
! git clone https://github.com/Neurocomputation-Lab-NCAI-
NEDUET/INSTRUX_AI.git

Cloning into 'INSTRUX_AI'...
remote: Enumerating objects: 28, done.ote: Counting objects: 100% 
(28/28), done.ote: Compressing objects: 100% (27/27), done.ote: Total 
28 (delta 6), reused 17 (delta 1), pack-reused 0

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

data = pd.read_csv('/content/INSTRUX_AI/data/instrux_3.csv')

data.head()

   Energy_Value  Month  Year  Date      Time      Day
0     5102980.5     12  2022    13  12:33:42  Tuesday
1     5103799.0     12  2022    13  15:07:57  Tuesday
2     5104085.0     12  2022    13  16:00:07  Tuesday
3     5104383.0     12  2022    13  17:00:07  Tuesday
4     5104698.0     12  2022    13  18:00:06  Tuesday

# Compute the correlations between variables
correlations = data.corr()
# Heatmap (for correlations)
sns.heatmap(correlations, annot=True, cmap='coolwarm')
plt.title('Correlations Between Variables')
plt.show()

<ipython-input-5-f07a7e4ee333>:2: FutureWarning: The default value of 
numeric_only in DataFrame.corr is deprecated. In a future version, it 
will default to False. Select only valid columns or specify the value 
of numeric_only to silence this warning.
  correlations = data.corr()



1. Energy_Value and Year: The correlation coefficient is 0.4, which indicates a weak to 
moderate positive correlation between these two variables. As the year increases, 
the energy consumption tends to increase.

2. Energy_Value and Date: The correlation coefficient is 0.39, which indicates a weak to
moderate positive correlation between these two variables. As the Date increases, 
the energy consumption also tends to increase.

3. Energy_Value and Month: The correlation coefficient is -0.4, which indicates a weak 
to moderate negative correlation between these two variables. As the Month 
increases, the energy consumption decreases and vice versa.

4. Month and Year: The correlation coefficient is -1, which indicates a perfect negative 
correlation. This is expected, as the dataset seems to be mostly from December 
2022, and this negative correlation represents the transition from 2022 to 2023.

5. Month and Date: The correlation coefficient is 0.68, which indicates a moderate 
positive correlation between these two variables. As the month value increases, the 
date value also tends to increase.

6. Year and Date: The correlation coefficient is -0.680, which indicates a moderate 
negative correlation between these two variables. As the year value increases, the 
date value tends to decrease.



NOTE: I didn't include Time and Day as they are non numeric, and they have very less 
correlation. Also by including them my heatmap was being affected so I excluded them.

#Energy consumption trend
data = pd.read_csv('/content/INSTRUX_AI/data/instrux_3.csv', 
parse_dates=['Date']) #Used parse dates to ensure date is interpreted 
correctly for plotting, didnt define above because it was messing with
corr.
# Set the plot size
plt.figure(figsize=(12, 6))

# Plot the data with a custom line color and style
plt.plot(data['Date'], data['Energy_Value'], color='purple', 
linestyle='-', linewidth=2)

plt.xlabel('Date')
plt.ylabel('Energy Value')
plt.title('Energy Consumption Trend', fontsize=14)

# Add a grid to the plot
plt.grid(True, linestyle='--', alpha=0.5)

plt.xticks(rotation=45)
plt.show()

As we've already discovered the correlation between Date and Energy Value, here is the 
visualization. As date is increasing, energy is also increasing.

# Energy consumption per day
daily_consumption = data.groupby('Day')['Energy_Value'].sum()
days_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 



'Saturday', 'Sunday']
daily_consumption = daily_consumption.reindex(days_order)
# Set plot style
plt.style.use('ggplot')
# Set custom colors for the bars
colors = sns.color_palette('pastel', 7)
# Create the bar plot
plt.figure(figsize=(15, 5))
plt.bar(daily_consumption.index, daily_consumption.values, 
color=colors)
plt.xlabel('Day')
plt.ylabel('Energy Value')
plt.title('Daily Energy Consumption Per Day')
# Customize the grid appearance
plt.grid(color='gray', linestyle='-', linewidth=0.5, alpha=0.5)

# Show the plot
plt.show()

Energy consumed on per day basis. It is a sum of all days energy consumption, for example 
take Monday, it is pointing to 2.4, it means we sum up all the energy values of all Mondays 
in the dataset (there were 2 Mondays), hence we got 246334544.

# Converting 'Time' column to a datetime object and extracting the 
hour
data['Hour'] = pd.to_datetime(data['Time']).dt.hour

# Group by date and hour, and calculate the average energy consumption
date_hour_energy = data.groupby(['Date', 'Hour'])
['Energy_Value'].mean().reset_index()

# Pivot the grouped data to create a matrix of average energy 
consumption
energy_matrix = date_hour_energy.pivot('Date', 'Hour', 'Energy_Value')

# Create the heatmap with annotations (numbers) and larger cells
plt.figure(figsize=(32, 10))



sns.heatmap(energy_matrix, cmap='viridis', linewidths=.5, annot=True, 
fmt='.1f', cbar_kws={'label': 'Energy Value'})
plt.xlabel('Hour of the Day', fontsize=14)
plt.ylabel('Date', fontsize=14)
plt.title('Average Energy Consumption Heatmap (Peak and Off-Peak 
Hours)', fontsize=20, fontweight='bold')
plt.show()

<ipython-input-8-a48dda67c34e>:8: FutureWarning: In a future version 
of pandas all arguments of DataFrame.pivot will be keyword-only.
  energy_matrix = date_hour_energy.pivot('Date', 'Hour', 
'Energy_Value')

First, let's see what colours define:

1. Dark purple: Lower energy consumption values.
2. Light purple/blue: Moderate energy consumption values.
3. Green: Higher energy consumption values.
4. Yellow: The highest energy consumption values.

Now as you can observe, each cell represents the average energy consumption for a 
particular date and hour. The color intensity of the cell indicates how high or low the 
energy consumption is for that time. Darker colors indicate lower energy consumption (off 
peak hours), while lighter colors (towards yellow) represent higher energy consumptiomn 
(Peak hours)

It is observed that from 13-11-22 (start of dataset), low energy is consumed, but as the date
is increasing energy value is also increasing, hence on 1-01-23 (end of dataset), it is the 
highest.

But if we look from hourly perspective, we can see that majority cells have darker shade 
(off peak hours) in the starting hours and lighter shade at midnight.

My Theories:



1. The increase from early dates to ending dates could be because the expansion of 
production (Maybe they're expanding their business), addition of new machinery, or
increasing demand for textile products.

2. It suggests that the Rainbow Hosiery has a night shift or operates more intensively 
during nighttime hours. It opens at 8:00am and closes at 6:00am so it might be the 
case. This could be a strategy to take advantage of lower electricity rates during off-
peak hours, reduce daytime noise or heat generation, or accommodate worker 
schedules. The dataset covers December and January, peak hours are from 6:00 pm 
to 10:00 pm. It is observed that higher energy consumption are outside these peak 
hours, especially towards midnight, it confirms that the industry is strategically 
shifting its operations to minimize energy costs.

NOTE: There are some missing hours as you can still see some colourless cells. I will fill 
these with interpolation after analysing whether I should use linear interpolation of non 
linear.

#Checking trend

# Create a larger figure
plt.figure(figsize=(18, 6))

# Energy_Value and Date
plt.subplot(1, 3, 1)
plt.scatter(data['Date'], data['Energy_Value'], c='blue', marker='o', 
alpha=0.5)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Energy_Value', fontsize=12)
plt.title('Energy_Value vs. Date', fontsize=14)

# Energy_Value and Time (Hour)
plt.subplot(1, 3, 2)
plt.scatter(data['Hour'], data['Energy_Value'], c='green', marker='s',
alpha=0.5)
plt.xlabel('Hour', fontsize=12)
plt.ylabel('Energy_Value', fontsize=12)
plt.title('Energy_Value vs. Hour', fontsize=14)

# Date and Time (Hour)
plt.subplot(1, 3, 3)
plt.scatter(data['Date'], data['Hour'], c='red', marker='^', 
alpha=0.5)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Hour', fontsize=12)
plt.title('Hour vs. Date', fontsize=14)

# Adjust the layout and show the plots
plt.tight_layout()
plt.show()



This is just to confirm the relevant variables (Energy Value vs Date)are linear so now I can 
implement linear interpolation.

#LINEAR INTERPOLATION

# Convert the 'Time' column to a datetime object and extract the hour
data['Hour'] = pd.to_datetime(data['Time']).dt.hour

# Group by date and hour, and calculate the average energy consumption
date_hour_energy = data.groupby(['Date', 'Hour'])
['Energy_Value'].mean().reset_index()

# Pivot the grouped data to create a matrix of average energy 
consumption
energy_matrix = date_hour_energy.pivot('Date', 'Hour', 'Energy_Value')

# Fill missing values using linear interpolation
energy_matrix.interpolate(method='linear', axis=1, inplace=True)

# There were still few values missing so I use the fillna() function 
to fill them with the nearest valid value
energy_matrix.fillna(method='bfill', axis=1, inplace=True)
energy_matrix.fillna(method='ffill', axis=1, inplace=True)

# Create the heatmap with annotations (numbers) and larger cells
plt.figure(figsize=(32, 10))
sns.heatmap(energy_matrix, cmap='viridis', linewidths=.5, annot=True, 
fmt='.1f', cbar_kws={'label': 'Energy Value'})
plt.xlabel('Hour of the Day', fontsize=14)
plt.ylabel('Date', fontsize=14)
plt.title('Average Energy Consumption Heatmap (Peak and Off-Peak 
Hours)(Linear Interpolation)', fontsize=20, fontweight='bold')
plt.show()

<ipython-input-10-4bdfae5761b4>:10: FutureWarning: In a future version
of pandas all arguments of DataFrame.pivot will be keyword-only.
  energy_matrix = date_hour_energy.pivot('Date', 'Hour', 
'Energy_Value')



After analyzing scatter plot patterns, I used linear interpolation and this is the result. 
Linear interpolation is basically an estimation of an unknown value that falls within two 
known values.

import datetime
# Find the peak and off-peak hours with energy values for each date
peak_and_off_peak = energy_matrix.apply(lambda row: {
    'peak_hour': row.idxmax(),
    'peak_energy_value': row.max(),
    'off_peak_hour': row.idxmin(),
    'off_peak_energy_value': row.min()
}, axis=1)

# Create a DataFrame from the result
peak_and_off_peak_df = pd.DataFrame(peak_and_off_peak.tolist(), 
index=energy_matrix.index)
peak_and_off_peak_df.reset_index(inplace=True)
peak_and_off_peak_df.columns = ['Date', 'Peak Hour', 'Peak Energy 
Value', 'Off-Peak Hour', 'Off-Peak Energy Value']

# Convert the hour columns to the AM-PM format
peak_and_off_peak_df['Peak Hour'] = peak_and_off_peak_df['Peak 
Hour'].apply(lambda x: datetime.datetime.strptime(str(x), 
"%H").strftime("%I %p"))
peak_and_off_peak_df['Off-Peak Hour'] = peak_and_off_peak_df['Off-Peak
Hour'].apply(lambda x: datetime.datetime.strptime(str(x), 
"%H").strftime("%I %p"))

# Display the DataFrame
print(peak_and_off_peak_df)

   Date Peak Hour  Peak Energy Value Off-Peak Hour  Off-Peak Energy 
Value
0     1     11 PM          5182776.0         12 AM              
5182257.0
1    13     11 PM          5106231.5         12 AM              



5102980.5
2    14     11 PM          5111761.5         12 AM              
5106506.0
3    15     11 PM          5116919.0         12 AM              
5112008.0
4    16     11 PM          5122671.0         12 AM              
5117098.5
5    17     11 PM          5125872.5         12 AM              
5122943.0
6    18     11 PM          5126591.0         12 AM              
5125903.5
7    19     11 PM          5131230.0         12 AM              
5126637.0
8    20     11 PM          5137728.5         12 AM              
5131516.0
9    21     11 PM          5144130.0         12 AM              
5138002.5
10   22     11 PM          5149762.5         12 AM              
5144409.5
11   23     07 PM          5151745.0         12 AM              
5149948.5
12   24     11 PM          5153064.0         12 AM              
5152200.5
13   25     11 PM          5153372.0         12 AM              
5153092.0
14   26     11 PM          5157407.0         12 AM              
5153377.0
15   27     11 PM          5162962.0         12 AM              
5157613.0
16   28     11 PM          5168440.0         12 AM              
5162962.5
17   29     11 PM          5173891.0         12 AM              
5168661.0
18   30     11 PM          5179515.5         12 AM              
5174056.0
19   31     11 PM          5182205.0         12 AM              
5179816.0

NOTE: Please note that here the first date is 1, It is 01-01-23 while from 13 it is, 13-12-22.

I've summarized the heatmap here, now we can clearly observe that highest energy 
consumption is at 23rd hour (11pm), after peak hours (i.e 6:00pm-10:00pm) and lowest 
energy consumption is at starting hour of industry i.e 12am.

# Convert the 'Time' column to a datetime object
data['Time'] = pd.to_datetime(data['Time'])

# Group by date, and calculate the first and last recorded times
first_last_times = data.groupby(['Date'])['Time'].agg(['min', 
'max']).reset_index()



# Rename columns
first_last_times.columns = ['Date', 'First Recorded Time', 'Last 
Recorded Time']

# Extract just the time part and add day of the week
first_last_times['First Recorded Time'] = first_last_times['First 
Recorded Time'].dt.strftime('%I:%M:%S %p')
first_last_times['Last Recorded Time'] = first_last_times['Last 
Recorded Time'].dt.strftime('%I:%M:%S %p')
first_last_times['Day'] = pd.to_datetime(first_last_times['Date'], 
format="%d").dt.day_name()

# Reorder the columns
first_last_times = first_last_times[['Date', 'Day', 'First Recorded 
Time', 'Last Recorded Time']]

# Set display options for neatness
pd.set_option('display.width', 200)
pd.set_option('display.max_columns', 10)
pd.set_option('display.colheader_justify', 'center')

# Display the DataFrame
print(first_last_times)

   Date    Day     First Recorded Time Last Recorded Time
0    1      Monday      12:00:38 AM        11:00:05 PM   
1   13    Saturday      12:33:42 PM        11:00:06 PM   
2   14      Sunday      12:00:06 AM        11:00:06 PM   
3   15      Monday      12:00:07 AM        11:00:02 PM   
4   16     Tuesday      12:00:07 AM        11:00:03 PM   
5   17   Wednesday      12:00:02 AM        11:00:01 PM   
6   18    Thursday      12:00:01 AM        11:00:00 PM   
7   19      Friday      12:00:00 AM        11:00:05 PM   
8   20    Saturday      12:00:05 AM        11:00:07 PM   
9   21      Sunday      12:00:09 AM        11:00:06 PM   
10  22      Monday      12:00:06 AM        11:00:00 PM   
11  23     Tuesday      12:00:00 AM        07:00:06 PM   
12  24   Wednesday      08:17:24 AM        11:00:08 PM   
13  25    Thursday      12:00:28 AM        11:00:05 PM   
14  26      Friday      12:00:15 AM        11:00:09 PM   
15  27    Saturday      12:00:09 AM        11:59:46 PM   
16  28      Sunday      12:00:06 AM        11:00:07 PM   
17  29      Monday      12:00:08 AM        11:00:05 PM   
18  30     Tuesday      12:00:05 AM        11:00:08 PM   
19  31   Wednesday      12:00:01 AM        11:00:08 PM   

My Observations and Theories:



1. Rainbow Hosiery operates every day, meaning the production demand is high and 
factory needs to run on most days to meet those demands.

2. On 13th Saturday and 24th Wednesday, work started at unsual time compared to 
rest, there could be many reasons like factory scheduled a half day, or maintenance 
activities, power outage, delay in raw material supply. Same assumptions for 23rd 
Tuesday for early timing.


