A Python package for simulator-independent specification of neuronal network models.
Python AMPL Shell
Latest commit ad98904 Feb 3, 2017 @apdavison apdavison Document the top-level `record()` function.
[ci skip]

README.rst

PyNN

PyNN (pronounced 'pine') is a simulator-independent language for building neuronal network models.

In other words, you can write the code for a model once, using the PyNN API and the Python programming language, and then run it without modification on any simulator that PyNN supports (currently NEURON, NEST and Brian) and on a number of neuromorphic hardware systems.

The PyNN API aims to support modelling at a high-level of abstraction (populations of neurons, layers, columns and the connections between them) while still allowing access to the details of individual neurons and synapses when required. PyNN provides a library of standard neuron, synapse and synaptic plasticity models, which have been verified to work the same on the different supported simulators. PyNN also provides a set of commonly-used connectivity algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes it easy to provide your own connectivity in a simulator-independent way.

Even if you don't wish to run simulations on multiple simulators, you may benefit from writing your simulation code using PyNN's powerful, high-level interface. In this case, you can use any neuron or synapse model supported by your simulator, and are not restricted to the standard models.

copyright:Copyright 2006-2016 by the PyNN team, see AUTHORS.
license:CeCILL, see LICENSE for details.
Unit Test Status Test coverage