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Slant Transform  Image Coding 

WILLIAM K. PRATT, MEMBER, IEEE, WEN-HSIUNG  CHEN, AND LLOYD R. WELCH 

Abstract-A new unitary  transform called the  slant transform, 
specifically designed  for  image coding, has  been developed. The 
transformation  possesses a discrete sawtoothlike basis vector which 
efficiently represents  linear.  brightness variations along an image 
line; A fast computational  algorithm has  been found for the 
transformation. 

The  slant  transformation has been utilized in  several  transform 
image-coding systems for monochrome and color images.  Computer 
simulation results indicate that good quaiity coding can  be accom- 
plished  with about 1 to 2 bits/pixel for monochrome images  and 
2 to 3 bits/pixel  for color images. 

I.  INTRODUCTION 

URING  the past  twenty years the applications of 
electronic imagery  have grown enormously. This 

growth  has placed severe demands on the capabilities of 
communication  systems, since conventional television 
transmission  requires exceptionally wide bandwidths.. One 
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means of bandwidth  reduction that has  shown  particular 
promise is the  transform image-coding process [l]. 

In 196s) the concept of coding and  transmitting  the 
two-dimensional Fourier  transform of an image,  computed 
by a  fast  computational  algorithm,  rather than  the image 
itself, was introduced [ a ] ,  [SI. This was followed shortly 
thereafter  by the discovery that  the  Hadamard transform 
could be utilized in place of the Fourier  transform wit’h a 
considerable decrease in  computational’  requirements [4], 
[SI. Investigations  then began into  the application of the 
Karhunen-Loeve [SI,’ [7] and  Haar [SI transforms for 
image coding. The Iiarhunen-Loeve  transform provides 
minimum  mean-square  error coding performance but, 
unfortunateiy, does not possess a fast  computational 
algorithm. On the other  hand,  the  Haar  transform  has 
the  attribute of an extremely efficient computational 
algorithm, but results  in  a  larger coding error.  None of 
the transforms  mentioned  above, however, has been ex- 
pressly tailored to  the characteristics of an image. 

A major attribute of an image transform is that  the 
transform  compact the image energy ‘to a few of the 
transform  domain  samples.  A high degree of energy com- 
paction will result i f  the basis vectors of the  transform 
matrix “resemble” typical  horizontal  or  vertical lines of an 
image. If the lines of’ a  typical monochrome image are 
examined, it will be  found that a large’  number of the 
lines are of constant  grey level over a considerable length. 
The’ Fourier, Hadamard,  and  Haar  transforms possess 
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a  constant  valued  basis  vector that provides an efficient 
representation for constant  grey  level  image  lines, while 
the Karhunen-Loeve  transform  has  a  nearly  constant 
basis  vector  suitable  for this  representation.  Another 
typical  image  line  is.one which increases or decreases  in 
brightness  over  'the  length  in a linear  fashion.  'None of the 
transforms  preeously mentioned possess a  basis  vector 
that efficiently represents  such  image  lines. 

Shibata  and  Enomoto , have'  introduced  ort,hogonal 
transforms  containing  a  "slant"  basis  vector  for data of 
vector  lengths of four  and eight [SI .  The  slant vector i s  
a discrete saytooth waveform  decreasing  in  uniform  steps 
over its  length, which is suitable  for efficiently represent- 
ing  gradual  brightness  changes  in ap image  line.  Their 
work gives no  indication of a  construction  for  larger size 
data vectors,  nor does it exhibit the use of a  fast comput,a- 
tional  algorithm. In order 'to achieve  a  high  degree of 
image-coding  compression  with  transform  coding  tech- 
niques, it is necessary to perform the two-dimensional 
transform ovqr block sizes 16 X 16 picture.  elements or 
greater. For lqrge  block  sizes,  computation is usually 
not feasible unlpss a fast  algorithm is employed. 

With  this  background,  an  investigation was undertaken 
to  develop an image-coding  slant-transform  matrix possess- 
ing  the following propert,ies: 1) orthonormal  set of basis 
vectors; 2) one constant basis  vector.; 3) one slant basis 
vector; 4) sequency property;  5)'  variable size  transforma- 
tion;  6)  fast  computational  algorithm;  and 7 )  high  energy 
compaction. The following sections  describe the construc- 
tion of the slant-transformation  matrix,  present a fast 
computational'  algorithm, discuss its image-coding  per- 
formance, and  provide examples of its use for  coding 
monochrome and color images. 

Original  images  employed  in the simulation of the coding 
systems  studied  are shown in  Fig. 1. The monochrome 
images  contain 256 X 256 pixels with  each  calibrated 
intensity  value linearly  quantized to 256 levels. The  red, 
greee,  and blue  tristimulus  values of the color pictures 
have each  been  linearly  quantized to 256 levels. 

i 

I .  

11. SLANT  TRANSFORM 

A slant-transform  matrix possessing all of the above 
properties  has  been  developed [lo]. A description of its 
construction,  fast  algorithm,  and  application to image 
transformation follows. 

A .  Two-Dimensional Transform 

Let [ F ]  be an N X N matrix of the picture  element 
(pixel)  brightness  values of an image and  let' vi] be an 
N X '1 vector  representing the  ith column of [ F ] .  ,The 
one-dimensional  transform of the  ith image  line then 

Cfil = cslv~l (1) 

where [ S I  is the N X N unitary  slant  matrix.  A two- 
dimensional slant  transform  is  performed  by  sequential 
row and column  transformations  on CF], yielding ' 

[Fj = [ S j [ F ] [ S ] ?  

The inverse  transformation to recover [ F ]  from the 
transform  components [ S I  is  given  by 

It is also convenient to  establish.  a  series  representation 
of the transform  operation. The two-dimensional'forward 
and inverse  transforms  in series form  can be expressed as 

N . N  

S(u,v> = c c F ( j , k ) S ( u , A S ( k , v )  . (4) 
j-1 k-1 

I 

and 
N N  

F ( j , k )  = $j (u,v)  S(j ,u)  S ( v , k ) .  (5) 

Fig.  2  contains  full size, two-dimensional  slant-traris- 
form  displays of the  three monochrome  original  images 
of Fig. 1. The  logarithm'of  the  absolute  value of each 
transform  sample  is  displayed  in  Fig. 2(a)-(c)  rather 
than  the absolute  value itself in order to reduce the dy- 
namic  range of the display.  Fig. i ( d )  shows a  threshold 
display of Fig.'  2 (a)  in which all  samples whose magnitude 
is below a specified threshold  are  set to zero and  all samples 
whose magnitude i i  above the threshold are  set to a con- 
stant brightness. The  typical energy  distribution of the 
slant  transform of an  image,is  apparent from  these  pict'ures. 

B. SlantTransform  Matrix 

u=l u=l 

. The  slant  transform is a  member of a class of transforms 
whose matrices are orthogonal,  have a constant  function 
for the first row, and  have  a second  row which is a  linear 
(slant)  function of the' column  index. The  .matrices  are 
formed by  an  iterative  construction  that exhibits the 
matrices' as  products of sparse  matrices, which ' in turn 
leads to a  fast  transform  algorithm. 

The  slant-transform 'matrix of order  two  consisting of a 
constant  and  a  slant'basis vector is given by 

, r l  11 
J *  

1 -1 

The  slant  matrix of order  four is obtained  by the operation 

b4 

or 
a4J L J 

1 1 1 
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(a) monochrome g i r l  

(d) color girl 

(b) monochrome  couple 

( e )  color  couple 

(c)  monochrome  moonscape 

Fig. 1. Original monochrome and color images. 
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( 4  
(b) Couple. (c) Moonscape. (d) Transform Fig. 2.  Slant-transform dornain logarithm of magnitude  display. (a) Girl. 

threshold girl. 

where a4 and b4 are scaling constants.  The first two rows mcnts,  the scalar  multiplier l/fi is ignored;  multiplication 
of the left  factor of (7a) are  uniquely  determined IJy the by f l  is considered trivial). When the values of a4 and 
orthogonalitv  condition and  the requirement that  the first b4 are  substituted  into (7b), the  slant  matrix of order 4 - 
row of S4 must  be a positive constant  and  the second row becomes 
must be linear  with  negative slope. The  step sizes between 
adjacent elements o f  the slant  vector of (7h) are 261,  2a.1 - 
2b4, and 2b4. By setting  these  steps sizes eqnal, one finds 
that 

al = 26,. 1 
The  orthonormality condition [&][&]' = [ I ]  lcads to As4 = 41/" 

The  third  and  fourth rows of the lcft  factor of (7a) form 
an orthonormal basis for vectors  orthogonal t o  the first 

1 1 1 1 

1 -1  -1 1 

--__- 1 -3 3 -1 
5 1 / 3  5 1 / 2  y 2  5 1 / 2  

two rows and  have  the  property  that among all such bases, It is easily seen that t.he rows of Sa form an orthonormal 
this basis requires the smallest  number of nolltrivial set.  Furthermore, X, possesses the sequency property; each 
multiplications. In considering computational  require- row has a distinct  number of sign reversals and each 
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integer from 0 to 3 is the number of sign reversals of some 
row. 

An extension of the slant  matrix t o  its  next size of order 
S is given by 

1 
= 21/2 

1 0  O O j 1  0 0 0 ’  

0 0 1 o i o  0 1 0  

0 0 1 0 : o  0 - 1  0 

, o  0 0 1 ;  0 0 0 - 1 -  

The first two rows of the left  factor  are  determined  by 
orthonormality  and the requirement that  the first row 
of 8 8  be constant  and  the second row be linear with nega- 
tive slope. Rows five and six of X8 are also linear combina- 
tions of the first two rows of S4. The  particular combina- 
tions  are chosen to minimize nontrivial  multiplications 
while maintaining  orthonormality.  The  remaining rows 
form  a  basis for the orthogonal complement of the space 
spanned by  the four rows already treated. It is a basis 
which requires no nontrivial  multiplications. It can  be 
shown that SS has the sequency  property. 

Equation (9) can be generalized to give the slant  matrix 
of order N ( n  = 2”, 7~ = 3,  - - .) in  terms of the slant  matrix 
of order N / 2  by  the following recursive  relation: 

or by  the formulas 

Fig. 3 contains a plot of the slant-transform basis vectors 
of S ~ S  represented as waveforms. 

C. Slant-Transform Fast  Computational  Algorithm 

The fast  computational  algorithm of the slant  transform 
is based on the matrix  factorization corresponding to 
(10). A column vector  multiplication by SN can  be accom- 
plished by multiplying by  the left  factor of (10).  Letting 
A N  denote the number of additions and  subtractions for 

1 
SN = 

0 1 :  j 0 - 1 ;  

The  matrix I ( N / 2 ) - 2  is the  identity  matrix of dimension SN,  and M N  the number of nontrivial  multiplications in 
( N j 2 )  - 2 and the various  partition blocks are  deter- the above scheme, it can be shown that A N  and M N  satisfy 
mined by  the same considerations as described above  for the recursions AN = 2&12 + N + 4 and M N  = ~ M N / ,  + 
8 8 .  The  constants U N ,  b N  may be computed from the S. However, a more economical algorithm is obtained by 
recursive  relation [7] : a  further  factorization of (10)  into 
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Multiplication  by  the middle  factor  involves  only N 
additions  or  subtractions, while multiplication  by  the 
left  factor  involves  only 2 additions  and 4 multiplications. 
The recursions for the  number of operations  for SN are 

A special,  more efficient factorization of S4 has  been 
now AN = 2 ~ 4 ~ 1 2  f N f 2 and MN = ~ M N I ~  i- 4. 

discovered.  With this  factorization 

1 

0 

-1 

0 

0 

1 

0 

-1 

(13) 
If S 4  is postmultiplied  by  a  column  data  vector,  the  first 
computational  pass  requires 4 additions  and  subtractions 
while the second pass requires  a  similar  number  and 4 
multiplications.  Therefore A4 = 8, M4 = 4. 

With some rearrangement of rows and columns, (13) 
can  be  applied t o  SS to give 

1 0 0 0  

0 bs US 0 

0 0 0  1 

0 C% -bs 0 

0 

0 

1 0 0 0  

0 1 0 0  

0 0 1 0  

0 0 0 1 -  

This  rearrangement  orders  the rows in  increasing  order of 
sequency. If 8 8  is postmultiplied  by  a  column  data  vector, 
the first and second  computational  passes  execute  the 
multiplication  by S4 on the first and  last  halves.  The  third 
pass requires 8 additions  or  subtractions  and  the  fourth 
pass  requires 2 additions  and 4 multiplications.  The  total 
computation is 26 additions  or  subtractions  and 12 multi- 
plications. A flow chart of this  computation  is shown  in 
Fig. 4. 

The decomposition of the general SN follows from 
repeated  application of (12) [ll]. A total of N log2 N + 
(N/2) - 2 additions  and  subtractions  together  with 
2 N  - 4 multiplications  are  required to compute the  slant 
transform of an N-dimensional data  vector.  For  purposes 
of comparison the  N X N  Hadamard  transform  requires 
N logz N  additions  or  subtractions. 

111. STATISTICAL ANALYSIS OF 
SLANT TRANSFORM 

The  development of efficient quantization  and  coding 
requires an understanding of the  statistical  properties 
of the  transform  domain samples.  This  section  presents  a 
derivation of the  statistical  mean  and  covariance of the 
slant  transform  samples  and  develops models for their 
probability  densities. 

0 0 O i l  0 0 0' 

1 0  0 ; o  1 0  0 

0 0 0 : - 1  0 0 0 

1 0 0 :  0 -1  0 .  0 

0 
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Fig. 3. Slant-transform basis waveforms. 

2(8adds  and 4 multiplies) 8 adds 4 multiplies 
2 4  adds  and 12 multiplies  totally 

Fig. 4. Slant-transform of order 6 computational flowchart. 

PR and PC are the adjacent pixel correlation  factors.  From 
(4) , the mean and covariance of the  slant  transform 
samples  can then  be expressed as1 

E { S ( u , v )  1 S(u,v)  = C C F ( j J k ) S ( u J j ) S ( k J v )  (16) 
j k  

and 

C8{u1Ju?1v1>v'2} = CF{jlJj?jh,h} 
ji jz E 1  kz 

' x ( u l J j l ) x ( k l J v l ) S ( u 2 J j 2 ) X ( k ~ , v ~ ) .  (17) 

If the image array is stationary,  then  as a result of the 
orthogonality of the kernel, 

8(u,v) = 0, 2L:V # 0. (1Sb) 

No closed form expression has been found for the co- 
variance of the slant  transform samples, but  the covariance 
may be computed as the two-dimensional slant  transform 
of the function C(j1 - &,k1 - k ,  } if the original image 
field is stationary. 

B. Probability Density Models 

The  probability  density of slant  transform samples is 
difficult to obtain since the probability  density of the 
original image array is not usually well defined, and also, 
the slant  transform  representation  is  mathematically 
complex. However, since the transform  operation forms a 
well behaved weighted sum over all of the pixels in  the 
original image, one can  evoke  qualitative  arguments 
based upon the central  limit  theorem [12] to determine 
reasonable  probability  density models for the transform 
domain samples. 

The  transform domain  sample S(0,O) is a nonnegative 
weighted sum of pixel values. Its histogram will generally 
follow the histogram of pixel values which is often modelcd 
by a Rayleigh density 

All other  transform  components are bipolar and posscss 
a zero mean. These components generally can be modeled 
by a Gaussian  density 

2 O ;  (uJv) # ( O , O )  ('O) 

where u2(u,v) = C~(u,u,v,v) is the variance of the trans- 
form samples as obtained from (17). 

IV.  SLANT-TRANSFORM  MONOCHROME 
IMAGE CODING 

The basic premise of a monochrome image-transform 
coding system is that  the two-dimensional transform of an 
image has an energy distribution more suitable to coding 

Unless otherwise noted, the summation indices are 1 to N .  
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than  the  spatial domain  representation. As a  result of the 
inherent pixel-to-pixel correlation of natural monochrome 
images, the energy in  the  transform domain  tends to be 
clustered into a  relatively small number of transform 
samples. Low magnitude  transform samples can be dis- 
carded in  an analog  transmission  system, or grossly quan- 
tized in a  digital  transmission  system,  without  introducing 
serious image  degradation  in  order to achieve a  bandwidth 
reduction. 

Fig. 5 contains  a block diagram of the slant-transform 
coding system for monochrome images. In  operation,  a 
two-dimensional slant  transform  is  taken of the image 
pixels over the entire image, or repeatedly over subsections 
of the image, called blocks. The  transform  domain samples 
are  then operated upon  by a  sample selector that decides 
which samples are  to  be  transmitted. For an analog com- 
munication  system, the selected samples are  distributed 
uniformly in  time  and  transmitted  by analog  modulation, 
while for a  digital  communication  link, the selected samples 
are  quantized, coded, and  transmitted  in  binary form. At 
the receiver the incoming data are decoded, and  an inverse 
slant  transform  is performed to reconstruct the original 
image. 

There  are  two basic strategies of sample  selection: 
zonal sampling and  threshold sampling [l]. In  zonal 
sampling the reconstruction  is  made  with  a  subset of 
transform  samples  lying  in  certain pre-specified geometric 
zones-usually the low frequency coefficients. For  analog 
transmission the amplitude of each  component in  the zone 
is transmitted. For  digital  transmission  each  component 
in a zone is quantized  and assigned a  binary code word. 
The  number of quantization levels is usually  made propor- 
tional to  the expected  variance of the component, and  the 
number of code bits  made proportional to  its expected 
probability of occurrence. In threshold  sampling the image 
reconstruction is made  with  a  subset of the samples which 
are larger than a specified threshold. Since the locations 
of the significant samples must  be communicated,  thres- 
hold sampling  is  usually employed only in digital  links. 

The following $subsections  contain an analysis of the 
slant-transform image-coding process for a zonal sample 
reduction  system  utilizing  analog  transmission  and for 
zonal and  threshold coding systems over a  digital  link. In 
all  instances,  a  mean-square  error  performance  criterion 

1 
Q = 7 c c E ( C F ( j , k )  - @(j,WJ (21) 

j k  

is  utilized. While it is known that  this measure  results in 
some anomalies, it has  proven  reliable as a  performance 
measure  between different  transforms  and for variants 
of sampling and coding strategies. 

A. Zonal  Sampling 

The sample selection process for two zones. can  be 
analyzed  conveniently by defining a  transform  domain 
sampling  function T( u,v) which takes on the value one for 
samples to be transmitted  and zero for samples to be 
discarded. The reconstructed  image then becomes 
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Reconstructed 

CHANNEL 
INVERSE image DECODER SLANT * 
TRANSFORM f ( i , k )  

f 
Error 

Fig. 5. Slant-transform monochrome-image coding system. 

M A X I M U M   V A R I A N C E  
Z O N A L   F I L T E R  
4 :I SAMPLE  REDUCTION 

4 % 

I SLANT TRANSFORMA 

256 

Fig. 6 .  Zonal sampling  mean-square  error  performance of image 
transforms as a function of block size. 

w , w  = c c S(u,v> T(u,v) S(u, j )  S ( k , v ) .  (22) 
u v  

It is then easily shown that  the mean-square  error expres- 
sion can  be  written  as 

1 
Q = c c E {  (S(u,v)Cl - T(u,v)1)2). (23) 

u v  

There  are a  number of zones that could logically be em- 
ployed for zonal sampling; for example, a  rectangular, 
elliptical, or triangular zone. Both  analytic  and experi- 
mental  studies [ll] have  indicated that  the optimum 
zone is the so-called maximum  variance zone in which 
T(u,v) is chosen to be  unity for those  samples  having the 
largest  variance as computed by (17) for a given covari- 
ance model of the original image. Fig. 6 contains  a  plot 
of the mean-square error of an image  with  a Markov 
process covariance as a function of block size for various 
transformations. In  this plot the 25 percent of the coeffi- 
cients  with the largest  variances were selected, and  the 
remainder  discarded.  From the figure it is seen that  the 
Karhunen-Loeve transform provides the best  mean-square 
error, while the  slant  transform results in only a slightly 

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on January 12, 2010 at 14:42 from IEEE Xplore.  Restrictions apply. 



PRATT et al.: IMAGE CODING 1083 

greater  error. Also note that 'the rate of decrease in mean- 
square  error for larger block sizes becomes quite small 
after a block size of about 16 X 16. 

Fig. 7 shows reconstructions of images for maximum 
variance zonal sampling  with the slant  transform  in 
16 X 16 blocks. For purposes of comparison, a series of 
experiments were performed with the  Hadamard,  Haar, 
Fourier,  and Karhunen-Loeve transforms,  as shown in 
Fig. 8. It can be seen that  the  slant transform provides a 
better subjective  quality  reconstruction and smaller mean- 
square  error than  any other  transform except the  Iiar- 
hunen-Loeve transform which does not possess a  fast 
algorithm. 

B. Zonal Coding 

In  the zonal coding system  a  set of zones is  established 
in each transform block. Transform  samples  in  each zone 
are  then quantized  with the same  number of quantization 
levels which is  set  proportional to  the expected variance 
of the transform coefficients. For  a  constant word length 
code, N ~ ( u , v )  code bits  are assigned to each coefficient, 
resulting  in 

Lc(u,v) = 2Ne(u.w) (24) 

quantization levels. A total of 

N n  = C C N n ( ~ , v )  (25) 

bits  are  then required to code the picture. The  bit assign- 
ment N B  (u,v) for each coefficient is based upon  a  relation 
of rate distortion  theory [13], [14]. The  number of bits 
is given by 

u v  

NS(u,v) = In [vF(u,v)] - In [Dl (26) 

where VF(U,V) is the variance of a  transform coefficient 
and D is proportional to  the mean-square  quantization 
error. Fig. 9 illustrates  a  typical  bit  assignment for coding 
in 16 X 16 blocks. Quantization decision and reconstruc- 
tion levels are selected to minimize the mean-square 
quantization  error for the probability  density models of 
Section I11 using the  Max  quantization  algorithm [l5]. 
With  this  quantization  and coding strategy, it is possible 
to predict the mean-square coding error for transform 
coding. Fig. 10 contains  a  plot of mean-square  error as a 
function of block size for several  transforms for coding 
with an average of 1.5 bits/pixel. The figure indicates 
that  the performance of the slant  transform is quite close 
to  the optimal  Iiarhunen-Loeve  transform. It is possible 
to achieve a slightly lower mean-square  error for a given 
channel rate  by employing Huffman coding of the quan- 
tized coefficients rather  than  constant word-length coding, 
but  the coder will be much more complex to implement. 

Fig. 11 contains  simulation  results of zonal coding with 
the slant  transform  in blocks of 16 X 16 pixels. A com- 
parison  with  other  transforms is shown in Fig. 12. 

C. Threshold Coding 

In a  threshold coding system,  each  sample whose magni- 
tude is  greater than a given threshold level is quantized 

with  a fixed number of levels and  its  amplitude is coded. 
It is necessary to code the position of each significant 
sample in  the  transform plane.  A simple, but quite effi- 
cient,  technique for position coding is to code the number 
of nonsignificant samples between significant samples. This 
schemc, called run length coding, can  be  implemented as 
follows. 

1) The first sample along each line is coded regardless 
o f  its magnitude. A position code word of all zeros or all 
ones a&ed to  the amplitude provides a line synchroniza- 
tion code group. 

2) The  amplitude of the second run length code word 
is the coded amplitude of the next significant sample. The 
position code is the binary  count of the number of samples 
of the significant sample  from the previous significant 
sample. 

3) If a significant sample is not  encountered after 
scanning the maximum run length of samples, the position 
and  amplitude code bits  are  set t o  all ones to indicate a 
maximum run length. 

The  advantage of including  a line synchronization code 
group  is that it becomes unnecessary to code the line 
number  and, also, it prevents the propagation of channel 
errors over more than one line. 

Fig. 13 contains  simulation  results for slant-transform 
threshold coding. As expected, since the coding process is 
adaptive,  its performance is somewhat better  than  the 
simpler zonal coding process. 

V. SLANT-TRANSFORM  COLOR-IMAGE  CODING 

Fig. 14 contains  a block diagram of a  typical  slant- 
transform color-image coding system. In  the system, the 
color image is  represented by  three source tristimulus 
signals R(j ,k) ,  G ( j , k ) ,  B ( j , k )  that specify the red, green, 
and blue content of a pixel at coordinate ( j , k )  , according 
to  the National Television System Commission (NTSC) 
receiver phosphor  primary  system [16]. The source 
tristimulus signals are  then converted to a new three- 
dimensional  space, Y ( j , k )  , I (  j , k ) ,  and Q (  ,j , lc) ,  which 
specify the lumina,nce and  the chrominance  information 
of the image pixel according to the NTSC television trans- 
mission primary  system. The conversion is defined by [ W~'~] 1 . 2 9 9  0.587 0.114] r ( j , k )  ] 
The reason for transform coding the Y I Q signals rather 
than  the R G B signals is that  the Y I Q signals are reason- 
ably well uncorrelated, and most of thc color-image energy 
is compacted into  the Y plane.  This  permits  a more effi- 
cient design of the quantizers.  Table I compares the 
energy  distribution of the R G B  and Y I Q color planes. 
The converted signals then individually  undergo  a two- 
dimensional slant  transform.  This  results  in  three  trans- 
form domain planes, &(u ,v ) ,  &(u ,v) ,  & ( u , v ) ,  obtained 

I ( j , k )  = 0.596  -0.274 -0.322 G ( j , k )  . (27) 

0.211  -0.253  0.312 B ( j , k )  
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6 :1 sample  reduction 

6 :1 sample  reduction 

4:l sample  reduction 6 :1 sample  reduction 
Fig. 7. Slant-transform zonal saillplillg in 16 X 16 pixel blocks, rulquantized transform. 
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Hadamard   t ransform 
4: 1 sample  reduction 

Four ie r   t ransform 
4: 1 sample  reduction 

Haar   t ransform 
4: 1 sample  reduction 

Karhunen-  Loeve  transform 
4: 1 sample  reduction 

Fig. 8. Hadamard, Fourier, Haar, and Karhunen-Loeve transform zonal sampling in 16 X 16 pixel blocks, un- 
quantized  transform. 
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Fig. 9. Typical bit assignments. for slant-transform zonal coding Fig. 10. Zonal coding mean-square  error  performallce of image 
in 16 X 16 pixel blocks. transforms as a function of block size. 
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1.  5 bits/pixel 
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1.0  bit  /pixel 

1. 5 bits/pixel 1.0  bit  /pixel 

1.  5 bits/pixel 1.  0 bit  /pixel 
Fig. 11. Slant-transform zonal coding in  16 X 16 pixel blocks, quantized transform. 
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Hadamard  transform 
1.  5 bits/pixel 

Four ie r   t ransform 
1. 5 bits/pixel 

Haar   t ransform 
1. 5 bits  /pixel 

Karhunen-Loeve  transform 
1. 5 bits  /pixel 

Fig. 12. Hadamard, Fourier, Haar,  and Karhunen-Loeve transfornl zonal coding in 16 X 16 pixel blocks, quantized  transform. 

from CPI = CSl'CSYlC~l (29a) 

C 8 Y l  = C~lCYIC~l' (28a) VI = C~l'CSI1C~l ( 29b ) 

C3I1 = C~lC~ICSl' (28b) cQ1 = CSITC$QICSl. ( 29c ) 

[Bo] = CslCQlCSl' (28c)  Finally, an inverse  coordinate conversion results in  the 
where. [X] is the slant-transform  matrix.  Note that, since reconstructed tristimulus si@a1s 
the coordinate conversion and  spatial  transformation  are [ ( j , l c ) ]  [ 1.000 0.956 0.621][P(j,k)] 
linear  operations, their order may  be reversed.  Next, the 
transform samples are  quantized  with  the  number of ~ ( ~ , k )  = l.ooo -o.272 -o.647 
quantum levels made  proportional t o  the expected  vari- 
ance of each pixel, and  with  the  quantization level spacing 
allowed to be variable to minimize the mea\-square 
yuantization  *error.  The  quantized samples & ( j , k ) ,  The  coordinate conversion from the R G B  color space 
& ( j , k ) ,  and & ( j , k )  are  then coded and  transmitted over to the Y I Q color space  can  be considered along with the 
a possibly noisy channel. At  the receiver the channel spatial  slant  transforms  as a three-dimensional trans- 
output is decoded, and inverse  slant  transforms are  taken formation. The coordinate conversion provides an energy 
to  obtain compaction  between color planes and  the  spatial  slant 

T ( j , k )  . (30) 

( j , k )  1.000 -1.106 1.703 Q ( j , k )  
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2. 0 bits/pixel 1. 1 5  bits/pixel 

2 . 0  bits/pixel 

2. 0 bits/pixel 1.  1 5  bits/pixel 

Fig. 13. Slant-transform threshold  coding in 16 X 16 pixel  blocks, quantized transform. 
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I I 

Fig. 14. Slant-transform color-image coding system. 

TABLE I 
ENERGY COMPACTION OF COORDINATE CONVERSIONS 

T e s t  Percentage  P e r c e   t a g e  PerceZtage Coordinate 
of a Image of a2 of a S y s t e m  

9 

RGB 

Y IQ GIRL 

19.45 35 .41  45.  14 

4. 14  17.  54 78.  32 

K1K2K3 

RG B 1 7 I 3 7  3 1 . 0 9   5 1 .   5 5  

8 5 . 8 1  2 . 0 6   1 2 . 1 0  

COUPLE 

0.79 6 . 4 6  

1 .35   13 .81  8 4 . 8 4  YIQ 

KIK2K3 92 .75  

transforms provide an energy  compaction  within the color 
planes. Adopting this philosophy, the optimal  three- 
dimensional transform would be a Karhunen-Loeve 
transformation which completely  decorrelates the 3N2 
color-image components. It has  been shown [17] that  the 
Y I Q coordinate conversion provides almost as high an 
energy  compaction for color images as does a  Karhunen- 
Loeve color coordinate conversion. This  result is verified 
by  the color-image energy  distribution of two color images 
described in  Table  I. 

In  order to optimally design the slant-transform  image 
coder, it is necessary to specify some analytic measure of 
color-image fidelity. Unfortunately, np standard fidelity 
measures exist. As a  rational  alternative, the design pro- 
cedure selected has been to design the transform  domain 
quantization  system to minimize the mean-square error 
between the Y I Q and f d c.olor planes as defined by 

1 
@ = 3N2 E{CY(j ,k)  - P(j,k>I2 + CI( j ,k )  - f(j,k)I* 

+ CQ(j,k) - d(i1k)l2I.   (31) 

Several  variations of the quantization procedure have been 
investigated [lS]. The following has been found to be a 
highly effective implementation. 

1) Model the row and column variance  matrices of 
R G B  as first-order Markov processes and compute the 
variances of the elements of Y I &. 

2) Model the probability  density of the constant basis 
vector  component of F y  by a Rayleigh density,  and  the 
probability  densities of the other basis vector  components 
of FYFIFQ by Gaussian  densities  with  variances  computed 
in 1).  

NUMBER OF I BITS 

Fig. 15. Quantization error for various color plane bit assignments. 

3) Assign 
Ly(u,v) = 2Ny(u,v) (32a) 

Lr(u;v) = 2 N 1 ( u s v )  (32b) 

LQ(u ,v )  = 2N0(u'v) (32c) 

quantization levels to each transform  component where 
the number of bits  allotted  to each component is made 
proportional t o  the logarithm of its variance  computed 
in 1). 
4) The  total  number of bits  allotted to a color image 

is  set a t  
N B  = NBY + Ner + NBQ (33a) 

where 
N N  

Nor  = C N Y ( ~ , v )  (33b) 
u-1 v=l 

N N  

NBI = C C N I ( w )  (33c) 
u=l V a l  

N N  

~ V B Q  = C C N Q ( w ) .  (33d) 

5) For a given value of N B ,  select trial values of N B Y ,  
NBI, NBQ, then compute  quantization levels from 3) , and 
with the probability  density models of 2), perform  a 
variable  spacing  quantization of each  transform com- 
ponent using the Max [15] quantization  rule. 

6) For representative color images, compute the mesn- 
square error, and,  by  iterative search  techniques,  deter- 
mine optimum  bit allocations for transform planes. 

It should be  noted  that  the above procedure need not 
be performed dynamically for every color image to  be 
coded. The optimization need only be performed fol 
typical color images to be coded to  obtain a  quantization 
scale which can  be designed into  the  quantizer hardware. 

Fig. 15 contains  a  plot of the mean-square error versus 

u = l v = = 1  
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Fig. 16. Slant-transform  color-image coding  example. 
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Fig. 1 6 .  Cont'd. 

Nnl for several values of Ne, and  a fixed value Ne for 
the girl image. The  optimum averagc bit allocation for 
this  test image is found to  be: NsY = 1.25, N s I  = 0.55, 
NBQ = 0.20. The  optimum scale does not change ap- 
preciably for other images or total  bit  allotments. 

A computer  simulation  has been performed to subjec- 
tively  evaluate the performance of the slant-transform 
color-image coding system. Fig. 16(a) contains mono- 
chrome pictures of the  red, green, and blue components 
of an original image of 2.56 X 256 pixels. Each component, 
of the original is  quantized to 25.5 levels. It should b ( b  

noted that visually the R G B  components  are highly 
correlated. The corresponding Y I Q components in Fig. 
16(b) appear  much less correlated.  Fig. 16(c) contains 
illustrations of the logarithm of the magnitude of each 
slant-transform  plane of the color image for transformation 
in 16 X 16 pixel blocks to illustrate the spatial  energy 
compaction. In one of the simulation  experiments the 
transform coefficients, &, 81, %Q were assigned code bits 
such that Y, I ,  Q were coded with an average of 1.2, 0.54, 

and 0.26 bits/pixel,  respectively. The corresponding repro- 
ductions of Y ,  I ,  Q and R, G', B are shown in Fig. 16(d) 
and  (e).  In  this experiment the coding has been reduced 
from 24 bits/pixel to 2 bits/pixel.  The R G B  reconstruc- 
tions  rxhibit some degradation  as  a  result of the coding 
process, but  the visual effect of the degradation  is  much 
less visible in  the color reconstruction because of the 
spatial frequency limitations of the  human visual system. 
Fig. 17 contains color images slant  transform coded with 
3 and 2 bits/pixel. 

VI. ADDITIONAL  TOPICS 

The effect, of channel errors on slant-transform coded 
images has been investigated  quite extensively [ll]. 
Studies  indicate that  the coding technique  is  relatively 
tolcrant t o  channel  errors.  With zonal coding, for cxample, 
binary  symmetric  channel  errors do not become subjec- 
tively noticeable until  the error rate is reduced to about 

Adaptive and semiadaptive  quantization and coding 
10-3. 
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(a) 3 bits  /pixel  (b) 3 bits/pixel 

(c)  2 bits/pixel (a) 2 bits/pixel 

Fig. 17. Example of slant-t.ransform color-image coding. 
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1- (a) color girl 

K.-L- 
(e)  color couple 
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(a) 3 bitslpi 

(e)  2 bits, - 
T: 

1 (b) 3 bits/pixel 

1 (a) 2 bits/pixel 

Example of  slant,-t,ransform  color-image coding. 
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