Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
62 lines (51 sloc) 2.06 KB
import os
import cv2
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
print("Welcome to the NeuralNine (c) Handwritten Digits Recognition v0.1")
# Decide if to load an existing model or to train a new one
train_new_model = True
if train_new_model:
# Loading the MNIST data set with samples and splitting it
mnist = tf.keras.datasets.mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# Normalizing the data (making length = 1)
X_train = tf.keras.utils.normalize(X_train, axis=1)
X_test = tf.keras.utils.normalize(X_test, axis=1)
# Create a neural network model
# Add one flattened input layer for the pixels
# Add two dense hidden layers
# Add one dense output layer for the 10 digits
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(units=128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=128, activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=10, activation=tf.nn.softmax))
# Compiling and optimizing model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# Training the model, y_train, epochs=3)
# Evaluating the model
val_loss, val_acc = model.evaluate(X_test, y_test)
# Saving the model'handwritten_digits.model')
# Load the model
model = tf.keras.models.load_model('handwritten_digits.model')
# Load custom images and predict them
image_number = 1
while os.path.isfile('digits/digit{}.png'.format(image_number)):
img = cv2.imread('digits/digit{}.png'.format(image_number))[:,:,0]
img = np.invert(np.array([img]))
prediction = model.predict(img)
print("The number is probably a {}".format(np.argmax(prediction)))
image_number += 1
print("Error reading image! Proceeding with next image...")
image_number += 1
You can’t perform that action at this time.