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1 Introduction

This is the documentation concerning our Algorithms and Compatibility project.
The topic of the project is calculating decimal expansion of π to 109 decimal
places and pattern matching to find the index of the first occurrence of a given
input string in the calculated Pi. Our solution also includes a program for the
comparison of two files to compare two different Pi text files.

2 Description of the Project

2.1 Pi Decimal Expansion

The goal of this part is to calculate the decimal expansion of Pi to the 109

decimal place and write the said expansion to a text file which shall be used in
later stages as will be explained in the following subsections. The text written
to the file should not include the decimal point ”.” itself.

2.2 Pattern Matching

After having computed the said decimal expansion of Pi from the prior section,
we try to find the first occurrence of a given input string inside the decimal
expansion and print the index of the starting point of the said occurrence.

2.3 File Comparison

Finally, the file comparison part of the project is used to ensure that two com-
puted Pi text files have the exact same content. Not only is it useful for simply
comparing files, this will also be useful in validating our files against existing Pi
decimal expansions against existing reliable computations such as one computed
by Massachusetts Institute of Technology.

3 Our Solution

3.1 Pi Decimal Expansion

3.1.1 Description

Choosing the algorithm: Our solution uses the Chudnovsky’s algorithm
with binary splitting because it’s practically the fastest algorithm known. In
theory, Arithmetic Geometric Mean algorithm should be faster because it dou-
bles the number of decimal places each iteration, however It involves square
roots and full precision divisions which makes it tricky to implement efficiently
on computers. As such, in practice Chudnovsky algorithm is faster.
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Chudnovsky Algorithm without Binary Splitting The formula itself is
derived from one by Ramanujan, and is:

1

π
= 12

∞∑
k=0

(−1)k(6k)!(13591409 + 545140134k)

(3k)!(k!)36403203k+3/2

Simplifying it a bit:

a =

∞∑
k=0

(−1)k(6k)!

(3k)!(k!)36403203k

= 1− 6 · 5 · 4
(1)36403203

+
12 · 11 · 10 · 9 · 8 · 7
(2 · 1)36403206

− 18 · 17 · · · 13
(3 · 2 · 1)36403209

+ · · ·

b =

∞∑
k=0

(−1)k(6k)!k

(3k)!(k!)36403203k

1

π
=

13591409a+ 545140134b

426880
√
10005

π =
426880

√
10005

13591409a+ 545140134b

It can be seen that each (k + 1)th ’a’ term can be gotten from the kth ’a’ term,
and that the b terms are calculated from the a terms. As such, our calculations
are simplified to:

ak =
(−1)k(6k)!

(3k)!(k!)36403203k

bk = k · ak
ak

ak−1
= − (6k − 5)(6k − 4)(6k − 3)(6k − 2)(6k − 1)6k

3k(3k − 1)(3k − 2)k36403203

= −24(6k − 5)(2k − 1)(6k − 1)

k36403203

As such, Pi after the k iterations is computed by:

π =
426880

√
10005

13591409ak + 545140134bk

The formula here is relatively straightforward to implement as a program aside
from the problem of arbitrary precision number storage, but this approach is
quite slow for our need of computing decimal expansion to a large number of
decimal places. As such, we decided to apply binary splitting to the Chudnovsky
algorithm.
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Recursive Binary Splitting: Binary splitting is a technique for speeding
up numerical evaluation of many types of series with rational terms. While it
requires more memory than direct term-by-term summation, but is asymptot-
ically faster since the sizes of all occurring sub-products are reduced. Addi-
tionally, whereas the most naive evaluation scheme for a rational series uses a
full-precision division for each term in the series, binary splitting requires only
one final division at the target precision; this is not only faster, but conveniently
eliminates rounding errors. To take full advantage of the scheme, fast multipli-
cation algorithms such as Toom–Cook and Schönhage–Strassen must be used;
with ordinary O(n2) multiplication, binary splitting may render no speedup at
all or be slower.

Suppose we have a general infinite series of the following form.

S(0,∞) =
a0p0
b0q0

+
a1p0p1
b1q0q1

+
a2p0p1p2
b2q0q1q2

+
a3p0p1p2p3
b3q0q1q2q3

+ · · ·

Which means it’s partial sum from some a to some b is:

S(a, b) =
aapa
baqa

+
aa+1papa+1

ba+1qaqa+1
+

aa+2papa+1pa+2

ba+2qaqa+1qa+2
+ · · ·+ ab−1papa+1pa+2 · · · pb−1

bb−1qaqa+1 · · · pb−1

Now, let’s define some functions for our convenience:

P (a, b) = papa+1 · · · pb−1

Q(a, b) = qaqa+1 · · · qb−1

B(a, b) = baba+1 · · · bb−1

T (a, b) = B(a, b)Q(a, b)S(a, b)

Let m be the midpoint or one element after or before the middle (making m
as near to the middle of a and b will lead to the quickest calculations, but it
can be anything between a and m for the proof/derivation of recursive binary
splitting or if the computation time doesn’t matter as much).
As such, it can be seen that:

P (a, b) = P (a,m)P (b,m)

Q(a, b) = Q(a,m)Q(b,m)

B(a, b) = B(a,m)B(b,m)

T (a, b) = B(m, b)Q(m, b)T (a,m) +B(a,m)P (a,m)T (m, b)

The first three are trivial to notice, as for the last one, it is gotten as: (for
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a < m < b)

T (a, b) = B(a, b)Q(a, b)S(a, b)

= B(a, b)Q(a, b)

[(
aapa
baqa

+
aa+1papa+1

ba+1qaqa+1
+

aa+2papa+1pa+2

ba+2qaqa+1qa+2
+ · · ·+ am−1papa+1pa+2 · · · pm−1

bm−1qaqa+1 · · · pm−1

)
+

(
ampapa+1 · · · pm
bmqaqa+1 · · · qm

+
am+1papa+1 · · · pm+1

bm+1qaqa+1 · · · qm+1
+

am+2papa+1 · · · pm+2

bm+2qaqa+1 · · · qm+2
+ · · ·+ ab−1papa+1 · · · pb−1

bb−1qaqa+1 · · · pb−1

)]
= B(a, b)Q(a, b)

[(
aapa
baqa

+
aa+1papa+1

ba+1qaqa+1
+

aa+2papa+1pa+2

ba+2qaqa+1qa+2
+ · · ·+ am−1papa+1pa+2 · · · pm−1

bm−1qaqa+1 · · · pm−1

)
+

papa+1 · · · pm−1

qaqa+1 · · · qm−1
∗
(
ampm
bmqm

+
am+1pmpm+1

bm+1qmqm+1
+

am+2pmpm+1pm+2

bm+2qmqm+1qm+2
+ · · ·+ ab−1pmpm+1pm+2 · · · pb−1

bb−1qmqm+1 · · · pb−1

)]
= B(a, b)Q(a, b)

(
S(a,m) +

P (a,m)

Q(a,m)
S(m, b)

)
= B(a, b)

[
Q(a, b)S(a,m) +

Q(a, b)P (a,m)

Q(a,m)
S(m, b)

]
= B(a, b)

[
Q(a, b)S(a,m) + P (a,m)Q(m, b)S(m, b)

] [
Q(m, b) =

Q(a, b)

Q(a,m)

]
= B(a, b)Q(a, b)S(a,m) +B(a, b)P (a,m)Q(m, b)S(m, b)

= B(m, b)Q(m, b)B(a,m)Q(a,m)S(a,m) +B(a,m)P (a,m)B(m, b)Q(m, b)S(m, b)

where [Q(a, b) = Q(a,m)Q(b,m)] and [B(a, b) = B(a,m)B(b,m)]

= B(m, b)Q(m, b)T (a,m) +B(a,m)P (a,m)T (m, b)

where [T (a, b) = B(a, b)Q(a, b)S(a, b)]

We can use these relations to expand the series recursively, so if we want
S(0,8) then we can work out S(0,4) and S(4,8) and combine them. Likewise
to calculate S(0,4) and S(4,8) we work out S(0,2), S(2,4), S(4,6), S(6,8) and
combine them, and to work out those we work out S(0,1), S(1,2), S(2,3), S(3,4),
S(4,5), S(5,6), S(6,7), S(7,8).We don’t have to split them down any more as we
know what P(a,a+1), Q(a,a+1) etc is from the definitions above.

P (a, a+ 1) = pa

Q(a, a+ 1) = qa

B(a, a+ 1) = ba

S(a, a+ 1) =
aapa
baqa

T (a, a+ 1) = B(a, a+ 1)Q(a, a+ 1)S(a, a+ 1)

= baqa
aapa
baqa

= aapa
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And when we finish computing P(0,n),Q(0,n),B(0,n), and T(0,n), we can get
S(0,n) by the following formula:

S(0, n) =
T (0, n)

B(0, n)Q(0, n)

As can be seen, this final division is the only one that is used in the whole
process. This is the “only one final division at the target precision” referenced
in the introductory paragraph of this subsection.

Chudnovsky Algorithm with Binary Splitting Due to the performance
benefits of binary splitting explained at the beginning of the previous section,
using binary splitting with the Chudnovsky algorithm results in significantly
faster computation times compared to the plain version of Chudnovsky. As
such, our application was built to calculate the decimal expansion of Pi using
Binary Splitting with Chudnovsky algorithm.

The binary splitting parameters for Chudnovsky series are:

p0 = 1

pa = (6a− 5)(2a− 1)(6a− 1)

q0 = 1

qa = a3 · 6403203/24
ba = 1

aa = (13591409 + 545140134a)

These can now be plugged back into the general equation derived in the previous
section i.e.

S(0, n) =
T (0, n)

B(0, n)Q(0, n)

where

P (a, a+ 1) = pa

Q(a, a+ 1) = qa

B(a, a+ 1) = ba

S(a, a+ 1) =
aapa
baqa

T (a, a+ 1) = B(a, a+ 1)Q(a, a+ 1)S(a, a+ 1)

= baqa
aapa
baqa

= aapa
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This is exactly the algorithm used in our solution.

3.1.2 Parallelization

In order to try and optimize the program/solution, we added multi-threading for
the recursive binary splitting part. If you think about it, single thread recursive
binary splitting is quite alike a depth-first search in binary trees. The following
figure should help demonstrate the point. Clearly, in such a case, the order is:

Figure 1: Representation of recursive binary splitting as a binary tree. Red
numbers are the order of computation.

A− > B− > CalculateD− > B− > CalculateE− > CalculateE− > A− >
C− > CalculateF− > C− > CalculateG− > CalculateC− > CalculateA.
Also, it should be obvious a nodes at the same depth of the tree and its children
are not dependant on the other nodes at that depth and their children. E.g.
B,D, and E are independent of C,F, and D (and vice-versa).

As such, using our knowledge about binary trees to devise an efficient manner
of parallelization/multi-threading. First of all, we notice that all the nodes at
a depth k are independant of each other and hence suitable for parrellization.
Therefore, the number of such threads will be the number of nodes at depth k
(k=0,1,2,...), i.e. (2k). Also, since each of these threads have to be generated
concurrently, all the nodes in the tree upto that depth must also have their
own threads which will just wait for all the threads beneath them to finish.
Therefore, the depth k determines number of concurrent threads which will
be doing the bulk of the processsing. So, the total number of threads in our
application is the maximum number of nodes of a binary tree of depth k, i.e.
2k+1 − 1. The number of leaf/non-dependant concurrent threads created in our
program is equal to the number of threads in the computer running it.

This is how our multi-threading solution is designed, but we also create
a thread for calculating the

√
10005 ∗ 10n2 ≡

√
10005 ∗ 102n (where n is the

8



number of digits to calculate for Pi after the decimal point) which our imple-
mentation uses it as a scalar/shifter to make all calculations in integer form and
as such we need it to not lose the required precision. While upto k = 108 digits
is realtively unaffected, this should have a greater effect when computing digits
k >= 109 digits.

3.1.3 Tools used

Language: C++ (C++20 standard)
Operating System tools: Windows process and thread priority setters.
External library used: GMP (self-compiled 64-bit) for efficient arbitrary preci-
sion arithmetic.
Final program compiled for x64 (64-bit) architectures to get better performance.

3.1.4 Benchmarks - Timing

Digits Single-threaded (32bit) Parallel (32-bit) Parallel (64-bit) Linux Parallel (64-bit)
106 1.70143 1.03556 0.528629 -
107 25.6792 13.5332 7.73433 -
108 412.302 205.908 89.8545 -
109 - - - 972.55

Time in seconds, run on Intel Core i5 8300H (4 cores, 8 threads)

The program for everything except 109 were tested on Windows PCs.Though
the program supports Windows, there wasn’t a Windows computer with enough
free/available RAM ( 15 GBs) to test our Windows compliant version for 109

digits of πafterdecimalpoint, andassuch,webenchmarkeditforthatonLinux.

3.1.5 Testing

The output of the program for 108 and 109 digits was compared to one known
to be correct made available by MIT (Massachusetts Institute of Technology),
and as such we verified that our results were correct.

Apart from that, on each run, the program checks if the file generated is of
the correct size and prints to the terminal accordingly.

3.2 Pattern Matching

3.2.1 Description

Pattern matching is a broad class of problems in computer science, which con-
sists of checking a given sequence of tokens for the presence of the constituents
of some pattern. The match must be exact: ”either it will or will not be a
match.” This goal differentiates pattern matching from pattern recognition.
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i 0 1 2 3 4 5 6 7 8 9
W[i] 7 7 7 5 7 7 7 7 7 5
T[i] 0 1 2 0 1 2 3 3 3 4

Table 1: A visualization of a partial match table.

Given the task of creating a mapping from a natural number to its index
among the digits of pi, we turn our attention to string-searching algorithms,
where we try to find a place where a pattern is located within a larger string.

A naive approach is an easy but ineffective way to see where one sequence
occurs inside another by checking each index one by one. Let us call the long
string the “haystack” and the short one - the ”needle.” First, we test if there’s a
copy of the needle starting at the first character of the haystack. Otherwise, we
check for a copy of the needle beginning at the second character of the haystack.
The process continues until the match is found or the end of the haystack is
reached. Usually, we only have to look at one or two characters for each wrong
position to see that it is an incorrect position, so in the average case, this takes
Ω(n + m) steps, where n is the length of the haystack and m is the length of
the needle. In the worst case, searching for a string like ”0001” in a string like
”0000000001” takes O(n ∗m) time.

Instead, we implemented the Knuth–Morris–Pratt string-searching algorithm
(or KMP algorithm for short). This procedure searches for occurrences of a
”word” W within a main ”text string” S by observing that when a mismatch
occurs, the word embodies enough information to determine where the next
match could begin, thus bypassing the re-examination of previously matched
characters.

Let n denote the length of S and k represent the length of W. The algorithm
consists of the table-building stage and the search stage. In the beginning, we
build a table to allow the algorithm not to match any character of S more than
once (also known as the ”failure function”). The critical observation about the
linear search is that in having checked some part of the string S against an initial
segment of the pattern W, we know precisely at which places a new potential
match that could continue to the current position could begin before the cur-
rent index. We ”pre-search” the word and create a list of all possible fallback
positions that bypass a maximum of hopeless characters while not sacrificing
any potential matches.

A ”partial match” table T indicates where we need to look for the start of a
new match when a mismatch is found. Firstly, if the first character in the word
W is a mismatch, we cannot backtrack and must inspect the next character.
Secondly, not checking characters we already know will match results in a more
efficient search.

The total complexity of the algorithm comes from the preprocessing portion
and the matching portion and is equal to O(n + k). These complexities are
the same, no matter how many repetitive patterns are in W or S; thus, the
worst-case performance is guaranteed to be O(n+ k).
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3.3 File Comparison

3.3.1 Description

Since the decimal digits of pi are stored in a file, comparing two pi expansions
is no different from comparing regular files. The shortcut we can take here is
to check the sizes first. Only when they are the same does the application read
data and compare characters one by one.

4 Compilation Instructions

All of the three programs we talked about in this report are present alongside
their Visual Studio solution (“.sln”) files. As such, the process of building any
of them is:

1. Using Visual Studio, open the ”.sln” file in the folder containing the source
code of the program.

2. (Optional, but improves performance quite a lot.) Set the configuration
to ”Release” and ”64-bit”.

3. Click on the ”build” menu item on the top menu, and then click on ”Build
Solution”.

We recommend using Visual Studio 2022 for the procedure mentioned above.

5 Using the programs

For our purpose, the programs should only be run in the order in which they
appear.
It is recommended to keep all the executables in the same folder.

5.1 Pi Decimal Expansion

1. Run the PiCalc executable.

2. At the beginning, the program will ask for the number of digits to calcu-
late.

3. At the moment, the program only supports the number of digits that can
be expressed as powers of 10.
e.g. 1 Billion = 1000000000, 100 million = 100000000, etc.

5.2 Pattern Matching

1. Run the executable.

2. Program will ask you to input min range and max range of where to look
for substrings

11



3. After entering ranges, program will validate the input and ask again if the
input was incorrect

4. If input was correct, program will start to search substrings from 0 to 9999
in the given range

5. Program will display on which substring it is currently working

6. After finding all substrings, program will output a message about success-
ful completion

7. While it’s running, the program will print to the console for reporting
completion of various stages of the program.

5.3 File Comparison

1. Run the executable.

2. Program will ask you to input Pi file directory.

3. After entering filenames you will see the results

6 References

• “Chudnovsky Algorithm” - Wikipedia Page

• “Pi - Chudnovsky” by Nick Craig-Wood

• “Binary splitting method” web-page on numbers.computation.free.fr

• “Binary splitting” - Wikipedia Page

• “Knuth–Morris–Pratt algorithm” - Wikipedia Page

• “KMP PATTERN MATCH ALGORITHM” on AlgoTree.org

7 Licensing

The licensing of the third-party tools and libraries that were used while making
the program:

• GMP: The GNU Multiple Precision Arithmetic Library is distributed un-
der the dual licenses, GNU LGPL v3 and GNU GPL v2.

• MPIR: Multiple Precision Integers and Rationals is licensed under LGPL
v3+
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8 Task allocation

Person Task
Noman Noor Pi Calculation - Program and Documentation
Akmalkhon Mukhiddinov Pattern Matching
Kirill Salohka File Comparison
Bohdan Soproniuk Documentation for Pattern Matching and File Comparison
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