
Achieving Both Model Accuracy and Robustness by
Adversarial Training with Batch Norm Shaping

Abstract—Adversarial training is an important approach to
improving Deep Learning model robustness. It uses attack meth-
ods to generate adversarial samples that can maximize the chance
of misclassification and updates model weight values accordingly
to ensure these samples are not misclassified. It is difficult
to retain model accuracy while improving robustness using
adversarial training. In this paper, we study one of the important
factors causing this undesirable effect - batch normalization. We
find that batch normalization has three confoundings in adver-
sarial training, which may cause model accuracy degradation
and/or sub-optimal robustness improvement. We propose a novel
adversarial training method called norm shaping, in which a
model always uses batch norms, in both adversarial training
and inference. It enforces that a batch (in both training and
inference) should always have at least a dominating portion of
clean samples such that the batch norms follow a distribution
similar to that of clean sample batches. Our results show that it
can substantially improve existing adversarial training methods
(for models with batch normalization layers), such as PGD and
TRADES. On CIFAR-10, it can achieve much better model
accuracy and robustness on a list of existing attacks. For example,
it can achieve 0.94 model accuracy and 0.81 robustness against
PGD attack while TRADES and PGD adversarial trainings can
achieve around 0.88 accuracy and 0.47 robustness. Our method
also has 0.51 robustness against the strongest adaptive attack.

I. INTRODUCTION

Robustness in Deep Learning dictates that model classifi-
cation results should be robust in the presence of bounded
input perturbation. It is an important property because in real
world applications, model inputs have all kinds of noise due
to environmental condition variations. Model misbehaviors
such as misclassification may be induced if an unrobust
model is used. Many may have catastrophic consequences.
For example, perception model misclassification (e.g., object
detection model or depth estimation model) in autonomous
driving vehicles may endanger human lives. There are many
methods to improve model robustness and trustability of
classification results even when the model is unrobust, such
as adversarial input detection [6], [10], [22], [25], [39], model
certification [16], model symbolic analysis [3], [9], [12], [20],
[35], [40], and adversarial training [13], [17], [19], [24], [27],
[28], [31], [32], [34], [37], [41], [42]. Among them, adversarial
training is one of the most popular methods. It leverages ad-
versarial attack to generate input perturbations for given clean
inputs. The perturbed inputs are called adversarial samples,
which are used to train the model such that misclassifications
can be prevented.

A prominent challenge in adversarial training is that model
accuracy (on clean samples) degrades when model robustness
is improved. For example, with the standard PGD adver-

sarial training [24], which generates adversarial samples by
iteratively perturbing inputs following the opposite gradient
directions (in order to maximize the chance of inducing
misclassification), a ResNet w32-10 model on CIFAR-10 can
achieve close to 0.50 robust accuracy (i.e., classification accu-
racy on adversarial samples). However, its model accuracy de-
grades from 0.93 to lower than 0.88. Researchers believe that
because in many adversarial training methods like PGD, only
adversarial samples are used in training and clean samples are
not used, clean samples become out-of-distribution, causing
model accuracy degradation [4], [38]. Figure 1 (a) provides a
conceptual illustration. The small circle in the middle denotes
a benign sample and the box denotes its perturbation bound
(e.g., pixel value of 8 in PGD). The crosses are the adversarial
samples and the yellow arrows denote the perturbations. The
green shapes denote decision boundaries, including all the
data points that are correctly classified. Ideally, the whole
box should be green. Observe in figure (a) that since only
adversarial samples are used in training, the decision boundary
includes all of them. However, the clean sample (in the center)
is not included and hence misclassified (denoted by its red
color).

There are a number of proposals to train benign and
adversarial samples together, such as TRADES [41]. As a
result, both kinds of samples are in distribution and a decision
boundary like Figure 1 (b) can be achieved, covering both
kinds of samples. Although they have achieved very promising
results, they still suffer from performance degradation. We
observe that the suboptimal results are likely due to the
confoundings by normalization. Specifically, during training,
statistics of a training batch, called batch norms (BN) [15],
are used to normalize activation values such that it becomes
easier for the training to converge. As a result, the decision
boundary is parameterized by the batch norms (and essentially
the batch). During inference, the population statistics, called
population norms (PN), are used in adversarial sample genera-
tion and classification. The two norms are different, leading to
different decision boundaries [30]. As illustrated by Figure 1
(c), the two shapes denote the two different boundaries with
the one in dark green by PN. The red cross denotes an
adversarial sample generated using PN (at the inference time).
Observe that due to the boundary differences, although the
sample can be correctly classified by the BN boundary, it is
misclassified following the PN boundary (during inference).
In some cases, the boundary is changed so substantially that
even the clean sample (e.g., the circle in the center of figure
(c)) is misclassified. In Section IV, we will discuss three



(a) Training with only adv. 

samples 
(b) Training with both clean 

and  adv. samples 
(c) Decision boundary changes during 

inference due to norm changes
(d) Norm shaping

Boundary using 
batch norm

Boundary using 
population norm

Fig. 1: Efforts in achieving good tradeoffs between model accuracy and robust accuracy. Boxes denote the perturbation bounds
of samples, which are denoted by the circles in the center; crosses denote adversarial samples; green shapes denote decision
boundaries (all data points within the boundaries are classified to the ground truth label of samples); and the samples in red
are misclassified, that is, they are beyond the boundaries.

confoundings caused by batch normalization in adversarial
training. They can cause model accuracy degradation and/or
suboptimal robustness improvement.

In this paper, we propose a technique called norm shaping to
minimize the norm differences between attack (i.e., adversarial
sample generation), training, and inference. As such, the
confoundings can be substantially suppressed. The idea is to
always use batch norms and in the mean time ensure the
stability of norms. Specifically, during attack and training,
we enforce a specific ratio between the adversarial and clean
samples within a batch, with the latter dominating. That is,
during attack (of a batch), only the adversarial samples are per-
turbed. The dominating number of (unchanged) clean samples
ensure that the batch norm and hence the decision boundary
are hardly changed across the multiple steps when attacking
the batch. This implies that we are attacking the weakest points
of a stable decision boundary and then patching the same
boundary when updating weights using the (attacked) batch
in training. During inference, for each test sample, we group
it with a number of (random) clean samples to form a batch
with the same ratio, and use batch norms in classification.
This ensures that the inference is based on a boundary that
the model was trained on. This is illustrated by Figure 1 (d).
Observe that since the boundaries are similar, the degradation
due to boundary variation is minimized. Here, we assume
that in real-world applications, the adversary can access or
approximate gradients (for adversarial sample generation).
However, he cannot disable norm shaping or determine the
set of clean samples used in shaping (as they are randomly
drawn for each inference query). This is reasonable as we
can trust that the model’s execution on the user side is not
tampered with. We will have a thorough discussion of our
threat model in Section V and study a more aggressive threat
model in Section VI. Our method is complementary to existing
adversarial training methods as most of them have such
confoundings. Our contributions are summarized as follows.

• We conduct an in-depth study of the confoundings by
batch normalization in adversarial training.

• We propose a novel norm shaping method to boost
performance of adversarial training.

• We have evaluated the method on two popular adver-
sarial training methods: PGD [24] and TRADES [41].
It substantially improves their performance, allowing the
trained models to achieve model accuracy close to nor-
mally trained models, namely, over 0.94 for CIFAR10,
and the state-of-the-art robustness against a list of at-
tacks, including PGD, C&W [7], Deepfool [23], and
FGSM [13]. For example, it improves the robustness of
models trained by PGD from 0.47 to 0.816, and models
trained by TRADES from 0.46 to 0.817 (under the PGD
attack). It also has around 0.51 robustness against the
strongest adaptive attack in which the attacker knows the
set of samples used in norm shaping.

Limitations. Our method requires each test sample is packed
with a set of clean samples during inference. This enlarges
the resource consumption, especially memory footprint. This
may limit its applications in scenarios where there are resource
constraints. Some may be worried that norm shaping makes in-
ference not independent. We argue that norm shaping samples
are randomly drawn from the distribution for each inference
request, ensuring independency. In addition, the legitimacy of
using batches in inference has been shown in [30], [36].

II. BACKGROUND

Adversarial Training. Adversarial training is a widely used
method to improve model robustness, which states that a
model’s prediction be stable in the presence of bounded
perturbation. It is often formulated as a minmax optimization
problem as follows.

min
θ

E(x,y)∼(X ,Y)

[
max

x′∈(x−ϵ,x+ϵ)
L(M(x′; θ), y)

]
(1)

Here, a data sample x ∈ Rd and its label y ∈ N jointly
follow distribution (X ,Y). Symbol x′ denotes an adversarial
sample, M the model with parameter θ, L the cross-entropy
loss function and ϵ a perturbation bound (e.g., in l∞). Eq. 1
says that the model weights are to minimize the expected
maximum cross-entropy loss that bounded adversarial samples
can induce. While the formula is declarative, our discussion in
the rest of the paper involves its imperative implementation.



Batch Normalization. Batch normalization [15] is a standard
technique to make model training more stable and converging
faster. It is realized by adding normalization layers to the
model such that internal activation values are normalized to
mean 0 and standard deviation 1 using the mean and standard
deviation of an input batch, called batch norm (BN) in this
paper. During training, the population mean and standard
deviation (over all training samples), called population norm
(PN) in this paper, are also computed by updating moving
mean and standard deviation. During inference, PNs are used
to normalize activation values instead of BNs.

III. RELATED WORK

Batch Normalization in Adversarial Training. Researchers
in [5], [11] show that BN in natural training may decrease
model robustness as it shifts the training to leverage non-robust
features (NRF). In [38], Xie and Yuille proposed to improve
robustness using alternative batches of clean and adversarial
samples in training to mitigate the undesirable effects of batch
normalization. The method does not use batch norms during
inference. In contrast, we use batch norms all the time and
enforce dominating clean samples in a batch. In [4], Benz
et al. proposed to rectify BNs using a few attack samples to
improve robustness. It is an inference time technique. In [14],
[29], researchers show that maintaining two separate norms
for clean and adversarial samples can achieve both accuracy
and robustness by using the appropriate norms. In contrast, our
design has only one norm (achieved by a fixed ratio of adver-
sarial and clean samples), avoiding the need of selecting the
right norm during inference. [21] proposed to use a specially
designed batch normalization layer to deal with the different
norms. Researchers in [30] found that using batch norms can
improve both accuracy and robustness and simply co-training
clean and adversarial samples together like in TRADES may
not work well due to the heterogeneous distributions. Our
study supports both observations. [33] proposed to remove
batch normalization in adversarial training.
Adversarial Training. There are a large body of existing
adversarial training methods based on different attacks, e.g.,
L-BFGS [31], FGSM [13], one-step [19], PGD [17], [24],
[28], [37], [42], TRADES [41], and more [27], [32], [34].
Rice et. al [27] proposed to use early-stop in adversarial
training to address overfitting. Tramèr et. al [32] introduced
ensemble adversarial training to improve robustness against
black-box attacks. Unsupervised adversarial training (UAT) [2]
and robust self-training (RST) [8] use additional unlabeled
samples to improve robustness. Our method is orthogonal to
most these techniques which use batch normalization.

IV. CONFOUNDINGS OF BATCH NORMALIZATION IN
ADVERSARIAL TRAINING

Batch normalization causes a number of confoundings in
adversarial training. We discuss these confoundings here.
Confounding I: Norm Differences Degrade Model Accu-
racy. In normal training, model weights are updated based on
BNs while PNs are computed gradually by updating moving

Boundary with BN of
clean samples

Boundary with BN of
adv. samples

Fig. 2: Norm differences hurt robustness

means and variances [15]. During inference, the trained PNs
are used. For naturally trained models, clean test samples
are in the same distribution as the training samples, PNs
align well with the BNs of test batches, yielding a good
decision boundary and hence high accuracy. However, PNs
computed in adversarial training may be quite different from
the BNs of clean test batches, causing model accuracy degra-
dation. For example, in PGD adversarial training [24], only
adversarial samples are used in training, which are generated
to cause model misclassification. That is, training batches
contain only adversarial samples without any clean samples.
The PNs computed hence denote the distribution of adverarial
samples instead of that of clean samples. During testing, the
decision boundary denoted by the PNs is hence not optimal
for (clean) test samples, causing model accuracy degradtion. A
well trained CIFAR-10 model usually has over 0.93 accuracy,
whereas a model adversarially trained by PGD usually has
lower than 0.88 model accuracy. While there may be other
reasons behind the degradation, the norm differences is an
important one.
Confounding II: Norm Differences Hinder Model Ro-
bustness Improvement. Adversarial training is essentially a
minmax problem. The inner maximization is to find adversarial
samples that expose the weakest points of the model and
the outer minimization is to patch these points by updating
model weights. Eq. 1 is declarative, only describing the
intended constraints. The implementation, however, has to be
imperative, consisting of a large number of training steps, each
processing a batch of samples through the separated min and
max operations.

max
x′∈(x−ϵ, x+ϵ)

E(x,y)∈B∼(X ,Y) [L((MBN(B)(x
′; θ), y)] (2)

Conceptually, Eq. 2 describes the max step for a batch of
samples denoted by B. We use MBN(B) to denote the forward
computation of the batch using its batch norm. Essentially,
the max step denotes the adversarial sample generation, in
which the BNs of the clean samples in B are used to derive
the classification results and then the samples are perturbed to
maximize the loss. Let x′ denote the adversarial sample from
x and B′ the perturbed batch from B. The minimization step
is hence the following.

min
θ

E(x′,y)∈B′ [L(MBN(B’)(x
′; θ), y)] (3)

Observe that in this step, the model uses the BNs of B′. This
induces what we call the moving target effect, as denoted



Boundary  in
attack step 1

Boundary in attack 
step 2

x(1)

x

x(2)

Fig. 3: Batch norms lead to weak attack

in Fig. 2. In particular, the two batch norms denote two
decision boundaries. In the adversarial sample generation, the
dotted yellow arrow denotes the perturbation, leading to the
adversarial sample denoted by the red cross. Observe that
the perturbation is along the direction closest to the dotted
boundary (i.e., easiest to flip the classification result of clean
samples). However, in the second step, i.e., the min operation,
the BN of the adversarial samples induces a different decision
boundary (in dark green), in which the red cross and the dotted
arrow no longer disclose the weakness of the boundary. In
contrast, the solid yellow arrow does. The net effect is that
the model is not hardened along its weakest directions (when
using adversarial samples in training, like the red cross).
Unfortunately, this is not easy to fix in practice as the new
decision boundary is unknown until the adversarial samples
are generated.
Experiment. We use FGSM [13], which is equivalent to one
attack step in PGD, to generate adversarial samples on training
inputs for an adversarially trained model with 0.87 accuracy
and 0.47 robustness (using the attack step size of 2). The logits
errors between the adversarial samples and their clean versions
when the BNs of clean samples are used are on average 63%
larger than those when the BNs of adversarial samples are
used, indicating that although the adversarial samples reflect
the weakness of decision boundary by the BNs of clean
samples, they do not reflect the weakness of boundary by the
BNs of themselves. 2
Confounding III: Attack Using BN Is Weak Due to the
Moving Target Effect. In practice, adversarial attack using
the max operation defined in Eq. 2 is still too expensive due to
its declarative nature. It is hence approximated by an iterative
process with a bounded number of attack steps defined in the
following.

x
(1)

= (x − γ · sign(∆xL(MBN (B={x})(x; θ), y))) |(x−ϵ, x+ϵ)

x
(2)

= (x
(1) − γ · sign(∆

x(1)L(M
BN (B(1)={x(1)})(x

(1)
; θ), y))) |(x−ϵ, x+ϵ)

...
(4)

Specifically, the adversarial samples after step one, denoted by
x(1), are perturbed along the opposite direction of gradients
using the BNs of clean samples (e.g., x), controlled by the step
size γ and delimited by the bound ϵ. The samples after step
two, denoted by x(2), are derived from x(1) using the BNs of
x(1)’s, and so on.

It is widely believed that the strength of attack is denoted
by the bound ϵ, the step size γ, and the number of attack

steps. However, norm differences can also substantially affect
the attack strength. Fig. 3 provides a conceptual illustration.
The two green shapes denote the decision boundaries in attack
steps 1 and 2, the arrows denote the perturbations and x(1) and
x(2) the two adversarial samples after the respective steps.
Observe that although the arrows are both along the weakest
directions of the decision boundaries (pointing to the closest
points on the boundary lines), the directions change from
step to step, forming a zig-zagging line. Such an attack is
weaker than one that follows a straight line. That is, the
distance between x and x(2) is smaller than the sum of the
distances from x to x(1) and from x(1) to x(2). Note that
the sum essentially denotes the perturbation in two steps
when a straight line is followed. In fact during inference,
since PNs (constants) are used across the attack steps, the
decision boundary is fixed and the attack is along a straight
line (through the steps) and hence much stronger. In PGD, BN
based attack (weaker) is used in training and PN based attack
(stronger) is used in inference. The hardening effect is hence
not maximized during training.

Experiment. We use the default PGD attack settings (i.e.,
ϵ=8, γ=2, and number of steps is 10) to generate adversarial
samples for training inputs using the same adversarially trained
model as in the previous experiment. We find that when
the PNs are used in generation (like in inference), the input
perturbations are on average 17% more substantial than those
when BNs are used (like in training). 2

V. NORM SHAPING IN ADVERSARY TRAINING

We propose a norm shaping technique to suppress the
aforementioned confoundings and improve adversarial training
effectiveness. Figure 4 presents an overview of the technique.
Figure (a) presents a training step during the adversarial
training and (b) the inference process. The former consists
of two phases separated by the vertical dashed line, with
phase 1⃝ (to the left of the dashed line) denoting t steps of
attack to generate adversarial samples (t = 10 following the
standard PGD attack setting) and phase 2⃝ (to the right of
the dashed line) denoting model weight updates based on the
samples. During attack, from left to right a batch B (of clean
samples) is first fed to the model. Since batch norms are used
during attack, the decision boundary is hence parameterized
by BN(B). The batch B is partitioned to n + 1 equal parts.
For discussion simplicity, we assume it has n + 1 samples.
Samples x1, ..., xn, called norm shaping samples, are not
perturbed during the attack steps and directly copied over
from step to step. In contrast, sample x is updated based on
the gradients to maximize the cross-entropy loss, that is, to
induce misclassification just like in the original PGD attack.
The new batch B(1) consisting of x1, ..., x2, and the updated
x(1), is further passed to the model for the next step of attack.
After t steps, the final batch B(t) consists of n clean samples
and an adversarial sample x(t) approximating the maximum
perturbation. The batch is then used in updating the model
weights (just like in normal training).



x1

x2

xn

x

Batch B

...

x1

x2

xn

B(1)

...

FGSM

...

...

x1

x2

xn
...

B(t)

copy

Model M M’ with weights updated

① t steps of adv. attack ② training with adv. Samples
(and clean samples)

...

(a) Training

x

x1

x2

xn

x

...

y1

y2

yn

y y

Model with enforced norm shaping

(b) Inference

...
x(1) x(t)

Fig. 4: Norm shaping during adversarial training

During inference (i.e., Figure 4 (b)), given a sample x, our
method forcefully combines it with n clean samples drawn
from the training set to form a batch with n:1 ratio between
the norm shaping samples and the sample to test. The batch is
fed to the model, which operates with the batch norms (instead
of the population norms like in typical inference). Only the
classification result y of the-sample-to-test is returned.
Design Justification. First, the model only uses batch norms,
in attack, training, and inference, and never uses population
norms. The decision boundary is hence controlled by the norm
of given batch. By manipulating the batch, we shape the norms
to achieve optimal performance.

Second, the batches always have the same ratio between
clean and adversarial samples, with the former dominating,
leading to batch norms closely resembling those of clean
samples. This has multiple ramifications, addressing the afore-
mentioned confoundings.

• With multiple training epochs, the model learns to operate
in the batch norms of clean samples as the training
batches contain mostly clean samples. During inference,
norm shaping enforces similar batch norms, ensuring
good accuracy, addressing Confounding I.

• Across the multiple steps of attack on a batch (as part
of a training step), the BN is stable due to the stable
dominating set of clean samples. As such, the zig-zagging
effect is mitigated and the attack becomes stronger,
addressing Counfounding III. During training, our attack
with norm shaping can induce on average 41% more
substantial input perturbations compared to the default
PGD attack in the same setting. Recall that PGD uses
BNs of adversarial samples.

• The generated adversarial samples provide good approx-
imation of the weakest points of a stable decision bound-
ary (of the current batch with mixed clean and adversarial
samples). The model weight updates in adversarial train-
ing are based on the same boundary and hence enable
patching these weakest points, addressing Confounding
II.

Threat Model. During inference, we assume the adversary can
perturb input x and have read access to the internals of model.

This is consistent with the literature. He cannot disable norm
shaping or know the norm shaping samples, that is, x1, ... xn in
Figure 4. This is reasonable as model inference is performed
on the user side to which the adversary does not have the
write access, and the norm shaping samples are randomly
drawn from the input distribution for each inference query.
In Section VI, we study a more aggressive threat model in
which the adversary knows the set of norm shaping samples.

Formal Definition. Eq. 5 defines an adversarial training step.
A training batch B is a pair of X (vector of m samples) and Y
(vector of the corresponding labels). Variable k is computed
such that x1, ..., xk are the set of clean samples, xk+1, ...
xm denote the adversarial samples, and the two are in the
ratio of n:1. The ⋄ operator concatenates two vectors. Vector
X(i) denotes the batch after step i. Observe that the first k
samples are unchanged, making the batch norm stable. The
remaining samples are updated based on the gradient sign and
the step size γ. We want to point out that the method does
not completely prevent the moving target effect as the batch
norm of X(i) differs from that of X(i+1). However, a large n
ensures that the BN differences are small.

B = (X,Y ) = ({x1, ...xm}, {y1, ...ym}), (xi, yi) ∼ (X ,Y)

let k =
n · m
n + 1

in

X
(1)

= X[0 : k]⋄
(X − γ · sign(∆XL(MBN(X)(X; θ), Y )))[k : m] |(X−ϵ, X+ϵ)

X
(2)

= X[0 : k] ⋄

(X
(1) − γ · sign(∆

X(1)L(M
BN(X(1))

(X
(1)

; θ), Y )))[k : m] |(X−ϵ, X+ϵ)

...
(5)

Eq. 6 defines the inference. Given an example x, n random
samples are drawn from the input distribution (i.e., training
samples) and concatenated with x to form a n+1 vector X ′. It
is fed to the model which uses batch norms. The classification
of x (at index n of the result vector) is returned.

M(x; θ) =MBN(X’)(X
′; θ)[n], with

X = {x1, ...xn}, xi ∼ X ,

X ′ = X ⋄ {x}
(6)



VI. EVALUATION

We evaluate our technique on two popular adversarial
training methods, PGD [24] and TRADES [41], and show that
norm shaping can substantially improve their effectiveness by
achieving model accuracy comparable to well trained normal
models and much better robustness. We also show our models’
robustness under the strongest adaptive attack in which the
adversary knows the set of norm shaping samples used in
each query. We conduct an ablation study regarding the ratio
between adversarial and clean samples. Our implementation is
based on the standard PGD training code downloaded from [1].
All the experiments are run on a server equipped with two Intel
Xeon Silver 4214 2.20GHz 12-core processors, 188 GB of
RAM, and eight NVIDIA GeForce RTX 2080 Ti GPU cards.
Experiment Settings. We use CIFAR10 as our dataset. We use
the same ResNet w32-10 structure (from the PGD code base)
for all the models in our experiment to preclude differences
induced by model structure.
TRADES. Besides PGD, we also use TRADES as a baseline. It
is another popular adversarial training technique that co-chains
clean and adversarial samples. For a given batch of clean sam-
ples, it generates adversarial samples that can maximize the
statistical divergence of their classification results, using the
Kullback–Leibler (KL) divergence metric [18]. The training
mixes the benign samples and the corresponding adversarial
samples, and updates model weights to minimize the cross-
entropy loss of clean samples and the KL divergence between
the two kinds of samples. TRADES’s implementation is based
on PyTorch whereas PGD’s is on Tensorflow. To simplify
comparison, we reimplement TRADES inside the PGD train-
ing framework. We observe that using KL divergence in the
training loss degrades model accuracy. We hence disable it.
Note that KL divergence is still used in adversarial sample
generation.
Training Setting: We mostly reuse the default training configu-
ration from [1], with 80,000 training steps, 8/255 perturbation
bound, step size of 2, and 10 attack steps (in adversarial sample
generation). More details can be found in the config.json
file from [1]. The only difference is that we use a batch size
of 64 instead of 128.

We use three training modes. The first is adv. only, meaning
that only adversarial samples (not any clean samples) are used
in training, which is the default setting of PGD. The second
is shaping in training, in which norm shaping is only used
in training but not in adversarial sample generation. In other
words, the generation is following Eq. 4 such that the entire
batch is perturbed. The third one is shaping in both attack and
training. The ratio of clean and adversarial samples is always
3:1.
Attacks: We use five attacks to test the robustness of the trained
models, PGD, C&W L2 attack [7], FGSM [13], Deepfool [23],
and our norm shaping attack. The first four are from the
Cleverhans framework [26], mostly using their default attack
settings. We change the perturbation bound of FGSM from the
pixel value of 8 to 16, as the original attack was too weak. The

batch size is always 100. Given a batch of test samples, the
attack code is run to generate adversarial samples, which are
fed to the models for testing. Note that in the first four attacks,
PNs are used in adversarial sample generation, which is their
default setting. In the norm shaping attack (which uses BNs),
the ratio of the unchanged (test) samples and the attacked
samples are 3:1, the same as that in training.

Inference Setting: We have three inference settings. The first
one is using the BNs of test samples (regardless clean or
adversarial samples). The second is using the PNs, which is
equivalent to the default setting of most existing works. In the
third one, we mix a test sample with nine randomly selected
clean training samples (using the random seeds provided in
the configuration file of PGD) for norm shaping. We discard
the classification results of the norm shaping samples, and
report only the results of test samples. To evaluate model
accuracy, test samples are those from the test set. To evaluate
model robustness, test samples are those generated by the
attacks (from clean test samples). They are called BN, PN,
and BN+Shaping inference modes, respectively.

Main Results. Table I presents the results for PGD based ad-
versarial trainings. The first column denotes the three training
modes; the second column the attacks; columns 3-4, 5-6, 7-8
denote the clean and robust accuracies for the three inference
modes. Specifically, the results in blue correspond to the
default PGD, whereas those in red correspond to our method.
The others are for the different possible configurations. We
have the following observations. First, compared to the default
PGD, our method achieves much better clean accuracy (0.942
versus 0.869) and almost consistently better robustness. For
example, under the PGD attack, our method achieves 0.816
robust accuracy whereas the default PGD training can only
achieve 0.47, which is consistent with the literature. Second,
our method achieves close-to-the-best robustness for almost
all attacks except our own shaping attack. Other settings such
as using the adv-only and shaping-in-training modes have
better robustness against our attack. The reason is that our
attack is designed particularly against norm shaping, namely,
perturbations are generated with norm shaping. Such attack
may not be strong when shaping is not employed. Third,
the overall best results are achieved when shaping is used
in adversarial attack, training, and inference. Other settings,
such as shaping only in training (the second big row) and
using only BNs in inference (columns 3-4), achieve inferior
results in both accuracy and robustness.

Table II presents the results for TRADES based adversarial
trainings. We have similar observations. This illustrates that
our method is effective regardless the underlying adversarial
training methods. It also outperforms using a simple mix of
clean and adversarial samples like in TRADES.

Adaptive Attack. Although our threat model assumes the
attacker does not know the norm shaping samples, we conduct
an experiment to study the effectiveness when a stronger threat
model is assumed in which the attacker knows the norm
shaping samples such that he generates attack samples using



Training Attack BN PN BN+Shaping

Acc R. Acc Acc R. Acc Acc R. Acc

Adv. only

PGD

0.877

0.501

0.869

0.47

0.873

0.504
CW 0.865 0.821 0.864

FGSM 0.391 0.376 0.395
Deepfool 0.503 0.071 0.515
Shaping 0.606 0.614 0.600

Shaping in
Training

PGD

0.932

0.142

0.922

0.0

0.932

0.384
CW 0.92 0.0 0.896

FGSM 0.263 0.502 0.544
Deepfool 0.929 0.051 0.903
Shaping 0.696 0.727 0.447

Shaping in
Attack+
Training

PGD

0.941

0.281

0.944

0.030

0.942

0.816
CW 0.905 0.069 0.904

FGSM 0.552 0.597 0.740
Deepfool 0.914 0.037 0.911
Shaping 0.481 0.494 0.533

TABLE I: Results for PGD based adversarial trainings

Training Attack BN PN BN+Shaping

Acc R. Acc Acc R. Acc Acc R. Acc

Adv. only

PGD

0.890

0.476

0.888

0.462

0.889

0.481
CW 0.880 0.845 0.880

FGSM 0.351 0.347 0.359
Deepfool 0.521 0.066 0.521
Shaping 0.522 0.533 0.539

Shaping in
Training

PGD

0.937

0.298

0.925

0.028

0.938

0.529
CW 0.933 0.053 0.925

FGSM 0.348 0.467 0.489
Deepfool 0.941 0.052 0.924
Shaping 0.729 0.851 0.472

Shaping in
Attack+
Training

PGD

0.945

0.202

0.945

0.004

0.944

0.817
CW 0.899 0.026 0.899

FGSM 0.510 0.546 0.737
Deepfool 0.908 0.037 0.914
Shaping 0.499 0.521 0.542

TABLE II: Results for TRADES based adversarial trainings

the same BNs by shaping. This constitutes the strongest attack
to our method. In Table III, the second and third columns
show we use the models trained by PGD and TRADES with
norm shaping. The last row shows the results. Observe that
our models can still have over 0.50 robustness. In addition,
we study a slightly weaker threat model, in which the attacker
does not know the exact norm samples but he can access
other training samples (and use them to perform norm shaping
during attack). In this case, our robustness is slight better.

Ablation Study. In this study, we use different norm shap-
ing ratios in training and inference and study our method’s
effectiveness. In training, we use the following ratios between
adversarial and clean samples, 1:1, 1:2, 1:3, and 1:7, as

PGD+Shaping TRADES+Shaping
Slightly weaker attack 0.518 0.514

Adaptive attack 0.508 0.505

TABLE III: Adaptive attack results

adv:clean in inference
1:0 1:1 1:3 1:9 1:19 1:49

in
tr

ai
ni

ng 1:1 0.477 0.478 0.476 0.476 0.477 0.476
1:2 0.385 0.837 0.835 0.753 0.668 0.573
1:3 0.281 0.692 0.820 0.817 0.813 0.815
1:7 0.039 0.138 0.706 0.781 0.776 0.779

TABLE IV: Impact of the ratio between adversarial and clean
samples on robustness against PGD attack

shown by the first column in Table IV. In inference, we use
6 ratios as shown in the first row of the table. Ratio 1:0
means no norm shaping. The list of ratios in training and
inference differ due to the divisibility of batch size (64 in
training and 100 in inference). Here, we use the PGD attack
from CleverHans and report the robust accuracy. Observe that
when the training ratio is 1:1 (row 2), the different inference
ratios make no difference. The robustness is consistently low,
similar to the default PGD training. The reason is that since
the clean samples are not dominating, the BNs follow a
complex distribution as the BNs of the two kinds of samples
are quite different. The training ratio 1:2 achieves the best
robustness when the inference ratio are 1:1 and 1:3. However,
its performance degrades when more clean samples are used
in shaping. Its model accuracy is 0.92 (worse than 0.944
in our chosen setting). The training ratio 1:3 (the default
setting) delivers the best overall performance. Also observe
that with that training setting, the inference-time shaping needs
to have at least the ratio of 1:3. Increasing the number of
clean samples beyond this ratio has no benefit, but does not
degrade performance either. It seems to indicate the BNs are
sufficiently stable. When the training ratio is 1:7, the inference
ratio ought to be 1:9 or beyond to get good results.

VII. CONCLUSION

We develop a novel adversarial training method that ad-
dresses the confoundings caused by batch normalization. We
observe that batch normalization can undesirably degrade
model accuracy, reduce attack strength, and cause a running
target effect, making adversarial training fail to patch model
weakness. We propose a norm shaping technique that forces
the model to use batch norms all the time and ensures stability
of batch norms by enforcing a fixed and large portion of clean
samples in each batch. This ensures that the batch norms have
a distribution similar to that of clean samples, suppressing the
confoundings. Our experiments show that it can substantially
improve existing adversarial training methods such as PGD
and TRADES, achieving 0.94 model accuracy (compared to
0.88 by baselines) and 0.81 robustness against the PGD attack
(compared to 0.47 by baselines).

REFERENCES

[1] Pgd on cifar10 challenge. https://github.com/MadryLab/cifar10
challenge. 6

[2] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein
Fawzi, Robert Stanforth, and Pushmeet Kohli. Are labels required
for improving adversarial robustness? In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 3

[3] Mislav Balunovic and Martin Vechev. Adversarial training and provable
defenses: Bridging the gap. In International Conference on Learning
Representations, 2019. 1

[4] Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon.
Revisiting batch normalization for improving corruption robustness. In
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 494–503, January 2021. 1, 3

[5] Philipp Benz, Chaoning Zhang, and In So Kweon. Batch normalization
increases adversarial vulnerability and decreases adversarial transferabil-
ity: A non-robust feature perspective, 2020. 3

https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/cifar10_challenge


[6] Nicholas Carlini and David Wagner. Adversarial examples are not
easily detected: Bypassing ten detection methods. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, AISec
’17, page 3–14, New York, NY, USA, 2017. Association for Computing
Machinery. 1

[7] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness
of Neural Networks. In IEEE Symposium on Security and Privacy
(S&P), pages 39–57, 2017. 2, 6

[8] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and
Percy S Liang. Unlabeled data improves adversarial robustness. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. 3

[9] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial
robustness via randomized smoothing. In International Conference on
Machine Learning, pages 1310–1320. PMLR, 2019. 1

[10] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B
Gardner. Detecting adversarial samples from artifacts. arXiv preprint
arXiv:1703.00410, 2017. 1

[11] Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and
Graham W. Taylor. Batch normalization is a cause of adversarial
vulnerability, 2020. 3

[12] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin Vechev. Ai2: Safety and robustness
certification of neural networks with abstract interpretation. In 2018
IEEE Symposium on Security and Privacy (SP), pages 3–18, 2018. 1

[13] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. In International Conference on
Learning Representations, 2015. 1, 2, 3, 4, 6

[14] Tianyu Han, Sven Nebelung, Federico Pedersoli, Markus Zimmermann,
Maximilian Schulze-Hagen, Michael Ho, Christoph Haarburger, Fabian
Kiessling, Christiane Kuhl, Volkmar Schulz, et al. Advancing diagnostic
performance and clinical usability of neural networks via adversarial
training and dual batch normalization. Nature communications, 12(1):1–
11, 2021. 3

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. 2015. 1, 3

[16] Jinyuan Jia, Xiaoyu Cao, Binghui Wang, and Neil Zhenqiang Gong. Cer-
tified robustness for top-k predictions against adversarial perturbations
via randomized smoothing. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. 1

[17] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit
pairing. arXiv preprint arXiv:1803.06373, 2018. 1, 3

[18] S. Kullback and R. A. Leibler. On Information and Sufficiency. The
Annals of Mathematical Statistics, 22(1):79 – 86, 1951. 6

[19] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial
machine learning at scale. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017. 1, 3

[20] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu,
and Suman Jana. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 656–672. IEEE, 2019. 1

[21] Aishan Liu, Shiyu Tang, Xianglong Liu, Xinyun Chen, Lei Huang,
Haotong Qin, Dawn Song, and Dacheng Tao. Towards defending
multiple \ell p-norm bounded adversarial perturbations via gated batch
normalization. 2021. 3

[22] Shiqing Ma, Yingqi Liu, Guanhong Tao, W. Lee, and X. Zhang. Nic:
Detecting adversarial samples with neural network invariant checking.
In NDSS, 2019. 1

[23] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2574–2582, 2016. 2, 6

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. 1, 2, 3, 6

[25] Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust de-
tection of adversarial examples. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems (NeurIPS), volume 31. Curran
Associates, Inc., 2018. 1

[26] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow,

Reuben Feinman, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom
Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan, Karen Ham-
bardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley,
Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng Dong, David
Berthelot, Paul Hendricks, Jonas Rauber, and Rujun Long. Technical
report on the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768, 2018. 6

[27] Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversar-
ially robust deep learning. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages
8093–8104. PMLR, 2020. 1, 3

[28] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu,
John Dickerson, Christoph Studer, Larry S Davis, Gavin Taylor, and
Tom Goldstein. Adversarial training for free! In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. 1, 3

[29] Chawin Sitawarin, Arvind Sridhar, and David Wagner. Improving the
accuracy-robustness trade-off for dual-domain adversarial training. In
UDL, 2021. 3

[30] A Sridhar, Chawin Sitawarin, and David Wagner. Mitigating adversarial
training instability with batch normalization. In Proceedings of Inter-
national Conference on Learning Representation Workshop on Security
and Safety in Machine Learning Systems, 2021. 1, 2, 3

[31] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. In International Conference on Learning Represen-
tations. 1, 3

[32] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks
and defenses. arXiv preprint arXiv:1705.07204, 2017. 1, 3

[33] Haotao Wang, Aston Zhang, Shuai Zheng, Xingjian Shi, Mu Li, and
Zhangyang Wang. Removing batch normalization boosts adversarial
training. In International Conference on Machine Learning, pages
23433–23445. PMLR, 2022. 3

[34] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and
Quanquan Gu. Improving adversarial robustness requires revisiting
misclassified examples. In International Conference on Learning Rep-
resentations, 2019. 1, 3

[35] Eric Wong and Zico Kolter. Provable defenses against adversarial
examples via the convex outer adversarial polytope. In International
Conference on Machine Learning, pages 5286–5295. PMLR, 2018. 1

[36] Yuxin Wu and Justin Johnson. Rethinking ”batch” in batchnorm, 2021.
2

[37] Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V Le.
Smooth adversarial training. arXiv preprint arXiv:2006.14536, 2020. 1,
3

[38] Cihang Xie and Alan Loddon Yuille. Intriguing properties of adversarial
training at scale. arXiv: Computer Vision and Pattern Recognition, 2020.
1, 3

[39] Xuwang Yin, Soheil Kolouri, and Gustavo K Rohde. Gat: Generative
adversarial training for adversarial example detection and robust classifi-
cation. In International Conference on Learning Representations (ICLR),
2019. 1

[40] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stan-
forth, Bo Li, Duane Boning, and Cho-Jui Hsieh. Towards stable and
efficient training of verifiably robust neural networks. In International
Conference on Learning Representations, 2020. 1

[41] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El
Ghaoui, and Michael I. Jordan. Theoretically principled trade-off
between robustness and accuracy. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research,
pages 7472–7482. PMLR, 2019. 1, 2, 3, 6

[42] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi
Sugiyama, and Mohan Kankanhalli. Attacks which do not kill training
make adversarial learning stronger. In International Conference on
Machine Learning, pages 11278–11287. PMLR, 2020. 1, 3


	Introduction
	Background
	Related Work
	Confoundings of Batch Normalization in Adversarial Training
	Norm Shaping in Adversary Training
	Evaluation
	Conclusion
	References

