyj4wf8HWoyxvQ==
"]], Polygon3DBox[CompressedData["
1:eJwt12fYFNUVAOCP3aU3pYhBVFRKRBRDNYCA1IQuNaEaakI10owUC1WqiSAk
oSmgaASSgECkRmkixdAFBRUVkaagGETE9zzz/TjPveedM7s7M7fM3tFjcJtB
qaysrJ0ip6ieycoaA5bnyMpaLe+Vzso6Jbbor2evO/aF/CVxUX6DuCXO5xXZ
PaKMz2gmn6ZdJL+kpogope5dXo6VFXc63kQ+Wfui/Gs1hURJde/wyuwXorzj
LeXPae+U3yFK6zdik7T3ye+Nz9RvzqZrS8p/Jm7Vr8/GayuI38Q5vmOimC2/
W7RmT8kn+d4HnHNbnBetYw0cm6DdqC3k+Gvaf4g2rLSa2yP0G7KJ2vXp5JzT
meRY1GxOJ9d5jpXX/3ncJ/3ubEb8Dp/bJO6buCuuz7HGjj2rrSgeiWtXN0dd
Y8eriirxOY61cuzP2v3yXnGd6qaray5fHZ/F6rOm7Ir+2+nkHn3tnEr694tN
6eT7zmaS5xLPZ106uW9fZLLvhXgrnTzXrzLJ/Y77vkO0ZUN9x2jfUUte3PGa
rB/7gxgr38nbs+HyJ9U9KC/Ba7MBbAgrym5itVh/9hgrwramk+d/KZNcd1z/
tnRy7d+wavrVxV7RlY1x7gTnNozx4/ijbCFbyjqySiwG/Xz2MuvA9ogubDQb
zxrE9an7PZvDFrCWbJ/oycaxaayZvKi66qwPG8QKsf+JHmwsm8qayt8T3diT
Mf5YI/l20YYNYaNYzXgmPm8wW8BeYe3ZLtGJjYz7yR6S7xad2Sg2jtWPMe/c
OmwQG8aKs5vZg2wgG8qKsSJx31hvNpAVZBvTyZw6k0nGYYzHKvoj2Cvqlqvr
ykqJW6J17KG4F9p35R30R6h7Sl2dqOH12KNsBCvBKrPh7GW2RLwq38JbsIuZ
ZL7HvK8g7o75wJo6NlX733TSv5BJ1plYb+7V78tm+6wXxIvyDelkPn6ZSdaK
WDPWRMsaqGnmt3yfSsZ+zIFymeT7Z2irisf1l6pboa6b4/ljvLOurBfLsBti
LLKerD/Lx26M81kvNoAVYPliDrMurCdLs3dEOzaMjWG15Xnjmlhn1kk8LS8Q
axvrJu8d67O6wqwy68H6sfysYMxl1p31YblYIXY/e4T1ZblZSVaXDWbD2U2s
GKvB+rLBrHD2/P1lKvkd8Xs+kq+KscVqyhuou6j/Kz5Pu5sdZGPV/JrNZ3vY
ITYu1j42l+1iB9gzsY6whew9doRNiGfLFrC97DAbz/LEmsk6su7sun5uVk7b
gXVjP8Yax57XrmJvxD5iM2vIXmDb5LvVjfJ5Z8RH8twiT+xxca1iXCoZjzEu
c+ZMxumwVDKmYmz9GGuymMN2yPf6vDGxlsYex/azffHdMZbEYnZAfkzds+oe
ZkvZEXaCTYvfIcayxWwZ6y9vre4VdpgdZ1NjnWMvs0PsQzaFfSwmx17EVrI/
ylfGWsSqstrsjP4J9ox2UezdrJ/8EzGFvc5WscfkfxEfyK9nvwe8EXsOO8qu
xrgVK9nzOh+yHCIXWx37DzsmvxZzQ6xiLXWWaA/yD9hkNddjTWC12YNip5p/
xbyJvV5eU93pVPKMPpbnE3nFb9VlYk1yrG2MSXU/6KdjD9a2Zh3Zd7E3Ofc7
eXlRie1hOdTdFr+JtWff6ueKvU7bnnVl1/RzsjLadqwLu5pKLuhWbQvWTvqN
/vcx/7X1WBN2Sj8V+722FevALutfi/1M25i1ZOdTyT0opW0e61Dsmc67GvOQ
NZQ3V3cu1jh2WV5O3Mf2sisx/7V1WWP2eeyJ8WBiLWM1dA/Hewa7IL9d3BZr
RyYZpy/F/i/fIm72kM+r+0q/dNwv525PJe9IHbWPsz+Jy5lkje2TSt6Z4t3p
ivysc0/pl4jvce5mx79lubTVWR32YezPLKe2WjxzdjzePdiPcV3i3lh3fN5l
ltuxGvK66k7EfhBjJp6jqM4Ose9ivUsl4yfG0Qjn/j/WO1ZH3kjdZ/r/jj1O
W4XVYl/qn4xxrl3J1rMn4nfEewhrwlqxC/r/jDVfW5FVY5/q/yfeJbRtYn1m
eeUrYn1n97Cq7GTMedZbO4HNYC3ky0SGlY3rZR/ov8p+kN8az5gdjD2HXZWX
EmXZgZjfLKW9i93Djuovj/0inhWrwj6JuczS2jKsIjsWeyy7Ii8p7mL72Gss
h/ZOVoG9H3s7+15+iyjD9se6F+uEPH/MQ/Ymm8tOx1oY72riLTY/1lSWEsXZ
FvZX9pn8RlGQbWAL2Fl5RtzEtsZ6y76NPMYp280WsnOxtsTYYtti7HjGo7XL
Yn1lvdW8EfsZq8Uaskv6s9nJ+M743Wwdm8e+lGeJYpq32Rz2qbywKBD/a9ja
eN/QNmVtY0rJ30wn7zenMsl/ifhP8TfxuZqiOZL/Axuzx/O17LkWc269+k+j
1rF18rfVPS2fKY7L07H/sDXx+9VO1K5hG9lANTXZBLaabWAD2CHRn01lM1kb
+fvisViT2VzWKZ3sZeNTyR4Ye+EK+VE+hM2Uz1PXWT5LnIi9TuRhax1voHaW
divbxUaqacRms+1sDxvNDop+bAp7nj0sPyIGsunsBdZOflgMYNPYLNY2+z2n
QipZ+2INPBB7Jf8mnk/MB3W7svfzmalkrYo1a6X8AfFUzE/5WnV9nVeXTWcb
2TY2jNVjM9gmtp0NZ3XYNLaBbWVD0slaUiCVrEGxFr0V78liair5r7tF3VA1
NdiTbAVbw/rEuGDPsc1sBxsRe6AYymax+axL7JViZMwdtpj1iH1WPMH+zhax
36WTNft89n4X+97a+G8kJsXYlG9SNyjGjxgV45otYT1jHRHFWSPWgp3V/wkP
Mdn7
"]]}]}, {}, {}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt0rkrh3EcwPHHfV9JKSJ/ABsZGGVgkgxsZGCgZGA0iM3GX8BKYlds7vu+
EnIt7jNe3zK8f69P/b71fL49T0lrd0NXTBRFg3pVmB91oenYKMrmHIu5yjKe
sJoPrOc3W5gWF0WdLGCh+s2VHGYtx9jECbZzlr1c4A2v+a5NPeteixba4hK3
ucwdrnA37MQ9rnGf6zzgBjd1aN7iEbd5zB2ecJen3OMZJ93jhh8610u4o0bs
tsEBzrOHM2zjOBs5yhoOsYLl6jPns4MpbOanZ9TxjlU8Ymm4F4t45dwl35Sl
p3BWeXbMZC4zmMP0cIZpzGBqeAdMYTKTlGxOCDPjmBjeMRP4q3j9hP/0JWtE
U35u/7+HP733Sug=
"]]}, {
Line3DBox[{690, 997, 473, 689, 1107, 912, 691, 1108, 913, 692, 1109,
914, 693, 1110, 915, 694, 1111, 916, 695, 1112, 917, 696, 1113, 1003,
1206, 697, 1114, 918, 698, 1115, 919, 699, 1116, 920, 700, 1117, 921,
701, 1118, 922, 702, 1106, 1119, 923, 998}],
Line3DBox[{704, 1004, 1207, 703, 488, 705, 1120, 924, 706, 1121, 925,
707, 1122, 926, 708, 1123, 927, 709, 1124, 928, 710, 1125, 1005, 1208,
711, 1006, 1209, 712, 1126, 929, 713, 1127, 930, 714, 1128, 931, 715,
1129, 932, 716, 1130, 933, 717}],
Line3DBox[{719, 1007, 1210, 718, 1008, 1211, 720, 504, 721, 1131, 934,
722, 1132, 935, 723, 1133, 936, 724, 1134, 937, 725, 1135, 1009, 1212,
726, 1010, 1213, 727, 1011, 1214, 728, 1136, 938, 729, 1137, 939, 730,
1138, 940, 731, 1139, 941, 732}],
Line3DBox[{734, 1012, 1215, 733, 1013, 1216, 735, 1014, 1217, 736, 520,
737, 1140, 942, 738, 1141, 943, 739, 1142, 944, 740, 1143, 1015, 1218,
741, 1016, 1219, 742, 1017, 1220, 743, 1018, 1221, 744, 1144, 945, 745,
1145, 946, 746, 1146, 947, 747}],
Line3DBox[{749, 1019, 1222, 748, 1020, 1223, 750, 1021, 1224, 751, 1022,
1225, 752, 536, 753, 1147, 948, 754, 1148, 949, 755, 1149, 1023, 1226,
756, 1024, 1227, 757, 1025, 1228, 758, 1026, 1229, 759, 1027, 1230,
760, 1150, 950, 761, 1151, 951, 762}],
Line3DBox[{764, 1028, 1231, 763, 1029, 1232, 765, 1030, 1233, 766, 1031,
1234, 767, 1032, 1235, 768, 552, 769, 1152, 952, 770, 1153, 1033,
1236, 771, 1034, 1237, 772, 1035, 1238, 773, 1036, 1239, 774, 1037,
1240, 775, 1038, 1241, 776, 1154, 953, 777}],
Line3DBox[{779, 1039, 1242, 778, 1040, 1243, 780, 1041, 1244, 781, 1042,
1245, 782, 1043, 1246, 783, 1044, 1247, 784, 568, 785, 1155, 1045,
1248, 786, 1046, 1249, 787, 1047, 1250, 788, 1048, 1251, 789, 1049,
1252, 790, 1050, 1253, 791, 1051, 1254, 792}],
Line3DBox[{796, 1156, 954, 794, 1157, 955, 798, 1158, 956, 800, 1159,
957, 802, 1160, 958, 804, 1161, 959, 806, 1162, 960, 808, 1163, 585,
810, 1164, 961, 812, 1165, 962, 814, 1166, 963, 816, 1167, 964, 818,
1168, 965, 820, 1169, 966, 822}],
Line3DBox[{821, 1268, 1064, 819, 1267, 1063, 817, 1266, 1062, 815, 1265,
1061, 813, 1264, 1060, 811, 1263, 1059, 809, 1262, 584, 807, 1261,
1058, 805, 1260, 1057, 803, 1259, 1056, 801, 1258, 1055, 799, 1257,
1054, 797, 1256, 1053, 793, 1255, 1052, 795}],
Line3DBox[{824, 1065, 1269, 823, 593, 825, 1170, 967, 826, 1171, 968,
827, 1172, 969, 828, 1173, 970, 829, 1174, 971, 830, 1175, 1066, 1270,
831, 601, 832, 1176, 972, 833, 1177, 973, 834, 1178, 974, 835, 1179,
975, 836, 1180, 976, 837}],
Line3DBox[{839, 1067, 1271, 838, 1068, 1272, 840, 609, 841, 1181, 977,
842, 1182, 978, 843, 1183, 979, 844, 1184, 980, 845, 1185, 1069, 1273,
846, 1070, 1274, 847, 617, 848, 1186, 981, 849, 1187, 982, 850, 1188,
983, 851, 1189, 984, 852}],
Line3DBox[{854, 1071, 1275, 853, 1072, 1276, 855, 1073, 1277, 856, 625,
857, 1190, 985, 858, 1191, 986, 859, 1192, 987, 860, 1193, 1074, 1278,
861, 1075, 1279, 862, 1076, 1280, 863, 633, 864, 1194, 988, 865, 1195,
989, 866, 1196, 990, 867}],
Line3DBox[{869, 1077, 1281, 868, 1078, 1282, 870, 1079, 1283, 871, 1080,
1284, 872, 641, 873, 1197, 991, 874, 1198, 992, 875, 1199, 1081, 1285,
876, 1082, 1286, 877, 1083, 1287, 878, 1084, 1288, 879, 649, 880,
1200, 993, 881, 1201, 994, 882}],
Line3DBox[{884, 1085, 1289, 883, 1086, 1290, 885, 1087, 1291, 886, 1088,
1292, 887, 1089, 1293, 888, 657, 889, 1202, 995, 890, 1203, 1090,
1294, 891, 1091, 1295, 892, 1092, 1296, 893, 1093, 1297, 894, 1094,
1298, 895, 665, 896, 1204, 996, 897}],
Line3DBox[{911, 1002, 685, 910, 1309, 1105, 909, 1308, 1104, 908, 1307,
1103, 907, 1306, 1102, 906, 1305, 1101, 905, 1304, 1100, 1205, 904,
673, 903, 1303, 1099, 902, 1302, 1098, 901, 1301, 1097, 900, 1300,
1096, 899, 1299, 1095, 898, 1310, 1000, 999, 1001}]}, {
Line3DBox[{251, 474, 1107, 252, 488, 280, 1211, 503, 295, 1216, 518,
310, 1223, 533, 325, 1232, 548, 340, 1243, 563, 355, 1256, 578, 1157,
370, 593, 385, 1272, 608, 400, 1276, 623, 415, 1282, 638, 430, 1290,
653, 445, 1299, 668, 460}],
Line3DBox[{253, 475, 1108, 254, 489, 1120, 281, 504, 296, 1217, 519,
311, 1224, 534, 326, 1233, 549, 341, 1244, 564, 356, 1257, 579, 1158,
371, 594, 1170, 386, 609, 401, 1277, 624, 416, 1283, 639, 431, 1291,
654, 446, 1300, 669, 461}],
Line3DBox[{255, 476, 1109, 256, 490, 1121, 282, 505, 1131, 297, 520,
312, 1225, 535, 327, 1234, 550, 342, 1245, 565, 357, 1258, 580, 1159,
372, 595, 1171, 387, 610, 1181, 402, 625, 417, 1284, 640, 432, 1292,
655, 447, 1301, 670, 462}],
Line3DBox[{257, 477, 1110, 258, 491, 1122, 283, 506, 1132, 298, 521,
1140, 313, 536, 328, 1235, 551, 343, 1246, 566, 358, 1259, 581, 1160,
373, 596, 1172, 388, 611, 1182, 403, 626, 1190, 418, 641, 433, 1293,
656, 448, 1302, 671, 463}],
Line3DBox[{259, 478, 1111, 260, 492, 1123, 284, 507, 1133, 299, 522,
1141, 314, 537, 1147, 329, 552, 344, 1247, 567, 359, 1260, 582, 1161,
374, 597, 1173, 389, 612, 1183, 404, 627, 1191, 419, 642, 1197, 434,
657, 449, 1303, 672, 464}],
Line3DBox[{261, 479, 1112, 262, 493, 1124, 285, 508, 1134, 300, 523,
1142, 315, 538, 1148, 330, 553, 1152, 345, 568, 360, 1261, 583, 1162,
375, 598, 1174, 390, 613, 1184, 405, 628, 1192, 420, 643, 1198, 435,
658, 1202, 450, 673, 465}],
Line3DBox[{263, 480, 1113, 265, 494, 1125, 286, 509, 1135, 301, 524,
1143, 316, 539, 1149, 331, 554, 1153, 346, 569, 1155, 361, 584, 1163,
376, 599, 1175, 391, 614, 1185, 406, 629, 1193, 421, 644, 1199, 436,
659, 1203, 451, 674, 1205, 466}],
Line3DBox[{267, 482, 1114, 268, 1209, 496, 288, 1213, 511, 303, 1219,
526, 318, 1227, 541, 333, 1237, 556, 348, 1249, 571, 363, 1263, 586,
1164, 378, 601, 393, 1274, 616, 408, 1279, 631, 423, 1286, 646, 438,
1295, 661, 453, 1305, 676, 468}],
Line3DBox[{269, 483, 1115, 270, 497, 1126, 289, 1214, 512, 304, 1220,
527, 319, 1228, 542, 334, 1238, 557, 349, 1250, 572, 364, 1264, 587,
1165, 379, 602, 1176, 394, 617, 409, 1280, 632, 424, 1287, 647, 439,
1296, 662, 454, 1306, 677, 469}],
Line3DBox[{271, 484, 1116, 272, 498, 1127, 290, 513, 1136, 305, 1221,
528, 320, 1229, 543, 335, 1239, 558, 350, 1251, 573, 365, 1265, 588,
1166, 380, 603, 1177, 395, 618, 1186, 410, 633, 425, 1288, 648, 440,
1297, 663, 455, 1307, 678, 470}],
Line3DBox[{273, 485, 1117, 274, 499, 1128, 291, 514, 1137, 306, 529,
1144, 321, 1230, 544, 336, 1240, 559, 351, 1252, 574, 366, 1266, 589,
1167, 381, 604, 1178, 396, 619, 1187, 411, 634, 1194, 426, 649, 441,
1298, 664, 456, 1308, 679, 471}],
Line3DBox[{275, 486, 1118, 276, 500, 1129, 292, 515, 1138, 307, 530,
1145, 322, 545, 1150, 337, 1241, 560, 352, 1253, 575, 367, 1267, 590,
1168, 382, 605, 1179, 397, 620, 1188, 412, 635, 1195, 427, 650, 1200,
442, 665, 457, 1309, 680, 472}],
Line3DBox[{277, 682, 683, 1119, 278, 501, 1130, 293, 516, 1139, 308,
531, 1146, 323, 546, 1151, 338, 561, 1154, 353, 1254, 576, 368, 1268,
591, 1169, 383, 606, 1180, 398, 621, 1189, 413, 636, 1196, 428, 651,
1201, 443, 666, 1204, 458, 685, 686, 687}],
Line3DBox[{459, 667, 1310, 684, 444, 652, 1289, 429, 637, 1281, 414,
622, 1275, 399, 607, 1271, 384, 592, 1269, 369, 1156, 577, 1255, 354,
562, 1242, 339, 547, 1231, 324, 532, 1222, 309, 517, 1215, 294, 502,
1210, 279, 487, 1207, 250, 473, 681, 688}],
Line3DBox[{467, 675, 1304, 452, 660, 1294, 437, 645, 1285, 422, 630,
1278, 407, 615, 1273, 392, 600, 1270, 377, 585, 1262, 362, 570, 1248,
347, 555, 1236, 332, 540, 1226, 317, 525, 1218, 302, 510, 1212, 287,
495, 1208, 266, 481, 1206, 264}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJyE3HdcT///P/6KSkSpJDITkiINUbmXhpHITC8NK5EVURLtvffee+8hjXt7
D+1UojQopElG9XNxHnwuP5fL+/L9y+Vyu3Rxns/rOedxHud2nuex+Yru6Wt0
NDQ0G+hpaBb9+tfRKkeYZZJBetbg+UkOvzHkLb6zsLDwWfp6PW/V/faP4JY3
diL8xwAKVXz8nR+3cNuz6PZLYBR8tWnl4y7M4vnxO9+tqiQanFsNza40fKJr
mzFPdv53rnCld9M20QKoXGYfdkWyGk0kF37n/wlxe7+wSgdah1z+1KkSlAmi
cn3GT/J0QrEwxdmsq+ORj5zVVA5uPEbj68LgZeYKFbe6bJR9TeXrXdoOTh7y
hVRt0faqyHS8N0rlNDcbI47/5w4mQsmcN9cno9cElT957Phiq4MDKPXP5gvf
jsP5GSq/EBN/ibHICiwPveeIqIjCjlkqr+cpN5K3NoP2PSelsC8c8TuVlz7g
htl8I1j/7raVw+pQXPGTyitE0mK+jOlD6oPIV1WHA/E7ydtuR/e7PGaU1n38
OvH5mZfY/eEB9X3nDSwbaCag0SIsqSCxA89+/PA753Ow2nd7aR90pfCZPC5o
xr3F33/nKztbY15cboaXZ4UWdVbUYtIGynm9uKmvZmY5XGv1kGP9rxw1Bant
nqs2Fb+tlwcH2g6LuNsUoYAPla/oDnkT1JEOxvWZj65O5KJEBZWXD+xepbAp
Hkzpi4xDNmdh4ysq/yC+FtzPRIAEW+3pnQ5pGDdC5dceXAtztQqE5lTawW2B
ichDnLOOsare4veGuG2z+tMXYjGPOLe/Km7mCXGDXecO1W9diMQk4nzV3U6j
x8UBWjVrEvYfD8cI4qzyLvObk5M1KDce9O8WD8GfP6j88JYprXO55vD6eq6R
cGAAjhFn/taTEh9oGKX1UlTx89FKlNr/5Hd+qXHKwOrBBJzSffl6zKQGS89S
x/Pb9o9xZ937IcXAZvze7SpUiaKcF5ambvHc3AZ+BeFvb1SU4WImyvkpv/gl
Q9oaGDm94s1i8WKc3kxtty7nfkuaYTGEr1a3inych5puVJ7XvjND+HkOXKep
yQ0pyEbRUioXuzj44YFCGnyXSa3fTZ+BfD3EbX5G7P2SOGAI5peMF03B3PdU
LnEp+BrtvghYOGT6UN83Hn3Gqfw0P69eq1QQ5KUf0Zh+F41axFntpxr/w+M+
kB8bysk6FoEGxPm8a9mTE+/dwfWBFMM6szA0Ic6cvKqVzgLOEDyd3bJ9PggH
iXOHl3HA1ZV24JzHHqsf64+vifOzn1tOKAQxSF9jC2SeU3uGbCxmv/PIUQ2d
t2cmgC1xoCWJCTFq0aff+ZJNDvnvF/phZdN8V8ErRJssypnu6Y2NItfbIXXX
Zhd/+wKkW0Q5t7xVau83qYN7w3SmQlzPMYqb+Cy+YrwhtBTuxa6pr/LORmEn
cr5b1GVeksuDySD+6JE7GZhQROXqzFEvM3gywXmc88Tzx6kY0UXl7MpGdiWx
SbBrWY6G6c8ErH1H5bwT6Hh1Jhp27Dj3rUAhFumIs4hJlZc+fzgMVht2e4lE
IQNxfmSUn19zIhCkOjy/n48Nx33Eec/xYvaI5T4w5tGiH7YiFFWI88/xtqwX
zB7gmRW5Ws04EKuJ8ymWzSYuw86g0c44kPrYD2uJs4ehTOszVQbpFY9259Vt
ScT36yx/59LVqYUPuCdgjldxQCU3A71CKWdtryt0q2nfwocb+etOlGShYRvl
bEyb3BTa1w57r2942+6ZhaMMlLO2jnLanep60FCM5TkqlIl9a6jtmn1/MLro
cxl4cd2r8TiRjpP2VM6Xcq9OLaEAKprq3DXSUnCskMpf04rzvZTIBmvjqx/P
0yTivZdUvrVjdXbRujRI25L5sjcrFueHqZxt6r2d1WwcXNzUWczVEYVGn6lc
a8Lnq21mJGRvns/r04jAhGkqjy5Jtn/tFQrLi3e5xMiE4fevZH+dT1v5KcEf
1j2a17w3EIQCf47nzBNrf27whuzqmz5Q648JxPn5XuX5fA932DzUmhexyRez
iPNaT8uZ3J0M0nvcFzHTLQ3HGC5r6njroX1F934cdG3k5054xaH2mrHfudSQ
X+KN1/1w/uJpscW5STg+QzmPpAjOenxth5xzGiuHF5JRi4Vy3r9LXGeLWgO0
Zqpd0zuXjBvI8TyXtJFtMLEcniumYrdrIp4gzkWJR1zcRRDGDh6+zKEYjzTE
WVtm7UOVtByIljp9bs1gDEZ1ku8VUq95XzcdDG8b80Z6RKEWcd4C7BLNyonw
ovvkrom7EbiUODcmvLH8iNHwrnyjx3mLMLxAnG0Xnbv+3C0ces/lNskFBmMp
cTapMm0cKAwC9UaXV68CApCOOJvr3P/5utoXHr8oTZT45otOxHnnO878jLee
cPpZuf7eRG8MI85bmCPWfGRmkH62vo63KcsHU3RtfueGBx+89sNx8D3Zf8b2
za9xSZ9yTn4A0xuy+iHg8jUxRf0orGWn5hs0fls7rw20A62Fb4T0/hgUWkM5
5yq/l/1q1wDzQY0nC91icHY9td2gssZC2mUVcN3vqYb4RDRWEue0SfNw341F
sPFr4q28oigsKKDySxxMH6rjnoHB4LswpUORuJc4+/f8nJK9nAHN68PFPbLD
8ecQOV9qi781sSXDmc6XxuX8YZgzRuWXv9/8JvZfLCwvT4pKuBWMa4nz1vQy
tVCaSJCZe1HhUhCAHsS5cijZ/IhSKLw8nVi1+bgfvv5G5Ucd3vJqMwdASqys
Z/A6H9QjzjN7W7qXD3jDg5tfxOW3e6ETcZYJ7Evb+pVemrNXQ6Ig0xXPXrL9
nQ9e/aapGDIOfvT3/D2W+yFzPuUs+EPKfZ1TP2yKX8WePB2MrwUo5wc7JLQn
sR3Kg1xZjErDMI+HcuaMN6s2tWiAGI0183Z24WhCroOZ9AEtqnsqIK7TNE3U
IRxHHah8VtL1SEF4EeiOvBF0ow/HceJ8eyLdZ0AhF3oPiOX67gpDTuL8jNuw
M5AxE2rWNUieUA3BSuIslMl1hEM9BQbLWMTm9gShCXG+du7ApLtHHOw4qbHb
jzkAR6eoXFUnmaN2SxTcldgbHPPTF28S5696tK8T08JAJqKC+dhyHywmzuGv
P9/o+BwIHAWlKh5yXniBOA/v//xzma8v9Jq4iJeHeaARcU5Yw/D48Dt6aa1g
TpXF32ywZYXd73x3nvjCDutxqDx7+btnujtuGqecb/B+uC6h0w914cLMDkY+
+PAg5bysJP62r087iPQUSwrk+6P6TsrZWeHCma9XGoBlq5x2i1sg8m6ltks/
xipft7cChBxk2E5JBOEVch1kkU2WkXlTBNHc7xQ1aYNQj4wb1W71FcURuaBy
4c7w+Z2BKESchzJyrNT1M0FrpC6zacIfc4jz6yy2rTsUUiHwko1QspkfXiLO
8sLrRWaexINAzX+hSl99sJ44W9zLtThOHw1OOstzBm964wnifKb67K5E63BQ
Vun7b9GIJ8YR54RL1XUST4Ph7PRoZcFjDzz0Z173Oa3ryGJ/8A9JUb6y2R1v
Emd5M85E7R566eQzSt98d5jjvBvl3Keled3o/jioyTd9/J7vgKJrPv/OpS0j
jhUf6web6K33gw+4o8xpytmm+frBdN126LEfO2XI6YWjwpSziiFWrtzfADf4
4xs7xn6NV3zUdt2bRNW5+Ssg0MJC5/aQD846U7kek7dEwUQRJNxOZfjG64s8
SOUDfnUiZa25EJrNm6fZ7YP3iDPtLQXxd88zwVD3yrHbu3ywlDgzHvXZ9Ggw
Fa5u71v7XdYbVYnzOkx9emxrAgSknspQFvbCPOK8fbfJ98Np0eBv5v+1jsUT
pYizy6UtlnUCEdCXwLyRfcQdfYjz5R6/PYsKQoB7wqnuTJUb7iXOypGND+v2
BED/5PzGtkuuqE6cfeolypRa6KWf3T20cstxIzSZppwP3p8Te3v51/gceG+M
Pd4KjfZTzs/6z6tvEOmHxKLeO2u+OOD3i5Tzhd0CF5SV2qHD2PXZ7h5XvLGf
co6TD91szNwAT6tarZji3bFtJ7Xdd/7O+bwcFZCQ9fGdQr4HuriS69q1+0M7
Rosg6sv9nc5SnjhMnAWGVY77v8sFhxw6vjNHPbGaOLO1bw3Z0p8JrcWbH+XN
eeAgcdY8XfAQtqWB8t27D/v1PP4ez5O+A1ttgxJAXlrpQWqhO+YQZ/WzJXH0
u2OggGeZd9SYGwoT59bItQH2yRFQYyzoI8nmhg7EeamF29LJ56GgyrUhh+Oq
CwoQZwO2a08ltwdC+mLDS33RTniaOFsbLRndVUcvvUo+O9LT5yHyydr/ztcr
Gh6/fG4cmk962TUcNkPRM5Rz/q3bZR4b+iEiI8lO9b41ytyinAU5ooTmBdph
oXBKgjnUHieBcn6x6dtilv56SHie8vFHmRNm7KK2u2t5WS3X93K4y7XXOHzU
BVndyXgyXnDSprXoF9HI5S5ON0wronLRF99e2r7PBc/V+TdUVN1wF5nXfZT6
+O7LVCYYiFiealFyQw4y3/jv1UDB+K/7Grnmig9PGNxQjzjPVrrTK39KALlH
tmUv+F3/Hs9PHp9vdHWIgXf9D1avWuGCu4jzgu/4ROWKSFCaEpFWqXdCK+J8
ni38xS6ZMNhmoeAtZeCIvMS5W6Pc9/DHQMg9w6ojw+WAisS5fY6HxbqCXnr/
i0GlAJ17+NaUchYJM18idezXvC6vUnMrlxH+vE45u2XQ6mst74es7xHc3crm
6POQci5flmsavrIdujIqNXvfWGGKHOU8l5Ei75hbD8V+HiwdybYotYfa7qi+
ffzn1+UgWCFu4JJvjwYe5Dp1KW2sPqsIjnRvcVqy2hEfFlP5yupHi/16c2HC
RTSZocMRA4hz6/IHrL2zv5zLqn5MrXTCE8TZ4pNv2oxKGuxZubY6bdARXYjz
qki3F8ybE8F38Ov4HW1HLCfO4T8MNOxqY2C5inDz4yQHFCLOV0ZXyXioRIJy
K8+Ssmp7tCDOrUu/LtV0CoPNgqOtL2vscNMf5z0lnlJ2QaAWySsmnG+Lh4hz
a+k1hYlieumfwqXya71vYk465Xw3T+DRe9lf18HPGbNN+/TxpyHlPKDbGDc9
3wdKKmJKu88+RfWnxDkipaj7Wxus8I4XZBUzx9zDlLN3pJV9sGc9SL6uqe5P
tURDEXJ+JWdwHS8vB2aO1lV7/KyxwJPKq9KFOS54FMHqiTLNxGkbFCqh8mWH
RFvt6nLhvoTtiEaLLTKQ+0GBpSEcT6YzQfe5sRWTrB06EOch1c09ThppkGxR
INp7zg7TiHPSeloFAelEoBffqly60Q47iHPay9M7RWdiILv28rh0mi3u+3Md
FN8rz+kQCTcUbum/WWX793j+tv/Fl6yKMOiavHl6Qt0GNxDnlUkjvRW0weA/
rZ/l6WqNssTZVaL9yJ5CeunoxQZMS1qvoVk35Tzr6GlFIzUOgYe/XRp7ch+Z
bSln3fVqDCWTfVCp5HzN/uEjHLSgnFN3vc3cN9QGkwP6cQ2JT1HoGOVs6nRA
5bJePQjttshisDbDu2LUduksdOOW/bpPaWs3XWUhZ4Fvvaic6/ogV9fdItg6
kPmmx9MS+4jzwtzmxZbZuZDzshujjK3wLnF+uL9sgms0E1z8T46ULLPGauK8
bjRLrFc9DRJUrbm6FK2xjTjXNPkr3T6eCJ+NZ1roj1j/37zu1z1oCEssqKat
fjPK8suHOG8MlacLT46E82fn7q1JsUI74nzCxSy6/nMYyF9s21EkYPX3eD5T
IGjWqBkM4nw1CfZeln+d1aXMUz8e/g5Mc1fvHrHuRy6mJurvHQ/flrRjlJbW
GCirWDSAs+91f+c2SfQ6cRmmoOGd4pNWHIQ25P+Zq03udKh4CtpxDNlcPwJw
muQcsefYuhdmYd9w2ePn13XxxvhL6jx9xrD5O9JLq7O58+1ivoFcVdT+bVWU
fG12IRQWGOdCaN5ZYQH5/Mv0Djs8twyFwXMXphcNWP7Nt6faDgXpz8I7K383
nU0jqI3U5++I9PRYJmgIs3R1uv2rg9GFfJ7c8yPZ13/OwlnVbMka69u46wf1
eVKVO+9ZigTDvguWi1c7Wf31MRPzUVq0hFbaeC1f2n/Zw8h7J/V3LlWmdyYs
1AhidWirliwOwnLy97TBP3Zd4aeR3rbhuqPdvZvIm4i/884NzmG6KiFQX8Vb
GrrfCunI35/+sql5/0VGaT1daTpa1ve4ROvu73w/i/mj7MWP4ENOzRY5/iCs
JH/fuX4w22YHjfR2R46YGBEdZMug/n/mHZ7cn44Gw6A5X2bHiv/7/CYOQx2s
pjTSi44szNKMfcB7VdTnL6Ax+7Lm4mOIPf6zb3RLIM6Sv1eKFT3K+mu/8Dy/
aKc7rI0MzdR+MdAtiWm6GQJF8uwWJwss/35+2wf6jquLpqEn0kmpoK8DZ5YP
/M7Xvr0Y1avRB8curjcL5urFSfPZ3/lq640fxe0GYdneqqOKsy3YR0vlK7eP
nRZ+2wS5S8/QVx1oQ6mjc9S4OhM7OTnYAd0fgsxomRrxDBuVZzpp8KjqlMGL
zQqGQ+INeLGeOq/dTD0nTfLrYH3o5cgHrlU4k0Xlrh4Pk64J50J774Wzpn0V
WHqVfH6j1TquQyVgD11Xh8JKUeA/Km+g15sNZEqDRY6LXVhHilE3jsrrnW0v
Gx7LBa/WK+UK/YWoHEnl5bmey8KOx0BzrZ+SS1ceCtRRufjcnFeDYDr0iei/
vHk+F21Iz3+A9Pyd//T8VmE8XCev+YFOmvJQMV8GriT9c9k/ffUL0lcbf/qZ
u10wEp6l8eWumUtDcdKjck+51ua0eUDn6qAnU7EpOEb6kEjh/86LNgQD93Ht
Nr1vSXiT5BY/mntO+TsDm+lP49hdCahL7t/jJYSm9jn5ws48yYuMU3G4juQz
rmv9fKJsYcLz3o1Rvxg0IuPSca/3HIcHPeDLgY2blydHozzJl3g/UNTcYQlV
kBpZnxr5d97uqyhfcyDfBZoNn0nf+RmBeiTfsjK5atDAFORLa+ZMj4UjJznf
+7Q9yw+fsIcRGWnP4eIwnCP9TLnpfvYDXEaw8q68dJhvCO76c71u5GZkYLMG
s/B73grlwchN8i/CyTkn6GfApqP++wmuGgwtp47buc0CeSXDQxAUzH2bdaIK
F09+/Z1fFl54+KOkC4qjO98t463Axt8nzGfp8fND8dtPNcEl1pd9e+dLsCWK
Ot7UeJY7CjZWAJ3+wxtXhRF5T1LbZbAXe3/uKsL86Uenrig+x5MhVM7/7kpX
3mg25FYr9KQpZGMmeU4hSvrzb//05w0qQvx8a+LhxZoJhkufU1CM9LoTtplr
JJMiIXwdv3YpJmAVub48i3ASoT8ZClU75irKj8ZiBrm+XGGXadyi4A8VAtP7
6W5F4fwXMm60vl1iE+sFQg+N3NoWR6Ac2S/0acHe9ezuYM6/ZD5zIRR7ib9A
yyszPnsnuJB80PmUZxAu/jOeRKDuo6ZpaNDb2P1FpBA/5gz+zh+sP1/yZscw
8Dbuezkbi6jJRY0DtixHze72dQP/Y6/ayhuF6PuVcu4xYaQ/7dkM85weDENN
ebgjhHLe2nrWa5a/Gi7pfZA8WvUMoxSp7fpPW0yXSpdA45CGbFNdFvoGUHmg
p/as4sXn4JOrTV+9OgOVy6hc7Z/+PJJcxx8s8Vpu0JMMi/hKA7c5JaI4uY4X
VX9a+iM8Fuou3/G4IxKHG4mzxlGtZpcvEcB6Z9nw1QvRKEucjSWj9bqbQyBA
2eamwacITCfOVkcLX11Q8YdH/Zls53rCcAVx3mpA//TOcm+40HNogzJ/CD4j
zs1X18WExLtD0j7W9KF1gThCzotR+QYJEZdpEKi2KbVjz0BeyyHKXy1ik+OK
YYjzuniCVToLLypRzt/E9/KKCfbAMu01s2+jsrCejhpXma/ePHuLpwUs+q9Y
sLzNRF3ibLZlPcOwQQ1cDBAuiXqSgQ5HyOdnU9BxsSuF087Ha741peFDP3J+
GTKdv1WQD4WVG3rVJVIwmsyXev/pz++T+X92/pMyi+I0YN29g/v4hji8SO5n
rcMlDpZVJ8CpzY0Mtc7RaPeJytdmrErRTo6Gw+a7C2cUI/HlJHEb2RvyA8Ph
wz2fKDnlcNQmzgXPU35u0QiG8lf/nVu7LRRfkucXm8c6W8dt/cDasevjlvVB
6Eac7csaOR8me4Hcx69rl+n7YwNx5qsdKhw/Nw0vRDddpI+MxZANw9R5sS5r
7EX3EHC5KL/jTE1EC2PK+ZPmCzWHzT1w+kqX5oRVMh4j16/gBC0Vj9MtwOGu
LpmUkIz2EZSz5mWXuFtran+NJz02/yUmYS9x5np5SVrjcBmUHT23XWc+ATN9
qTzlNd1OfrlC8AyvXjg7F4d55D5Li/TnUf/050vOGNC6rM6AEAa/0eZXUYiD
VL4RpwO8RZLh7EJPYu/XCFxBnLfSiRyRbY8FIcEMgZWS4WhMnMXOB8y0xEbC
+89PjL4phyIPcQ5ffdx3hWYYcJbxia1/EoQxxJlW6Kd/hFkgxDaqnXw46Y+3
iLPYmkMP1yj5wkPmRVuNUn0xjTgHeLPW0PBPw/O7WbcGdoWhoQflPDNzI+Zq
zBCEvFhs3OUaibyxlHPX45jevTPdkNcS5V/mGo2LeChnoXdKBeNnWuAiV+bj
ea0YPBhH+hmcF8r/rxb2vXZd9eFsDIaScWPklKOsaFIZLL2/ZPPLqGgcI84y
nRm1hUIITPpnMpzcovAOcdb8H/1545XXGSJLM6H0S41V/LtwVCHOL+mVxXA+
BZaOKH585ByGOR/JecTnuKbJJB62Bp2g17QMQTHi/OKcb8KoQDTkXoLsdRxB
OEqexzWPJOxJ/3WcXz5gMVzR4o9GxHl0xZNR5Z/BwMrnnkdT4otHiXOvaRi3
pK0/MG7quj7Z640+f3ob13Omikumgc/lA9M6Rl/cPUI5i43eDJIwHAKPwaSH
w0ZBuLyGchbd3/LxdnE3ZA4fL7y9OgxPCFHOXxUObF0j0wKllm025lvD8VwK
5bx9t6LASq1aCG1YuLTDPhw5jpNx+Db9domuMuh41em6TCccK8m4QeN5Rvhg
DsJuL/6N6aNh6EWcb/6P/txB5eILrdRMaKu+dGXULwQ3Eee9iu/c7vKmgcLa
IgP3/CA0Js6JfrotPJgACZJmK0O6A5COON++qL9ol1oMqFUc1Q5d7I9FxPnb
R4HikJcRcI2W+fCgrC+qEGcWttDMJ3Rh8Oy9/JtXAd5/n8ctqdXlLtQKhDui
rzz2sXihKXEeeugdrDI2BQPyj4snRt3wC/+737l+hlOD2akhuFaNtkpHvPH8
IOVM79N9f6lzN2yM/qDz2cIPs6Qo5xjDnY5MvC2wZCndqYXoAOQl89uJqpAG
7dO1cGVX6fDlpkCsUKa2663G84RmqAwyd9+8xCEQhNP+VH5A4NSptK8IdQPn
TYKHA5GBjM+V/6M/L7jbxczEnQVxqzcF0K4JQHbiHJnG4XrINw0+l55f+eWV
H14hzuflupJvxCYCs0Vte5ODLw6Q30vcbx69EC4TCzf9MxO49vhgOHE2WMke
eS87EjQsnooIdXuhFHE+F7GvoKo1DFrneLL3OHviKuL8VM/aWepTEATrLDJM
P+GBt4kzXpSs4O2egk9tV11S7O0xToNyDnbWue2855dzuIFetoIbKn2nnJuG
A2hDNbtBVSnywDZ6T5Q8TDnfcL7Ktp6hBar7j7nF0nnjreeUs8OrWk19kVrg
Scl7f+KYD947TW33Khgx1/eWASM2uCnP+OChQCrP7MlfM7e8CJg4NxRGc/ti
FHHu/x/9+UuhjhwejSzQyJXwH5XzwW3EeV8Ok9G2wTSwek4T22HsjRrE+YTw
tu4fSkngv87W39XPC9uIc+oXn/ya0VjY6jfTtjzcE12Jc+bmguPfNKPgcZpW
zKFwD9xBnF9GOi9Z8zgc7hcIKEaGueNi4qzptbC/gD8EtslyexlEuaEGcbYO
YNm0v3YKPFjzwstyLVHNmnJOXnOw7/DqIWhgWLTi5RV7ZGH+9jtviw3WWLK3
G+R/flQ7TO+Ca09Szgc/G88cGmmG/TXH007WuSEnUs4xsao/1FhqwYZnbkcf
iwdOnqW2O3xJteZSfRm8pW/M9e3xwBDye6o1nHdbOpmKoH3F4g9bwRNVye9P
+P9Hf678ddnZSfMsiHpzwFmQ0ROPE+dNmZxFXznSYYkcd7avtwfeJM4dTyWV
LTEJZlmfi0TQemArcRY1OH298locLE3fuZhfxR1tifOuFtktj15HwbvFhmJz
gW644c98Y9nww2vfwqGmtM5lQ5YrfiPzPU6Oun2B20Nh4JzOzrs7XfA0cT5v
fuK1WeEU1Gwx3WLEaoqfoijnNx+PPw+hHQI15tjqmW1W6LiWcqaZ/zrOzN4N
jeJrXr5fbodu5ynnQFW3rtLGZjBSaGa32uOIO0sp5xuveFP1RmvA26yfzsjD
GQ+cp7Yb+n7HlUU5ZeBxq7fxmqQrfggmx6FTufm2LwgHesvomDa6IRuZPwv/
j/5c+fNyBnuPLGAVutkme8INLYmz53T0Yb096TC0Q8x6JZcbWhHnHNptExVL
ksGfkakuxNQVXxHnw2HTOp/z4yA2yfiOXpDLX+epwbQnvFLR8Oi9ms0db2dc
S5x9c9RHNqlFAOP53LYXBk44+afvvXX6dfenUPjvFbIYKzriMeLsc+xAnVjm
FJjouvw889YQryLl/NCJTj3+8yBI6HrKvAczfLCNcva+43WYdaYL1mv7b31l
b4ldGpRzTy6j+1ROM0QkCzzrOmSD2RWkP0ez0fHKGuB3Yt37Q88Oj5OeQXTr
nHpDcBno1GX8uM3mgFtCqTzuuM6p4S6ELRMKJ9/vcsQ64szyP/pzkeipuw+9
s4BJY+aUwVInLCHOidkudrrS6TBoTO9NO+6I0cR5u6rAoT6xZLiZHUVb5e2I
n4izzgtLn9qZOLiyflX/AyZHdCbOu7312JhNo2GFdb3CqvMOf53NhBuF6aMi
oCqe48mSX+PtZ+LsI9XGpiIXBiNPVtIsjrP7+9xTNiPyeVXCFCiOfjBeIvkQ
BVspZ67YPXmJfYOQcfrcs/PORnhWiHLOW3Nj76WeLji8su37JKsZ7rxKOd83
21faFt4Mq4v3/zDUs8Cqasp526jYxTfRNZB+Ntl6QdsKedWo7TL8x7zK2roM
uJVY4pQ/W6NsGJUHDrJ9NH2O8PTCurTLrLb4pJzKmf5Hf17cfK9e3TULkkc2
rOQQtUM6cp+iaG2mc0QuHYyako68P2mH9cRZOfuxcvTxZDCcOnCN+dffLyLz
DckfO/YJrY2HUbOyjbTvbdGfOIusi5te8uu+pkhVoVTNwBY3Euf5R6/G537N
Q6qFEj9GvrPBceL85FNr9lrjMGA7kxSiIGeDCsR5t+XIybW3J8GcS3g8Mfke
dtWM/s5j3VcwrmwbBKOqG1FXvuij/z7KeXvrHrGzFV1wtl6TheOZEaZfp5w9
zMxSRV2bYXBnod2nbhO8V0c5ax1jFQu3/TVuKPfPPhQwxwp1arurd9/r33K3
DFq7mO38fC3wSDiVS69VUknxRVhS6veDI90SN5N+Y570589If65LnDewsYja
WGaBcz+t/Pw3K1QgzgwmubwCMunwky9XiV3SGr8QZ/6W7X5MKsnAeG/Z8lVH
rXE9cQ4+kKhgvSsedvsy/De70xrjiDNfDMuRN7XR8Lqh4ZzUByvcTpw/BbB/
2DkfAZyrRd6UOlvhNHEWkjQ64X16CsIPJ+beL+tCPTZqnrx/nWCQ4IEBEDfm
rNx5rBN7SI/xNbP7ewR9G7BVnAre/6EZmXZRnv1NQ0Nz2ZXgt7j2aMGhOlxB
xgcRpQs6Zo75MLF5qld1RQXiZWq7ztwF72T906Gun+bFZ69ifB9LxsOrMyFL
78bCqnaXlSej8pCV9I3SpFfs+KdXZJML3FrIHAG2McJT54XT8Q7pCSUlSo7w
6QeA5qPAVQdtkjGa9IF8vqtFaQo84cFSKY8+y3hUJr1fgr/Nc7EBZ1AK3Cif
JBaDt0m/Zw/Gb758tIG41HWfjAwj0Y24TbObBXBWmcPOi1o0Drt/zf/J8Xk1
1iLs0ZYZqD3z/c7C1XrkPEr1b0K5d2S0k4fgxVD2UpF39WjTSfVvKlNpmxqC
XsKtIrmkgrgaDJ+jeiENw88djm8bwFl948QdkwqUSKY8r+4IuKOxvgzKly5v
NUwpQTMVartZ9fwd662ew71NcV4cHIVoEEHlAw7bSx5FpcNxyTN0vey5eJL0
tBWkdzX5p3c1lOxtbt0ZB2NLxTKfGKTiDdK/HfApUBuCCDAxKS9ONkjExcSz
LfrporyvgcC1slF5+7K4v893OHn3lnzO94YD744dsuCNRgHiWf/GfM/UGnfw
C6PjsUiNwOt/5gkGBV8P73WErIo7Emn+Yfjtz33H+oaG7b3W0LHs5/eG6GBc
++f3qyy1o2Ej0xD6g4dvqrsId92i+jeV1TzVafuHIYPXwN5isgSDvlLO8Zxn
9Ex/3XccHA5SScgsweBxyvlUBT+jxXgTpIesdC/mK8bKUMpZXHp7ok9QJbA6
qC2aUC/AYXJ/N/4g+Ea/QhF8fu7KnG2Qi4/J/KHq1fecK4dywF/Z3SDmZxYa
/D96zi3rtU5v400G/rU7r0luSMLLpH+LzFLKkTeKgQM2tUyGtPGoQvq3xZmr
Fzm4hoPMPkkOpv0x+Ig4P2z57NNYEQj08mM7Y6oisY/0FRkB/ZetxXxAW16S
1y42HEWJc9k7xtq7E+5gEiD3wiw0FDuIs+nBU70Ncs6QKVTc5ncn6O9zkNaj
Nv6codMwa/Uork4pE1vOUv2buv5jg1L+YeBhPVR7jf0Z7t1DjQ/T/ey6pwV6
QDuTzVRANxeVSZ88t7H6R9ZQM2Qd0lKdePUM1wRRzl9dJIPH4qpB8NWHC94C
v26Qj5LvG/DofIRTCZjmKjleZsjCSXJ/d3BSNUI54jmomR/7vKcpHdeS+cOf
3wk7/dNz0mrYrzExTgOd4IuHHyfHoTEZb/coNlSfGYwHwZ4VNzIuxmAW6YXU
J7YqSzhFgVu55ulW0ShkIM6Ou1/c1jMKA/PyM1nrJSLQnThLH//6QyU9AKTX
3V4h9SAM58h4mzx81Xu22RuuhM3O2RYGYxpxztq/GJzn3CEyj4m5fCIA3/3p
Odee0xe6PA0DC0NeMByHTLTUOJy6xvGi3fQQZAdG+u8aTsGZG5SzatTwOmfJ
HtjhKCKkz5eOPxmpcZjubFQp1+EWmN+u7XA4NB2tSM8pZDPHkVdYA9V3dZ5v
25GOk4ep7W5mC9uc/bwULvyQihTiTUMW0lcU9Flv4v6QDx4hUkvbc5LRhNzf
/fmdsNU/Pafoh2/ir9+nQ+Yuo8L/LkVjE5mnvfhvbaWUQxJsuDOiers4EncR
5+9by6ytp2NA1jZqUfHmCAwn1zXT7/qpmyIi4MK25FMl3mF4mDi/sXxqKWMV
Ao/ndBcPKIZgFXEuDLzkpCPsD6LOuyffxgWiHXH2f359TO+rF9gyqHhoHPLH
WuK8lZGJJmvPNBxTfZ/QMRiGKSaUc9MRoWiu/CGwT9a4vsw4Gl/7Us5rTvFv
H+PogfJnwf/VxMUhxxrKeWKySYlRswV2LuZMP3UkAbsjKefnTOPVnAdqgXX5
DdlXrgn4ivScQzTVtK+1ymDEYCy+pScerUn/tvV53+N9VwrBUkVSJ9A+DsNJ
L3SN9JyR//ScSnY0Wls/ZED5wfPcV9UiUJM4X36Xc7PdOgXSf5pvL5APxxoy
f3jDnrAnrT0OLiq3lUtzh+FJ4rw4pflzxcUo8C5jnAnpC0ZG4nyicMiw5GUY
lDw8s/xrcCD6EGcRQy4tq5VBkFEuufT4E3+8Spx3Wx54yevkC52yR3t/mPhi
CnEu/WK9pmD5NAjIvVE0euuLWj2U8+Xe7a8u2w3BvtCDhgrvQjCikHK+c479
2d3X3XDzTdF6u60R+IGPcg6Yy+g9fboFqh+pnhzsi8RtCeR3719rX3LfqIWU
VekciilROEd6ziU/bncaFpSB3R1v9+M5UfiBOL+a3L7psjzC7k0HVvkIRuEV
4nyR9Jz6//ScQxKjj0sCM0FfzzmoUzP0b/+mOs2aljaTCrOXgxYdpglBG+J8
LXyFd7xsAqRO/XwyeT0I2Ynz+z3MjGYYDcdMJ8L4sgKwjczTuroCmKN4ImAb
9+1L7d/98A5xptEy+bFTPwR2CN7/UKjoi7LEWWrT4Ju8Qn/w5Km/zpPsjV5/
fge43mnnickpcG4vhGADd6TZTPoKhztzrJpDQGNusVvpjQ+m9VDOcbOdrKKx
3TBWb+ZUcDIQM/ZSzmLJU4zi+1pAWDJddsAhBK+nUc7HKjs412nXgvkXyRZ5
mTCMIddBNUGmmNG+MhioKDjeGhuG/WTceDe89+WrEoRVpQ4xnr5h6PlPz/nq
n56zae0X7TssWdCcf9FRqigAVxDn9qUVVzuepEEVi+oD7y+/jjfinGnxo5vm
ZCIcYjTpPPHJDz+Q+7uFt0Z5n+tiYFg9Ww/zfx2HxPmngJKJCV8kjCz+cvWo
vg8qEeeTPN+ll4iGQeWXE0+u83njNuKcTbPkmZZHIGjt6zun9MYTjYkzq9Kz
2XW9UzAlO7cmSM4BpVUo57cSKvuuSQ7Bji8P2QMvuGPEFOU8e6nZJ+9hN1zc
Vf11/ocXashSzibWi/nc1rRA3zIxa9p2XxTMoZynpZI6oo7Xwn8fjLY7Nfmj
Lnmuan724nfld2XwTk6d5cd0AG4iz/ukl68MbZpDEHrRqGqiHojM//ScZ//p
OduVOXXozmfBZH0ZMjX64HriLLREu2FRaxrMr+YuSb3rg6rEubC7LRBWJsFy
veiSjBfe2E6cS9IafDb4xMLHqMfHnBZ5ozdxdnLoK103HQkree6s37vWC0WJ
c1L6ZHXxjzBYZHzMwHeTJ64kzvN8I30f2YLhq9Xyex6bPPAmcaZ1YggwrZ+C
KqUXurz7rTDblHJ28J6YZd84BIt+BjS4v3PATgbq/m5ZxKpm8yPdELO0bsr/
lhvyKlHOEcXcI1+/N8Oz3Zc/FL/xwFP5lPM6Pqe3+3bWQpUZj6FZvhduPENt
d6ymvaTrVRmYXJr3F/3hjU9Iz6mh8OnVI9Yi2NLRpWgV74Op//ScIf/0nDHO
3W6PTLPAZqPFwonHnihLnAP9NKP5lqVD+t2d/OWXPfEycb4fMLzF3DcJLuVs
0Utk8cQXxPmofa4HH38ciOqkbDFy80A74vypW9VHxvXX/GSBtTV73B15iXOK
X9JAh184iMktHxOSdEda4ix/ZVLi5tEQkG3lUa0ydEN14nxzTeDZI0VTcO3W
npVKVaZoG0Y5r7JwE3zDOATl2zZcOSxtjVqclLOGb1ykPk83cIQt25W+0QFP
nSV9hfbZu7deN8PAto0t3sou+KKIHM8ZzOa+9LUgb2kiEdXuhkHnyHWkpUTF
qaYMYPpWJT+bB3aSnlPiwdvIGaYimF7LfYahzwOv/dNz2v/Tc+7y8Be95ZEF
Y1vO3L6S5IaPiHPwBVH9QoF0kGwIcjlW7oaGxHn/hSWSNBNJkI5lhvpxbn/7
5DK79UaOnnHAy2W5oH7FDa2Ic9FyEd4xumhI06ZlG/viitzE2UD66TthtgiQ
CPa2eT/rgl/IvNpybm+BlEwolF18KpDX5YyniLN38peDYVlTEO1zY/vU9cc4
mEc55701ns+fHoTU9DdfOpab49otlLPQYy26KdpucFlu7HKL0xoF1CjnI4XG
I+HlzXBKVG7r/Rg7zCqjnEvkUmXl+mpg/2bZvpYwR+wlPWeaynsxgYwyWOYw
IZM/44y85PcYKsdEbaunER7YLMgURrji5n96To9/ek6uYUudFp8sYHU35qyL
dsIs4qxHe2deDNKhbFs7flrpjH7E+eixa67rdiTDh2O6sf28zn+fj/x32Sr9
Q08cPBtWr4364PS35+wcmM9lPR8N+k+zT3E+dEIu4pwjKpwrcDcCyswvD+bU
Of7thfgXjWASTRgc1z54tGfeARWJs+Ii9qSPiVOw9IHUltGQh6jeRDmzcr+y
aB8cBNfj3U0CFU/QT5ByVnVyYREd7oJJoXfD3NLmOHGJct4kdoAnN7kZWpWr
Pd8ctsKVVZTzoIjQ9FRBDUTUjO7JHbLBPtJzXtNNpjX1L4M1zRfS2pns8UIo
lev0ytyK6kTwONQk/iDFAbv/6TnH/+k56WT9M0LcswC8vHbYZ9nhF+IsVqn/
/pJ8OsydNh1+K2+PSJwrozw+Zx5JhtEl5gWB9vb4lTh/LrxvvGlZPGR2Jo2r
ONqjG3Fmypj31PCIhs7UqrGFM/Z/j2dFKP90ISMCxHqyAho/2f3tOSXKDWLH
FMOANebHbrcr/9dzPvRd/P7L7UkQ+TT1dYTpPr6qovq3qh1qNNadg5Ahfl4x
cMgAz++lnM1OLfls1NgFKS29CpMOT7H1GuVcmaedbe3fDJvfr7q/rNcMv9VQ
zh+fr2vXDqoBhfUuQwe2W2IC6TlzXCNmOMzLIOjIsWru1db4iPScQYFCwkW/
bhsVGisdaqNt0PGfnvPePz3nJrWJT4dssqDiznkdby1rlCD3g6LCusnlsukw
c89SJHqJDb4nzrJb9591VkmG2o1hvnvv2CArmdexDL4+eG17POQ/2ODb4WuD
IcR5o+WnH+p50fDfhiCz+642uJk4szfYvbIciIB+R+srvmr/13P6LXLtoL8y
AWbLGziXaQ7gDxnquP1O23Ek6tsTSDw9t6TNPAQFyf34ssjr1bjRCthogrlY
u4NxE8nDH3/t5dWbhCgoGvHsfIDD+dR+aWt72+ZrGgabDV236i9Y/92PHG3v
fHeEhoG+/QZbZTUrPELy76o6ySejwuDjK331k2ut8DDJf1xhHbz/aRzuyl24
2Co/hIP01Of0sjD6vDRlHNzkqm8Ktr/EHhHqvezTK04sljBmlJaLe8mTUtyD
F1dQ78snrlhbU7jxDQhvM9VjzmrBp13Ue5djW8B6Y0kTvL1fKxCfWYd626nj
QX178DaxX/PMJ4F7XC+0l2O+EPV53oiJROaefQ56JpW3zjEVYyCZ5+u++Ha9
ZkU6LDN4ttdK4TkOkx5Gb3+jefdCLGj9qM59pZKFW3up/NX+hxIuxuHQpr56
QDM5DTvJ7xLlPDIubZcOgMmN5xV16xLxADm/ur8xKBYLegEd5MI641isJftd
4dm2nuAkV1D3vHBuZnUU5pD97rFIyDzuuD2I7f8ulXAxHOPJdTl+88XXeTZW
cHNPrE/TmRBcIM55URx5HSoTsDRWz3ilfiM+O055MrNv4+XYyCit/iY96mR/
PW6xf/w7d6pqcQrY3Q9m4o8fuOvW4qtMylNBxlA+4n4rbL9WcdPKugJ52SjP
gV1MYxOfqmDswe5cW+kSfLyN2i6ztcPRqFNF8Ihx9fjrgnwMIu87sPvaHXA2
y4bMTMv3L+xzUI2MYzO2PNul01JAUnjK8JhTBtaQXotr+cIjj8AYoFko9/b6
mILsxDM8R5bGc204yPZfbLrMlYC15L3sDOHQW/sNA2DO5eHVLPmYv9dfE1Gx
ttB+L1h3hsnqnHAkOhDP9ELLI5zFbnA15aLu1cwwdCKe7zl2ezrLOwLzB1Ur
L6Vg/Eg8H8yuXb7piQ28HfrZozXojwPkfHHbYrCr6OIELDtj6B06WYpO1ZTz
49Ysm0WlDNLLHkV+mThZhPWHTajxfJur6P2OfqhmOa0ZfacUL2ZQzkxTdJtX
f2qDGwzXTzGeK8abjOQ5L2od7XatBVHXpC+XX+Yj30Zqux3vDmtkN5XAF3fh
PRK3nuFlFypPCN/9wPVzLjygs3G6k5iJM+S+yXHnK+l8lgyIGuBr/+Gbhte7
yfiWbsck9DEBvpWUsLruScKDpPfuuqBXqOkSBdenrbZf4Y3DY8S5w+AqzwR9
GEgW2yTu64xC0T/PZRLFo4/e9YcmeS763s0Rf38HssimJC/C1AusJ0+e2F8T
ijeJs1awmLb6L/8Ap9re2OVB2E6cr5WU3QjJcYRTx5yYu0f9sJU4h3bbsCeK
T0DGCGcP7eVcbDxDveduJJXhZmLEIP3oRtfDCYMMDPAz/52vV/vy2pTmLVSu
13hC/+I5rq6knPWLlhqORLZDcd3G3GcuuUhH3n9P2dZYGrulHrq42pukeHPw
Bnkvu2NhVGTl4TKQ7itXFNTLRANHKj/CFSL92iAfamWXiDMPpCFTEZWL2d4x
q9iVBQLiB4KXHEjG3eR6UTl39nHYvRSw8BUNTFGNx6ekD986eWbptEEsNPJy
9o4uj8F60oe3iO+unP81bzmtn1+bdyQS35LnCxwhWTxt94OB79hl+YWpMNxE
nHedzvU4/MoXmKxv3FzyLRgViPPSFvd3Q96eEAOMnfWRAZhPnIXfpIbQyrmB
TO+nEzsafLGEOE+6rtDZsWQCsoUc19MrpyF9I+XMHblG5uXhX860b7g2XYjF
ba+o9QdWTHWEr5ruhwbP6cBTahkY0U85t8saL0iMtEOnmVfTpacZ6LSUcjY5
E9N+f6EeNIrj+URM0jFuLRnfNM5+6xQrh5nu45Y7ZlPxA3kv+0qy+fSLA4Vw
ljtgI11CEj4n77Fe2Z9k9a4yGxToCx8U68ejFJn/XAvPP1samAYMCxvaGe1i
sI304QdfqB472BUPypWDIzqfI/ECcZ7YK5zU8CgKPmLCMefEcPQizl2ClSvr
HobBEbeFUKZboThKnjsc3Wzix9QSAJ2+HCv2LwnCjX9672fcu9M3+IBM3a0N
vdz+GP7nd01ca61z73nAtMjYpgAvH0whzofFQtTjesdh6/MPbOtjYzBJiHov
2GmPI9LzMkg/3ryPW1wqFJPvUusPzB4pPdDR2g+rNp3PPhebgGFzlPOJ+A+p
tpPt8LkvUV9qRRIuJuPzM4PIi37aDSBxd98mhahE/EKO52y9ZcaJZeWwL+TK
8B6+BLQmzk5znOyedxGO6PYNGG+PQ1rifHemfeWDsRyIiBHni/kZjd7kvulL
Mlf5UGI6tKkeGtHsicQzxFkmfH6He3EiTHUJ0w33huMP8twhx0S232RrDAjf
FqQTZwn7+7xsIuXeYMbHcMiVnnf2GQjC58SZXfnYj6eXg8H487nVdxkD8CeZ
52SnO1cW/+cHthUR19gtfNGWOG/Ip7esueIFa3lPDe9X9MZA4txAb7XCNW8c
Brf99NCVD0MZE8qZ/bW9kshSBulXvp0D97u8sd2ZWn8gRv517IbUfqBlHS36
UBGJc5zUe1L7+JfodL5uh8vWe8e1HaJRdy3l/OlC4Bk+uwZYM/OoMudzND7Y
QPb7zhth9SwVcJaml/G8VjROE+c3gVf3vtpdBLf1J7foH4nCGvL+O4OQiczt
gmcQ7dq8SGUgAsWJc6jcbdYVBhkwVKfTpqUVjt/IPNOvyvHqN8lkUL7fa7G6
ORTTiXOZgrXhZbNY8GinU6leCEJO4iz4vi9j8dZIGC4vKHbXCkAX4txgPXtj
1CUUKoJOjG+j98Me4twmqiXYdiQAJBIydj7t90Zd4ny2c1Wo8xofoLkzIv7w
iyc6EOc/6wn4/LOewM3Pu5edsBuHt/xyjezGHmg9QuV/1iVg/2ddgrc6tDJy
I/TSGtahp9VY7XDpNyr/sy7Bhn/WJVC4uCrZ504/5NKx3GnU8cX3QOUP/1mv
IJ+sV7C+sacuIrAd6GIF9l3LCsCT/P//dQyi/1nHYDHbwuX3v86jrtW0/3Wb
BWE2L5X/Wd8g9p/1DeZZ386s21sBHXe51nmtCkZx8j7+n3UP7v6z7sFJ8/gS
184icBGmc/YpDUJtct7d/h895xupkY1bfXPBYj6p06M5EHf/s05C9T/rJND0
rdCNup4JzSz1WmEmAZj3z/oJA/+sn5D48IE9A18q0Duv3tP5xQ+1/1lXge+f
dRXi9tLWVWvGw1KJCyu//OeLTf+st3Dnn/UWQli+cqwfiYI4y8nJdYXeeOaf
dRik/1mHIV5DUX7ZrXBoWJA66STohUn/rM/A/s/6DDdP3pFOUQwGpU9Dhl8z
PPDo/2PdhsBcLgjv8IPwgASnE6fc8TbJ9+WdPa5tMA7JvfW7Koec8OsK6j3K
CG2P15qv6aU3DpuwPgi2wCf3qPfinROzWjac6YeAwfe+L508kOMEdRzeOr6v
/ubjdhDdcFUp2tQbl++hjreEW0M7HOUagDPeNevceV+s3k7Gw86dKocFK8By
cYZntIQf+pF1BoJXc0ut/1QEt1QLz7Op++H3P+vtdBzzs6jKhcbXe+mDx3zx
KjkefhaEO5THZcJ0w9NrCht9/64zsHA1OzyyIBXSs4/2abP5oDrZv3zcx0Zn
vsfDQrbnJ5cBLywm+9G0yEnd3joaOoz2bveI8cSDZH+Z5X2+s2hRBBR4lwiy
6HhgENkvWQW8XCtvh8Dofa2lYyLuKEn8T+xlbLw57A/5sh82xjG74SXiHFZv
fiT/+jgMGLU584/boLYg5fxjt6BRTju99Fe5iqHrysYo+oJyPv6anVNNqh+m
Wm2+0Vc7Y9cF8v6701tWr//ageEY55KPT91xbi/lvHzW4Y3o+gbwrrc02yvn
idH85Dg5US9+eV0FDPdbqXIc88LvZP68uUyzguaX8zu6+ODsTC8MI+sMiMSX
LtrRlwsiBi9MnoV6YQJxPpHs/vV2SyacpsvbNrfbC7uJs2D/youFbGnwjL0r
Y9TMEzWJs9y2e5VNuglw7eiYw614D8wlzje23bA1WYiGMWuaC+z57riXOAeM
Gp+SNY6AjF3mOvWlbn9/N+IYKfI490IoLLV6WnvL0xWFiHN1nNPjPXUBQBei
WP0j0RlViHN6b15JuNo4iBlY5N8ztEC1Q+Q998jwjsJGeunrXcYXeu4/wvPc
1PuM+dveur7k6we+/Qo/ckXsMPwa5Vyx+UZFjFQ7fAg++G19oRMKSVHOhcJK
7JVf6mGHh3ehJb0bKpB15xzP8JVtYKyA+31yZ45xueMpsh5aP/9q7pevi+Ba
a/KhzHh3PF5E5RkX+DxZ3+cC6zvN6rYmd5wnzjRMTHLOo5mw1ei01qHoXzlx
1ljd5Ld6bxrUbFybliLljjeJs35q3qoP5QmgN2eb4Bjv9tf5k7ZTfq16DKSy
V2xKnXHFPcR5NJj+EN/rCNB9VJWtbejy933hlPiHo54rwgAa0qPjPjohH3He
kcvhUGIfCGIC5VqsFx1RmThr1wae8Tw1DmOjcmONPCZIq0Y5l9+aFGepoZeW
5dq+JYf+AZ78j3JW0l6svZmrH+KW12ysGbTE0ruUM6P7sbv5PO3Q1HUl7kKn
LebLUM7h4r1Bvc31cEqw/HlyjwPG7ibf9+FxzZHP5SD23OfC91kn9CXrOeyQ
mK2jqS6CJS4TY8IKLvidONsxHx25M5gLKz17LVNeu6AqmT/L120Qb5jJhNCR
E1qlwy64k8zraq4c9jutlAb0zCV7eo1d/l4vLP87tSeHJhEOhrlz7CxxRiTO
ioqLFjtHxID+ce5eoxqnv+sMDPnA7swdkXDc1nnpQoLj3/ffbZT7rYvVw0BO
tkzAV98BeYizmqCcQdm2IPCe8F2lJmaPR4lzmbYA7/aj41BWdVDhZJ8hHrhN
OXOkZq67VE4v7VFmuzhFThfPO1HOQ/3T5tVM/fBiWMZEx8YM7QwoZ6v07Bep
y9pB65YpG/+MJabLU85bdg+2K6fWw/qbfXOqKTZYR9ZzaCg7Q3/4ZTkM+G3Y
8CzDDqtJv4HTrPuEkorgx5s6mfsrHDCK3He7vdu2j6MrF5r2H326rt0Bc4jz
SL2xe/nXTJiUmdH4tt4RNYiz2hGJJ4GqaeCSLDvwg8YRfYlzfsnHJC++RNiz
33JJmZcD1hDn4clPJ0XaY0BcZF711id7FPlznZ1bf/DB1Uho+/xwy9J19mhJ
nIM5P1VkBoSBi6bDVMguO9xInG+cPDYcEhME8V9nvRSFbFHhz323V5fhMtlx
KMrLjxYteYjUAm2fpb3pzUTvzvXB2nOXXCVyn+AuY8rzIIeYyaGvbZBQ/IRu
Z5cZbj9CeWYUcy8ycK0H1fcy2jaKlviMrNvAeCRhlLekHOSSqsUCBa2xn6zb
cP999fSIcxGc/9x/193OBg+R52VMc6fWVFfnwr6UPeWV122Rndxfr0qTbdo1
lQn3V3G5y/TYogfxXFb3YNhAIw1uBoulP522xUziySo6rTAtkwj90qFFteW2
2EU8h9iK75jPxsAN230nxNRtcf+f93YXzwbaukSCgm1v1nC1DVoTTyut6I9f
a8Pg2ibV5R84/2/dhu8c0bJiK4KB5sRju6wT1ihHPFf1qo7WR/aDQ/jGiBbL
NnxiQvXb1o93cnHKtcDx27S3LtU1oEcb1W/vfMN1i0G0Ai6Hb1J4wlGJeauo
/0faOPFhZEIeGLmadR9rKcZmMs9UunZi79X6dOAzuNXKczIPx8hxaGO3PV/q
bRxMHKZ99YwlGwNI/9Om4jnd8zMAgjwbf2a6JeEN0vPYsdwIP5zmBeNVK/jl
2OPwEOl5Xhqat9GIuMHzGKmbVU5ReJn0D4xZH3v72uyhQXJ57qGCcNQl98WV
Y+0jkR+sYC5MsH3FSAh2Eh9G1k4ubxlzkJ7KpvXgDcR24mOeQP9Ia0Mn7C1b
rnMsowq3kt+N7znryU2nVweRXZw3nneXYvModVzlcGXLqduWQKbJiopSRsRW
I+r/udBqxm4e+wy0c26c596di0a5VC4538KH8WkgpXXvmVRxJsp3UHny0yzj
0hVBcHriy3zx2Vi8Te6bJFlrZtIX+4BZlf6uo0xR2EGOh4K3su5l3u4w9wEf
vb4Yjhzk+96V5hXYbO0EQ9vuZEpcC0F/8n0NdxybFLxnC+bSoQMudQEYT75v
cDpT8QHeJljBr/ZNwBJRroT6Xmkz94VpFv+6f6zttumLeY4GN8j+eiK6Iry8
ADgEelWV9bLRNpXKVWb31vI8yYL/r7Erj8bq+94VkSYipaJCxkglCrU1kRJR
lFIpIkLSgMiHlDnzmHmep9eQiE0oU8jQQEKUoZQMSRLfVveotaxl/X7/7nXX
uXvve+8+5937eZ630DXT+MkEDT3ryX0LeM4tSQgGv4SAcG/Z6L/vc2+adKsn
nz+8TFESfV0T8fdcfd7osuy6KS9wi782bOweiseI/+tyJaRqI9yAg7uv9fTG
ILQg/q+52tE+9KAcguykYs6L56AKmRs2bHLbwm9ZDN8rbA79NMvE+jjyHu6d
e5mzKBdsT58OZv+Sjk3PKPvL3hy9N7eC4KMTE7vT4gjcSfwRtGVcecTfD16l
rnUwMQpBBuLPWzbv5id1XtD6TKZvUvn+Xz0H5JIsXLKuBNY3y6+f4krHcjKv
DJfLqLpvlA+dUmt/lpYmoyrBry7Ch5UCo4Gwn6NCJmRRMD4gzzHy6X3/cwm+
sNVOxCUYAnEhWf/6Uwvdds8CmG8oZspTGY9CZE7UHsKUfelIAEg9qFtaSB+A
dcRPeYKrcZ+Bq5l7PiUzVqcLboW0cH1K8UeptVQ/J/eVTnS1/Cuosk8+fnpv
EN5pp97/+W7W89T56yAu5Wzo8SMhqLiQWr++O6xpz+6nwN3wn5jQ79+b/baU
fcHScMlXAcXQsCkptagrBHtzKfuN7g2SEXZ5kJO48psKYwjubaLs0VsFrCSY
M2DLjgHVSJn7qEvwdQZRBew/ViaBixNLZlRYAIqROsmzJJFl1CwWdPS2862Z
8sM+gvsya123yKQ5El6wKpaYG/qiLnmOarQ6g7axUFh2KM5jU783ckz3IWsC
XfPP3wcFHi+VBHuvv/t7owsdn3bFa6iPtSm+le6LfIFUHrQ7afaLNZ+DKteA
UP87f7w2RPSlN0+ePLqjHDJTM3vlWAJxyIxap2LdhN5JhcfAmuPDdORSIM7J
ouwZdPTmUf75EHBEPWzthkB0Id9Lh1VF917jZPj4pm1Zj5wfWpE53dhArIJ4
dBw88XbmTmHyRWMSr2fMArr+zijwbHl217HSG5eQeHMXnJl4VRcOl6q404s8
vPD19LyG1e3QRfpg2KiRX4jann9xyLvzF/hUctXDt5eFy9i8vTG9mYrr4tei
8F/cFaCscw1CvvhgixF1/Wc4cOp772PYJPKwsyPYF/nTKPvibcp6eq6P4KjV
HU3aI1/sqaXsywqkX2slx0NgwPxiekFvHCX1nGNMdtKzNhpaJ3PyVbd4YS6p
561GliM9+RGQKeAec0bSE4Om+fXWGucYbELgSe7I8o2/z4HT85FNIltGD9FV
wrhhLreohyfaa1P2EabRweH/SkBd/FMMs4EXKiZSdqFgiXYNgwJwdVxRZVrl
hSqkDmwb1VDqDosBI87Y7Do1D9Qj/nC8ebut1SwS3sHzjpM1bniW+DNiIlzP
2RgKCyUDPJJ23cMi4s+un5afJJaWgtveOh4FKzc8F0PZaXN5Rw5vL4SbDSdk
Gu65I1aS/NAdC27nioIphTHJi4quyEfWj6oclFalC4eQTVI0DhYX9CPrq5+q
77EaL4SKzFtdb+VcULCcXG89us+GKQLmrFty78BPx7+8y25XsSLB9/Syqnxc
FiZz36DcQs8/9hdsKXqDnbYwZ0yRSSQrCL+S90HW/KRkxhU62c2cDKwllYZI
bx/5x55C5rOhM+azDHOUb10rni9b/zFnV/uQATLnUufep2yToSMBoXAtb+XA
ZV175CHrLyN8B+cZfIdloyxVlxrHAIXW/GI+WId8DpT+j7hFmXGRcgLoF4Sz
C5zOwIXkfDWN57eZgecfmYr4zMU+AR6tyn1F+Bj3Xaz9Yx8fMq71Pd4LPRdp
Ab7bSlFXe5Sq83nbuwc402DpDvbrWefT0KCLWueMv49iTkEclGyb763enojm
pC5N49j3zMCxJ3YxiE4JTUGQx/h3oYU5uHFL6R/7V0bPj8ZqH2Hy9HNza908
TJj37Y99e01H9I6vrWBZuvTswYd5KO1F4czNBt/K54XT4MpCXR/FgGTM7CDx
RtIW8D5Pgk9+8syH++LxxSfKfnww6fGNphi4HSvUUlsf87suUfZpvLfdDLy3
toSy8TDPXFlTh3PDE6JJSO/64I+dt/nG51z2fnh8cClHLjsN84OGqf3l7uIO
cWyDu48kv1UHZuIeKcrP97b8DpaijbBbSm294elM5Lei6kYfZ3qIV20W6G43
5t4WkIALCM9FkI6Po+18Glgp1HLE5seiONHJX2wx3/FTSTzwnD16JEMyGg3I
nFpmx3+3LbujQFx3rkglYyR2kbrRQXDUVjNw1J693xpDH86TNSmcOqMzFYHx
pxP+2E8sYmNcXPkZVBSUqt3uxWPK6iHqeZkEyMjwdsCWJ9EsxziS8VUn9Tti
6qgNT41wEzSmS71bsyEF+04T/YcVZyZXH6iGZwM60Tq3klFUmrqvbg+rr1dI
DnB/++BmHhiLDmSObOKpyj+QkwFyB5osky2iMYK85/tF+wyEjyZBws6j25Ns
I/ECOfcapbyWOskcC7lx0Yvjr4ajBIlX2yaHa/mKSOBhv6H86EAIqpJ4txE8
c9YMPHOX4bmd4ur0sramOtd62/2xLSrwj902x3Qls80A5Ob5S7+LisAgq69/
7BGqq3e6NHfA3pykzV8no5HDhcrD2FAFB/dUEyx7zFgrGB2LTbJUHlY5tV2n
++8Z3H9StrN/IBadSL9Fpz30UKFOGSykczYvORaLo6Tfcumbv0L08lyoyXP8
ylgahRLkd5Nu9WTzm3EanBv9VTq1JxI3kLlkt+Zzjkq7FHjHI9B56V44GpDv
er9C4y2noThoHyrkrSoMwXvknKxtsKg/4kEUdNHSlOP4g7CVnDPfb/CH/I4w
mLvbvXmgOuAvbnMXwSH7zsAh7yRzgZUz5gLvyHwhYMZ8YSOZC6ybMRe4Okv/
n22WPj9tln7+6Cx9+wek314+o9++ifTVO2f01S/M0j8/MUuffHSWfnjELH3v
7hJmlyKF71D2S/DArmpn7OVs+2OP29YTxDWSDQbCfFvjjQPQsJO6fixopXZ+
5Dh8z3W+KnfyDkYlN/6xZ6tD+VL2Hjh67eYvpQ4X5EmheE8Fk/vM1hXkQEvr
XhaLK774mtTDnEfphaHWNHj7hcleotkHNUg9DPky59KviV8QabZ3mdZla2Sr
Lv9jHzyeHbBxsBe6FDxkJJfY44YDVP1nZkm6Hlr5Brw79Zu8D7mg6E+qvtV7
Ra6uMH4A27+VFLBWe+Gxdmr9htd3RV3YMkGg8tqWNXZeqE3q2LCE/fcPIanA
yL4qeQO9F24kdQwaO304UufILs/vOigcb4bNN/OpepKWe7io7iOkK+TLNiTZ
olLZyB/7k1QR+qbDb8HbbVSjStoeWWIpf/arHfj5MKwBjDXSPwa8d0Ia0bPq
ly+viV+aC6vK1W4LfHPHlwQXJBsucm3F/UwYfvp5c+ULd7xOcCzpLMN59XfS
QFdmOfddZXd0J/WnJN/RYf+5RGh1iXcy+X1uWUnqT+61/S22p+fJXjvw9vvF
UFNcmJv8x94TMSoZkNEP2j95WgTiLVGfl9ovBFUva7k1tEF+5oYIgYO3Mf0g
5b9o1PjzFK1GELtz4Gabz12UdaL8n8hKz7N6VAW0PJ56I0FHbDxM3bda43aF
SnQuPGtm0GEcdEEtwu9LiVhLx8SaBdrD9Ie+8LiiG6mrJRs3BMkcTYfcllah
G8Mu+J3UDfvNt+NWrEgCwbMNVzotXDCd1A2vKv5XhuOx0Oe1W7rxqTPWTs9/
GU4NXvb5Aox3lRkUbG+gxoXBP3bzmqEwA9EOSLMoXMmrdQt/9FLf++okTusn
3E3wPenu5NJ1t9HoEhXXkznaSq7+1bAt7FyDut0d1NxDrR8VJsxI4ykDnU3M
JnEn7HErwcN7b2B4dUrsIVzRszVwuemIvaRPItFdrOF4+/d+mjppxtvliEmk
TjZXOdBnMmQAZ9QdBZ4RR9Qh8cp77LgrnZcE4g6858sLHVGRxGuzbMvTPffi
4JPMjfU/jziiI4l3q50WS41kNMTojxk+euiA+eR7ZyU4veUzcHr31fjLMju7
oP7tF8ZH3C/wARvFF+DrfHjo9cAL+Fl70EBgrA73ryN6Hez66Wstq6Ar7+cz
OesKfJ5P5Yf7ksSYLutjEGawSBfjKsUagpNc81O6pkw0FxZOxOtrGSN6kPOz
+5AG17huBui9tQhwTX6IguT8fIXg4nRm4OJMJZeobOIOgd2dc741y6aiK8mP
zUnrrOfy/iAn7PXkCG8ibib5ubK3nSGkxwuU1dv7ttXFoirJz2aFvjn+G91g
8kF1xU72aLQi+WFulu5dvsQJDq25wneiMQLppnkWs+AbzZmqdzpOvoZg7apL
IgIVeJXwZNXYz/gZ760Dmdyf+kexFPcRftADvnaO+PwyWKCp6ZbNXYz2BOe/
NKL1XmBpAfju3VoY6paPUgRHappQdIE9Mxt+WM1Z1Mn6AMufkrpEcG7SM3Bu
5kde6Quyh8JU6VtuWlU8tpB9Adc8Kne2DQD6het3l5TH4Krpvu6igkyajA94
rHv/a9XBKFQnecgveFQm+MoDlqsI6HOLR2DfND+iJEtJMNIFqqLfA74LwSUk
D1+GIxkkV9WD+AisOTWIWEP4qv2pRgsGZcrBZ7VflqVjPjITns7NV/pNJ02L
gfu5WfzeyAd4keDtRbKqcm8uegiL1pb0K6pn4W3SD3GaBW/2UOStW71TCHyW
95VZ7RWNr8h5WNpS6mnLjQBgUtnB1aIeiYIkrm9pDLyXbXxgQPrJaM/7MKwi
ce1gsT6x8Ywn0Fi2m29NDcZR8tzndARzrG+ogDz9cyaBJjm4n/BAI1YWZAZ3
PIYutahDviOZGEt4oJOdktWfnfIBC2mtixIyMIHwBcQJjmvjDBwXn3+O3yrp
YLC82d6hKx+B38k5UKivXU0xzx+u3N839mhrKMYTP607l70/s8EHxLV9Ne8r
B2Eb8dPGyY9ftb4EhpuHP+XqpeMywnuS6ZDx0lcqgEHLNbj3TAqeJX3vcwTv
tG8G3qnSeVynwvc+rAt8d/u5VjDak/uKX/wa9ynSD6QXpARwNgRiGbnv4s4D
O/NsCmHzZ0dhlbF4jCb9YSOC84mYgfM5EK9Y6NcUAG27pKT19wVgMlmHfha8
yjSP7N6Mfpf3WusPFSc+AC0mQvMZmz/O76Dq1a7FYhMlfi2Qx1hRJX71Pj6Q
purVM/szH5cLNcCxl8ZKO8KDcUcW9X4a+e5rPXG8ClS4bZsNikPwNNFxcvtv
WOTo+1LQXr730gnGUKwiz9faUKlhagAhZ/xq8Yv4EPxB4n07C46i8K3RTXfn
DNDsO1HyxOAfX4ybTppV3iUZrqVpvhyfE4jd5Fzx8kXt0HXeeDi4MJuzxMcf
Y8l+7Z2hKrH7fjTcDDl/RV/ED3eT9yR5+6YGgbwIUI23Sc6v98FV0+dhbeG5
GY9CwE97Uqjf0fsv3mbvjiLm08YtkOWmd+G8mi9O7qPyc51pW+hL5gZoMit2
aTL0x9pcKj8f6wYff9lVBQyikbU1WQEYp0qtUyZnyjDWUQpTsr/ynQ4FYi/Z
79r69qw5y1QENXNFlhYdDcRb5H1rnQVXsE9JTlOQLwW6k76enbj4j8+Vd2yr
0PXieHAO286idNQXfUgeFmVWpUtvi4HcpLkvF+/wwU0kD1W/Tg6rHIkEpfh3
GuHrvZGJ5IF2w3V9VUsofCsZamBZ9vtcR/KgeHhbiutoPaw6HtIac8ob6Qqo
eHk09+exra+CdwKpfEuSfLCV1GdD9gC50KZS2CyuJ6Rn6IvMpF7dvqaZmba4
CDjXyJxRzvFFVvK9b5llvn+Xvp2RRSoBhB/VrOne848/JR3TN/drWgys0jce
N9T3Qh4SV6/qQZG1lb/j8s5bHeHiib+m8fkSl+PPV4RBwONy2SeaHnhiGlf8
xbxQaE4VtH1Lqygx8sSvhN9EJ+Zxiqm0FDhcVt5K3e2FEkQfYGX52sMWc4vA
bo5TTyfNC2nE/4xZ5uY6DR/0tZbGAqxO9WC0/sc/ul1gustOOAqE3igqdvC4
4zfip13QD7ZYl3C4KrBxfV/xPTxC/HzK+3hZeVopBBYt63h9xA2PkL76ZQHa
ptWfEQZi2LJYz7jjMYLrdiDzZZYZ8+V57aPc/OZRUHbGxnq/4T8+zu8jqttD
tghY7PVRo+SYy1/cjr/AIPPxRgTDgxu8BYRdcIis70HmqvUz5qrrqgbvrjoa
AeVYLTu8/B/fZAGZG26fMTdknkX34wcbW8l69m/g8vlAIUt7LYocovQ34kre
DQneiId+Gbtzpg3p6EfOgTtn0bVQdxG77Dw4Aon3DWlTriX4SZbSlzhlUivX
trEbRpb2NO8fKsEJoi+xmqn0l8lEMmSDU6tcfwrSSJ/N2c7JNHBeHPyqFFuV
rpiIJv+HnsN5v55Vu7NHwLlctVPRNRefsVJ6C8Eape/NhLuhbNz/5p6gPMwX
ouowTfXT6w1cb0Bzqc/Ie+M8NCZ6C+tyL0+qxaSDUvbuZvXeRGwnv3MLKu2c
XXkTQf/MJrPgn3HYQfpy3+c9m8chEwM3Vym/dDaJQXbij8ssugcFS0W6ey1H
QPWD+w9jtXTMzqP8LMpfUew8txvMaIE1bM00ZNKk/BS4yXDsucQbMLzl0W3s
lokcDFQ9rH3FfvHzrgbQP67r9EMsEz2IXsGQwzode1kaaC30W2k+GIdixP90
6yQ628Rk2Fn+RmxNfAyeJ/5Hfc/QTjGNg5trW5WiAqMwn/TxhCT5DU8YRMGU
xcVu7rIIVCH+t5E+mOWMPtibDXbgrzgCd1eXX2/MiUV5aYq3rmP71nbX8w+g
uU/ton5YIpo6UHFZnHRjs+F8A+MfBUoP+CTjKnYqrpraoPrDGg2QcEhq9L8f
ybiL6AOM8FuyiW+pgjs67mkZ+5LxHdEH2K9dojdPLRNGh86lu/HFYBLhf0lx
d7iox6TCjclCmwa9KPxJ9rVFL/1im2QSwLypKORreQQaT+sCzXtw9RldDBQ3
P95+ODAMV5B4Dd9kir5Jj4Bt7wdM0nqCMYTEu3WWPti5U9w/RvlGAE+GqQcI
hONQCNEFKl9wSifyAyhZOjNadUThQBKVh82LnU0SvraAwot9PR87YtCIl+TB
KG6/87EGkLlyeuB7aSwWEZ3SPv5ANoezVbBI/mvRwopYfEz4+5b8E/eOZ5fC
wQHlZm/RWPxMeD2NVUp1k2uz4EWMN/ct/0hUJfn5Om91eLdAOpyt6hCTVYzA
DJKfD9diA3/GJkJ8aswDq5VhKEby8/Je9lwV1Vg4I7gxY11BMH4g+0KTlArf
vI7f9d+Rj7na5f7f/1u8kTcxVLgjDEKE5x5rtw9AeZIfmVn4+NO6o/yz6I56
zqI7mjmL7ujjWXRHw2bRHX0xi+7ophm6o9P6oo2z6Ivun0VfNHEWfdFTs+iL
XphFX/TB/1Nf1NIs85N3+zBU5f/Mv63histVqHNpg0UZq6lyNohPPFc0kw/4
y2e3qzgbp/t8GNKvXRRrK7THyRvU9e59LZKCPB/AKlNwQuK1K5bQU/gN3ms8
5gk3smGLovd1Kzlf3EnWeXf1uUICPQ1exP6A8kf/+NohjDXJY6XDcNun+vJ6
p9v4wZda/6BWNdu8JR/A1PRSsHmEA46wUusnBjVXaPG3wCeO8FCJHhe0PEY9
310bB8Y0XbNhJPCyZV6aF+pN6xVbCHc930AD25GnXy9oeeF1cl8NX1bZnu4U
4KsbufTf53/85fnzrr7PzBuGtkVBc9Kib+HJNMqfmp4PmqI/38N8rVItvSA7
bFpL+bPWKnxT1YIWiFd1ktsu74CPTlL+cF2w4xMur4egh90dEged8SjhF8dZ
71bX8s2Guk7OS9F97nif+ElnxcTbtJ0GcoXhFxZEuqM78XOP7wdOUc5U8N/M
xjnO7o4dxE9204jw/sYE2MrBJ/76hNtf/u9p1t7u9bRh+KzI1PVfkjk6lFL+
/3r0TX9J/3vgS9OWH/j4H74QpPy3ZvMOWDvQDDFcR5sFw+1whRbl/y+zqGb1
zHrI+88y9vQBe9R5SnD+ixXlFYoroVbr+1veS46YQXi7ihcmBzR/x+XQwpNt
tcIV60lc9ixbjrHvocGe1ZsyDi92xTQSV42ZE6/+rlSYt3DzKs4yFxwkcaU8
HXe+MScRXMY79HUPufzVIzVMsGT77BoLPpFrz59O+se37djZJcfX/h7ElG3H
tQdvovoWKi4F1y8j1a+bYczicPiaSzaYRfQAGZjpp4rD64GjKiOQa4kdLic8
2cK7oltyoyrhXX9UrMHEHVQl/Z+z10/MV7pTCicPiT6UuGOPZ0h/I8mc3YnF
PRsy5PK4FGsccRHZT02/N1zfuo8GOz7xPXEccMT6aZ2NaiMV4yOpoDaR+2J5
syMykO/9ikSApTVXIoTuCrIe9XHEIBKvSJ/BYUtaLIQE5c7VEXL8y29yjsrs
3t0WBWpnA+NDI//xXqf5qlEz5qH/A+f/yiw=
"]],
Axes->True,
AxesLabel->{
FormBox["\"b\"", TraditionalForm],
FormBox["\"rz / m\"", TraditionalForm],
FormBox["\"delta / radian\"", TraditionalForm]},
BoxRatios->{1, 1, 0.4},
ImageSize->800,
Method->{"RotationControl" -> "Globe"},
PlotRange->{{10000, 100000}, {10000, 100000}, {0.004105749038075874,
0.4105743231379449}},
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
ViewPoint->{0.1689075773317002, 3.183445876295267, 1.1345230641192776`},
ViewVertical->{0., 0., 1.}]], "Output",
CellChangeTimes->{{3.613235573282363*^9, 3.6132356229910517`*^9}, {
3.613235656620192*^9, 3.613235681734825*^9}, 3.613235745592945*^9, {
3.613235826883203*^9, 3.613235850680998*^9}, {3.613237047355789*^9,
3.613237060849641*^9}, 3.613237174321229*^9, 3.61324012135568*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
RowBox[{"delta", "[",
RowBox[{"10000", ",", "rz"}], "]"}], ",",
RowBox[{"{",
RowBox[{"rz", ",", "1", ",", "1000000"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "Full"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<rz / m\>\"", ",", "\"\<delta / radian\>\""}], "}"}]}], ",",
RowBox[{"ImageSize", "\[Rule]", "imgSize"}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Impact Parameter 10km\>\""}]}],
"]"}]], "Input",
CellChangeTimes->{{3.6132405251074553`*^9, 3.6132405464412003`*^9}, {
3.6132406845890913`*^9, 3.613240711498098*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwV13c8Vv8XAHB7Ze89Hw8PGkZEOMeIUqEIJRJlZGVEyMiKkGwSkZJKkZBQ
X1FaIhl5nlJCyqhkz/zu7597X+/X5/M653zOPff1ulfO1f/gSQY6Ojp74vL/
+7n5oErqZKah+tgRRtnrzFD8823rfscAUBdc5r3xmBnq00UnlRzPw4pv7H2j
bmYwHjHcEHTMgHzbK2xv6FiAjetg8ibHUrjk5mjBf5wFJksdO1kcH0B9zcRc
AZkVnHyGTjM5PoOdcUvfbdrZQDA34vzn78/AM7RT3vgbG7z5Tziz9nQrGEh3
39y/xgbaAvsfnkhsA1WXV+vNGuzA2/h4/vmDF/CGc1MYXSk7PGfNCk9gewOM
Q51qOnEckNstb8zo2A2lmT8CrY5xgp9P5maz8m6IZg8PbonhBHNWBrHkv90g
Y3plyOE6Jyzpf/vDnfQBvptfrqEb44TDFdeKxOt64D7rg2Pq/lwgGS25rM7T
D2U64xWYzA1lasLVLm000H+8M6nBjxfOvUwoLOP+BDxCBgPCsbxg6zqfOHb4
E+jq+62l5PACU36vk8/0J3i0LLu5qZkX3BmzNp2VGgSf16yUbZx8oELj8UgP
/Qpah6efplbxwUAbE89XoWEI13zcP8AmAH5VkrIMusMwKOYz+EZKAJgKtdQV
jw4DWcF/ukdDALYGnrDxvj4MVfxzJapOApAo+zxvccsIxJLplmdrBEAzMk6W
d/cojP3OtthwFYRL2gwaRuFjkGGeW9jcJwQkeXGTE0VjYPqvLbLtlxA0cmnY
XmgZg7h4y/ejzMLwffR4yDuWH5BzcFkvVFsY9LOeNR7O+gGv6ylOX/KFYfxP
jElg5U+oI7HPdbmKgOntDduyLxPg0cNvLMopBhYbF2aF6CchYPGUo5SSGFgf
4s1MUpiEROOyK2AsBk70cl2+npPwKuAq2+ezYhBy2HjPjplJaHwcKXH2hxhU
sCcYvGP+Bbeab9sefiMOm05xkBfV/oDUTJfw7VuSwN+S+dzL6g9M9c9EZrZL
gqiwhNvngD9wQajJoOi7JJBaVUue1f+BNSszexGSFEinkbnMZKeh+YPoZOl1
KdD5bn6B9840yNR1D24rlwavnIsRN5/8BW++epQ9IQtTRnlxtu//wn6TxJNW
obLg97sshXHkL3Qa2/3LvigLgeZPCo+zzUCjrsa82wNZOLf8p0nKZgZkdE2/
CtDJwWWnQ2s5P2fg0ziDeU+pHNQrykYmCsxBIwerYPaiPOz4oJawnTwH/Pf8
N73kUoCmKN200R1zwKiy9Z8ASQFaPh4sMnaeAwPlMKs1awV4nZzw5F/FHGDh
2XX2SgX4/GtiPcRwHvRc1Ia0PEjAUF8X5eG1AC81LbfdnVGEgoBA24/hC8C7
dyaijIMM2zZvVTFPXQDpl+rzdfJkcL5R0UeuWoB4qX/DFBsyNGUWqo3NLcBK
BkuvdR0Zgv3P007ELMKK2GJdbZQSjCnv13bNWwJ/cbFzFWQKRI6yc36oWILJ
ql4rWWMKCJa0fzNqXAK/QU2FeicKGItgmtzgEuibcO3Tz6HANWbN0SH5ZRCz
OmJaz6wCDsOimcfuL8ONWdsdUVMq8LZw9NfRFyvwtNFF7sAHNRge8DpnPLAC
ZZEPXfzn1GBJ6A+H8uQKTM27MNYLbwbS5WWlWd5VOGpmrPHEcTNExXO7Jh9d
hSGtN1ENPzaDhu+O/rrZVYgdLO9LY90K+YapT7nl10EnkvR1U+02uB/Bt39O
ax20wlOau19ugxcNuZ+o5utwOZudoerTNpjRKF264bsOvydRq5pRHfYp1Wvs
fLwO4ivJu97bqsMGz1C5h/U/MHGoZitZVQf3b5rpLVEbkO1amrzvqCbU2QSM
7s/YgMYSC5+OQE1gar+v+6lsA07SaoPdkzWh9A5ldP4Vsb8g4vR4vSb8fpx+
NYedDqXBxX+LgBYoxyX8fWNDh46TPINd77WgWCigcPtPOjw1KXDj4HFtaO/k
MTv3lw4nEla/2UZow68L96dbV+jQIPvm4TM52qC/MrnLmoseI35NxPK90Qbq
F/fpUxr0SOMbKG7U0gHBiqO7Ss7Ro57vvYw/PDsgWW/3Hw4+BkyIq+4b/6IL
eqtP6WrEGPCbAE1lbkUXppq28x+WZ0CpZttRSRE9sDZQ2H5LkwEvrCiwvbHS
A2H8F25ix4Alidb1ua16cGNXLcu5QgZk97A1ELm/E1qsZaV/KTJi5K9I2dtF
BhDIl7c1ewsjTvhUF7Y+MQDSBy6jnTqMGMgW+e3foAFcsFl1S97NiGw6I25D
0oZgadd/W9GbEVtte333XjeEz46p252rGbFjv43fSBXAovvSvi49JjR5BwcL
ZhE8PXv01E2Z0HrONyWR1QhoXveVs/Yz4UqphHqKhBE0+5xgsndhwgOGuts+
mRhBbOD7pi8JTJjPGsxWkGMEnFEVKr/fM2HB+6HRGwbGIJ/jwMblwYyBQf1u
b0pMIDtXc8HvNDNyyGZwDz4yAeZ87tH3Ycx47GjOAEeXCfy88vy/7FRmFB4n
WzSsm8C9km2hkjXMeMfuOMX5qCnsqGQbU11nxvhHSgkz0rvAsq2hzSKLBY/6
hlJUG83AosNblOsqC3ZHJrBK9JiBWZ+0b9cNFmSYFjcmT5mBwY94Ydt6FnwX
x78rXdoc1DYd8HKisiBz0e8P9+PNgcNmnPu0DCs+sNFmALvd0D4sdiTnLivu
OMzjHMtjAa2THffta1kxgrSSLK5mAU/nohnFn7AS+ZqFPuy2gDqWscriTlZs
LLnWfy3WAm6o1Gzc+suKrhL8bx8vWhD9srjZqMOGxwQ83Vl+7gUDhojpr21s
GPtV8Sn98H7oVbyoHNLBhiYLfnxkBkvw2VPgwtnHhsk5/xZ85C3h6uVH73eM
seErvT4uNzdLWJOeq85gY8eraW4Jc2OW0LTTN8BkPztezqlcfjdnBbpnjs2U
97Pj6dznejrCB+B9vp+KwVd2TDd6KZWvfAA8myNde36w4zkwf8G58wDkM179
sLHEjtai3+rVXQ7AUsZAjYMEBxrt8o/0uXsAHt0/EMThwoFMQeN3G3YdhO0/
TeZ8xzmQ1Z1ecM9FG0jd94jtvxkOXCRLjouU2sBotYoU7xoHfvR1caJvsIHs
MD6zGu5NqLy55xppzAZmOL7mLWhuwj/XHVarTGzh/ubwndFRmzDk7cj6POMh
IAdVx14W4ER6MY0E8hU7iPqokPdNkhMNVpz3JNXaQd/OvLsaZE7scrg8wNZl
B/FMUb29Ozgx0mrqhzuTPQzn7CWLOXOiYrFG25XT9lDcMPa6tIIT5/STntBb
OYDwP0m+hwZc6KabcnCAdASWvDxTT5hxoV8Hb6K10RGg9T1kFbbiwv3kwcc/
nI5A8T2Lf2dduPBlVdDtoLwjoOh0dtIwjgvPr3a4MnM6glZzz4s3r7iQRMm6
uGXVEQ6GXwwftuHGLR2dfzNmnEBrrG8+6yg3xlzvDdwi4AzCB+UCdp3kxiT7
3JDfms5AozR4VIRwo22cdCn1jDMcp3639SvgRif/HS9dVp3h9A6jrStfuFHa
aTLhDosLpC8sjvCd4kGfAEaeFfJx2FZ2a2dUEA+6SU6t6O48Dh+s7LMmzvHg
DtfMzgyr4yB8u964LZ0HhcKEi5PPHoerjmdKg+t4MLLWdO3q2+Ng6xJW5U3H
i8HjvcI+Ia7g8mLBp3MvLx50UFiN/OoGDwo78+OtefH5Lx7FuQU3YAgsf653
iBctKrTpE7lPQJm0neQtZ178SBWzWTc4AWOhdW+jA3gx9wjjikHxCfBRCVZR
z+PFhyFPm0gnTkJY+t8fWcO8yCaklRPB4gGiQaHMWj94Ueew0UcVOQ+ot1uX
753kRbMXZ5mXd3rAnBS7s+A8UV8JrW4mwANOV8r2ZrPyoXpLveOxrx7g/tqq
JUeND+9lfZ42aPEEW8b7+XkhfHgn9vsH8cJTMDumWa8TwYdprBM4/fgUZL55
3PMxmg8XYxK9xgdOwfuMF9yiyXxot2502VzEG/bKDsbnF/LhVye39kc53mBs
wBlQ0MKHy/X+HGkFPrA19NSeQg5+nHLY/93wqR9kOx+9MsnNj6F97KWhX/1g
aZfl5E4BftwXVGjUS+cPLYIaaZ8l+DG/PKhj2cQfrGuW30tt5se03UXWK2/9
4fSvJIcSK36kPn79KyzgNFS73fK4mc2PW6J5JeZyA0Bwb0HDfD4/Mp/MnZu/
HQBnNVLYzYr4cW14xo7zSQAgvf/dsZv82BI1zx06EgDvi7X/KD3ix9Per5+a
qQfCNPVFyB0qP94iP2QYeR8I6tajCVXSAjgr3Xj8oWwwzNmz7XJSEMBnP9Mt
9u4IhoZjakyblAUwacyA+s8qGNA/ONZdXQA3iz33ehwdDNaXmKKlTAVQQ1hz
MnooGPw6SGdTvATQ63NPiv+tM1C5++Qpj1oBFLXRN3uzNxROWydThB4LIJeb
eJ6oRyhoOdz72fpEAOvHHcYSY0Oh2WPeXfqlAF41/Cn0/HEovE1McOujEvVl
RH1+TjkLE89vHjXZEEA+LYaH9LxhoGQ0ZiljIYjxn5pMohfCoXpfiFGkpSCW
ttuqrwtEgJ4Di9ang4I4FvTsaKF6BOzzJ4vlOQqiXi79yg7fCDhd5D7C7SuI
SWmz29a/R0DD8ljov3RB1Pm8QX49eA521/woGewTxIXPtiLBP6Kg+0lo1k6a
IGrw1kwgezQcec2aWPBFEIvPH6jSUI0GnyEl70M/BDFXo/pegn80XOb23P5u
SRD/xsz9/bUcDQOnfr5ulhDC5hG7b/MXY8BLYXym8LgQWrAv5o3UnYeDVndt
7N2F0P3eotK3N+dBL8K3lt9bCPvL2LMWv54Hzp6/Z5KDhbB37pe/P0csVMeu
LIVcEEJ5Jam4Sy6xsPBt08aBe0Io17XtzA2+OIgv2bKJbVkIOateSXAkxYNv
x7R327oQFp+ML3IuiQe7pZqOKAZhjGCzmuxqiAdla51L85uEkb2cN4h9Ih7e
bgDfiLQwcm1fmP20PwH4jx0QeWoqjGPt2rukJBKhRCpYIfiyMI4KNs9zvbsA
H+1Gz4jlCKNc6WH5Jz8vAPdl21dPC4QxQXrbmVSmJDjHsN2XvUwYDast5VP1
k8Dhx3x9cZ0whu3irBO4nwQ8D0ItXtOE8W5VqczJvGSIMo0IkFYUwaTe8xqK
8SlQFznZ1kYRwdh/hv6kGykwVe8o7LVFBM02F3Xsfp4CRyj6TQ91RFBStCSb
njkVtnOvM+2xEMGLdSKCO5JSYepjVH6QvwjeX1kx/ZqTBo7esf+9eiyCW1ge
etl2pYNDhfMu6aciqH8zarb7bzrYftd7G9QqgmsqlW56HJdh37HZfum3Ipgd
VhQitPky6Nuc+B38WQTbi+Pe3Q+6DJI7zaTkNkRw4swaJYYpA75wcESEmYoi
W06lm/r2TKCZj9F17RbFTb9PyfzanQn98a2JpP2iaOyWSHl6NBM6/4Vndh0S
xarfw3El8Znw38zkbUUPUbR0bezx7MuEEtq7ge5kUazfK24sGZEFrncytFW6
RHHbHSv3+o/Z8JS1RGWwRxSfcofkqk9ng/jJ+9KXB0TxjXK422u2HPgg85Zl
4ZsoNu2mc7DSywHjHKaPz+ZEMTVcy7KhOAfkYkJDD4uL4bdlUXpJ31wYOuTU
kHRSDM9dfP+ftFw+6D/0rtx5Sgy/7ndWPW2QD/m84SW//cRQ7Zj9leHD+WD9
NjfJ9qwYmoslialm5UMLvneQTRFDXrqb7ZasBXBN1WT5UbUYugkPVjEsFIAz
PUXvx6oY/mgb/an5uxCiXcuOW9CJY7PY+8bnnFehpE0q+R6TOHper3oYonoV
hhP4B4K4xFEg6FC5oddV8OBYO0MnI47bu0ZPuY5dhdMCXQ/EjMXxhez0E9Ef
RRCreIayL0kch5DEWEpfAmWJf6yrUsXR2zaMXUagBJ7/8DrLnyGO9SKWc1Wk
EmC54/xyoEAcnWq3t3PsLoGULbtPnrwrjnHPVRLL00sgW0eiNKpTHOOln2xK
ki+F8j3PRB8ISmCL0ZOCOPvrINQwrv5PVAJD/blGZL2vQzyZf+9eKQl0N/Tv
+RB1HdwY3SK/K0rg+5p9a8Hl10H2CdOwmI4ERkbH1NcuXIeCbbvvxh6WwKdf
csy0CssgVaTLwLZYAmXsBfXezt2A1YRFu9LrErir372fvOkmnJqTOf27XALf
Tht/KJC7CXu6T19PqpLAP9N6pu2WN4ElhZ/1SYsEimn45e68cxOi/x16rzgi
gatPlu0qT5ZD4PfProtKkuieZj6+788tMArWmShVk8RY5812UxwVwMuYGbBP
XRJDy9c77pAr4L6seUypniR69pk5JDhXwITjg6K9+yXx9IO3XrVdFeD6IWHg
WqAk3uNTGRVuuA0H/9tiufuJJAYMRWz0lt4FOcvkvplnkvjCk08/59ldmP48
crSoXRKZAqbvnP12Fy6t5HvPdEki7Pp0+7ZcJbzZzph8dVgS/ZtTlx6VVYJx
5ce2aVYppDv2N+jG/XugURCjW3BQCo9EStHXDVVBu6r53KydFJozPPhsT18N
R55yVVk6SqHvqa3h7vzVEDdyhcR0gnDPydpHWtXQu7mOx/+MFAa2JTxXDa+G
M63j303zpTDO2N7Wg+0BNEwezJwelEKHw3+qsjVqYF+U2P69w1J4qsuS9+Ou
GhjiHWItH5NCpWdJ6WqHa4Bd2zfS8Y8U6u51JfPF1MCRmAue7XTSSKpVc2jt
rIFVwWbDqwrSqDl7c6Db/yEYGipOmntJo5PpxDTns1rQ+CslSOcnjbFeL9+X
DdQC+YawQUOgNOLazwM207XAzcGWrnxOGrVCpmLWZOrgS9+EBnu6NIpVVqWF
xdRBlG91+Jtaaczv9uLZYlYPT6/u5NhPJ4PeTluDV0YfAaweoBzMk0G+7+EZ
RUFNENu0ZDJXKEN8/0gUH8hogucR15xzS2QwtS9ARK6qCXavTWXRbstgQNxs
KP9kE1ivX/jn2iyD4/rSq3CiGVw2nvQEfZPBoO8sNe8cn8AzeqH/3gjJ4reB
sC3fj/0Hw8znvaaOySJbfcN2uy/PYMzj4mUhV1k8PfOxKPjPMxh/nfXI8IQs
fm+fkL9G1wrTaeXMGZ6yqP+2OlhUoRU2hDpKtwfIYoXDtrZCz1aQJIvQomJl
caf4o+9D861gZ3bPgu+mLEafVWbdKfYc3iRSVbUnZPFWeTw7nm+HSoGQ2s0x
cmgUrZlxU70DtMSy7qhyyqNtYkgL5+B7iHoV0O+RI4+ZHRsvP5zqAW8bvaim
PHl8Rnc/bOuZHnD4wkDmuSKPOs6jBfHRPaAxl3WmvlgerZ23jotk98CYTL0g
c4U8JkkcJX1r7gGr0JWD1xvlUdd/puYvZy/IkuO6Pn+VR7nmHVk15b3A9WBv
6LZhebQfqjBlrO6FlZ2CMvGj8hh8UmrQ4nEv9B646ac6Lo/pc3XXnr7theTI
l1zhM/Lo96s1Wme6F2Z6N+0TYVbAD/u8Vz10+qAtLvvVARUFhMecpgVP+yCT
V+BipJoCjs5tz9nS3geuRRl7b29RwOXtBUeb3vUBw6NLnXSaCnjNLsSs6XMf
4ERSb9VOBTw+m3rYdqUPnlpHDnHtV0BnBsu0Cc1+aJByX3rtr4CMJ4RHykv6
IenO6OP5AAVscJ2dodzqBwcdtwi5YAUsfGcffeNePyxau/w7e1YBv9v9E45p
7Aft+CNMyucVkNeLO7m7px8eTljyJmYS+SqSuYeYPsL9RzrKxnUKOMyecPuF
C2HbrpKrj4h8YWxba90/wr2/7mKLjxVQXSp1V4HPR6hUzeWofKqAiftm0fzs
R7hzbW5K6JUCuvTHaGumf4RbFx48GKcpoA+DZu6Bpo9QYq+6M4OOhBEzrw4N
cQ5AyVzrw0kGEpZXHp+s4huAaxlH1MyYSdj9YVooVHgAit8mS62yk7Bfu9Ny
SmYAiuDnxgkBEh6U47AN0hiAK0o3n+8gk9B8M2Vm9dAAZC1KWw7tJaF6tsfu
nXkDEJLrM8RvScIaqzrzrisD4LC9MXCXNQn/fh5cP1o8AJJBh/Lu2JJw6BRU
nbw5ADd+pwwFO5EwiTTEvvnhANR/Xwpk9yfhpLBY05V3AzDQ8yFPI5OEm58Z
1aj8G4DGQFmVk9kk1PnpbMhMT4WrfH7NebkkNNHfHkdjpMJxK/Zva1dI6FmS
ZneGnQoTb0DlZRkRP/nMho8gFVafVTY71pGQNfUa2ZtCBenqxG/xAyRUcRvk
G7Ciwq1Dd30qaSR8raZry3WQCttWuxZ7PpOw0JfNx9CWCiZmYtwK30i4x2FG
O9uBCp6f7+o9GyfhFnqpee7jVHjA1p21vkLCkY9b+80CqKB3f15acZ2EDV7G
F/WDqPDcRvzOvg0Sfn4Wd27LGSr0F7u1FDIqoqHyey3WMCqsaC1M6XIqIo9c
VVlqDBVMj0uYhUgp4r648U9Tl6jwjgW7i2QUcUnB+PDty1Swqzxx9IWcIraK
nAtxzaSC1+K9QEGyIjrr0le8yaHCpTS8VrNFERPcq5KDrlJh4PHJpd+giK9F
jI3VblPBm7/6joerIkaxpH481kIF0qtfU09OKKJeJp/nwDMqfIlU3SrooYi7
4kw69rdRwXq8/GGLtyK2xfQqb22nglZLUbPYGUXce/7SUMdbKqz5pnS+vaCI
Evtq8sP6qVCn8JpX/qIi9i1PG7V+pIIflcXmbKoi8msvSLNRqTBkGvuRlKGI
2REMKSmfqPBCImwo8ooipmi8fhkwRNT/2n1m6z1FfLBjraBlnArm0Te0EquI
fiAKfp2gAt324ZDPDxTRq/2h6OokFQJLnFaT6hXRVTKyV/U3FexDbZmG/1NE
Tf8fZadnqCCraCyc/UERFXdr/EhZoUJNjJTe0qIiUoX6jlHYaWC5gy+XvKKI
WrVa47OEJ/4wzdiuKWKD/XRHMwcN5I5N3X5AR8a3m7Kr93DS4LJBk5g3Oxkt
Z38bW/PQwHfFYXlQnIx7VfhsBYRowFaz7xCnFBnVbnDSvSB8wwsf6MmQUdZN
ZccZYRp8HlDyylMg4+P/wh26RWhg8WhhwFqNjKm+THfOitNAOTi7oc2AjLc4
RZkSZWjwXDVJcAbIuCR784WcLA1cRiJOyxqTsWn1DjQTzjvophxpRkbJE/Ee
v+RowKKuka9tReT7J9CJJBqM/uoKve1CRm0JadJ9ZRpc89ikkx5HRl2+Ct+H
22hwaquoxVQCGTm6ar9pqdNAe5HktCeJjOTruWp1hDsTDeMY08ho17njQI0G
DdZuBnSF5pJRv+OY1DUtGhwe/ejhcpuMaV2zE6Y7aECqHA1/cpeMD9Icl2oJ
Twf9TRO/T8Z2u0pGki4Nkhg31fbWkPEyr4TUBuF6eUO6Pc1k1PEpLLi9kwYC
x2/kq3eRceUiV1G3IQ2+KD+4e6mbjEnWpukaQIM700+eTvaQkU4wuZT4uwDj
mI+jNwfIKOWstMUaaXD6Goe6+DAZebZqSD8zosG7wdOvGebJ+P5a8UaEKQ0u
HDFY6RFXQpOtZ5Vc99BgRVmOhSylhBKPbG1uE/ZZZOI/K6OE51MYB/8QPpjd
QZEkKeHPjUSeCAsaSHY6Hj6xWQk9rqDoxb00qDEKb5gDJSz8cu5Hyn7i/LzO
z82MlTDZ83H2a8J5X4ze55sq4Z4G5ToWSxqci2D/qb9HCanhWbbRhM3r8kUS
DiohfUbl1lNWxHwoPwoROqmEY5qfnZUOEPO5eCXWw0MJq8fsO48SfvYi6tJj
LyXcu3GjLYNwuatZuZOfEibyM5quEA642td3M1QJhW+EPn5xkJgH3jkt7YtK
qFUye9Tclgbqi9tm7aqUMCQ8GNfsaJD48o3o+QdKWETffUvOnsifd8Lw7kMl
7BBW/c+McOKO/OSNR0q4MRJJd5nwp7ANmYoWJYzspH2VdqBBwtq7fcvdStjl
+7d4y2Ea0Do8AhV6lXC5sfOgFeFtRfT5+/uV8EBpeYv//9cNto+U0pRwX11+
RxXhrdFXwyxGlFAyLa5O7QgNqPTe5YVzSrjCct5c3JEGWz4wdbxYUELzr/pf
tAnHXy/++2dJCa8s1+rY/H/d5IO+6boSxiwPa6UQjovX7ZliVsbgCl33JcKb
WdnoDEWUsZE+ke/VURqc57x5eEhXGffMuTaDM9GfX/bauvrKeP6crJc94dR3
HAKZhsroc7vjix/h3EunO0xMlNFt+Be5iPAdXn24tU8ZBWf+6SwS7hXsIfkd
U0ZvCZGXpceI92E+gf7lcWX01BLRryf8pW/HF5kTyriWFX7+DeGfucV53Z7K
mNygED1DeF30FMf2QGW0Pt97AF1oQJain16NV8Zmb63qHsJ31x922F5Qxom+
TU7fCW/74n77XrIyvoxuHFogrHetw/XYJWX81SPuJ3acBlZy+X2tecpokUi6
e5TwWcWtTcl3lNFXKnX9E+G3m50SRd4rY8XxVZsWVxpo8Laf2/1BGZ94fbnZ
QfjKzJagsF5lPLA+/XmA8KlHdC6fBpSRSzltdZowu9EN3WvflFF/cohO1o2Y
X9vJKfKsMhrccT0aRvi+tu2I/bwyWjadk4gnLCz2hJq0SOSTUG+7RHhs8FL7
xKoybq7SfFdGOMFDo+Q+EwUlLgp2dxBuCw+z0Ram4FX61FbxEzRQcRre4yFK
QckyLXkS4UzYi/niFBTaG+S7mbArk9TmFWkK5r9zewmE6S+1sDxVomB7cW+a
G2EoZW3cpUvBdxKDybcIN73MkT10lIKUE/U28idp8Ka6jyfCmYKVU7EHKIQH
CoQ2SlwoGK7jgtsIL3jnDE6doKCPQcdfg5P/71fOlXhfClaF9ZU7EK5wyBas
jaLgHy/14BTCj4x6GWkxFGzO8MzIINyuIji7EUvB78XppXmER9ayuvdeoOC+
e5KFZYSlS7MujaRTUDNv20Ij4ezxTDaBUgoynQty+0G47MOHxR1lFMy8sLN5
inBNE/8P55sUvPMgl32GcFda5os7tykY0OgRu0aYQyMz1riGgqdf8f/hdadB
THjGWkAbBfkvUl/pEPbddHn6/XcKwp1XwlGEK5nGcxV/UvCZFGNiLOGJdSOD
8AkKtv2dn0gk7Dk9m6zwh4JDz9xy0wm79tkrhCxRUN7o15kSwg7XZOwkNqmg
XVOQdwvhvPyza/5cKqgX9BOfE+7P6L7+nEcFF1rCuF4RtomP++MrqIIX9pmm
dhG29PqR1CKlgnuE78t/IWyqWdV0cpsKBsV9b1smHKfG5tqooYIJp04KrhNu
VTzOxrOdiD+/3YnOg3i+ogKHGnRV0IuVd4CFsN56yG8OExUMqbwcLEB460tD
uepDKvhBPdFelbC4Y2fiSrgKnjQr1bQjvNNu0EwpUgWTedPjHAgfPTDFYhut
gnlZEZ1HCF8z57hwL04FU9cjDh0jTNIyu+CSqoI4aELx/H98rqcX2otUkCH1
7/RZwtZs78xnrxH7z1fOhxMOZPzMKntdBf+Msi2cI1y7vHwhrFwFPWvejsf8
v96x7UlqVSoorBhZnETY9L97SZktKmiW5WOaR/hkY/Pu/1pV8GjgedYCwol1
b9mmnqvglc4X7VcIv747nrTrtQpe+7uuW0zYMl8xealbBWm3uOduEHYIKEp2
HlHBg+fSnzwg7KuQdlGFRRVzjEqprwir2Jdx5LOpYpKs8uE3hH9efHyReZMq
Bqfy9r0l7Drz/eIQjyr6TSq3dv4/3jPDlFwxVQw55BHY+/96j02nMGxWReN3
thpfCTNksXCe3qqKEWeHIoYI/9cumTqoropF3Nat3/5/3i17Uhu0VVFmbmnX
KOFt66WpfkjkPw+UccKShTZpNBtV1HfrOzlDmNbpxbXbThXVYv/FzBLOY4hJ
q3NQxYKsiII5wvynKtMuO6kin1VK6wJhNl3mS2YequjOWzO/Qni2v/5STTgR
vz/wO4MnDao53nHLRqpielzLACNhP8ORS2nRqijo2fqaifDPmzzpnvGqqLK8
dIOF8Jdgz3TpS6rIiK+Rg/DViiie1Muq+I7zgPwmwoc/Z6cvZ6qi5MYjek7C
vSbP0nvziPoHdBq5CGeGfuQxvqKKEsNHsrgJW939lV51VRWp9gGneAhzfmXk
lbqmitlqMcBL+A2/+OWLpap4zjyVn4/w/wDFzNTI
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0.000041262247049766636`},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
Frame->True,
FrameLabel->{{
FormBox["\"delta / radian\"", TraditionalForm], None}, {
FormBox["\"rz / m\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {{{0.,
FormBox["1", TraditionalForm]}, {2.302585092994046,
FormBox["10", TraditionalForm]}, {4.605170185988092,
FormBox["100", TraditionalForm]}, {6.907755278982137,
FormBox["1000", TraditionalForm]}, {9.210340371976184,
FormBox[
TemplateBox[{"10", "4"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {11.512925464970229`,
FormBox[
TemplateBox[{"10", "5"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {13.815510557964274`,
FormBox[
TemplateBox[{"10", "6"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {0.6931471805599453,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.0986122886681098`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.3862943611198906`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.6094379124341003`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.791759469228055,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.9459101490553132`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.0794415416798357`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.1972245773362196`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.995732273553991,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.4011973816621555`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.6888794541139363`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.912023005428146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.0943445622221,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.248495242049359,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.382026634673881,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.499809670330265,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.298317366548036,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.703782474656201,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.991464547107982,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.214608098422191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.396929655216146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.551080335043404,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.684611727667927,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.802394763324311,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {7.600902459542082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.006367567650246,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.294049640102028,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.517193191416238,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.699514748210191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.85366542803745,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.987196820661973,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {9.104979856318357,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {9.903487552536127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.308952660644293`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.596634733096073`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.819778284410283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.002099841204238`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.156250521031495`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.289781913656018`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.407564949312402`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.206072645530174`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.611537753638338`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.89921982609012,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.122363377404328`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.304684934198283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.458835614025542`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.592367006650065`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.710150042306449`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}}, {{0.,
FormBox["\"\"", TraditionalForm]}, {2.302585092994046,
FormBox["\"\"", TraditionalForm]}, {4.605170185988092,
FormBox["\"\"", TraditionalForm]}, {6.907755278982137,
FormBox["\"\"", TraditionalForm]}, {9.210340371976184,
FormBox["\"\"", TraditionalForm]}, {11.512925464970229`,
FormBox["\"\"", TraditionalForm]}, {13.815510557964274`,
FormBox["\"\"", TraditionalForm]}, {0.6931471805599453,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.0986122886681098`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.3862943611198906`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.6094379124341003`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.791759469228055,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.9459101490553132`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.0794415416798357`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.1972245773362196`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.995732273553991,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.4011973816621555`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.6888794541139363`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.912023005428146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.0943445622221,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.248495242049359,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.382026634673881,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.499809670330265,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.298317366548036,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.703782474656201,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.991464547107982,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.214608098422191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.396929655216146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.551080335043404,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.684611727667927,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.802394763324311,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {7.600902459542082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.006367567650246,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.294049640102028,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.517193191416238,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.699514748210191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.85366542803745,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.987196820661973,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {9.104979856318357,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {9.903487552536127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.308952660644293`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.596634733096073`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.819778284410283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.002099841204238`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.156250521031495`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.289781913656018`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.407564949312402`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.206072645530174`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.611537753638338`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.89921982609012,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.122363377404328`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.304684934198283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.458835614025542`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.592367006650065`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.710150042306449`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}}}},
GridLines->{None, None},
ImageSize->800,
Method->{},
PlotLabel->FormBox["\"Impact Parameter 10km\"", TraditionalForm],
PlotRange->NCache[{{0,
Log[1000000]}, {0.000041262247049766636`, 0.41260172663998396`}}, {{
0, 13.815510557964274`}, {0.000041262247049766636`,
0.41260172663998396`}}],
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]},
Ticks->{{{0.,
FormBox["1", TraditionalForm]}, {2.302585092994046,
FormBox["10", TraditionalForm]}, {4.605170185988092,
FormBox["100", TraditionalForm]}, {6.907755278982137,
FormBox["1000", TraditionalForm]}, {9.210340371976184,
FormBox[
TemplateBox[{"10", "4"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {11.512925464970229`,
FormBox[
TemplateBox[{"10", "5"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {13.815510557964274`,
FormBox[
TemplateBox[{"10", "6"}, "Superscript", SyntaxForm -> SuperscriptBox],
TraditionalForm]}, {0.6931471805599453,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.0986122886681098`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.3862943611198906`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.6094379124341003`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.791759469228055,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {1.9459101490553132`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.0794415416798357`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.1972245773362196`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {2.995732273553991,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.4011973816621555`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.6888794541139363`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {3.912023005428146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.0943445622221,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.248495242049359,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.382026634673881,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {4.499809670330265,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.298317366548036,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.703782474656201,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {5.991464547107982,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.214608098422191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.396929655216146,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.551080335043404,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.684611727667927,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {6.802394763324311,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {7.600902459542082,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.006367567650246,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.294049640102028,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.517193191416238,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.699514748210191,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.85366542803745,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {8.987196820661973,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {9.104979856318357,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {9.903487552536127,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.308952660644293`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.596634733096073`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {10.819778284410283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.002099841204238`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.156250521031495`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.289781913656018`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {11.407564949312402`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.206072645530174`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.611537753638338`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {12.89921982609012,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.122363377404328`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.304684934198283`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.458835614025542`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.592367006650065`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}, {13.710150042306449`,
FormBox["\"\"", TraditionalForm], {0.00375, 0.}, {
Thickness[0.001]}}}, Automatic}]], "Output",
CellChangeTimes->{3.613240519119196*^9, 3.6132405505676613`*^9,
3.613240701752537*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Export", "[",
RowBox[{"\"\<deflectionAngle.png\>\"", ",", "%"}], "]"}]], "Input",
CellChangeTimes->{{3.6132407137729816`*^9, 3.6132407492801437`*^9}}],
Cell[BoxData["\<\"deflectionAngle.png\"\>"], "Output",
CellChangeTimes->{3.613240750248983*^9}]
}, Open ]]
}, Open ]]
}, Open ]]
},
WindowSize->{1280, 756},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"9.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (January 25, \
2013)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 97, 1, 44, "Subsection"],
Cell[CellGroupData[{
Cell[701, 27, 170, 3, 28, "Input"],
Cell[874, 32, 162, 2, 28, "Output"]
}, Open ]],
Cell[1051, 37, 141, 3, 28, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[1229, 45, 108, 1, 80, "Section"],
Cell[CellGroupData[{
Cell[1362, 50, 137, 3, 44, "Subsection"],
Cell[1502, 55, 4959, 107, 398, "Input"],
Cell[6464, 164, 1296, 36, 49, "Text"],
Cell[CellGroupData[{
Cell[7785, 204, 1307, 34, 72, "Input"],
Cell[9095, 240, 558, 13, 59, "Output"]
}, Open ]],
Cell[9668, 256, 302, 6, 30, "Text"],
Cell[9973, 264, 652, 12, 87, "Text"],
Cell[CellGroupData[{
Cell[10650, 280, 595, 14, 28, "Input"],
Cell[11248, 296, 215, 3, 28, "Output"]
}, Open ]],
Cell[11478, 302, 177, 4, 30, "Text"],
Cell[11658, 308, 459, 13, 40, "Input"],
Cell[CellGroupData[{
Cell[12142, 325, 2522, 57, 80, "Input"],
Cell[14667, 384, 3035, 56, 672, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[17739, 445, 723, 18, 46, "Input"],
Cell[18465, 465, 75987, 1244, 482, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[94489, 1714, 708, 17, 46, "Input"],
Cell[95200, 1733, 30622, 556, 549, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[125859, 2294, 178, 3, 28, "Input"],
Cell[126040, 2299, 96, 1, 86, "Output"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)