Skip to content
Fetching contributors…
Cannot retrieve contributors at this time
796 lines (722 sloc) 31.5 KB
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
package org.apache.hadoop.yarn.server.resourcemanager.monitor.capacity;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NavigableSet;
import java.util.Set;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.yarn.api.records.ApplicationAttemptId;
import org.apache.hadoop.yarn.api.records.Priority;
import org.apache.hadoop.yarn.api.records.Resource;
import org.apache.hadoop.yarn.event.EventHandler;
import org.apache.hadoop.yarn.exceptions.YarnRuntimeException;
import org.apache.hadoop.yarn.server.resourcemanager.monitor.SchedulingEditPolicy;
import org.apache.hadoop.yarn.server.resourcemanager.rmcontainer.RMContainer;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.ContainerPreemptEvent;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.ContainerPreemptEventType;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.PreemptableResourceScheduler;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CSQueue;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.LeafQueue;
import org.apache.hadoop.yarn.server.resourcemanager.scheduler.common.fica.FiCaSchedulerApp;
import org.apache.hadoop.yarn.util.Clock;
import org.apache.hadoop.yarn.util.SystemClock;
import org.apache.hadoop.yarn.util.resource.ResourceCalculator;
import org.apache.hadoop.yarn.util.resource.Resources;
* This class implement a {@link SchedulingEditPolicy} that is designed to be
* paired with the {@code CapacityScheduler}. At every invocation of {@code
* editSchedule()} it computes the ideal amount of resources assigned to each
* queue (for each queue in the hierarchy), and determines whether preemption
* is needed. Overcapacity is distributed among queues in a weighted fair manner,
* where the weight is the amount of guaranteed capacity for the queue.
* Based on this ideal assignment it determines whether preemption is required
* and select a set of containers from each application that would be killed if
* the corresponding amount of resources is not freed up by the application.
* If not in {@code observeOnly} mode, it triggers preemption requests via a
* {@link ContainerPreemptEvent} that the {@code ResourceManager} will ensure
* to deliver to the application (or to execute).
* If the deficit of resources is persistent over a long enough period of time
* this policy will trigger forced termination of containers (again by generating
* {@link ContainerPreemptEvent}).
public class ProportionalCapacityPreemptionPolicy implements SchedulingEditPolicy {
private static final Log LOG =
/** If true, run the policy but do not affect the cluster with preemption and
* kill events. */
public static final String OBSERVE_ONLY =
/** Time in milliseconds between invocations of this policy */
public static final String MONITORING_INTERVAL =
/** Time in milliseconds between requesting a preemption from an application
* and killing the container. */
public static final String WAIT_TIME_BEFORE_KILL =
/** Maximum percentage of resources preempted in a single round. By
* controlling this value one can throttle the pace at which containers are
* reclaimed from the cluster. After computing the total desired preemption,
* the policy scales it back within this limit. */
public static final String TOTAL_PREEMPTION_PER_ROUND =
/** Maximum amount of resources above the target capacity ignored for
* preemption. This defines a deadzone around the target capacity that helps
* prevent thrashing and oscillations around the computed target balance.
* High values would slow the time to capacity and (absent natural
* completions) it might prevent convergence to guaranteed capacity. */
public static final String MAX_IGNORED_OVER_CAPACITY =
* Given a computed preemption target, account for containers naturally
* expiring and preempt only this percentage of the delta. This determines
* the rate of geometric convergence into the deadzone ({@link
* #MAX_IGNORED_OVER_CAPACITY}). For example, a termination factor of 0.5
* will reclaim almost 95% of resources within 5 * {@link
* #WAIT_TIME_BEFORE_KILL}, even absent natural termination. */
public static final String NATURAL_TERMINATION_FACTOR =
// the dispatcher to send preempt and kill events
public EventHandler<ContainerPreemptEvent> dispatcher;
private final Clock clock;
private double maxIgnoredOverCapacity;
private long maxWaitTime;
private CapacityScheduler scheduler;
private long monitoringInterval;
private final Map<RMContainer,Long> preempted =
new HashMap<RMContainer,Long>();
private ResourceCalculator rc;
private float percentageClusterPreemptionAllowed;
private double naturalTerminationFactor;
private boolean observeOnly;
public ProportionalCapacityPreemptionPolicy() {
clock = new SystemClock();
public ProportionalCapacityPreemptionPolicy(Configuration config,
EventHandler<ContainerPreemptEvent> dispatcher,
CapacityScheduler scheduler) {
this(config, dispatcher, scheduler, new SystemClock());
public ProportionalCapacityPreemptionPolicy(Configuration config,
EventHandler<ContainerPreemptEvent> dispatcher,
CapacityScheduler scheduler, Clock clock) {
init(config, dispatcher, scheduler);
this.clock = clock;
public void init(Configuration config,
EventHandler<ContainerPreemptEvent> disp,
PreemptableResourceScheduler sched) {"Preemption monitor:" + this.getClass().getCanonicalName());
assert null == scheduler : "Unexpected duplicate call to init";
if (!(sched instanceof CapacityScheduler)) {
throw new YarnRuntimeException("Class " +
sched.getClass().getCanonicalName() + " not instance of " +
dispatcher = disp;
scheduler = (CapacityScheduler) sched;
maxIgnoredOverCapacity = config.getDouble(MAX_IGNORED_OVER_CAPACITY, 0.1);
naturalTerminationFactor =
config.getDouble(NATURAL_TERMINATION_FACTOR, 0.2);
maxWaitTime = config.getLong(WAIT_TIME_BEFORE_KILL, 15000);
monitoringInterval = config.getLong(MONITORING_INTERVAL, 3000);
percentageClusterPreemptionAllowed =
config.getFloat(TOTAL_PREEMPTION_PER_ROUND, (float) 0.1);
observeOnly = config.getBoolean(OBSERVE_ONLY, false);
rc = scheduler.getResourceCalculator();
public ResourceCalculator getResourceCalculator() {
return rc;
public void editSchedule(){
CSQueue root = scheduler.getRootQueue();
Resource clusterResources =
containerBasedPreemptOrKill(root, clusterResources);
* This method selects and tracks containers to be preempted. If a container
* is in the target list for more than maxWaitTime it is killed.
* @param root the root of the CapacityScheduler queue hierarchy
* @param clusterResources the total amount of resources in the cluster
private void containerBasedPreemptOrKill(CSQueue root,
Resource clusterResources) {
// extract a summary of the queues from scheduler
TempQueue tRoot;
synchronized (scheduler) {
tRoot = cloneQueues(root, clusterResources);
// compute the ideal distribution of resources among queues
// updates cloned queues state accordingly
tRoot.idealAssigned = tRoot.guaranteed;
Resource totalPreemptionAllowed = Resources.multiply(clusterResources,
List<TempQueue> queues =
recursivelyComputeIdealAssignment(tRoot, totalPreemptionAllowed);
// based on ideal allocation select containers to be preempted from each
// queue and each application
Map<ApplicationAttemptId,Set<RMContainer>> toPreempt =
getContainersToPreempt(queues, clusterResources);
if (LOG.isDebugEnabled()) {
// if we are in observeOnly mode return before any action is taken
if (observeOnly) {
// preempt (or kill) the selected containers
for (Map.Entry<ApplicationAttemptId,Set<RMContainer>> e
: toPreempt.entrySet()) {
for (RMContainer container : e.getValue()) {
// if we tried to preempt this for more than maxWaitTime
if (preempted.get(container) != null &&
preempted.get(container) + maxWaitTime < clock.getTime()) {
// kill it
dispatcher.handle(new ContainerPreemptEvent(e.getKey(), container,
} else {
//otherwise just send preemption events
dispatcher.handle(new ContainerPreemptEvent(e.getKey(), container,
if (preempted.get(container) == null) {
preempted.put(container, clock.getTime());
// Keep the preempted list clean
for (Iterator<RMContainer> i = preempted.keySet().iterator(); i.hasNext();){
RMContainer id =;
// garbage collect containers that are irrelevant for preemption
if (preempted.get(id) + 2 * maxWaitTime < clock.getTime()) {
* This method recursively computes the ideal assignment of resources to each
* level of the hierarchy. This ensures that leafs that are over-capacity but
* with parents within capacity will not be preempted. Preemptions are allowed
* within each subtree according to local over/under capacity.
* @param root the root of the cloned queue hierachy
* @param totalPreemptionAllowed maximum amount of preemption allowed
* @return a list of leaf queues updated with preemption targets
private List<TempQueue> recursivelyComputeIdealAssignment(
TempQueue root, Resource totalPreemptionAllowed) {
List<TempQueue> leafs = new ArrayList<TempQueue>();
if (root.getChildren() != null &&
root.getChildren().size() > 0) {
// compute ideal distribution at this level
computeIdealResourceDistribution(rc, root.getChildren(),
totalPreemptionAllowed, root.idealAssigned);
// compute recursively for lower levels and build list of leafs
for(TempQueue t : root.getChildren()) {
leafs.addAll(recursivelyComputeIdealAssignment(t, totalPreemptionAllowed));
} else {
// we are in a leaf nothing to do, just return yourself
return Collections.singletonList(root);
return leafs;
* This method computes (for a single level in the tree, passed as a {@code
* List<TempQueue>}) the ideal assignment of resources. This is done
* recursively to allocate capacity fairly across all queues with pending
* demands. It terminates when no resources are left to assign, or when all
* demand is satisfied.
* @param rc resource calculator
* @param queues a list of cloned queues to be assigned capacity to (this is
* an out param)
* @param totalPreemptionAllowed total amount of preemption we allow
* @param tot_guarant the amount of capacity assigned to this pool of queues
private void computeIdealResourceDistribution(ResourceCalculator rc,
List<TempQueue> queues, Resource totalPreemptionAllowed, Resource tot_guarant) {
// qAlloc tracks currently active queues (will decrease progressively as
// demand is met)
List<TempQueue> qAlloc = new ArrayList<TempQueue>(queues);
// unassigned tracks how much resources are still to assign, initialized
// with the total capacity for this set of queues
Resource unassigned = Resources.clone(tot_guarant);
// group queues based on whether they have non-zero guaranteed capacity
Set<TempQueue> nonZeroGuarQueues = new HashSet<TempQueue>();
Set<TempQueue> zeroGuarQueues = new HashSet<TempQueue>();
for (TempQueue q : qAlloc) {
if (Resources
.greaterThan(rc, tot_guarant, q.guaranteed, Resources.none())) {
} else {
// first compute the allocation as a fixpoint based on guaranteed capacity
computeFixpointAllocation(rc, tot_guarant, nonZeroGuarQueues, unassigned,
// if any capacity is left unassigned, distributed among zero-guarantee
// queues uniformly (i.e., not based on guaranteed capacity, as this is zero)
if (!zeroGuarQueues.isEmpty()
&& Resources.greaterThan(rc, tot_guarant, unassigned, Resources.none())) {
computeFixpointAllocation(rc, tot_guarant, zeroGuarQueues, unassigned,
// based on ideal assignment computed above and current assignment we derive
// how much preemption is required overall
Resource totPreemptionNeeded = Resource.newInstance(0, 0);
for (TempQueue t:queues) {
if (Resources.greaterThan(rc, tot_guarant, t.current, t.idealAssigned)) {
Resources.subtract(t.current, t.idealAssigned));
// if we need to preempt more than is allowed, compute a factor (0<f<1)
// that is used to scale down how much we ask back from each queue
float scalingFactor = 1.0F;
if (Resources.greaterThan(rc, tot_guarant,
totPreemptionNeeded, totalPreemptionAllowed)) {
scalingFactor = Resources.divide(rc, tot_guarant,
totalPreemptionAllowed, totPreemptionNeeded);
// assign to each queue the amount of actual preemption based on local
// information of ideal preemption and scaling factor
for (TempQueue t : queues) {
t.assignPreemption(scalingFactor, rc, tot_guarant);
if (LOG.isDebugEnabled()) {
long time = clock.getTime();
for (TempQueue t : queues) {
LOG.debug(time + ": " + t);
* Given a set of queues compute the fix-point distribution of unassigned
* resources among them. As pending request of a queue are exhausted, the
* queue is removed from the set and remaining capacity redistributed among
* remaining queues. The distribution is weighted based on guaranteed
* capacity, unless asked to ignoreGuarantee, in which case resources are
* distributed uniformly.
private void computeFixpointAllocation(ResourceCalculator rc,
Resource tot_guarant, Collection<TempQueue> qAlloc, Resource unassigned,
boolean ignoreGuarantee) {
//assign all cluster resources until no more demand, or no resources are left
while (!qAlloc.isEmpty() && Resources.greaterThan(rc, tot_guarant,
unassigned, Resources.none())) {
Resource wQassigned = Resource.newInstance(0, 0);
// we compute normalizedGuarantees capacity based on currently active
// queues
resetCapacity(rc, unassigned, qAlloc, ignoreGuarantee);
// offer for each queue their capacity first and in following invocations
// their share of over-capacity
for (Iterator<TempQueue> i = qAlloc.iterator(); i.hasNext();) {
TempQueue sub =;
Resource wQavail =
Resources.multiply(unassigned, sub.normalizedGuarantee);
Resource wQidle = sub.offer(wQavail, rc, tot_guarant);
Resource wQdone = Resources.subtract(wQavail, wQidle);
// if the queue returned a value > 0 it means it is fully satisfied
// and it is removed from the list of active queues qAlloc
if (!Resources.greaterThan(rc, tot_guarant,
wQdone, Resources.none())) {
Resources.addTo(wQassigned, wQdone);
Resources.subtractFrom(unassigned, wQassigned);
* Computes a normalizedGuaranteed capacity based on active queues
* @param rc resource calculator
* @param clusterResource the total amount of resources in the cluster
* @param queues the list of queues to consider
private void resetCapacity(ResourceCalculator rc, Resource clusterResource,
Collection<TempQueue> queues, boolean ignoreGuar) {
Resource activeCap = Resource.newInstance(0, 0);
if (ignoreGuar) {
for (TempQueue q : queues) {
q.normalizedGuarantee = (float) 1.0f / ((float) queues.size());
} else {
for (TempQueue q : queues) {
Resources.addTo(activeCap, q.guaranteed);
for (TempQueue q : queues) {
q.normalizedGuarantee = Resources.divide(rc, clusterResource,
q.guaranteed, activeCap);
* Based a resource preemption target drop reservations of containers and
* if necessary select containers for preemption from applications in each
* over-capacity queue. It uses {@link #NATURAL_TERMINATION_FACTOR} to
* account for containers that will naturally complete.
* @param queues set of leaf queues to preempt from
* @param clusterResource total amount of cluster resources
* @return a map of applciationID to set of containers to preempt
private Map<ApplicationAttemptId,Set<RMContainer>> getContainersToPreempt(
List<TempQueue> queues, Resource clusterResource) {
Map<ApplicationAttemptId,Set<RMContainer>> preemptMap =
new HashMap<ApplicationAttemptId,Set<RMContainer>>();
List<RMContainer> skippedAMContainerlist = new ArrayList<RMContainer>();
for (TempQueue qT : queues) {
// we act only if we are violating balance by more than
// maxIgnoredOverCapacity
if (Resources.greaterThan(rc, clusterResource, qT.current,
Resources.multiply(qT.guaranteed, 1.0 + maxIgnoredOverCapacity))) {
// we introduce a dampening factor naturalTerminationFactor that
// accounts for natural termination of containers
Resource resToObtain =
Resources.multiply(qT.toBePreempted, naturalTerminationFactor);
Resource skippedAMSize = Resource.newInstance(0, 0);
// lock the leafqueue while we scan applications and unreserve
synchronized (qT.leafQueue) {
NavigableSet<FiCaSchedulerApp> ns =
(NavigableSet<FiCaSchedulerApp>) qT.leafQueue.getApplications();
Iterator<FiCaSchedulerApp> desc = ns.descendingIterator();
qT.actuallyPreempted = Resources.clone(resToObtain);
while (desc.hasNext()) {
FiCaSchedulerApp fc =;
if (Resources.lessThanOrEqual(rc, clusterResource, resToObtain,
Resources.none())) {
preemptFrom(fc, clusterResource, resToObtain,
skippedAMContainerlist, skippedAMSize));
Resource maxAMCapacityForThisQueue = Resources.multiply(
// Can try preempting AMContainers (still saving atmost
// maxAMCapacityForThisQueue AMResource's) if more resources are
// required to be preempted from this Queue.
preemptAMContainers(clusterResource, preemptMap,
skippedAMContainerlist, resToObtain, skippedAMSize,
return preemptMap;
* As more resources are needed for preemption, saved AMContainers has to be
* rescanned. Such AMContainers can be preempted based on resToObtain, but
* maxAMCapacityForThisQueue resources will be still retained.
* @param clusterResource
* @param preemptMap
* @param skippedAMContainerlist
* @param resToObtain
* @param skippedAMSize
* @param maxAMCapacityForThisQueue
private void preemptAMContainers(Resource clusterResource,
Map<ApplicationAttemptId, Set<RMContainer>> preemptMap,
List<RMContainer> skippedAMContainerlist, Resource resToObtain,
Resource skippedAMSize, Resource maxAMCapacityForThisQueue) {
for (RMContainer c : skippedAMContainerlist) {
// Got required amount of resources for preemption, can stop now
if (Resources.lessThanOrEqual(rc, clusterResource, resToObtain,
Resources.none())) {
// Once skippedAMSize reaches down to maxAMCapacityForThisQueue,
// container selection iteration for preemption will be stopped.
if (Resources.lessThanOrEqual(rc, clusterResource, skippedAMSize,
maxAMCapacityForThisQueue)) {
Set<RMContainer> contToPrempt = preemptMap.get(c
if (null == contToPrempt) {
contToPrempt = new HashSet<RMContainer>();
preemptMap.put(c.getApplicationAttemptId(), contToPrempt);
Resources.subtractFrom(resToObtain, c.getContainer().getResource());
Resources.subtractFrom(skippedAMSize, c.getContainer()
* Given a target preemption for a specific application, select containers
* to preempt (after unreserving all reservation for that app).
* @param app
* @param clusterResource
* @param rsrcPreempt
* @return
private Set<RMContainer> preemptFrom(FiCaSchedulerApp app,
Resource clusterResource, Resource rsrcPreempt,
List<RMContainer> skippedAMContainerlist, Resource skippedAMSize) {
Set<RMContainer> ret = new HashSet<RMContainer>();
ApplicationAttemptId appId = app.getApplicationAttemptId();
// first drop reserved containers towards rsrcPreempt
List<RMContainer> reservations =
new ArrayList<RMContainer>(app.getReservedContainers());
for (RMContainer c : reservations) {
if (Resources.lessThanOrEqual(rc, clusterResource,
rsrcPreempt, Resources.none())) {
return ret;
if (!observeOnly) {
dispatcher.handle(new ContainerPreemptEvent(appId, c,
Resources.subtractFrom(rsrcPreempt, c.getContainer().getResource());
// if more resources are to be freed go through all live containers in
// reverse priority and reverse allocation order and mark them for
// preemption
List<RMContainer> containers =
new ArrayList<RMContainer>(app.getLiveContainers());
for (RMContainer c : containers) {
if (Resources.lessThanOrEqual(rc, clusterResource,
rsrcPreempt, Resources.none())) {
return ret;
// Skip AM Container from preemption for now.
if (c.isAMContainer()) {
Resources.addTo(skippedAMSize, c.getContainer().getResource());
Resources.subtractFrom(rsrcPreempt, c.getContainer().getResource());
return ret;
* Compare by reversed priority order first, and then reversed containerId
* order
* @param containers
static void sortContainers(List<RMContainer> containers){
Collections.sort(containers, new Comparator<RMContainer>() {
public int compare(RMContainer a, RMContainer b) {
Comparator<Priority> c = new org.apache.hadoop.yarn.server
int priorityComp =,
if (priorityComp != 0) {
return priorityComp;
return b.getContainerId().compareTo(a.getContainerId());
public long getMonitoringInterval() {
return monitoringInterval;
public String getPolicyName() {
return "ProportionalCapacityPreemptionPolicy";
* This method walks a tree of CSQueue and clones the portion of the state
* relevant for preemption in TempQueue(s). It also maintains a pointer to
* the leaves. Finally it aggregates pending resources in each queue and rolls
* it up to higher levels.
* @param root the root of the CapacityScheduler queue hierarchy
* @param clusterResources the total amount of resources in the cluster
* @return the root of the cloned queue hierarchy
private TempQueue cloneQueues(CSQueue root, Resource clusterResources) {
TempQueue ret;
synchronized (root) {
String queueName = root.getQueueName();
float absUsed = root.getAbsoluteUsedCapacity();
float absCap = root.getAbsoluteCapacity();
float absMaxCap = root.getAbsoluteMaximumCapacity();
Resource current = Resources.multiply(clusterResources, absUsed);
Resource guaranteed = Resources.multiply(clusterResources, absCap);
Resource maxCapacity = Resources.multiply(clusterResources, absMaxCap);
if (root instanceof LeafQueue) {
LeafQueue l = (LeafQueue) root;
Resource pending = l.getTotalResourcePending();
ret = new TempQueue(queueName, current, pending, guaranteed,
} else {
Resource pending = Resource.newInstance(0, 0);
ret = new TempQueue(root.getQueueName(), current, pending, guaranteed,
for (CSQueue c : root.getChildQueues()) {
ret.addChild(cloneQueues(c, clusterResources));
return ret;
// simple printout function that reports internal queue state (useful for
// plotting)
private void logToCSV(List<TempQueue> unorderedqueues){
List<TempQueue> queues = new ArrayList<TempQueue>(unorderedqueues);
Collections.sort(queues, new Comparator<TempQueue>(){
public int compare(TempQueue o1, TempQueue o2) {
return o1.queueName.compareTo(o2.queueName);
String queueState = " QUEUESTATE: " + clock.getTime();
StringBuilder sb = new StringBuilder();
for (TempQueue tq : queues) {
sb.append(", ");
* Temporary data-structure tracking resource availability, pending resource
* need, current utilization. Used to clone {@link CSQueue}.
static class TempQueue {
final String queueName;
final Resource current;
final Resource pending;
final Resource guaranteed;
final Resource maxCapacity;
Resource idealAssigned;
Resource toBePreempted;
Resource actuallyPreempted;
double normalizedGuarantee;
final ArrayList<TempQueue> children;
LeafQueue leafQueue;
TempQueue(String queueName, Resource current, Resource pending,
Resource guaranteed, Resource maxCapacity) {
this.queueName = queueName;
this.current = current;
this.pending = pending;
this.guaranteed = guaranteed;
this.maxCapacity = maxCapacity;
this.idealAssigned = Resource.newInstance(0, 0);
this.actuallyPreempted = Resource.newInstance(0, 0);
this.toBePreempted = Resource.newInstance(0, 0);
this.normalizedGuarantee = Float.NaN;
this.children = new ArrayList<TempQueue>();
public void setLeafQueue(LeafQueue l){
assert children.size() == 0;
this.leafQueue = l;
* When adding a child we also aggregate its pending resource needs.
* @param q the child queue to add to this queue
public void addChild(TempQueue q) {
assert leafQueue == null;
Resources.addTo(pending, q.pending);
public void addChildren(ArrayList<TempQueue> queues) {
assert leafQueue == null;
public ArrayList<TempQueue> getChildren(){
return children;
// This function "accepts" all the resources it can (pending) and return
// the unused ones
Resource offer(Resource avail, ResourceCalculator rc,
Resource clusterResource) {
// remain = avail - min(avail, (max - assigned), (current + pending - assigned))
Resource accepted =
Resources.min(rc, clusterResource,
Resources.subtract(maxCapacity, idealAssigned),
Resources.min(rc, clusterResource, avail, Resources.subtract(
Resources.add(current, pending), idealAssigned)));
Resource remain = Resources.subtract(avail, accepted);
Resources.addTo(idealAssigned, accepted);
return remain;
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append(" NAME: " + queueName)
.append(" CUR: ").append(current)
.append(" PEN: ").append(pending)
.append(" GAR: ").append(guaranteed)
.append(" NORM: ").append(normalizedGuarantee)
.append(" IDEAL_ASSIGNED: ").append(idealAssigned)
.append(" IDEAL_PREEMPT: ").append(toBePreempted)
.append(" ACTUAL_PREEMPT: ").append(actuallyPreempted)
return sb.toString();
public void assignPreemption(float scalingFactor,
ResourceCalculator rc, Resource clusterResource) {
if (Resources.greaterThan(rc, clusterResource, current, idealAssigned)) {
toBePreempted = Resources.multiply(
Resources.subtract(current, idealAssigned), scalingFactor);
} else {
toBePreempted = Resource.newInstance(0, 0);
void appendLogString(StringBuilder sb) {
sb.append(queueName).append(", ")
.append(current.getMemory()).append(", ")
.append(current.getVirtualCores()).append(", ")
.append(pending.getMemory()).append(", ")
.append(pending.getVirtualCores()).append(", ")
.append(guaranteed.getMemory()).append(", ")
.append(guaranteed.getVirtualCores()).append(", ")
.append(idealAssigned.getMemory()).append(", ")
.append(idealAssigned.getVirtualCores()).append(", ")
.append(toBePreempted.getMemory()).append(", ")
.append(toBePreempted.getVirtualCores() ).append(", ")
.append(actuallyPreempted.getMemory()).append(", ")
You can’t perform that action at this time.