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Motivation: why should we use generalized linear models?

• Practitioners often prefer least squares when seemingly better alternatives exist. Example:
• Linear probability model instead of logit/probit
• Log transformations instead of Poisson

• This comes with several disadvantages:
• Inconsistent estimates under heteroskedasticity due to Jensen’s inequality; bias can be quite
severe (Manning & Mullahy 2001, Santos Silva & Tenreyro 2006, etc.)

• Linear models might lead to a wrong support: predicted probabilities outside [0-1], log(0), etc.
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Digression: genesis of this paper

• We wanted to run pseudo-ML poisson regressions with fixed effects:
• Paulo: log(1 + 𝑤𝑎𝑔𝑒𝑠)
• Tom: log(1 + 𝑡𝑟𝑎𝑑𝑒)
• Sergio: log(1 + 𝑐𝑟𝑒𝑑𝑖𝑡)

• Should have been feasible:
• No incidental parameters problem (Wooldridge 1999, Fernandez-Val and Weidner 2016), Weidner
and Zylkin 2019)

• Works with non-count variables (Gourieroux et al 1984)
• Practical estimator through IRLS and alternating projections (Guimarães 2014, Correia 2017, Zylkin
et al 2018)

• However, there was another obstacle we did not anticipate:
• Our implementation often failed to converge, or converged to incorrect solutions.
• Problem was aggravated when working with many levels of fixed effects (our intended goal)
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How can maximum likelihood estimates not exist?

Consider a Poisson regression on a simple dataset without constant:

• Log-likelihood: ℒ(𝛽) = ∑[𝑦𝑖(𝑥𝑖𝛽) − exp(𝑥𝑖𝛽) − log(𝑦𝑖!)]
• FOC: ∑ 𝑥𝑖[𝑦𝑖 − exp(𝑥𝑖𝛽)] = 0

y x
0 1
0 1
0 0
1 0
2 0
3 0

• In this example, the FOC becomes exp(𝛽) = 0, maximized only at infinity!
• Note that at infinity the first two observations are fit perfectly, with ℒ𝑖 = 0

• More generally, non-existence can arise from any linear combination of regressors including
fixed effects.
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Existing literature

• Non-existence conditions have been independently (re)discovered multiple times:
• Log-linear frequency table models (Haberman 1973, 1974)
• Binary choice (Silvapulle 1981, Albert and Anderson 1984)
• GLM sufficient–but–not–necessary conditions (Wedderburn 1976, Santos Silva and Tenreyro 2010)
• GLM (Verbeek 1989, Geyer 1990, Geyer 2008, Clarkson and Jenrich 1991; all three unaware of each
other).

• Most researchers still unaware of problem outside of binary choice models; no textbook
mentions as of 2019.

• Software implementations either fail to converge or inconspicuously converge to wrong results.
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Our contribution

1. Derive existence conditions for a broader class of models than in existing work
• Including Gamma PML, Inverse Gaussian PML

2. Clarify how to correct for non-existence of some parameters.
• Finite components of 𝛽 can be consistently estimated; inference is possible

3. Introduce a novel and easy-to-implement algorithm that detects and corrects for
non-existence

• Particularly useful with high-dimensional fixed effects and partialled-out covariates.
• Can be implemented with run–of–the-mill tools.
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Proposition 1: non-existence conditions (1/3)

Consider the class of GLMs defined by exponential log-likelihood functions:

ℒ = ∑
𝑖

ℒ𝑖 = ∑
𝑖

[𝑎(𝜙) 𝑦𝑖 𝜃𝑖 − 𝑎(𝜙) 𝑏(𝜃𝑖) + 𝑐(𝑦𝑖, 𝜙)]

• 𝑎, 𝑏, and 𝑐 are known functions; 𝜙 is a scale parameter
• 𝜃𝑖 = 𝜃(𝑥𝑖𝛽) is the canonical link function; where 𝜃′ > 0
• 𝑦𝑖 ≥ 0 is an outcome variable. Potentially 𝑦 ≤ ̄𝑦 as in logit/probit but for simplicity we’ll
ignore this through this talk.

• Its conditional mean is 𝜇𝑖 = 𝐸[𝑦𝑖|𝑥𝑖] = 𝑏′(𝜃𝑖)
• Assume for simplicity that regressors 𝑋 have full column rank.
• Assume that ℒ𝑖 has a finite upper bound.
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Proposition 1: non-existence conditions (2/3)

ML solution for 𝛽 will not exist iff there is a non-zero vector 𝛾 such that:

𝑥𝑖𝛾 = 𝑧𝑖

⎧{{
⎨{{⎩

≤ 0 if 𝑦𝑖 = 0
= 0 if 0 < 𝑦𝑖 < ̄𝑦
≥ 0 if 𝑦𝑖 = ̄𝑦
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Proposition 1: non-existence conditions (3/3)

• Linear combination 𝑧 is a “certificate of non-existence”: hard to obtain, but can be used to
verify non-existence

• If we add 𝑧 to the regressor set, its associated FOC will not have a solution.

• Observations where 𝑧𝑖 ≠ 0 will have a perfect fit.
• If ℒ𝑖 is unbounded above, conditions are slightly more complex; see proposition 2 of the
paper.
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Addressing non-existence

• As in perfect collinearity, first look for specification problems:
• In a Poisson wage regression, did we add “unemployment benefits” as covariate?
• In a Poisson trade regression, did we add an “is embargoed?” indicator?

• If no specification problems, it’s due to sampling error.
• Solution: allow estimates to take values in the extended reals: ℝ̄ = ℝ ∪ {+∞, −∞}

• Example: ̂𝛽 = lim𝑎→∞ 𝑎 + 3
• We are mostly interested in the non-infinite component
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Proposition 3: Addressing non-existence

• Given a ℒ𝑖 bounded above, ML solution in the extended reals will always exist.
• Given vector 𝑧 identifying all instances of non-existence, if we first drop perfectly predicted
observations (and resulting perfect collinear variables) ML solution in the reals will always
exist.

• It will consistently estimate the non-infinite components of 𝛽, allowing for inference on them
(proposition 3d)

• We can recover infinite components by regressing 𝑧 against 𝑥.
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Obtaining 𝑧: Existing Alternatives

1. Drop boundary observations with ℒ𝑖 close to 0 (Clarkson and Jenrich 1991)
• Slow under non-existence; often fails as “close to 0” is data specific.

2. Solve a modified simplex algorithm (Clarkson and Jenrich 1991)
• Cannot handle fixed effects or other partialled-out covariates

3. Analytically solve computational geometry problem (Geyer 2008), or use eigenvalues of
Fischer information matrix (Eck and Geyer 2018).

• Extremely slow and complex (Geyer 2008); might not converge (Eck and Geyer 2018); cannot
handle fixed effects (both).

None works well with fixed effects!
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Obtaining 𝑧: Iterative Rectifier (our algorithm)

1. Define a working dependent variable 𝑧𝑖 = 1𝑦𝑖=0

2. Given an arbitrarily large integer K, set weights 𝑤𝑖 =
⎧{
⎨{⎩

1 if 𝑦𝑖 = 0
𝐾 if 𝑦𝑖 > 0

3. (Weighted least squares) Regress 𝑧 on 𝑋 with weights 𝑤; potentially allowing for fixed effects
4. Stop if all ̂𝑧𝑖 ≥ 0
5. Else, update 𝑧𝑖 = 𝑚𝑎𝑥( ̂𝑧𝑖, 0) and repeat from step 3

• Steps 2-3 are the “weighting method” of solving least squares with equality constraints
(Stewart 1997); step 5 is a “rectifier” that enforces a positive dependent variable

• Proofs in proposition 4 and appendix
• Stata implementation in ppmhdfe package
• Convergence usually achieved in a few iterations, but choosing weights too large could lead to
numerical instability.
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Other existing approaches

• Naïve approach: drop the regressors causing non-existence and proceed as usual
• Leads to non-sensical results (Zorn 2005, Gelman 2008)

• Penalize estimates beyond plausible values (Firth regression, Bayesian aproach)
• “For Poisson regression and other models with the logarithmic link, we would not often expect
effects larger than 5 on the logarithmic scale” (Gelman 2008)

• Not a ML estimator
• Many datasets (e.g. in trade) can have plausible effects way beyond 5.

• Solutions specific to binary choice discussed in Konis (2007)
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Comparison of solutions

Method Advantages Concerns

1. Drop regressors - Nonsensical
2. Drop 𝜇𝑖 < 𝜀 observations Simple Fails often: 𝜀 is data dependent
3. Bayesian: penalize 𝜇𝑖 < 𝜀 It’s Bayesian It’s Bayesian.

𝜀 is data dependent
4. Modified simplex Fast for small 𝑘 Slow for large 𝑘

Can’t handle FEs
5. Directions of recession Exact answer “at infinity” Complex, very slow (?)

Can’t handle FEs
6. Iterative rectifier Simple

works well with large 𝑘 and FEs
Numerical accuracy (?)
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Conclusion

Non-existence of estimates:

• Affects a broad class of GLMs beyond just binary choice models
• Poorly understood (no textbook mentions); not addressed in statistical packages
• Leads practitioners to stay with least squares despite limitations

This paper:

• Presents non-existence conditions for a broad class of GLMs
• Discusses how to address non-existence: drop perfectly predicted observations, then proceed
as normal

• Introduces an algorithm for detecting and addressing non-existence that is conceptually
simple, easy-to-implement, and allows for fixed effects
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