Lecture 10
 Solution via Laplace transform and matrix exponential

- Laplace transform
- solving $\dot{x}=A x$ via Laplace transform
- state transition matrix
- matrix exponential
- qualitative behavior and stability

Laplace transform of matrix valued function

suppose $z: \mathbf{R}_{+} \rightarrow \mathbf{R}^{p \times q}$
Laplace transform: $Z=\mathcal{L}(z)$, where $Z: D \subseteq \mathbf{C} \rightarrow \mathbf{C}^{p \times q}$ is defined by

$$
Z(s)=\int_{0}^{\infty} e^{-s t} z(t) d t
$$

- integral of matrix is done term-by-term
- convention: upper case denotes Laplace transform
- D is the domain or region of convergence of Z
- D includes at least $\{s \mid \Re s>a\}$, where a satisfies $\left|z_{i j}(t)\right| \leq \alpha e^{a t}$ for $t \geq 0, i=1, \ldots, p, j=1, \ldots, q$

Derivative property

$$
\mathcal{L}(\dot{z})=s Z(s)-z(0)
$$

to derive, integrate by parts:

$$
\begin{aligned}
\mathcal{L}(\dot{z})(s) & =\int_{0}^{\infty} e^{-s t} \dot{z}(t) d t \\
& =\left.e^{-s t} z(t)\right|_{t=0} ^{t \rightarrow \infty}+s \int_{0}^{\infty} e^{-s t} z(t) d t \\
& =s Z(s)-z(0)
\end{aligned}
$$

Laplace transform solution of $\dot{x}=A x$

consider continuous-time time-invariant (TI) LDS

$$
\dot{x}=A x
$$

for $t \geq 0$, where $x(t) \in \mathbf{R}^{n}$

- take Laplace transform: $s X(s)-x(0)=A X(s)$
- rewrite as $(s I-A) X(s)=x(0)$
- hence $X(s)=(s I-A)^{-1} x(0)$
- take inverse transform

$$
x(t)=\mathcal{L}^{-1}\left((s I-A)^{-1}\right) x(0)
$$

Resolvent and state transition matrix

- $(s I-A)^{-1}$ is called the resolvent of A
- resolvent defined for $s \in \mathbf{C}$ except eigenvalues of A, i.e., s such that $\operatorname{det}(s I-A)=0$
- $\Phi(t)=\mathcal{L}^{-1}\left((s I-A)^{-1}\right)$ is called the state-transition matrix; it maps the initial state to the state at time t :

$$
x(t)=\Phi(t) x(0)
$$

(in particular, state $x(t)$ is a linear function of initial state $x(0)$)

Example 1: Harmonic oscillator

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] x
$$

$s I-A=\left[\begin{array}{cc}s & -1 \\ 1 & s\end{array}\right]$, so resolvent is

$$
(s I-A)^{-1}=\left[\begin{array}{cc}
\frac{s}{s^{2}+1} & \frac{1}{s^{2}+1} \\
\frac{-1}{s^{2}+1} & \frac{s}{s^{2}+1}
\end{array}\right]
$$

(eigenvalues are $\pm j$)
state transition matrix is

$$
\Phi(t)=\mathcal{L}^{-1}\left(\left[\begin{array}{cc}
\frac{s}{s^{2}+1} & \frac{1}{s^{2}+1} \\
\frac{-1}{s^{2}+1} & \frac{s}{s^{2}+1}
\end{array}\right]\right)=\left[\begin{array}{rr}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]
$$

a rotation matrix ($-t$ radians)
so we have $x(t)=\left[\begin{array}{rr}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right] x(0)$

Example 2: Double integrator

$$
\dot{x}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x
$$

$s I-A=\left[\begin{array}{cc}s & -1 \\ 0 & s\end{array}\right]$, so resolvent is

$$
(s I-A)^{-1}=\left[\begin{array}{cc}
\frac{1}{s} & \frac{1}{s^{2}} \\
0 & \frac{1}{s}
\end{array}\right]
$$

(eigenvalues are 0,0)
state transition matrix is

$$
\Phi(t)=\mathcal{L}^{-1}\left(\left[\begin{array}{cc}
\frac{1}{s} & \frac{1}{s^{2}} \\
0 & \frac{1}{s}
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right]
$$

so we have $x(t)=\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right] x(0)$

Characteristic polynomial

$\mathcal{X}(s)=\operatorname{det}(s I-A)$ is called the characteristic polynomial of A

- $\mathcal{X}(s)$ is a polynomial of degree n, with leading (i.e., s^{n}) coefficient one
- roots of \mathcal{X} are the eigenvalues of A
- \mathcal{X} has real coefficients, so eigenvalues are either real or occur in conjugate pairs
- there are n eigenvalues (if we count multiplicity as roots of \mathcal{X})

Eigenvalues of A and poles of resolvent

i, j entry of resolvent can be expressed via Cramer's rule as

$$
(-1)^{i+j} \frac{\operatorname{det} \Delta_{i j}}{\operatorname{det}(s I-A)}
$$

where $\Delta_{i j}$ is $s I-A$ with j th row and i th column deleted

- $\operatorname{det} \Delta_{i j}$ is a polynomial of degree less than n, so i, j entry of resolvent has form $f_{i j}(s) / \mathcal{X}(s)$ where $f_{i j}$ is polynomial with degree less than n
- poles of entries of resolvent must be eigenvalues of A
- but not all eigenvalues of A show up as poles of each entry (when there are cancellations between $\operatorname{det} \Delta_{i j}$ and $\mathcal{X}(s)$)

Matrix exponential

$(I-C)^{-1}=I+C+C^{2}+C^{3}+\cdots$ (if series converges)

- series expansion of resolvent:

$$
(s I-A)^{-1}=(1 / s)(I-A / s)^{-1}=\frac{I}{s}+\frac{A}{s^{2}}+\frac{A^{2}}{s^{3}}+\cdots
$$

(valid for $|s|$ large enough) so

$$
\Phi(t)=\mathcal{L}^{-1}\left((s I-A)^{-1}\right)=I+t A+\frac{(t A)^{2}}{2!}+\cdots
$$

- looks like ordinary power series

$$
e^{a t}=1+t a+\frac{(t a)^{2}}{2!}+\cdots
$$

with square matrices instead of scalars . . .

- define matrix exponential as

$$
e^{M}=I+M+\frac{M^{2}}{2!}+\cdots
$$

for $M \in \mathbf{R}^{n \times n}$ (which in fact converges for all M)

- with this definition, state-transition matrix is

$$
\Phi(t)=\mathcal{L}^{-1}\left((s I-A)^{-1}\right)=e^{t A}
$$

Matrix exponential solution of autonomous LDS

solution of $\dot{x}=A x$, with $A \in \mathbf{R}^{n \times n}$ and constant, is

$$
x(t)=e^{t A} x(0)
$$

generalizes scalar case: solution of $\dot{x}=a x$, with $a \in \mathbf{R}$ and constant, is

$$
x(t)=e^{t a} x(0)
$$

- matrix exponential is meant to look like scalar exponential
- some things you'd guess hold for the matrix exponential (by analogy with the scalar exponential) do in fact hold
- but many things you'd guess are wrong
example: you might guess that $e^{A+B}=e^{A} e^{B}$, but it's false (in general)

$$
\begin{gathered}
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
e^{A}=\left[\begin{array}{rr}
0.54 & 0.84 \\
-0.84 & 0.54
\end{array}\right], \quad e^{B}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
e^{A+B}=\left[\begin{array}{rr}
0.16 & 1.40 \\
-0.70 & 0.16
\end{array}\right] \neq e^{A} e^{B}=\left[\begin{array}{rr}
0.54 & 1.38 \\
-0.84 & -0.30
\end{array}\right]
\end{gathered}
$$

however, we do have $e^{A+B}=e^{A} e^{B}$ if $A B=B A$, i.e., A and B commute thus for $t, s \in \mathbf{R}, e^{(t A+s A)}=e^{t A} e^{s A}$
with $s=-t$ we get

$$
e^{t A} e^{-t A}=e^{t A-t A}=e^{0}=I
$$

so $e^{t A}$ is nonsingular, with inverse

$$
\left(e^{t A}\right)^{-1}=e^{-t A}
$$

example: let's find e^{A}, where $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
we already found

$$
e^{t A}=\mathcal{L}^{-1}(s I-A)^{-1}=\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right]
$$

so, plugging in $t=1$, we get $e^{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
let's check power series:

$$
e^{A}=I+A+\frac{A^{2}}{2!}+\cdots=I+A
$$

since $A^{2}=A^{3}=\cdots=0$

Time transfer property

for $\dot{x}=A x$ we know

$$
x(t)=\Phi(t) x(0)=e^{t A} x(0)
$$

interpretation: the matrix $e^{t A}$ propagates initial condition into state at time t
more generally we have, for any t and τ,

$$
x(\tau+t)=e^{t A} x(\tau)
$$

(to see this, apply result above to $z(t)=x(t+\tau)$)
interpretation: the matrix $e^{t A}$ propagates state t seconds forward in time (backward if $t<0$)

- recall first order (forward Euler) approximate state update, for small t :

$$
x(\tau+t) \approx x(\tau)+t \dot{x}(\tau)=(I+t A) x(\tau)
$$

- exact solution is

$$
x(\tau+t)=e^{t A} x(\tau)=\left(I+t A+(t A)^{2} / 2!+\cdots\right) x(\tau)
$$

- forward Euler is just first two terms in series

Sampling a continuous-time system

suppose $\dot{x}=A x$
sample x at times $t_{1} \leq t_{2} \leq \cdots$: define $z(k)=x\left(t_{k}\right)$
then $z(k+1)=e^{\left(t_{k+1}-t_{k}\right) A} z(k)$
for uniform sampling $t_{k+1}-t_{k}=h$, so

$$
z(k+1)=e^{h A} z(k)
$$

a discrete-time LDS (called discretized version of continuous-time system)

Piecewise constant system

consider time-varying LDS $\dot{x}=A(t) x$, with

$$
A(t)= \begin{cases}A_{0} & 0 \leq t<t_{1} \\ A_{1} & t_{1} \leq t<t_{2} \\ : & \end{cases}
$$

where $0<t_{1}<t_{2}<\cdots$ (sometimes called jump linear system)
for $t \in\left[t_{i}, t_{i+1}\right]$ we have

$$
x(t)=e^{\left(t-t_{i}\right) A_{i}} \cdots e^{\left(t_{3}-t_{2}\right) A_{2}} e^{\left(t_{2}-t_{1}\right) A_{1}} e^{t_{1} A_{0}} x(0)
$$

(matrix on righthand side is called state transition matrix for system, and denoted $\Phi(t)$)

Qualitative behavior of $x(t)$

suppose $\dot{x}=A x, x(t) \in \mathbf{R}^{n}$
then $x(t)=e^{t A} x(0) ; X(s)=(s I-A)^{-1} x(0)$
i th component $X_{i}(s)$ has form

$$
X_{i}(s)=\frac{a_{i}(s)}{\mathcal{X}(s)}
$$

where a_{i} is a polynomial of degree $<n$
thus the poles of X_{i} are all eigenvalues of A (but not necessarily the other way around)
first assume eigenvalues λ_{i} are distinct, so $X_{i}(s)$ cannot have repeated poles
then $x_{i}(t)$ has form

$$
x_{i}(t)=\sum_{j=1}^{n} \beta_{i j} e^{\lambda_{j} t}
$$

where $\beta_{i j}$ depend on $x(0)$ (linearly)
eigenvalues determine (possible) qualitative behavior of x :

- eigenvalues give exponents that can occur in exponentials
- real eigenvalue λ corresponds to an exponentially decaying or growing term $e^{\lambda t}$ in solution
- complex eigenvalue $\lambda=\sigma+j \omega$ corresponds to decaying or growing sinusoidal term $e^{\sigma t} \cos (\omega t+\phi)$ in solution
- $\Re \lambda_{j}$ gives exponential growth rate (if >0), or exponential decay rate (if <0) of term
- $\Im \lambda_{j}$ gives frequency of oscillatory term (if $\neq 0$)

now suppose A has repeated eigenvalues, so X_{i} can have repeated poles
express eigenvalues as $\lambda_{1}, \ldots, \lambda_{r}$ (distinct) with multiplicities n_{1}, \ldots, n_{r}, respectively $\left(n_{1}+\cdots+n_{r}=n\right)$
then $x_{i}(t)$ has form

$$
x_{i}(t)=\sum_{j=1}^{r} p_{i j}(t) e^{\lambda_{j} t}
$$

where $p_{i j}(t)$ is a polynomial of degree $<n_{j}$ (that depends linearly on $x(0)$)

Stability

we say system $\dot{x}=A x$ is stable if $e^{t A} \rightarrow 0$ as $t \rightarrow \infty$

meaning:

- state $x(t)$ converges to 0 , as $t \rightarrow \infty$, no matter what $x(0)$ is
- all trajectories of $\dot{x}=A x$ converge to 0 as $t \rightarrow \infty$
fact: $\dot{x}=A x$ is stable if and only if all eigenvalues of A have negative real part:

$$
\Re \lambda_{i}<0, \quad i=1, \ldots, n
$$

the 'if' part is clear since

$$
\lim _{t \rightarrow \infty} p(t) e^{\lambda t}=0
$$

for any polynomial, if $\Re \lambda<0$
we'll see the 'only if' part next lecture
more generally, $\max _{i} \Re \lambda_{i}$ determines the maximum asymptotic logarithmic growth rate of $x(t)$ (or decay, if <0)

