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Evaluation	
•  3	Assignments,	worth	60%.	
•  Projects,	40%:		
-  Midway	report	10%,	Final	Project	30%.		

Homework	Dates	–	Check	the	website	for	updates!	



Evaluation	
•  5	late	days	for	all	assignments.	
•  No	more	than	3	late	days	per	assignment.	After	3	late	

days,	you	will	get	0.		

•  3	late	days	for	projects:	can	be	split	between	project	
proposal	and	final	project.		

•  Project:	Teams	of	2	people	per	project.		



Project	
• The	idea	of	the	final	project	is	to	give	you	some	experience	trying	
to	do	a	piece	of	original	research	in	machine	learning	and	
coherently	writing	up	your	result.		

• What	is	expected:	A	simple	but	original	idea	that	you	describe	
clearly,	relate	to	existing	methods,	implement	and	test	on	
some	real-world	problem.	

• To	do	this	you	will	need	to	write	some	basic	code,	run	it	on	
some	data,	make	some	figures,	read	a	few	background	papers,	
collect	some	references,	and	write	an	8-page	report	describing	
your	model,	algorithm,	and	results.	



Text	Books	
• 	Ian	Goodfellow,	Yoshua	Bengio,	Aaron	Courville	(2016)		
Deep	Learning	Book	(available	online)	

• 	Christopher	M.	Bishop	(2006)	
Pattern	Recognition	and	Machine	Learning,	Springer.		
	
• 	Kevin	Murphy	(2013)		
Machine	Learning:	A	Probabilistic	Perspective	
	
• 	Trevor	Hastie,	Robert	Tibshirani,	Jerome	Friedman	(2009)	
The	Elements	of	Statistical	Learning	(available	online)	
	
• 	David	MacKay	(2003)	
Information	Theory,	Inference,	and	Learning	Algorithms		
	
• 	Most	of	the	figures	and	material	will	come	from	these	books.		



Online	Resources	
• 	I	will	be	using	a	number	of	online	resources,	including		

• 	Joan	Bruna’s	Deep	Learning	Course	
http://joanbruna.github.io/stat212b/	
	
	
• 	Hugo	Larochelle	Neural	Network	Course	
http://info.usherbrooke.ca/hlarochelle/neural_networks/description.html	

• 	Deep	Learning	Summer	School	in	Montreal		
https://sites.google.com/site/deeplearningsummerschool2016/home	
	
• 	I	will	be	adding	more	resources,	check	the	webpage.		



Images	&	Video	

Relational	Data/		
Social	Network	

Massive	increase	in	both	computational	power	and	the	amount	of	
data	available	from	web,	video	cameras,	laboratory	measurements.	

Mining	for	Structure	

Speech	&	Audio	Text	&	Language		

Product		
Recommendation	

• 	Develop	statistical	models	that	can	discover	underlying	structure,	cause,	or	
statistical	correlation	from	data.		
• 	Multiple	application	domains.	

Gene	Expression	

fMRI	 Tumor	region	



Impact	of	Deep	Learning	

• 	Speech	Recognition	

• 	Computer	Vision	

• 	Language	Understanding		

• 	Recommender	Systems		

• 	Drug	Discovery	and	Medical	
Image	Analysis		



Example:	Boltzmann	Machine	

Input	data	(e.g.	pixel	
intensities	of	an	image,	
words	from	webpages,	
speech	signal).	

Target	variables	
(response)	(e.g.	class	
labels,	categories,	
phonemes).	

Model	parameters	
Latent	(hidden)	
variables	

Markov	Random	Fields,	Undirected	Graphical	Models.	



Legal/JudicialLeading          
Economic         
Indicators       

European Community 
Monetary/Economic  

Accounts/
Earnings 

Interbank Markets

Government 
Borrowings 

Disasters and 
Accidents     

Energy Markets

Finding	Structure	in	Data	

Vector	of	word	counts	
on	a	webpage	

Latent	variables:	
hidden	topics	

804,414	newswire	stories	



Important	Breakthroughs	
• 	Deep		Belief	Networks,	2006	(Unsupervised)	

Hinton,	G.	E.,	Osindero,	S.	and	Teh,	Y.,	A	fast	learning	algorithm	for	deep	belief	
nets,	Neural	Computation,	2006.	

Higher-level		
features:	
	

Low-level		
features:	
Edges	

Input:	Pixels	

	
• 	Adding	additional	layers	improves	
variational	lower-bound.		

• 	Efficient	greedy	layer-by-layer	
learning	learning	algorithm.		

• 	Inferring	the	states	of		the	hidden	
variables	in	the	top	most	layer	is	easy.		

Theoretical	Breakthrough:	

Efficient	Learning	and	Inference	
with	multiple	layers:	



Important	Breakthroughs	

• 	Deep	Nets	for	Speech	(Supervised)		

• 	Deep	Convolutional	Nets	for	Vision	(Supervised)		
Krizhevsky,	A.,	Sutskever,	I.	and	Hinton,	G.	E.,	ImageNet	Classification	with	Deep	
Convolutional	Neural	Networks,	NIPS,	2012.		

Hinton	et.	al.	Deep	Neural	Networks	for	Acoustic	Modeling	in	Speech	Recognition:	
The	Shared	Views	of	Four	Research	Groups,	IEEE	Signal	Processing	Magazine.	2012.		

1.2	million	training	images	
1000	classes	



13	

Training	
Data(CelebA)	
	

Model	Samples	(Karras	et.al.,	
2018)	
	

4	years	of	progression	on	Faces	
	

Brundage	et	al.,	
2017	
	

Statistical	Generative	Models	

(Goodfellow 2018)

Generative Modeling: 
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)

(Goodfellow 2018)

3.5 Years of Progress on Faces

2014 2015 2016 2017

(Brundage et al, 2018)



•  Conditional	generative	model	P(zebra	images|	horse	images)	

�  	Style	Transfer	

Monet	Input	Image	 Van	Gogh	

Statistical	Generative	Models	

Zhou el al., Cycle GAN 2017 



Statistical	Generative	Models	

�  Failure	Case	

•  Conditional	generative	model	P(zebra	images|	horse	images)	

Zhou el al., Cycle GAN 2017 



Course	Organization			

• Introduction	/	Background:	

- 	Linear	Algebra,	Distributions,	Rules	of	probability.	
- Regression,	Classification.	
- Feedforward	neural	nets,	backpropagation	algorithm.		
- Introduction	to	popular	optimization	and	regularization	techniques	for	
deep	nets.		
- Convolutional	models	with	applications	to	computer	vision.	

	



Course	Organization			

• Deep	Learning	Essentials:	
	

- 	Graphical	Models:	Directed	and	Undirected.	
- 	Linear	Factor	Models,	PPCA,	FA,	ICA,	Sparse	Coding	and	its	extensions.	
- 	Autoencoders	and	its	extensions.		
- 	Energy-based	models,	RBMs.	
- 	Monte	Carlo	Methods.	
- 	Learning	and	Inference:	Contrastive	Divergence	(CD),	Stochastic	
Maximum	Likelihood	Estimation,	Score	Matching,	Ratio	Matching,	Pseud-
likelihood	Estimation,	Noise-Contrastive	Estimation.	
- Annealed	Importance	Sampling,	Partition	Function	Estimation.	
- Deep	Generative	Models:	Deep	Belief	Networks,	Deep	Boltzmann	
Machines,	Helmholtz	Machines,	Variational	Autoencoders,	Importance-
weighted	Autoencoders,	Wake-Sleep	Algorithm.	
- Generative	Adversarial	Networks	(GANs),	Generative	Moment	Matching	
Nets,	Neural	Autoregressive	Density	Estimator	(NADE).	

	



Course	Organization			

• Additional	Topics	
	

- 	More	on	Regularization	and	Optimization	in	Deep	Nets.	
- 	Sequence	Modeling:	Recurrent	Neural	Networks.		
- 	Sequence-to-Sequence	Architectures,	Attention	models.	
- 	Deep	Reinforcement	Learning.	



Learning	Feature	Representations	

pixel	1	

pixel	2	 Learning 
Algorithm 

pixel	2	

pi
xe
l	1
	

Segway	
Non-Segway	Input	Space	



Learning	Feature	Representations	

pixel	2	

pi
xe
l	1
	

Segway	
Non-Segway	Input	Space	

Handle	

Wheel	

Learning 
Algorithm 

Feature 
Representation 

Handle	

W
he

el
	

Feature	Space	



Traditional	Approaches	

Image	 vision	features	 Recognition	

Object	
detection	

Audio	
classification	

Audio	 audio	features	
Speaker	

identification	

Data Feature 
extraction 

Learning 
algorithm 



Computer	Vision	Features	

SIFT	

HoG	 RIFT	

Textons	

GIST	



ZCR	

Spectrogram	 MFCC	

Rolloff	Flux	

Audio	Features	



ZCR	

Spectrogram	 MFCC	

Rolloff	Flux	

Representation	Learning:	
Can	we	automatically	learn	
these	representations?	

Audio	Features	



Types	of	Learning	

•  Supervised	Learning:	We	are	also	given	target	outputs	(labels,	responses):	
y1,y2,…,	and	the	goal	is	to	predict	correct	output	given	a	new	input.		

Consider	observing	a	series	of	input	vectors:	

• Unsupervised	Learning:	The	goal	is	to	build	a	statistical	model	of	x,	which	
can	be	used	for	making	predictions,	decisions.			

•  Reinforcement	Learning:	the	model	(agent)	produces	a	set	of	actions:					
a1,	a2,…		that	affect	the	state	of	the	world,	and	received	rewards	r1,	r2…		
The	goal	is	to	learn	actions	that	maximize	the	reward.	

•  Semi-supervised	Learning:	We	are	given	only	a	limited	amount	of	labels,	
but	lots	of	unlabeled	data.		



Supervised	Learning	

Classification:	target	outputs	yi	are	
discrete	class	labels.	The	goal	is	to	
correctly	classify	new	inputs.		

Regression:	target	outputs	yi	are	
continuous.	The	goal	is	to	predict	the	
output	given	new	inputs.		



Handwritten	Digit	Classification	



Unsupervised	Learning	
The	goal	is	to	construct	statistical	model	
that	finds	useful	representation	of	data:	
•  Clustering	
•  Dimensionality	reduction	
•  Modeling	the	data	density		
•  Finding	hidden	causes	(useful	
explanation)	of	the	data	

Unsupervised	Learning	can	be	used	for:	
•  Structure	discovery	
•  Anomaly	detection	/	Outlier	detection	
•  Data	compression,	Data	visualization	
•  Used	to	aid	classification/regression	tasks	



DNA	Microarray	Data	

Expression	matrix	of	6830	genes	(rows)	and	64	
samples	(columns)	for	the	human	tumor	data.		

The	display	is	a	heat	map	ranging	from	bright	
green	(under	expressed)	to	bright	red	(over	
expressed).		

Questions	we	may	ask:		
• 	Which	samples	are	similar	to	other	samples	in	
terms	of	their	expression	levels	across	genes.		

• 	Which	genes	are	similar	to	each	other	in	
terms	of	their	expression	levels	across	samples.	



Linear	Least	Squares	
• 	Given	a	vector	of	d-dimensional	inputs																																											we	want	to	
predict	the	target	(response)	using	the	linear	model:		

• 	The	term	w0	is	the	intercept,	or	often	called	bias	term.	It	will	be	convenient	to	
include	the	constant	variable	1	in	x	and	write:	

• 	Observe	a	training	set	consisting	of	N	observations																																						
together	with	the	corresponding	target	values		
• 	Note	that	X	is	an																								matrix.	



Linear	Least	Squares	
One	option	is	to	minimize	the	sum	of	the	squares	of	the	errors	between	the	
predictions																			for	each	data	point	xn	and	the	corresponding	real-valued		
targets	tn.			

Loss	function:	sum-of-squared	error	function:	

Source:	Wikipedia	



Linear	Least	Squares	
If														is	nonsingular,	then	the	unique	solution	is	given	by:	

• 	At	an	arbitrary	input						,	the	prediction	is																																	
• 	The	entire	model	is	characterized	by	d+1	parameters	w*.	

Source:	Wikipedia	

optimal	
weights	

the	design	matrix	has	one	
input	vector	per	row	

vector	of	
target	values	



Example:	Polynomial	Curve	Fitting	

Note:	the	polynomial	function	is	a	nonlinear	function	of	x,	but	it	is	a	linear	
function	of	the	coefficients	w	!	Linear	Models.		

Goal:	Fit	the	data	using	a	polynomial	function	of	the	form:	

Consider	observing	a	training	set	consisting	of	N	1-dimensional	observations:															
																																										together	with	corresponding	real-valued	targets:	

• 	The	green	plot	is	the	true	function			
• 	The	training	data	was	generated	by	taking	
xn	spaced	uniformly	between	[0	1].		
• 	The	target	set	(blue	circles)	was	obtained	
by	first	computing	the	corresponding	values	
of	the	sin	function,	and	then	adding		a	small	
Gaussian	noise.		



Example:	Polynomial	Curve	Fitting	
• 	As	for	the	least	squares	example:		we	can	minimize	the	sum	of	the	squares	of	
the	errors	between	the	predictions																		for	each	data	point	xn	and	the	
corresponding	target	values	tn.			

• 	Similar	to	the	linear	least	squares:	Minimizing	sum-of-squared	error	
function	has	a	unique	solution	w*.		

Loss	function:	sum-of-squared	error	
function:	

• 	The	model	is	characterized	by	M+1	parameters	w*.	
• 	How	do	we	choose	M?	!	Model	Selection.	



Some	Fits	to	the	Data	

For	M=9,	we	have	fitted	the	training	data	perfectly.		



Overfitting	

• 	For	M=9,	the	training	error	is	zero	!	The	polynomial	contains	10	degrees	of	
freedom	corresponding	to	10	parameters	w,	and	so	can	be	fitted	exactly	to	the	
10	data	points.			

• 	Consider	a	separate	test	set	containing	100	new	data	points	generated	using	
the	same	procedure	that	was	used	to	generate	the	training	data.	

• 	However,	the	test	error	has	become	very	large.	Why?	



Overfitting	

• 	As	M	increases,	the	magnitude	of	coefficients	gets	larger.			

• 	For	M=9,	the	coefficients	have	become	finely	tuned	to	the	data.	

• 	Between	data	points,	the	function	exhibits	large	oscillations.	

More	flexible	polynomials	with	larger	M	tune	to	the	random	noise	on	the	
target	values.	



Varying	the	Size	of	the	Data	

• 	For	a	given	model	complexity,	the	overfitting	problem	becomes	less	severe	as	
the	size	of	the	dataset	increases.		

9th	order	polynomial	

	
• 	However,	the	number	of	parameters	is	not	necessarily	the	most	appropriate	
measure	of	the	model	complexity.	



Generalization	
• 	The	goal	is	achieve	good	generalization	by	making	accurate	predictions	for	
new	test	data	that	is	not	known	during	learning.		
	
• 	Choosing	the	values	of	parameters	that	minimize	the	loss	function	on	the	
training	data	may	not	be	the	best	option.		
	
• 	We	would	like	to	model	the	true	regularities	in	the	data	and	ignore	the	noise	
in	the	data:		
	 - 	It	is	hard	to	know	which	regularities	are	real	and	which	are	accidental	

due	to	the	particular	training	examples	we	happen	to	pick.		
	

• 	Intuition:	We	expect	the	model	to	generalize	
if	it	explains	the	data	well	given	the	complexity	
of	the	model.		
	• 	If	the	model	has	as	many	degrees	of	freedom	
as	the	data,	it	can	fit	the	data	perfectly.	But	this	
is	not	very	informative.		
	• 	Some	theory	on	how	to	control	model	
complexity	to	optimize	generalization.		
	



A	Simple	Way	to	Penalize	Complexity		
One	technique	for	controlling	over-fitting	phenomenon	is	regularization,	
which	amounts	to	adding	a	penalty	term	to	the	error	function.		

where		 																					 	 														and	¸	is			called	the	regularization	term.	
Note	that	we	do	not	penalize	the	bias	term	w0.	 	 			

• 	The	idea	is	to	“shrink”	estimated	parameters	
towards	zero	(or	towards	the	mean	of	some	other	
weights).	
• 	Shrinking	to	zero:	penalize	coefficients	based	on	
their	size.	
• 	For	a	penalty	function	which	is	the	sum	of	the	
squares	of	the	parameters,	this	is	known	as	“weight	
decay”,	or		“ridge	regression”.					

penalized	error		
function	

regularization		
parameter	

target	value	



Regularization	

Graph	of	the	root-mean-squared	training	and	test	errors	vs.	ln¸	for	the	
M=9	polynomial.		

How	to	choose	¸?		



Cross	Validation	
If	the	data	is	plentiful,	we	can	divide	the	dataset	into	three	subsets:		

•  Training	Data:	used	to	fitting/learning	the	parameters	of	the	model.	
•  Validation	Data:	not	used	for	learning	but	for	selecting	the	model,	
or	choosing	the	amount	of	regularization	that	works	best.	

•  Test	Data:	used	to	get	performance	of	the	final	model.		

For	many	applications,	the	supply	of	data	for	training	and	testing	is	limited.	
To	build	good	models,	we	may	want	to	use	as	much	training	data	as	possible.	
If	the	validation	set	is	small,	we	get	noisy	estimate	of	the	predictive	performance.		

S	fold	cross-validation	 • 	The	data	is	partitioned	into	S	groups.	
• 	Then	S-1	of	the	groups	are	used	for	training	
the	model,	which	is	evaluated	on	the	
remaining	group.	
• 	Repeat	procedure	for	all	S	possible	choices	
of	the	held-out	group.	
• 	Performance	from	the	S	runs	are	averaged.		



Probabilistic	Perspective	
• 	So	far	we	saw	that	polynomial	curve	fitting	can	be	expressed	in	terms	of	
error	minimization.	We	now	view	it	from	probabilistic	perspective.		

• 	Suppose	that	our	model	arose	from	a	statistical	model:	

where	²	is	a	random	error	having	Gaussian	distribution	with	zero	mean,	
and	is	independent	of	x.		

where	¯	is	a	precision	parameter,	
corresponding	to	the	inverse	variance.			

Thus	we	have:	

I will use probability distribution and 
probability density interchangeably. It 
should be obvious from the context.



Sampling	Assumption	
• 	Assume	that	the	training	examples	are	drawn	independently	from	the	
set	of	all	possible	examples,	or	from	the	same	underlying	distribution	

• 	We	also	assume	that	the	training	examples	are	identically	
distributed	!			i.i.d	assumption.		

• 	Assume	that	the	test	samples	are	drawn	in	exactly	the	same	way	--	i.i.d	
from	the	same	distribution	as	the	training	data.			

• 	These	assumptions	make	it	unlikely	that	some	strong	regularity	in	the	
training	data	will	be	absent	in	the	test	data.		



Maximum	Likelihood	
If	the	data	are	assumed	to	be	independently	and	identically	distributed	
(i.i.d	assumption),	the	likelihood	function	takes	form:			

It	is	often	convenient	to	maximize	the	log	of	the	likelihood	function:	

• 	Maximizing	log-likelihood	with	respect	to	w	(under	the	assumption	of	a	
Gaussian	noise)	is	equivalent	to	minimizing	the	sum-of-squared	error	function.		

• 	Determine												by	maximizing	log-likelihood.	Then	maximizing	w.r.t.	¯:		



Predictive	Distribution	
Once	we	determined	the	parameters	w	and	¯,	we	can	make	prediction	for	
new	values	of	x:			



Statistical	Decision	Theory	

The	joint	probability	distribution														provides	a	complete	summary	of	
uncertainties	associated	with	these	random	variables.		

-  for	regression:	t	is	a	real-valued	continuous	target.	
-  for	classification:	t	a	categorical	variable	representing	class	labels.			

Determining														from	training	data	is	known	as	the	inference	problem.			

• 	We	now	develop	a	small	amount	of	theory	that	provides	a	framework	
for	developing	many	of	the	models	we	consider.		

• 	Suppose	we	have	a	real-valued	input	vector	x	and	a	corresponding	
target	(output)	value	t	with	joint	probability	distribution:		

• 	Our	goal	is	predict	target	t	given	a	new	value	for	x:	



Example:	Classification	
Medical	diagnosis:	Based	on	the	X-ray	image,	we	would	like	determine	
whether	the	patient	has	cancer	or	not.			

	C1:	Cancer	present	

C2:	Cancer	absent	

• 	The	input	vector	x	is	the	set	of	pixel	intensities,	and	the	output	variable	t	will	
represent	the	presence	of	cancer,	class	C1,	or	absence	of	cancer,	class	C2.		

• 	Choose	t	to	be	binary:	t=0	correspond	to	class	C1,	and	t=1	corresponds	to	C2.	

x	--	set	of	pixel	intensities	

Inference	Problem:	Determine	the	joint	distribution 								,							or	equivalently													
												.		However,	in	the	end,	we	must	make	a	decision	of	whether	to	give	
treatment	to	the	patient	or	not.		



Example:	Classification	
Informally:	Given	a	new	X-ray	image,	our	goal	is	to	decide	which	of	the	two	
classes	that	image	should	be	assigned	to.		

probability	of	observed	
data	given	Ck	

prior	probability	
for	class	Ck	

posterior	probability	of	
Ck	given	observed	data.	

• 	If	our	goal	to	minimize	the	probability	of	assigning	x	to	the	wrong	class,	then	
we	should	choose	the	class	having	the	highest	posterior	probability.		

Bayes’	Rule	

	
• 	We	could	compute	conditional	probabilities	of	the	two	classes,	given	the	input	
image:		



Expected	Loss	

Consider	medical	diagnosis	example:	example	of	a	loss	matrix:	

• 	Loss	Function:	overall	measure	of	loss	incurred	by	taking	any	of	the	available	
decisions.		
• 	Suppose	that	for	x,	the	true	class	is	Ck,	but	we	assign	x	to	class	j		
			!	incur	loss	of	Lkj		(k,j	element	of	a	loss	matrix).				

Expected	Loss:	

Decision	

Tr
ut
h	

Goal	is	to	choose	decision	regions								as	to	minimize	expected	loss.	



Regression	

• 	The	decision	step	consists	of	finding	an	estimate	y(x)	of	t	for	each	input	x.				

• 	The	average,	or	expected,	loss	is	given	by:	

• 	To	quantify	what	it	means	to	do	well	or	poorly	on	a	task,	we	need	to	
define	a	loss	(error)	function:	

Let	x	2	Rd	denote	a	real-valued	input	vector,	and	t	2	R	denote	a	real-
valued	random	target	(output)	variable	with	joint	the	distribution														

• 	If	we	use	squared	loss,	we	obtain:	



Squared	Loss	Function	
• 	If	we	use	squared	loss,	we	obtain:	

• 	Our	goal	is	to	choose	y(x)	so	as	to	minimize	the	expected	squared	loss.		

• 	The	optimal	solution	(if	we	assume	a	completely	flexible	function)	is	the	
conditional	average:	

The	regression	function	y(x)	that	
minimizes	the	expected	squared	loss	is	
given	by	the	mean	of	the	conditional	
distribution	



Squared	Loss	Function	
• 	If	we	use	squared	loss,	we	obtain:	

• 	Plugging		into	expected	loss:	

expected	loss	is	minimized		
when		

intrinsic	variability	of	the		
target	values.	

Because	it	is	independent	noise,	it	
represents	an	irreducible	minimum	
value	of	expected	loss.	



Other	Loss	Function	
• 	Simple	generalization	of	the	squared	loss,	called	the	Minkowski	loss:	

• 	The	minimum	of										is	given	by:	

-  the	conditional	mean	for	q=2,		
-  the	conditional	median	when	q=1,	and		
-  the	conditional	mode	for	q	!	0.		



Discriminative	vs.	Generative	
• 	Generative	Approach:	

• 	Discriminative	Approach:	

Model	the	joint	density:	
	or	joint	distribution:	

Infer	conditional	
density:	

Model	conditional	density														directly.	



Linear	Basis	Function	Models	
• 	Remember,	the	simplest	linear	model	for	regression:		

Key	property:	linear	function	of	the	parameters																											.		

• 	However,	it	is	also	a	linear	function	of	the	input	variables.		
		Instead	consider:	

where												are	known	as	basis	functions.	

• 	Typically																		,			so	that	w0	acts	as	a	bias	(or	intercept).	

• 	In	the	simplest	case,	we	use	linear	bases	functions:	

• 	Using	nonlinear	basis	allows	the	functions																to	be	nonlinear	functions	of	
the	input	space.		

where																																				is	is	a	d-dimensional	input	vector	(covariates).		



Linear	Basis	Function	Models	
Polynomial	basis	functions:		

Basis	functions	are	global:	small	
changes	in	x	affect	all	basis	functions.	

Gaussian	basis	functions:	

Basis	functions	are	local:	small	changes	in	x	
only	affect	nearby	basis	functions.	
µj	and	s	control	location	and	scale	(width).	



Linear	Basis	Function	Models	
Sigmoidal	basis	functions	

Basis	functions	are	local:	small	changes	
in	x	only	affect	nearby	basis	functions.	
µj	and	s	control	location	and	scale	
(slope).	

• 	Decision	boundaries	will	be	linear	in	the	feature	space						but	would	
correspond	to	nonlinear	boundaries	in	the	original	input	space	x.			

• 	Classes	that	are	linearly	separable	in	the	feature	space										need	not	
be	linearly	separable	in	the	original	input	space.		



Linear	Basis	Function	Models	

•  We define two Gaussian basis functions with centers shown by green the crosses, 
and with contours shown by the green circles.   

Original input space Corresponding feature space using 
two Gaussian basis functions 

•  Linear decision boundary (right) is obtained using logistic regression, and 
corresponds to nonlinear decision boundary in the input space (left, black curve).   



Maximum	Likelihood	
• 	As	before,	assume	observations	arise	from	a	deterministic	function	with	an	
additive	Gaussian	noise:	

which	we	can	write	as:		

• 	Given	observed	inputs																																									,	and	corresponding	target	
values																																	,		,	under	i.i.d	assumption,	we	can	write	down	the	
likelihood	function:	

where											



Maximum	Likelihood	
Taking	the	logarithm,	we	obtain:	

sum-of-squares	error	function	

Differentiating	and	setting	to	zero	yields:			



Maximum	Likelihood	
Differentiating	and	setting	to	zero	yields:			

Solving	for	w,	we	get:	
The	Moore-
Penrose	pseudo-
inverse,							.	

where					is	known	as	the	design	matrix:	



Sequential	Learning	
• 	The	training	data	examples	are	presented	one	at	a	time,	and	the	model	
parameters	are	updated	after	each	such	presentation	(online	learning):	

• 	For	the	case	of	sum-of-squares	error	function,	we	obtain:	

• 	Stochastic	gradient	descent:	The	training	examples	are	picked	at	random	
(dominant	technique	when	learning	with	very	large	datasets).		

• 	Care	must	be	taken	when	choosing	learning	rate	to	ensure	convergence.			

learning	
rate	

weights	after	
seeing	training	
case		t+1	

vector	of	derivatives	of		the	squared	
error	w.r.t.	the	weights	on	the	
training	case	presented	at	time	t.	



Regularized	Least	Squares	
• 	Let	us	consider	the	following	error	function:		

Data	term	+	Regularization	term	

• 	Using	sum-of-squares	error	function	with	a	quadratic	penalization	
term,	we	obtain:		

which	is	minimized	by	setting:		

¸	is	called	the	
regularization	
coefficient.	

Ridge	
regression	

The	solution	adds	a	positive	constant	to	the	diagonal	of														This	makes	the	
problem	nonsingular,	even	if													is	not	of	full	rank	(e.g.	when	the	number	
of	training	examples	is	less	than	the	number	of	basis	functions).			



Effect	of	Regularization	

• 	The	overall	error	function	is	the	sum	
of	two	parabolic	bowls.		

• 	The	combined	minimum	lies	on	the	
line	between	the	minimum	of	the	
squared	error	and	the	origin.	

• 	The	regularizer	shrinks	model	
parameters	to	zero.		



Other	Regularizers	
Using	a	more	general	regularizer,	we	get:	

Lasso	 Quadratic	



The	Lasso		
• 	Penalize	the	absolute	value	of	the	weights:	

• 	For	sufficiently	large	¸,	some	of	the	coefficients	will	be	driven	to	
exactly	zero,	leading	to	a	sparse	model.		

• 	The	above	formulation	is	equivalent	to:	

• 	The	two	approaches	are	related	using	Lagrange	multiplies.		

unregularized	sum-of-squares	error	

• 	The	Lasso	solution	is	a	quadratic	programming	problem:	can	be	
solved	efficiently.		



Lasso	vs.	Quadratic	Penalty	
Lasso	tends	to	generate	sparser	solutions	compared	to	a	quadratic	
regualrizer	(sometimes	called	L1	and	L2	regularizers).	



Bias-Variance	Decomposition	
• 	Introducing	a	regularization	term	can	help	us	control	overfitting.	But	how	
can	we	determine	a	suitable	value	of	the	regularization	coefficient?		

• 	Let	us	examine	the	expected	squared	loss	function.	Remember:	

for	which	the	optimal	prediction	is	given		
by	the	conditional	expectation:	 intrinsic	variability	of	the	target	

values:	The	minimum	achievable	
value	of	expected	loss	

• 	We	first	look	at	the	frequentist	perspective.		

• 	If	we	model										using	a	parametric	function																		then	from	a	
Bayesian	perspective,	the	uncertainly	in	our	model	is	expressed	
through	the	posterior	distribution	over	parameters	w.		



Bias-Variance	Decomposition	
• 	From	a	frequentist	perspective:	we	make	a	point	estimate	of	w*	based	
on	the	dataset	D.	

• 	We	next	interpret	the	uncertainly	of	this	estimate	through	the	
following	thought	experiment:	

-  Suppose	we	had	a	large	number	of	datasets,	each	of	size	N,	
where	each	dataset	is	drawn	independently	from		

• 	Let	us	consider	the	expression:	

• 	Note	that	this	quantity	depends	on	a	particular	dataset	D.		

-  For	each	dataset	D,	we	can	obtain	a	prediction	function	
-  Different	datasets	will	give	different	prediction	functions.	
-  The	performance	of	a	particular	learning	algorithm	is	then	assessed	
by	taking	the	average	over	the	ensemble	of	these	datasets.		



Bias-Variance	Decomposition	

• 	Adding	and	subtracting	the	term																											we	obtain		

• 	Taking	the	expectation	over							the	last	term	vanishes,	so	we	get:	

• 	Consider:	



Bias-Variance	Trade-off	

• 	Trade-off	between	bias	and	variance:	With	very	flexible	models	(high	
complexity)	we	have	low	bias	and	high	variance;	With	relatively	rigid	models	
(low	complexity)	we	have	high	bias	and	low	variance.			
• 	The	model	with	the	optimal	predictive	capabilities	has	to	balance	between	bias	
and	variance.		

Average	predictions	over	all	
datasets	differ	from	the	
optimal	regression	function.	

Solutions	for	individual	datasets	
vary	around	their	averages	--	how	
sensitive	is	the	function	to	the	
particular	choice	of	the	dataset.		

Intrinsic	variability	
of	the	target	
values.	



Bias-Variance	Trade-off	
• 	Consider	the	sinusoidal	dataset.	We	generate	100	datasets,	each	containing	
N=25	points,	drawn	independently	from	

Low	bias	 High	bias	

High	variance	 Low	variance	



Bias-Variance	Trade-off	

From	these	plots	note	that	over-regularized	model	(large	¸)	has	high	bias,	and	
under-regularized	model	(low	¸)	has	high	variance.		



Beating	the	Bias-Variance	Trade-off	
• 	We	can	reduce	the	variance	by	averaging	over	many	models	trained	on	
different	datasets:		

- 	In	practice,	we	only	have	a	single	observed	dataset.	If	we	had	many	
independent	training	sets,	we	would	be	better	off	combining	them	into	
one	large	training	dataset.	With	more	data,	we	have	less	variance.		

• 	Given	a	standard	training	set	D	of	size	N,	we	could	generate	new	training	
sets,	N,	by	sampling	examples	from	D	uniformly	and	with	replacement.			

- 	This	is	called	bagging	and	it	works	quite	well	in	practice.		

• 	Given	enough	computation,	we	could	also	resort	to	the	Bayesian	
framework:	

- 	Combine	the	predictions	of	many	models	using	the	posterior	
probability	of	each	parameter	vector	as	the	combination	weight.			


