10707 Deep Learning: Spring 2022

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Neural Networks I

Neural Networks Online Course

- **Disclaimer**: Much of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks: https://sites.google.com/site/deeplearningsummerschool2016/
- Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.
- We will use his material for some of the other lectures.

http://info.usherbrooke.ca/hlarochelle/neural_networks

Feedforward Neural Networks

- How neural networks predict f(x) given an input x:
 - Forward propagation
 - Types of units
 - Capacity of neural networks
- How to train neural nets:
 - Loss function
 - Backpropagation with gradient descent
- More recent techniques:
 - Dropout
 - Batch normalization
 - Unsupervised Pre-training

Feedforward Neural Networks

- How neural networks predict f(x) given an input x:
 - Forward propagation
 - Types of units
 - Capacity of neural networks
- How to train neural nets:
 - Loss function
 - Backpropagation with gradient descent
- More recent techniques:
 - Dropout
 - Batch normalization
 - Unsupervised Pre-training

Artificial Neuron

Neuron pre-activation (or input activation):

$$a(\mathbf{x}) = b + \sum_{i} w_i x_i = b + \mathbf{w}^{\top} \mathbf{x}$$

Neuron output activation:

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

where

W are the weights (parameters)

b is the bias term

 $g(\cdot)$ is called the activation function

Artificial Neuron

Output activation of the neuron:

$$h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$$

Range is determined by $g(\cdot)$

(from Pascal Vincent's slides)

Bias only changes the position of the riff

Linear activation function:

- No nonlinear transformation
- No input squashing

$$g(a) = a$$

- Sigmoid activation function:
 - Squashes the neuron's output between 0 and 1
 - Always positive
 - Bounded
 - Strictly Increasing

$$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$$

- Hyperbolic tangent ("tanh") activation function:
 - Squashes the neuron's activation between -1 and 1
 - Can be positive or negative
 - Bounded
 - Strictly increasing (wrong plot)

$$g(a) = \tanh(a) =$$

$$= \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

- Rectified linear (ReLU) activation function:
 - Bounded below by 0 (always non-negative)
 - Tends to produce units with sparse activities
 - Not upper bounded
 - Strictly increasing

$$g(a) = reclin(a) = max(0, a)$$

Decision Boundary of a Neuron

- Binary classification:
 - With sigmoid, one can interpret neuron as estimating $p(y=1|\mathbf{x})$
 - Interpret as a logistic classifier

Decision boundary

- If activation is greater than 0.5, predict 1
- Otherwise predict 0

(from Pascal Vincent's slides)

Same idea can be applied to a tanh activation

Capacity of a Single Neuron

• Can solve linearly separable problems.

Capacity of a Single Neuron

Can not solve non-linearly separable problems.

- Need to transform the input into a better representation.
- Remember basis functions!

Single Hidden Layer Neural Net

Hidden layer pre-activation:

$$\mathbf{a}(\mathbf{x}) = \mathbf{b}^{(1)} + \mathbf{W}^{(1)}\mathbf{x}$$
$$\left(a(\mathbf{x})_i = b_i^{(1)} + \sum_j W_{i,j}^{(1)} x_j\right)$$

Hidden layer activation:

$$\mathbf{h}(\mathbf{x}) = \mathbf{g}(\mathbf{a}(\mathbf{x}))$$

Output layer activation:

Softmax Activation Function

- Remember multi-way classification:
 - We need multiple outputs (1 output per class)
 - We need to estimate conditional probability: $p(y=c|\mathbf{x})$
 - Discriminative Learning
- Softmax activation function at the output

$$\mathbf{o}(\mathbf{a}) = \operatorname{softmax}(\mathbf{a}) = \left[\frac{\exp(a_1)}{\sum_c \exp(a_c)} \dots \frac{\exp(a_C)}{\sum_c \exp(a_c)}\right]^{\top}$$

- strictly positive
- sums to one
- Predict class with the highest estimated class conditional probability.

Multilayer Neural Net

- Consider a network with L hidden layers.
- layer pre-activation for k>0

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

hidden layer activation from 1 to L:

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Capacity of Neural Nets

Consider a single layer neural network

(from Pascal Vincent's slides)

Capacity of Neural Nets

Consider a single layer neural network

(from Pascal Vincent's slides)

Capacity of Neural Nets

Consider a single layer neural network

(from Pascal Vincent's slides)

Universal Approximation

- Universal Approximation Theorem (Hornik, 1991):
 - "a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units"
- This applies for sigmoid, tanh and many other activation functions.

 However, this does not mean that there is learning algorithm that can find the necessary parameter values.

Feedforward Neural Networks

- How neural networks predict f(x) given an input x:
 - Forward propagation
 - Types of units
 - Capacity of neural networks
- How to train neural nets:
 - Loss function
 - Backpropagation with gradient descent
- More recent techniques:
 - Dropout
 - Batch normalization
 - Unsupervised Pre-training

Training

Empirical Risk Minimization:

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$
 Loss function Regularizer

- Learning is cast as optimization.
 - ➤ For classification problems, we would like to minimize classification error.
 - > Loss function can sometimes be viewed as a surrogate for what we want to optimize (e.g. upper bound)

Stochastic Gradient Descend

- Perform updates after seeing each example:
 - Initialize: $\theta = \{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)} \}$
 - For t=1:T

$$\begin{array}{c} \text{- for each training example } \left(\mathbf{x}^{(t)}, y^{(t)}\right) \\ \Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta}) \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \; \Delta \end{array} \end{array}$$
 Training epoch states that the state of the properties of the states are the states as a second of the states are t

- To train a neural net, we need:
- \triangleright Loss function: $l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
- > A procedure to compute gradients: $\nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
- ightharpoonup Regularizer and its gradient: $\Omega(m{ heta})$, $abla_{m{ heta}}\Omega(m{ heta})$

Loss Function

- Let us start by considering a classification problem with a softmax output layer.
- We need to estimate: $f(\mathbf{x})_c = p(y = c|\mathbf{x})$
 - We can maximize the log-probability of the correct class given an input: $\log p(y^{(t)}=c|x^{(t)})$
- Alternatively, we can minimize the negative log-likelihood:

$$l(\mathbf{f}(\mathbf{x}), y) = -\sum_{c} 1_{(y=c)} \log f(\mathbf{x})_{c} = -\log f(\mathbf{x})_{y}$$

 As seen before, this is also known as a cross-entropy entropy function for multi-class classification problem.

Stochastic Gradient Descend

- Perform updates after seeing each example:
 - Initialize: $\theta = \{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)} \}$
 - For t=1:T

$$\begin{array}{c} \text{- for each training example } (\mathbf{x}^{(t)}, y^{(t)}) \\ \Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta}) \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \; \Delta \end{array} \qquad \begin{array}{c} \text{Training epoch} \\ \text{- Iteration of all examples} \end{array}$$

- To train a neural net, we need:
 - > Loss function: $l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
- > A procedure to compute gradients: $\nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
- \succ Regularizer and its gradient: $\Omega(\boldsymbol{\theta})$, $\nabla_{\boldsymbol{\theta}}\Omega(\boldsymbol{\theta})$

Multilayer Neural Net: Reminder

- Consider a network with L hidden layers.
- layer pre-activation for k>0

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

hidden layer activation from 1 to L:

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$
Softmax activation function

- Loss gradient at output
 - Partial derivative:

$$\frac{\partial}{\partial f(\mathbf{x})_c} - \log f(\mathbf{x})_y = \frac{-1_{(y=c)}}{f(\mathbf{x})_y}$$

- Gradient:

 $l(\mathbf{f}(\mathbf{x}), y)$ $b^{(3)}$ $\mathbf{W}^{(3)}$ $h^{(2)}(x)$ ${\bf b}^{(2)}$ $\mathbf{W}^{(2)}$ $\mathbf{h}^{(1)}(\mathbf{x})$ $b^{(1)}$ $\mathbf{W}^{(1)}$ x_j ... x_1

Remember: $f(\mathbf{x})_c = p(y = c|\mathbf{x})$

Loss gradient at output pre-activation

– Partial derivative:

$$\frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} - \log f(\mathbf{x})_y$$
$$= -\left(1_{(y=c)} - f(\mathbf{x})_c\right)$$

– Gradient:

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_{y}$$

$$= -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$
Indicator function

Derivation

$$= \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} - \log f(\mathbf{x})_y$$

$$= \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} f(\mathbf{x})_y$$

$$= \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \operatorname{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_y$$

$$= \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \frac{\exp(a^{(L+1)}(\mathbf{x})_y)}{\sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_c)}$$

$$= \frac{-1}{f(\mathbf{x})_y} \frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \frac{\exp(a^{(L+1)}(\mathbf{x})_y)}{\sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_y)} - \frac{\exp(a^{(L+1)}(\mathbf{x})_y) \left(\frac{\partial}{\partial a^{(L+1)}(\mathbf{x})_c} \sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_{c'})\right)}{\left(\sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_{c'})\right)^2}$$

$$= \frac{-1}{f(\mathbf{x})_y} \left(\frac{1_{(y=c)} \exp(a^{(L+1)}(\mathbf{x})_y)}{\sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_{c'})} - \frac{\exp(a^{(L+1)}(\mathbf{x})_y)}{\sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_{c'})} \frac{\exp(a^{(L+1)}(\mathbf{x})_{c'})}{\sum_{c'} \exp(a^{(L+1)}(\mathbf{x})_{c'})} \right)$$

$$= \frac{-1}{f(\mathbf{x})_y} \left(1_{(y=c)} \operatorname{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_y - \operatorname{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_y \operatorname{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_c}\right)$$

$$= \frac{-1}{f(\mathbf{x})_y} \left(1_{(y=c)} \operatorname{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x})_y) - \operatorname{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_y \operatorname{softmax}(\mathbf{a}^{(L+1)}(\mathbf{x}))_c}\right)$$

$$= \frac{-1}{f(\mathbf{x})_y} \left(1_{(y=c)} \operatorname{f(\mathbf{x})_y} - f(\mathbf{x})_y f(\mathbf{x})_c\right)$$

$$= -\left(1_{(y=c)} - f(\mathbf{x})_c\right)$$

Loss gradient for hidden layers

- This is getting complicated!

• Chain Rule: Assume that a function p(a) can be written as a function of intermediate results $q_i(a)$, then:

$$\frac{\partial p(a)}{\partial a} = \sum_{i} \frac{\partial p(a)}{\partial q_i(a)} \frac{\partial q_i(a)}{\partial a}$$

- We can invoke it by setting:
 - a be a hidden unit
 - $q_i(a)$ be a pre-activation in the layer above
 - p(a) be the loss function

- Loss gradient at hidden layers
 - Partial derivative:

$$\frac{\partial}{\partial h^{(k)}(\mathbf{x})_{j}} - \log f(\mathbf{x})_{y}$$

$$= \sum_{i} \frac{\partial - \log f(\mathbf{x})_{y}}{\partial a^{(k+1)}(\mathbf{x})_{i}} \frac{\partial a^{(k+1)}(\mathbf{x})_{i}}{\partial h^{(k)}(\mathbf{x})_{j}}$$

$$= \sum_{i} \frac{\partial - \log f(\mathbf{x})_{y}}{\partial a^{(k+1)}(\mathbf{x})_{i}} W_{i,j}^{(k+1)}$$

$$a^{(k)}(\mathbf{x})_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(\mathbf{x})_j$$

- Loss gradient at hidden layers
 - Gradient

$$\nabla_{\mathbf{h}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

$$= \mathbf{W}^{(k+1)^{\top}} \left(\nabla_{\mathbf{a}^{(k+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

We already know how to compute that

$$a^{(k)}(\mathbf{x})_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(\mathbf{x})_j$$

- Loss gradient at hidden layers (pre-activation)
 - Partial derivative:

$$\frac{\partial}{\partial a^{(k)}(\mathbf{x})_{j}} - \log f(\mathbf{x})_{y}$$

$$= \frac{\partial - \log f(\mathbf{x})_{y}}{\partial h^{(k)}(\mathbf{x})_{j}} \frac{\partial h^{(k)}(\mathbf{x})_{j}}{\partial a^{(k)}(\mathbf{x})_{j}}$$

$$= \frac{\partial - \log f(\mathbf{x})_{y}}{\partial h^{(k)}(\mathbf{x})_{j}} g'(a^{(k)}(\mathbf{x})_{j})$$

$$h^{(k)}(\mathbf{x})_j = g(a^{(k)}(\mathbf{x})_j)$$

- Loss gradient at hidden layers (pre-activation)
 - Gradient:

of activation functions. $\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$

$$= \left(\nabla_{\mathbf{h}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right)^{\top} \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} \mathbf{h}^{(k)}(\mathbf{x})$$

$$= \left(\nabla_{\mathbf{h}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot \left[\dots, g'(a^{(k)}(\mathbf{x})_j), \dots\right]$$

Gradient of the activation function

Let's look at the gradients

$$h^{(k)}(\mathbf{x})_j = g(a^{(k)}(\mathbf{x})_j)$$

Linear Activation Function Gradient

Linear activation function:

- Partial derivative

$$g'(a) = 1$$

$$g(a) = a$$

Sigmoid Activation Function Gradient

Sigmoid activation function:

- Partial derivative

$$g'(a) = g(a)(1 - g(a))$$

$$g(a) = \operatorname{sigm}(a) = \frac{1}{1 + \exp(-a)}$$

Tanh Activation Function Gradient

Hyperbolic tangent ("tanh") activation function:

- Partial derivative

$$g'(a) = 1 - g(a)^2$$

$$g(a) = \tanh(a) =$$

$$= \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1}$$

Tanh Activation Function Gradient

Rectified linear (ReLU) activation function:

- Partial derivative

$$g'(a) = 1_{a>0}$$

$$g(a) = reclin(a) = max(0, a)$$

Stochastic Gradient Descend

- Perform updates after seeing each example:
 - Initialize: $\theta = \{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)} \}$
 - For t=1:T

$$\begin{array}{c} \text{- for each training example } (\mathbf{x}^{(t)}, y^{(t)}) \\ \Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) - \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta}) \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \; \Delta \end{array} \qquad \begin{array}{c} \text{Training epoch} \\ \text{- Iteration of all examples} \end{array}$$

- To train a neural net, we need:
 - > Loss function: $l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
- > A procedure to compute gradients: $\nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
- \succ Regularizer and its gradient: $\Omega(\boldsymbol{\theta})$, $\nabla_{\boldsymbol{\theta}}\Omega(\boldsymbol{\theta})$

- Loss gradient of parameters
 - Partial derivative (weights):

$$\frac{\partial}{\partial W_{i,j}^{(k)}} - \log f(\mathbf{x})_{y}$$

$$= \frac{\partial - \log f(\mathbf{x})_{y}}{\partial a^{(k)}(\mathbf{x})_{i}} \frac{\partial a^{(k)}(\mathbf{x})_{i}}{\partial W_{i,j}^{(k)}}$$

$$= \frac{\partial - \log f(\mathbf{x})_{y}}{\partial a^{(k)}(\mathbf{x})_{i}} h_{j}^{(k-1)}(\mathbf{x})$$

$$a^{(k)}(\mathbf{x})_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(\mathbf{x})_j$$

- Loss gradient of parameters
 - Gradient (weights):

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y$$

$$= \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \ \mathbf{h}^{(k-1)}(\mathbf{x})^\top \ \mathbf{w}^{(3)}$$

$$a^{(k)}(\mathbf{x})_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(\mathbf{x})_j$$

- Loss gradient of parameters
 - Partial derivative (biases):

$$= \frac{\partial}{\partial b_i^{(k)}} - \log f(\mathbf{x})_y$$

$$= \frac{\partial - \log f(\mathbf{x})_y}{\partial a^{(k)}(\mathbf{x})_i} \frac{\partial a^{(k)}(\mathbf{x})_i}{\partial b_i^{(k)}}$$

$$= \frac{\partial - \log f(\mathbf{x})_y}{\partial a^{(k)}(\mathbf{x})_i}$$

$$a^{(k)}(\mathbf{x})_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(\mathbf{x})_j$$

- Loss gradient of parameters
 - Gradient (biases):

$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y$$

$$= \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

$$a^{(k)}(\mathbf{x})_i = b_i^{(k)} + \sum_j W_{i,j}^{(k)} h^{(k-1)}(\mathbf{x})_j$$

Backpropagation Algorithm

- Perform forward propagation
- Compute output gradient (before activation):

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \leftarrow -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

- For k=L+1 to 1
 - Compute gradients w.r.t. the hidden layer parameters:

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$

$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

Compute gradients w.r.t. the hidden layer below:

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)^{\top}} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

Compute gradients w.r.t. the hidden layer below (before activation):

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot \left[\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots\right]$$

Computational Flow Graph

- Forward propagation can be represented as an acyclic flow graph
- Forward propagation can be implemented in a modular way:
 - > Each box can be an object with an fprop method, that computes the value of the box given its children
 - > Calling the fprop method of each box in the right order yields forward propagation

Computational Flow Graph

- Each object also has a bprop method
 - it computes the gradient of the loss with respect to each child box.
 - fprop depends on the fprop output of box's children, while bprop depends on the bprop of box's parents

 By calling bprop in the reverse order, we obtain backpropagation

Stochastic Gradient Descend

- Perform updates after seeing each example:
 - Initialize: $\theta = \{ \mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)} \}$
 - For t=1:T

- To train a neural net, we need:
 - > Loss function: $l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
 - > A procedure to compute gradients: $\nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$ > Regularizer and its gradient: $\Omega(\boldsymbol{\theta})$, $\nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$

Weight Decay

• L2 regularization:

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} \left(W_{i,j}^{(k)} \right)^{2} = \sum_{k} ||\mathbf{W}^{(k)}||_{F}^{2}$$

Gradient:

$$\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = 2\mathbf{W}^{(k)}$$

- Only applies to weights, not biases (weigh decay)
- Can be interpreted as having a Gaussian prior over the weights, while performing MAP estimation.
- We will later look at Bayesian methods.

Other Regularizers

Using a more general regularizer, we get:

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Lasso

Quadratic

L1 Regularization

L1 regularization:

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} |W_{i,j}^{(k)}|$$

Gradient:

$$\nabla_{\mathbf{W}^{(k)}} \Omega(\boldsymbol{\theta}) = \operatorname{sign}(\mathbf{W}^{(k)})$$
$$\operatorname{sign}(\mathbf{W}^{(k)})_{i,j} = 1_{\mathbf{W}_{i,j}^{(k)} > 0} - 1_{\mathbf{W}_{i,j}^{(k)} < 0}$$

- Only applies to weights, not biases (weigh decay)
- Can be interpreted as having a Laplace prior over the weights, while performing MAP estimation.
- Unlike L2, L1 will push some weights to be exactly 0.

Bias-Variance Trade-off

expected
$$loss = (bias)^2 + variance + noise$$

Average predictions over all datasets differ from the optimal regression function.

Solutions for individual datasets vary around their averages -- how sensitive is the function to the particular choice of the dataset.

Intrinsic variability of the target values.

$$(\text{bias})^{2} = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} p(\mathbf{x}) d\mathbf{x}$$

$$\text{variance} = \int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} \right] p(\mathbf{x}) d\mathbf{x}$$

$$\text{noise} = \iint \{h(\mathbf{x}) - t\}^{2} p(\mathbf{x}, t) d\mathbf{x} dt$$

- Trade-off between bias and variance: With very flexible models (high complexity) we have low bias and high variance; With relatively rigid models (low complexity) we have high bias and low variance.
- The model with the optimal predictive capabilities has to balance between bias and variance.

Bias-Variance Trade-off

• Consider the sinusoidal dataset. We generate 100 datasets, each containing N=25 points, drawn independently from $h(x) = \sin 2\pi x$.

Bias-Variance Trade-off

 Generalization error can be seen as the sum of the (squared) bias and the variance

Initialization

- Initialize biases to 0
- For weights
 - Can not initialize weights to 0 with tanh activation
 - > All gradients would be zero (saddle point)
 - Can not initialize all weights to the same value
 - > All hidden units in a layer will always behave the same
 - Need to break symmetry
 - Sample $\mathbf{W}_{i,j}^{(k)}$ from $U\left[-b,b
 ight]$, where

$$b = \frac{\sqrt{6}}{\sqrt{H_k + H_{k-1}}}$$

Sample around 0 and break symmetry

Model Selection

- Training Protocol:
 - Train your model on the Training Set $\mathcal{D}^{\mathrm{train}}$
 - For model selection, use Validation Set $\mathcal{D}^{\mathrm{valid}}$
 - > Hyper-parameter search: hidden layer size, learning rate, number of iterations/epochs, etc.
 - Estimate generalization performance using the Test Set $\mathcal{D}^{\mathrm{test}}$
- Remember: Generalization is the behavior of the model on unseen examples.

Early Stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead).

Tricks of the Trade:

- Normalizing your (real-valued) data:
 - \triangleright for each dimension x_i subtract its training set mean
 - \triangleright divide each dimension x_i by its training set standard deviation
 - this can speed up training
- Decreasing the learning rate: As we get closer to the optimum, take smaller update steps:
 - i. start with large learning rate (e.g. 0.1)
 - ii. maintain until validation error stops improving
 - iii. divide learning rate by 2 and go back to (ii)

Mini-batch, Momentum

- Make updates based on a mini-batch of examples (instead of a single example):
 - the gradient is the average regularized loss for that mini-batch
 - > can give a more accurate estimate of the gradient
 - > can leverage matrix/matrix operations, which are more efficient

Momentum: Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

can get pass plateaus more quickly, by "gaining momentum"

Adapting Learning Rates

- Updates with adaptive learning rates ("one learning rate per parameter")
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^{2} \quad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

RMSProp: instead of cumulative sum, use exponential moving average

$$\gamma^{(t)} = \beta \gamma^{(t-1)} + (1 - \beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^{2}$$

Adam: essentially combines RMSProp with momentum

$$\overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

Gradient Checking

• To debug your implementation of fprop/bprop, you can compare with a finite-difference approximation of the gradient:

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

- \rightarrow f(x) would be the loss
- \triangleright x would be a parameter
- $ightharpoonup f(x+\epsilon)$ would be the loss if you add ϵ to the parameter
- $ightharpoonup f(x-\epsilon)$ would be the loss if you subtract ϵ to the parameter

Debugging on Small Dataset

- Next, make sure your model can overfit on a smaller dataset (~ 500-1000 examples)
- If not, investigate the following situations:
 - Are some of the units saturated, even before the first update?
 - scale down the initialization of your parameters for these units
 - properly normalize the inputs
 - Is the training error bouncing up and down?
 - decrease the learning rate
- This does not mean that you have computed gradients correctly:
 - You could still overfit with some of the gradients being wrong