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Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks

e Hugo’s class covers

many other topics: x o
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,

_ Topics: RBM, visible layer; hidden layer, energy function
Boltzmann machines, OO0 h-
autoencoders, sparse —
. &
coding, etc.
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Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training
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Artificial Neuron

* Neuron pre-activation (or input activation):

a(x)=b+ > wir;=b+w'x

e Neuron output activation:

h(x) = gla(x)) = g(b+ >, wix;)

where
W are the weights (parameters)
b is the bias term
9() is called the activation function



Artificial Neuron

e Output activation of the neuron:

Range is
determined

by g(-
( ) Bias only changes

the position of the
riff

(from Pascal Vincent's slides)



Activation Function

e | inear activation function:

gla) =a

>  No nonlinear transformation

>  No input squashing




Activation Function

e Sigmoid activation function:

> Squashes the neuron’s 9(a) = sigm(a) = 1—i—ex§)(—a)
output between 0 and 1

>  Always positive NI

> Bounded i':f:,“

>  Strictly Increasing o |




Activation Function

* Hyperbolic tangent (“tanh™) activation function:

g(a) = tanh(a) =

> Squashes the neuron’s

activation between -1 _ exp(a)—exp(—a) _ exp(2a)—1
and 1 exp(a)+exp(—a) exp(2a)+1
> Can be positive or wr =T |
negative sl z
> Bounded //
00
»  Strictly increasing /
05} /
(wrong plot) //
-1.0 —1—’—‘7_”’/ i




Activation Function

 Rectified linear (ReLU) activation function:

> Bounded below by 0

(always non-negative) g(a) = reclin(a) = max(0, )

3.0

» Tends to produce units
with sparse activities

| I e

>  Not upper bounded

0.0

> Strictly increasing o N N A

_30_



Decision Boundary of a Neuron

 Binary classification:

- With sigmoid, one can interpret neuron as estimating p(y =1 |X)

Interpret as a logistic classifier

Decision boundary

- If activation is greater than %
0.5, predict 1 \
- Otherwise predict 0 % é

. : (from Pascal Vincent's slides)
Same idea can be applied

to a tanh activation



Capacity of a Single Neuron

e Can solve linearly separable problems.




Capacity of a Single Neuron

e Can not solve non-linearly separable problems.

XOR (x1, x2) XOR (1, 2)
A |’a A
| A (@) %iﬁl N A
a2 N
0 o A % 0 o A
> B A
0 | 0 I
L1 AND (58_1, 5132)

e Need to transform the input into a better representation.
« Remember basis functions!



Single Hidden Layer Neural Net

e Hidden layer pre-activation:
a(x) =bM) + Wibx
(a(x); =07 + 52, wiYay)
e Hidden layer activation:
h(x) = g(a(x))

e Output layer activation:

f(x) = o (b@) n W<2>Th<1>x)

Output activation
function



Softmax Activation Function

» Remember multi-way classification:
- We need multiple outputs (1 output per class)
- We need to estimate conditional probability: p(y — C‘X)
- Discriminative Learning

» Softmax activation function at the output

— <oft _ exp(ai) exp(ac) T
o(a) = softmax(a) S oxpla) T S oep(ac)

- strictly positive

- sums to one

» Predict class with the highest estimated class conditional
probability.



Multilayer Neural Net

e Consider a network with L hidden layers.

- layer pre-activation for k>0

a® (x) = b®) + WERE-1) (x)

- hidden layer activation

' - (2)
from 1 to L: w® ’ b

h®)(x) = g(a®) (x) 000

- output layer activation (k=L+1):

h(E+1) (x) = o(a D (x)) = f(x) (h(®(x) = x)



Capacity of Neural Nets

e Consider a single layer neural network

(from Pascal Vincent'’s slides)
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Capacity of Neural Nets

e Consider a single layer neural network

»_x]

(from Pascal Vincent'’s slides)



Universal Approximation

e Universal Approximation Theorem (Hornik, 1991):

- “a single hidden layer neural network with a linear output
unit can approximate any continuous function arbitrarily well,
given enough hidden units”

 This applies for sigmoid, tanh and many other activation
functions.

* However, this does not mean that there is learning algorithm that
can find the necessary parameter values.



Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training



Training

e Empirical Risk Minimization:

1
arg min > U1 6),5M) + A(8)
T

Y o~

Loss function Regularizer

e Learning is cast as optimization.

» For classification problems, we would like to minimize
classification error.

> Loss function can sometimes be viewed as a surrogate for
what we want to optimize (e.g. upper bound)



Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: [(f(x(!); 6), yV)) ‘

> A procedure to compute gradients: Vgl (f(x(!); 8),y®)
» Regularizer and its gradient: 2(0),V£2(0)



Loss Function

e et us start by considering a classification problem with a
softmax output layer.

« We need to estimate: f(x). = p(y = ¢|x)

— We can maximize the log-probability of the correct class given
an input: log p(yY = ¢|z®)

o Alternatively, we can minimize the negative log-likelihood:

[(f(x),y) = — Zc 1(y:c) log f(x). = —log f(X)y

* As seen before, this is also known as a cross-entropy entropy
function for multi-class classification problem.



Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: l(f(x(t); 0). y(t))

> A procedure to compute gradients: Vgl(f(x(!); ), y(*) ‘

» Regularizer and its gradient: 2(0),V£2(0)



Multilayer Neural Net: Reminder

e Consider a network with L hidden layers.

- layer pre-activation for k>0

a® (x) = b®) + WERE-1) (x)

- hidden layer activation
from 1 to L:

h"(x) = g(a™(x))

- output layer activation (k=L+1):

h(E+D) (x) = o(aE+) (x)) = £(x)

Softmax activation
function



Gradient Computation

e Loss gradient at output

— Partial derivative:

o0 . _1( =c)
af(x). —log f(x)y, = .

— Gradient:

Vi) — log f(x),
1(y=0)

_ 1(:yZC—l) i

f(X)y \ Indicator

function
Remember: f(x). =p(y = c/x)



Gradient Computation

e Loss gradient at output pre-activation -

— Partial derivative:

0
Pl (), 108/ Xy

= —(Iy=o — f(x)c)

— Gradient:

Va1 (x) — log f(x)y
= —(e(y) —f(x))

Indicator function




Derivation

0

dalL+1)(x),

—1 9,
f(x)y 9allHD (x),

-1 0
f(x)y dalttD(x),

—1 s, exp(a**tY(x),)
f(x)y allt(x)c 37, exp(al D (x))

_1 ((%(Lﬂ)(x) exp(aF*tY(x),) exp(aFt1(x),) <8a(+1)(x)c > exp(altth) <X)C’)> )

—log f(x)y

ORT _dg(x) 1 glx) Oha)
Ox Or h(x) h(x)? Ox

f(x)y

softmax(a'LY (x)),

exp(aZ+D) (x) ) (Zc’ exp(a(L+1)(x)c,))2
—1 1(y ¢ exp(alFH) (x )y) B exp(a**tY(x),) exp(aXTD(x),)
F(x)y o exp(aFth(x)e) 3o explallt(x)e) 3o, expalt)(x)e)
_1) (1(y cysoftmax( (aFt(x)), — softmax(al ™V (x)), softmax(a(LH)(x))C)
(%)y
—1

)y (1(y c) f(x)c)

(yC) C)



Gradient Computation

 Loss gradient for hidden layers

— This is getting complicated!




Gradient Computation

e Chain Rule: Assume that a function -

p(a)can be written as a function of
intermediate results ¢;(a), then:

* WWe can invoke it by setting:

- a be a hidden unit

- ¢;(a) be a pre-activation in
the layer above

- p(a) be the loss function




Gradient Computation

 Loss gradient at hidden layers -

— Partial derivative:

0 — log f(x), \f /

Oh(k) (X)j W) \\ NG)
Z 0 —log f(x), 0a*+1)(x); N
=B, 0w (O (7
~ Qalkt)(x), "/

Remember:
k k _
a® (x); = b + 30, Wiy b D (),




Gradient Computation

 Loss gradient at hidden layers -

- Gradient
Vi ()~ log f(x)y R )
T w®) \\ b3
W(k—l—l) (Va(k+1)(x) — log f(X)y) | \
¢ ~ . , —~
We already know
how to compute
that
Remember:

a® (x); = b + 50, W Rk (x),




Gradient Computation

 Loss gradient at hidden layers -

(pre-activation)

— Partial derivative:

0
8a(k) (X)j o lOg f(X)y
0 — log f(x), Oh¥) (x),
Oh(F)(x);  dalF)(x);

0 —log f(x), |,
8h<k§{><()j) g'(a™ (x);)

Remember:
M (x); = g(a®(x);)




Gradient Computation

 Loss gradient at hidden layers

re-activation
(P Ivation) Let’s look at the gradients

- Gradient: of activation functions.

va_(k) (x) T log f( )y
= (Vo (x) — log f(x
= (Vo (x) — log f(x

) Va0 h™ (x)
) O g (@ (x);),...]
\

Gradient of the
activation function

)
)

Remember:
M (x); = g(a™(x);)




Linear Activation Function Gradient

e | inear activation function:

gla) =a
— Partial derivative

g'(a) =1




Sigmoid Activation Function Gradient
e Sigmoid activation function:

g(a) = sigm(a) = 1+6X;(_a)

— Partial derivative

g@=ga-g@) T




Tanh Activation Function Gradient

e Hyperbolic tangent (“tanh”) activation function:

g(a) = tanh(a) =

- Partial derivative __exp(a)—exp(—a) __ exp(2a)-—1

/( ) ( )2 — exp(a)texp(—a)  exp(2a)+1
gla)=1—-gla




Tanh Activation Function Gradient

 Rectified linear (ReLU) activation function:

— Partial derivative g(a) = reclin(a) = max(0, a)

g/(CL) = la>o0




Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: l(f(x(t); 0). y(t))

> A procedure to compute gradients: Vgl(f(x(!); ), y(*) ‘

» Regularizer and its gradient: 2(0),V£2(0)



Gradient Computation

e Loss gradient of parameters

- Partial derivative (weights):
0
(Z¥)
0 —log f(x), 0a'*) (x);
dal®)(x); oWk

0 —log f(X)y , (k—1)
da®) (x); h; (x)

Remember:
k k _
a®(x); = b7(l '+ Zj Wi(,j)h(k D (x);




Gradient Computation

e Loss gradient of parameters

- Gradient (weights):
Vw —log f(x),
= (Vam(x —log f(x),) h* ()T

Remember:
k k _
a®(x); = bz( '+ Zj Wi(,j)h(k D (x);




Gradient Computation

e Loss gradient of parameters -

- Partial derivative (biases):
0
ab(k) o log f(X>y
0 —log f(x), 0aF) (x);
Oa¥)(x);  gp¥)

0 — log f(x),
da'k)(x);

Remember:
k k _
a®(x); = b’E )+ Zj Wi(,j)h(k D (x);




Gradient Computation

e Loss gradient of parameters

- Gradient (biases):

Remember:
k k _
a®(x); = b7(l '+ Zj Wi(,j)h(k D (x);




Backpropagation Algorithm

e Perform forward propagation
e Compute output gradient (before activation):

Va+n(x) —log f(x), <= —(e(y) —f(x))
e For k=L+1 to 1

- Compute gradients w.r.t. the hidden layer parameters:
Vwk —log f(x), <= (Va<k>(x) — log f(X)y) h(k_l)(X)T
Viw —log f(x)y <= Vam (x) — log f(x)y
— Compute gradients w.r.t. the hidden layer below:

|
V-1 (x) = log f(x)y = W (V) — log f(x)y)

- Compute gradients w.r.t. the hidden layer below (before activation):
Vat-n( —10g f(X)y = (Vhu-npg —log f(x)y) O [, ¢ (a®D(x);), .. ]



Computational Flow Graph

e Forward propagation can be represented
as an acyclic flow graph ’

e Forward propagation can be implemented
In @ modular way:

> Each box can be an object with an fprop
method, that computes the value of the
box given its children

> Calling the fprop method of each box in
the right order yields forward propagation




Computational Flow Graph

i)

e Each object also has a bprop method

— it computes the gradient of the loss with
respect to each child box.

- fprop depends on the fprop output of
box’s children, while bprop depends on the
bprop of box’s parents

By calling bprop in the reverse order, we
obtain backpropagation




Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: = {WW b .  WEFD [+
- For t=1:T

— for each training example (X(t),y(t)) )
Training epoch

A = =Vol(f(x;0),yV) — AVeQ(8) =

0 —0-+aA lteration of all examples
J

e To train a neural net, we need:

> Loss function: [(f(x(!); 6), yV))
> A procedure to compute gradients: Vol(f(x?): 0), y®)

» Regularizer and its gradient: 2(0),V£2(0)




Weight Decay

|2 regularization:

0(0) = 2,5, (W) = S WO

e Gradient:

Vwm(0) = 2WH)

- Only applies to weights, not biases (weigh decay)

- Can be interpreted as having a Gaussian prior over the weights,
while performing MAP estimation.

- We will later look at Bayesian methods.



Other Regularizers

« Using a more general regularizer, we get:

e A
2 D {tn —who(xn)}? + B D fw;lf
n=1 7=1
1 | |
I | |
q=0.5 q=1 q=2




L1 Regularization

* L1 regularization:
k
0) = 33, 30, 2 Wi |

e Gradient:
VW(R)Q(Q) — Sign(W(k))

sign(W)), =1 —1

wM >0 T w® <o

- Only applies to weights, not biases (weigh decay)

- Can be interpreted as having a Laplace prior over the weights, while
performing MAP estimation.

- Unlike L2, L1 will push some weights to be exactly 0.



Bias-Variance Trade-off

expected loss = (bias)? 4 variance + noise

/ I N

Average predictions over all Solutions for mo!wndual datasets Intrinsic variability
datasets differ from the vary around their averages -- how of the target
optimal regression function. sensitive is the function to the values

particular choice of the dataset.

(bias)? = / {Eply(x; D)) — h(x)}2p(x) dx

variance

/ Ep [{y(x; D) — Eply(x: D)]}2] p(x) dx

noise = /{h(X)—t}Qp(X,t>dth

* Trade-off between bias and variance: With very flexible models (high
complexity) we have low bias and high variance; With relatively rigid models
(low complexity) we have high bias and low variance.

e The model with the optimal predictive capabilities has to balance between bias
and variance.



Bias-Variance Trade-off

e Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from h(x) = sin 27z.

High variance Low variance

Low bias High bias



Bias-Variance Trade-off

e Generalization error can be seen as the sum of the
(squared) bias and the variance

@+ D
possible f

possible f

possible f

low variance/ high variance/
high bias : good trade-off ' low bias



Initialization

e |nitialize biases to 0
e For weights

— Can not initialize weights to 0 with tanh activation

> All gradients would be zero (saddle point)

— Can not initialize all weights to the same value
» All hidden units in a layer will always behave the same
» Need to break symmetry

- Sample WE’? from U [—b, b], where

_ V6 Sample around 0 and
VHe+Hg_1 break symmetry

size of h(¥) (X)



Model Selection

e Training Protocol:

- Train your model on the Training Set D"

- For model selection, use Validation Set Dvalid

» Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set D5t

e Remember: Generalization is the behavior of the model on
unseen examples.



Early Stopping

 To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5
0.4 underfitting overfitting
0,3
0,2
0,1
. —O—

number of epochs



Tricks of the Trade:

e Normalizing your (real-valued) data:

> for each dimension x; subtract its training set mean
» divide each dimension x; by its training set standard deviation

>  this can speed up training

* Decreasing the learning rate: As we get closer to the optimum,
take smaller update steps:

I.  start with large learning rate (e.g. 0.1)
li.  maintain until validation error stops improving

ii. divide learning rate by 2 and go back to (ii)



Mini-batch, Momentum

 Make updates based on a mini-batch of examples (instead of a
single example):
> the gradient is the average regularized loss for that mini-batch
>  can give a more accurate estimate of the gradient

> can leverage matrix/matrix operations, which are more efficient

« Momentum: Can use an exponential average of previous

gradients:

Vo = Val(£(x®),y®) + gVo Y

> can get pass plateaus more quickly, by “gaining momentum”



Adapting Learning Rates

e Updates with adaptive learning rates (“one learning rate per
parameter”)

> Adagrad: learning rates are scaled by the square root of the
cumulative sum of squared gradients

. 2 —)  Vel(f(x®),y®)
~®) = (1) (V@l(f(x(t))ay(t))) Vo = VA® + €

> RMSProp: instead of cumulative sum, use exponential moving
average

1O = By 4 (1= 8) (Val(E(xD), )

> Adam: essentially combines
RMSProp with momentum



Gradient Checking

e To debug your implementation of fprop/bprop, you can compare
with a finite-difference approximation of the gradient:

0f(z) . flzte)—f(z—¢)
Ox 2¢

f(x) would be the loss
I would be a parameter

f(x + €) would be the loss if you add € to the parameter

vV V V V

f(x — €) would be the loss if you subtract ¢ to the parameter



Debugging on Small Dataset

* Next, make sure your model can overfit on a smaller dataset
(~ 500-1000 examples)

e If not, investigate the following situations:

>  Are some of the units saturated, even before the first update?
scale down the initialization of your parameters for these units
properly normalize the inputs

> s the training error bouncing up and down?

decrease the learning rate

* This does not mean that you have computed gradients correctly:

> You could still overfit with some of the gradients being wrong



