
UNIVERSITÀ DI BOLOGNA

School of Engineering

Master Degree in Automation Engineering

Optimal Control

Optimal Control of a Ball and Beam system

Professor: Giuseppe Notarstefano

Students:
Nicholas Baraghini

Fabio Curto
Federico Iadarola

Academic year 2021/2022

Abstract

In this paper, an optimal control method for a ball and
beam system is presented. The main goal is to feed the
system with an arbitrarily reference trajectory and to
control it in order to execute the optimal trajectory. To
achieve it, a differential dynamic programming algorithm
(DDP) has been implemented. First, the algorithm has
been employed to calculate the optimal trajectory of the
ball moving from one equilibria to another. Next,
exploiting the DDP algorithm, from the desired trajectory
an optimal trajectory has been generated for the system
to follow. Finally, using a Linear Quadratic Regulator
(LQR) algorithm, the previously obtained optimal
trajectory has been tracked by the ball. For all the tasks,
an animation showing the results has been displayed. The
project has been carried out in Python language

Contents

Introduction 5
Motivation . 5
Contribution . 6

1 Task 0 - Dynamics setup 7

2 Task 1 - Trajectory exploration 9
Single Step . 11
Multiple Step . 13

3 Task 2 - Trajectory Optimization 15
Quasi-Stationary Trajectory . 15
Refined Trajectory . 18

4 Task 3 - Trajectory Tracking 22
Tracking over Refined Trajectory 26

Conclusions 28

Bibliography 29

Introduction

Motivations

The ball and beam system is one of the most enduringly popular and
important laboratory models for teaching control systems engineering. It is
a very simple system to be understood and implemented yet interesting to
be studied since the system is open-loop unstable. The system is governed
by non-linear dynamics equations and has two independent degrees of
freedom, the position of the ball on the beam and the angle of the beam
respect a reference frame. The control objective is to control the torque τ
applied at the pivot of the beam, such that the ball can roll on the beam
and compute correctly a desired trajectory. Even though several control
techniques have been already implemented for this problem, exploiting an
optimal control approach on this system can be a good teaching exercise,
giving also the possibility to test the results obtained on a prototype.

To achieve the objective, the model of the system has been discretized by
means of the Euler-Lagrange method. In the first task, the DDP algorithm
has been exploited to find the optimal transition of the ball stepping from
an equilibria to another one. Then, after having designed an arbitrary
reference trajectory for the ball, the DDP algorithm is again used to
compute the optimal trajectory following the desired one. In conclusion,
the ball is called to track the reference trajectory defined. This is achieved
by linearizing the system dynamics about the optimal trajectory, obtained
in the previous task, and exploiting the LQR algorithm to obtain the
optimal feedback controller. Plots and visual animation of the system are
produced during the task progress, to show the results and the system
evolution.

5

Contributions

• Nicholas Baraghini: Write the proposal of the project. Implemented
the dynamics and contributed to DDP algorithm coding in python.
Implemented task1 and task1.2, contributed to task2

• Fabio Curto: Implemented the Visualization, the trajectory desired
in python and MATLAB. Completed the task2

• Federico Iadarola: Contributed to the definition of the dynamics,
to the DDP algorithm and Armijo code in python. Implemented the
task3, contributed to task2

6

Chapter 1

Task 0 - Dynamics setup

The control objective is to control the torque τ applied at the pivot of the
beam, such that the ball can roll on the beam and track the desired
trajectory. The torque causes thus a change of the beam angle and a
movement in the position of the ball. The ball rolls on the beam without
slipping under the action of the force of gravity. Defining the generalized
coordinate:

q(t) =
[
p(t)θ(t)

]
containing the 2 D.o.F. of the system: the position of the ball and the
angle of the beam, respectively. Exploiting the Lagrange method, the
dynamics of the system are extracted:

(
Jb
r2

+m)p̈+mg sin(θ)−mpθ̇2 = 0

(mp2 + J)θ̈ + 2mpṗθ̇ +mgp cos(θ) = τ

where:

• Jb :inertia matrix of the ball

• J: inertia matrix of the beam

• r: radius of the ball

• m : mass of the ball

The equations of motion we derived for the Ball and Beam system can be
written in state-variable representation. Defining the state vector:

x(t) =

x1(t)
x2(t)
x3(t)
x4(t)

 =

p(t)
ṗ(t)
θ(t)

θ̇(t)

7

The equation of motion can be written in terms of the state variable as

ẋ(t) =

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =

x2

m(x1x42−g sinx3)
Jb
r2

+m

x4
−2mx1x2x4−mgx1 cos(x3)+τ

mx2
1+J

 = f(x, τ)

Applying direct Euler, the resulting discrete-time system is:
x1,t+1

x2,t+1

x3,t+1

x4,t+1

 =

x1,t
x2,t
x3,t
x4,t

+ δt

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

Through the gradient respect the input and the state we linearize the
dynamics:

A = ∇xf(x, τ) =

1

mx2
3

Jb
r2

+m
δt 0 d1

(mx2
1+J)2

δt

δt 1 0 δt−2mx1mx4

(mx2
1+J)2

0 δt
Jb
r2

+m
(−mg cosx3 1 δtmgx1 sinx3

(mx2
1+J)2

0 δt
Jb
r2

+m
(2mx1x3 δt 1− δt−2mx1mx4

(mx2
1+J)2

where:

d1 = −(2mx2x4−mgx1 cos(x3)(mx21+J)−(−2mx1x2x4−mgx1 cos(x3)+τ)2mx1

B = ∇uf(x, τ) =

0
0
0
δt

(mx2
1+J)2

Obtaining the linear system: ∆xt+1 = A∆xt +B∆ut

For the formulation and solution of the DDP algorithm, we also compute
the dynamic gradients and implement the tensor product. All this element
are computed and returned from the BBDynamics() function in the module
systemdynamic.py

8

Chapter 2

Task 1 - Trajectory
exploration

In the first task, two arbitrary points along the beam were chosen and an
optimal transition was computed using a step-trajectory as reference.

The algorithm proposed to solve this task calls three main functions:

• DDP comp t k(): This function is responsible for calculating the
matrices K, σ, P, and p defined by the DDP algorithm, designated at
the k-th iteration.

– Kk
t = −(lkuu,t+ fk

u,t ·P k
t+1 · f

k,T
u,t + fk

uu,t ·pkt+1)
−1 · (lkux,t+ fk

u,t ·P k
t+1 ·

fk,T
x,t + fk

ux,t · pkt+1)

– σk
t = −(lkuu,t + fk

u,t · P k
t+1 · f

k,T
u,t + fk

uu,t · pkt+1)
−1 · (lku,t + fk

u,t · pkt+1)

– P k
t = −(lkxx,t + fk

x,t ·P k
t+1 · f

k,T
x,t + fk

xx,t · pkt+1)−Kk,T
t · (lkuu,t + fk

u,t ·
P k
t+1 · f

k,T
u,t + fk

uu,t · pkt+1) ·Kk
t

– pkt = −(lkx,t+fk
x,t·pkt+1)−Kk,T

t ·(lkuu,t+fk
u,t·P k

t+1·f
k,T
u,t +fk

uu,t·pkt+1)·σk
t

for t = T-1, ..., 0 With :

– P k
T = lkxx,T

– pkT = lkx,T

• Armijo(): This function has been implemented to search for an ap-
proximate optimal step size at each iteration. By making use of the
implementation of the Armijo algorithm.
Therefore setting:

– γ0 = 1(> 0)

– β = 0.5(∈ [0, 1])

– c = 0.05(∈ [0, 1])

9

Then: γi+1 = β · γi
Until: l(xk + γi · dk) ≤ l(xk) + c · γi∇l(xk)T · dk

• Trajectory Update(): This function updates the optimal trajectory
that occurs between one iteration and its next one. Therefore, making
use of the fundamental DDP matrices calculated by DDP comp t k
and by the optimal step-size computed by Armijo, this function takes
care of the calculation of the input and the optimal state of the system
at the (k + 1)-th iteration.
Thus for t = 0, ..., T-1:

– uk+1
t = ukt +Kk

t · (xk+1
t − xkt) + σk

t

– xk+1
t+1 = f(xk+1

t , uk+1
t)

– xk+1
0,t = xinit

The three functions just defined are then performed iteratively until the
descent dk falls below a certain threshold or until the number of iterations
does not exceed a certain maximum value of imposed cycles.
The function above presented, belongs to the module optcon.py.
For investigation purposes, the optimal trajectory has been computed also
for a multi-step reference trajectory of the ball position along the beam.

10

Single Step

Figure 2.1: Comparison between the reference state and the optimal state
computed by the DDP algorithm

In this case, a step reference trajectory was created for the position of the
ball. Over 7 seconds of the experiment, the ball is required to stop in the
central position of the beam, for the first half of the period; While for the
remaining half of the time, the ball should be in a position close to the left
end of the beam. Considering a reference system fixed in the beam pivot and
oriented as the slope of the beam itself, then the reference step trajectory
has an initial value of 0 and a final value of −0.8· L2 , of which L is considered
the length of the beam.

11

Figure 2.2: Input torque

As can be seen from the graphs, the trajectory of both the input and
the speeds are subjected to zero, and therefore properly weighing the con-
tribution to these states in the cost function, the optimal sector will not
only try to position the ball precisely but also execute the trajectory thus
minimizing both speed and input torque.

Figure 2.3: Descent Figure 2.4: Cost

From the descent and cost graphs, it can be seen that the algorithm
reaches very low descent values in a small number of iterations thus leading
to fast convergence of the algorithm to the optimal trajectory.

12

Multiple Step

Figure 2.5: Comparison between the reference state and the optimal state
computed by the DDP algorithm

13

Figure 2.6: Input torque

Similarly to what was done for a single-step trajectory, it was generalized
for a multiple-step reference trajectory, where the ball was required to be in
different positions on the shaft, in sundry homogeneous time intervals, for a
total duration of the experiment of 15 seconds

Figure 2.7: Descent Figure 2.8: Cost

Even for a multi-step trajectory, there is a fast convergence of the opti-
mization algorithm

14

Chapter 3

Task 2 - Trajectory
Optimization

In the second task the DDP algorithm has been exploited in order to obtain
an optimal trajectory, from a properly design reference trajectory of the ball.

Quasi-Stationary Trajectory

The reference curve has been designed inside the module ReferenceTrajectory.py
by the function SplineRef(). This function require:

• waypoints: points on the x axes that will be interpolated

• time points: time instants when the waypoints are reached

and return a cubic polynomial, which is twice continuously differentiable,
obtained interpolating the given data.

15

Figure 3.1: Reference trajectory, reference velocity and acceleration

Even if the evolution of the beam position, of the beam velocity and
of the input are not known, computing the input in quasi static condition
make possible to exploit and find the optimal trajectory through the DDP
algorithm.
Starting from p(t) , ṗ(t), uqs(t) for t= 0,, T the otpimal trajectory
(xopt,uopt) is computed.
The following plots show the results computed with the algorithm.

16

Figure 3.2: Comparison between the reference state to follow and the opti-
mal one computed using DDP

Since the cost matrix gives more weights to position of the ball, the optimal
trajectory try to follow it as close as possible, adapting the missing state in
order to have a trajectory feasible and optimal.

17

Figure 3.3: optimal input reference to apply in order to obtain the optimal
trajectory

Figure 3.4: Descent Figure 3.5: Cost

Refined Trajectory

Alternatively, to overcame the absence of state evolution, a regulator exploit-
ing the dynamic of the system has been implemented; Therefore feeding the
controller with the position and the velocity of the ball the regulator finds
the most close beam angle and velocity that satisfies the dynamics equa-
tions; The simulation has been implemented in Simulink.
Also in this case, a cubic polynomial has been used as reference curve, ex-
ploiting the Simulink block Polynomial Trajectory.
The controller implemented is a PID controlled properly tuned.
In particular:

18

• Starting from the desired acceleration of the ball, an angular refer-
ence is calculated. The angle to follow is the one giving the ball the
gravitational acceleration matching the desired trajectory.

• The inner PID loop controls the angular position θ without considering
the final trajectory of the ball.

This method can be seen as feed-forward from the point of view of the ball
position, in fact it is based on the perfect knowledge of the system model
and does not control in any way the ball position in the presence of any
uncertainties or disturbances.
In the case under study, this type of controller is sufficient because the only
purpose is to generate a reference, complete of all states and input, which
will be processed by the optimal control algorithm.

Figure 3.6: Simulink Scheme

As mentioned earlier, after extracting the refined trajectory, the DDP
algorithm was applied over the new desired reference and the results are
show below.

19

Figure 3.7: Comparison between the reference state to follow and the opti-
mal one computed using DDP

20

Figure 3.8: optimal input reference to apply in order to obtain the optimal
trajectory

Figure 3.9: Descent Figure 3.10: Cost

21

Chapter 4

Task 3 - Trajectory Tracking

The objective of this task is to control the non-linear ball and beam system
along an evolution, also satisfying some performance criteria. The idea is to
track the optimal trajectory (xopt,uopt) computed in Task 2 exploiting LQR
to define the optimal feedback controller.

Step 1 - Linearization of the system
The dynamics have been approximated about the trajectory (xopt,uopt) via

the linear system:
∆xt+1 = Aopt

t ∆xt +Bopt
t ∆ut

where Aopt
t ∈ ℜ4x4, Bopt

t ∈ ℜ4x1 are defined as:

Aopt
t = ∇xopt

t
f(xoptt , uoptt)T

Bopt
t = ∇uopt

t
f(xoptt , uoptt)T

for all (xoptt , uoptt) with t = 0,....,T state-input pairs at time t of trajectory
(xopt,uopt) with lenght T.

Step 2 - Calculate the LQR optimal controller
The following optimal control problem has been solved:

22

for some cost matrices Qreg
t ≥ 0 ∈ ℜ4x4, Rreg

t ≥∈ ℜ Qreg
T ≥ 0 ∈ ℜ4x4

Obtaining as return Kreg
t for all t = 0, ..., T-1, with shape Kreg

t ∈ ℜ4x4

The latter is the feedback gain needed to track the optimal reference curve.

Step 3 - Tracking the optimal trajectory
The feedback controller generated has been applied on the linearization to

the nonlinear system in order to track (xopt,uopt) For all t = 0, ... ,T

ut = uoptt +Kopt
t (xt − xoptt)

xt+1 = f(xt, ut)

starting from an arbitrary x0.
This steps are performed by the function TrajectoryTracking() inside the
module optcon.py

Results show that starting from an arbitrary x0 and after a transient
phase,the system reaches and follows the optimal trajectory (xopt,uopt) com-
puted in task 2. Modifying the cost matrices, which are the degree of freedom
to control the performance of the system, is possible to reduce the peak of
the input at the beginning but obtaining a bigger transient phase in the
states and a larger cost. Alternatively the cost matrices can be modified in
order to reduce the transient phase and reach in a smaller time the opti-
mal reference. The following plots shows the tracked results for the system,
starting from an x0 perturbed respect the x0opt . The torque has a peak in
first instant. This is caused by the wrong initial condition, disturbed by
random normal noise.

23

Figure 4.1: Comparison between the tracked state and the optimal state
computed by the DDP algorithm, when the initial state is affected by noise

Figure 4.2: Comparison between the tracked input and the optimal input
computed by the DDP algorithm, when the initial state is affected by noise

24

Case with noise affecting the dynamics

This plots shows that, even if the dynamics is affected by noise, the optimal
feedback controller is able to track the optimal trajectory correctly. The
input torque is disturbed by noise due to the fluctuation of the beam velocity.
Anyway input torque is clearly following the optimal trajectory.

Figure 4.3: Comparison between the tracked state and the optimal state
computed by the DDP algorithm, when the dynamics are affected by noise

25

Figure 4.4: Comparison between the tracked input and the optimal input
computed by the DDP algorithm, when the dynamics are affected by noise

Tracking over Refined Trajectory

In conclusion the LQR algorithm has been implemented over the reference
optimal trajectory generated from the refined curve. As expected, the tra-
jectory is tracked correctly. The beam position, velocity and the input, are
slightly different from the optimal one since the performance requested give
more importance to the position of the ball.

26

Figure 4.5: Comparison between the tracked state and the optimal state
computed by the DDP algorithm, in case of refined reference with perturbed
initial state

Figure 4.6: Comparison between the tracked input and the optimal input
computed by the DDP algorithm, in case of refined reference with perturbed
initial state

27

Conclusions

Using differential dynamic programming algorithm the objective of
optimizing a trajectory for a non-linear system has been accomplished. In
this paper are reported the results of the implementation of a DDP
algorithm in python code. First, the dynamics have been discretized and
the high order derivatives computed. Then the DDP algorithm has been
applied firstly over a simple step function between two equilibria, then over
a more complex and desired trajectory. This produced the desired optimal
trajectory of the curve under inspection. In conclusion, by implementing
an LQR algorithm the system tracked the optimal trajectory, with results
that are not affected significantly by noise.

28

Bibliography

[1] D.P BERTSEKAS. Dynamic programing and stochastic control. Math-
ematics in Science and Engineering. Academic Press, 1976.

[2] G. BEAUCHAMP-BÃEZ C. G. BOLÃVAR-VINCENTY. Modelling
the Ball-and-Beam System. url: http://www.laccei.org/LACCEI2014-
Guayaquil/RefereedPapers/RP176.pdf.

[3] G. NOTARSTEFANO.Optimal control. Slide for Optimal Control study
course. 2021.

29

