
Evolving facial recognition

Sean Dawson

November 11, 2011

1 Abstract

Using back-propagation to train artificial neural networks (ANNs) has been pop-
ular since the seventies. Although it is a thoroughly tried and tested algorithm,
it is now forty years old. This study attempts to apply the more modern algo-
rithm of Particle Swarm Optimisation to training ANNs to determine whether
back propagation is showing its age. To compare the algorithms, an ANN is
trained to recognise the presence of a face in a when presented with an image.

Contents

1 Abstract 1

2 Introduction 3

3 Literature Review 3

4 The Model 4
4.1 The Artificial Neural Network . 4
4.2 The Algorithms . 5

4.2.1 Back-propagation . 5
4.2.2 Particle Swarm Optimisation 6

4.3 Research Software . 8
4.4 Testing Methodology . 8

4.4.1 Creating a test set . 8

5 Result Analysis 9
5.1 Determining the benchmark . 9
5.2 Reducing image size . 11
5.3 Experimenting with parameters 11
5.4 Velocity Constraints . 14

6 Discussion 16

7 Conclusion 16

1

CONTENTS 2

8 Appendix 17
8.1 E.N.F.O.R.M.Research Tools . 17

8.1.1 Run Editor . 17
8.1.2 Optimiser . 18
8.1.3 Network Tester . 19
8.1.4 Results Analyser . 20
8.1.5 Image Tool . 20
8.1.6 Face Explorer . 21

8.2 The Set of Non-Facial Images . 22
8.3 Code . 22
8.4 List of figures and bibliography 23

2 INTRODUCTION 3

2 Introduction

Facial recognition is a task that traditional computing methods persistently have
trouble with. The many variables involved such as differing light conditions,
facial sizes and positions, and variations in complexion are just a few of the
factors that make it a difficult process for the traditional computer to handle.
Humans excel at facial recognition due to the flexibility of the neural networks
that form their brains. From this we can infer that an artificial neural network
(ANN) may perform with a similar aptitude given that it is trained optimally.
That said, training an ANN is a difficult task. The weights of an complex ANN
cannot be determined by hard coding and deriving a correct set of weights
presents an extremely large search space. This presents a perfect opportunity
to utilise evolutionary computing concepts.
A common way to train networks is via back propagation, an idea that has in
use since around 1969 [9]. It involves determining the error of the outputs and
working backwards towards the inputs adjusting the weights incrementally to
reduce the error, commonly using a method such as stochastic gradient decent.
It has been criticized in some cases for being slow, and prone to being stuck
in local minima [1, 3, 11]. This study proposed that by using the more modern
technique of particle swarm optimisation (PSO) an ANN could be trained in
less time and result in a set of weights that result in a more adaptable network,
especially in larger networks. Experiments were performed that investigated the
efficiency of both algorithms, and also gauged how effective the final weighting
configuration is at detecting faces that were not in its training set, referred
to as it’s adaptability. It is predicted that when optimising an ANN for a
complex task such as facial recognition, PSO will excel due to its explorative
nature and its diverse population, trailing many more candidate solutions than
back propagation. Although there has been some research into training neural
networks with PSO [13,14], there was a gap in research directly comparing it to
back propagation with its effectiveness in optimising facial recognition networks.
This is what this study planned to address. PSO was chosen out of the several
evolutionary optimisation techniques due to its excellent performance in a vast
array of optimisation problems.

3 Literature Review

’A Look at Facial Recognition’ by J. Woodward et al [2] presents the idea
of using facial recognition as a biometric which is a way to distinguish one
person from another automatically. The paper investigates the use of facial
recognition in Virginia Beach, US to identify criminals and missing persons using
CCTV cameras. The facial recognition software alerts the police headquarters
with possible matches where the footage is reviewed by a trained officer to
determine false alarms. It discusses facial recognition in a more general overview,
rather than the exact implementation of the software and gives good examples
of potential pitfalls and methods used in facial detection in busy environments.
It introduces concepts such as using correct training data which achieves the
balance between difficulty and simplicity for the recognition software so that it
isn’t over trained to either ends of the scale.

4 THE MODEL 4

’Neural Network-Based Face Detection’ by H. Rowley et al [8] provides a more
in-depth look at the mechanics of facial recognition and the part ANNs can play.
The method utilized by this article uses a 20x20 pixel grid for the input to the
ANN. This grid scans over the top of the image detecting for the presence of
a face. The source image that is being scanned is repetitively sub sampled or
shrunk and then rescanned so that different sized faces can be detected. The
layout of the ANN internal/hidden nodes are in 3 distinct groups that the paper
calls ’Retinally connected’. One group of hidden nodes samples 4 10x10 sub
regions of the input, another group samples 20 5x5 sub regions and yet another
section samples the input in overlapping horizontal stripes. The overlapping
stripes were included to try and pick up horizontal features such as a pair of
eyes, the brow or even the mouth. The training method used in this paper
is standard back propagation with momentum. This article also gives a good
overview of possible pitfalls and countless methods that could be implemented
into this research.

’Evolving Artificial Neural Networks’ by Xin Yao [12] is a excellent article
that compares training an ANN via evolutionary algorithms with traditional
methods. It introduces an interesting topic that the actual architecture of the
ANN could be evolved rather than just strictly the weights. The overall con-
clusion of this article suggests that both evolutionary methods and traditional
methods are effective depending on the problem presented. It does mention
that evolutionary algorithms excel at higher complexity levels which supports
my proposal, but it presents no hard evidence of the superiority of evolutionary
methods in ANN training.

4 The Model

4.1 The Artificial Neural Network

An Artificial Neural Network (ANN) is a network of interconnected nodes with
weighted connections. An ANN can take the form of many architectures and
designs. In the scope of this project, a 3 layer feed forward network is used,
also known an a perceptron. A perceptron consists of an input layer, a hidden
layer and an output layer. Each node sums the weighted outputs from the
layer above it, applies a bias and then outputs to the next layer. A perceptron
is one of the most simple architectures of neural networks but is still a very
powerful classification tool. The weighting on each connection has to be tuned
so that the neural network can become useful. This is never done manually
in all but the simplest of networks therefore, in this project, an algorithm is
used to optimise the weights. An example of a widely used training algorithm
is Back-propagation. (See 4.2.1)

The images that are presented to the neural network for recognition are
split up into segments and each segment is connected to a unique hidden node.
This was based on the work of Rowley et al [8] in which they likened this
method to a human retina. Due to time constraints the representation used
in these experiments was set to a fixed grid. Measuring the effects of different
representations of the images could be the subject of further research but is
beyond the scope of this project.

4 THE MODEL 5

Initialization In the network that is to be optimised, initially each weight
is set to a random distribution between −n and n where n called the Nguyen
Widrow factor. The Nguyen Widrow factor is calculated as follows:

n = 0.7 ∗H 1
i ; (1)

Where:

H = Number of hidden nodes.

i = Number of input nodes.

Initializing neural networks with numbers in this range is known to speed
up optimisation times with a broad range of applications [4].

4.2 The Algorithms

The two algorithms that are being compared both have the same objective; to
adjust a set of weights in an ANN to minimize the mean squared error. Although
the goals are the same, the solution is found by using very distinct methods.

4.2.1 Back-propagation

Back-propagation is an extremely common way to train standard feed-forward
ANNs and is a type of stochastic gradient decent algorithm. It works by taking
a sample from the training set at random and calculating the error at each
synapse by comparing the expected output with the actual output. It then goes
through every weight and adjusts them to minimize error. When every sample
has been tested the epoch (or iteration) is complete. This is repeated many
times until the mean squared error falls below an acceptable error. The formula
that is applied to optimise each weight on a connection is defined as follows:

∆w = (l ∗ osource ∗ etarget) + (m ∗∆wprev) (2)

Where:

l = Learning rate.

osource = The current output of the source neuron

etarget = The error of the target neuron (Output - Expected Output).

m = Momentum rate.

∆wprev = Previous change in weight.

Momentum Momentum is a feature which can help achieve faster conver-
gence and also prevent noise in the training data from negatively impacting the
weight calculations. It is implemented by keeping track of previous changes to a
weight in the training process and adding it onto the current iteration smooth-
ing out erratic changes in direction. The momentum rate is hard coded to 0.07
in the NeuronDotNet library.

4 THE MODEL 6

Learning rate The learning rate adjusts the decent rate of the gradient. If it
is set to a number that is too small it can get stuck in local minima and if set
too large then the weights can diverge, the solution can be overshot and there
can be lot of oscillation in the error function. A learning rate of 0.3 is a good
place to start and is the default in NeuronDotNet.

The learning rate can be set as a function so that it decreases with time. This
can be used to speed up the initial process by starting with a large learning rate
and then reducing it down as the network learns to become more accurate. In
NeuronDotNet there are linear, exponential and hyperbolic functions to adjust
the learning rate dynamically.

Jitter Jitter is a feature provided by the NeuronDotNet library that tries to
prevent back propagation from getting stuck in local minima. It applies a small
amount of noise to the connection weights every time the jitter epoch occurs
(by default every 73 iterations).

4.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation was devised originally to simulate social behaviors
but it suited the task of optimisation well and ever since it’s inception it has
become a major player in evolutionary computing. It works on using a ’swarm’
of candidate solutions referred to as particles and the attraction between them
to search for optimum solutions. Each particle in the swarm has a position in
n-dimensional space which represents a candidate solution. Each particle also
has a velocity which modifies its position. The main equation in the original
non problem specific PSO that governs particle velocity on each generation is
defined as:{

~vi ← χ(~vi + ~U(0, φ1)⊗ (~pi − ~xi)) + ~U(0, φ2)⊗ (~pg − ~xi)),
~xi ← ~xi + ~vi,

(3)

Where:

~U(0, φi) = Is a random number between 0 and φi.

v = The velocity of the particle.

x = The current position of the particle.

~pi = The personal best of the particle.

~pg = The global best position.

χ = Constriction factor.

In other words, on each iteration the velocity of each particle is modified by
a random factor but is also influenced by its personal best and the global best.
χ is known as the constriction factor and was suggested as a replacement to a
clamped maximum velocity to prevent the particles becoming too excited. φi is
another constriction factor and represents the range of the random distribution
that is applied to the velocity.

4 THE MODEL 7

Standard PSO There are many implementations of PSO but this project
used Standard PSO, a variation that was developed as a baseline to compare
other implementations with. As this project is about comparing PSO to back-
propagation rather then comparing different PSO implementations, it is fitting
to use the baseline so that it could be improved upon in later experiments.

Instead of modifying each particle’s velocity on the global best, Standard
PSO uses what is known as a LBest or local best topology. In the LBest topology,
particles form small local neighborhoods that influence each other. The amount
of particles that are in each neighborhood is governed by the variable k which is
set to 3 by default. The neighborhoods are not static and reinitialize at certain
times. An LBest topology is known to converge slower, but it is more thorough
in its search and the particles can focus on several potential solutions before
finally converging into one.

There is a limit to the position of each particle: if one dimension exceeds
the maximum or minimum limits of a run then it is clamped back to the limit
and its velocity is set to 0.

The version of Standard PSO used in this project was ported to C# by
Travis Silvers but the functionality is identical.

The parameters used in Standard PSO and referred to in this article are:

Default Parameters
iMin Minimum start position of a particle
iMax Maximum start position of a particle
pMin Minimum position of a particle
pMax Maximum position of a particle
d Number of dimensions
s Swarm Size
k Maximum neighborhood size
p Probability of a one particle informing another
w First constriction factor (χ)
c Second constriction factor (φ)

For every experiment, maximum and minimum start positions were set to
the Nguyen Widrow factor. (See 4.1)

Default Parameters The default parameters used for the PSO (as taken
from Standard PSO) were:

Default Parameters

s 10 + 2
√
d

k 3

p 1− (1− 1
s)

k

w 1
log (2)

c 0.5 + log(2)

4 THE MODEL 8

4.3 Research Software

To run the tests and process the results a software package called E.N.F.O.R.M.1

was created. The software package consists of 6 main sections:

• 8.1.1 Run Editor

• 8.1.2 Optimiser

• 8.1.3 Network Tester

• 8.1.4 Results Analyser

• 8.1.6 Face Explorer

• 8.1.5 Image Tool

See the appendix for a detailed explanation on E.N.F.O.R.M.

4.4 Testing Methodology

4.4.1 Creating a test set

The basis of all the research in this project are the training sets used during
the optimisation and the testing sets used to verify the results. It is therefore
prudent that these sets are designed to a high standard before any experiment
is performed.

The F.E.R.E.T. Database The source of all the facial images for this ex-
periment were from the F.E.R.E.T. database held at the NIST website [6]. It
contains over 800 facial images that are catalogued with text files describing
them. The database has a great variety of faces to use in facial recognition
and contains people of many different ethnicities, ages and genders. The first
step was to collate all the text files that described each photo and put it into
an SQLite database so that they could be organised properly. The resulting
database was used by the face explorer tool (See 8.1.6) to allow the organisa-
tion of images into sets.

The Non-facial Images Most of the non-facial images were sourced from a
website called ’Easy Stock Photos’. The photos are public domain and therefore
able to be used in this experiment without paying royalties. There were approx-
imately 800 images in this collection which coincided with the amount of faces
in the F.E.R.E.T. database well. There were thirty five categories of images
which gave a great variety to the set. There was a large diversity between each
image in every category also which helped to avoid over training. There were
also some other photos added such as game screen shots and photos of objects
that look roughly like faces in an attempt to produce higher quality results. The
full list of image categories is listed in the appendix on page 22.

1E.N.F.O.R.M.is an acronym representing Experimental Neural Facial recognition Opti-
misation Reporting and Management.

5 RESULT ANALYSIS 9

Organising the images into sets To create high quality training and test
sets, the images need to be split in an effective way. Simply splitting the set of
images in half would result in biases within each set. For example, the training
set might consist of only men and the testing set of only women. This kind of
situation was avoided in this project by separating the images into categories
and splitting them. When splitting the face images, first the faces with glasses
(as there were only a small number of them) were taken out and split. The
same thing was done for faces with beards and mustaches. The remaining faces
were split into male and female, and then each ethnic group was split into each
set. When creating the set of non-facial images, each category was simply split
in half.

Creating the baseline Before the experimentation could start a target needed
to be specified otherwise the each experiment would run forever. For the pur-
poses of this experiment it was decided that the ability to correctly recognise
the images 100% was unachievable considering time constraints and the number
of experiments that needed to be performed. A target of 99.5% success was de-
termined. Converting this into a minimum error of 0.005, the target mean error
squared was set to 0.0052 = 0.000025. To create a baseline to work off, both
algorithms were run on default settings and the first one to reach the minimum
mean squared error was taken as the benchmark.

Running experiments Once the benchmark was created, experiments were
performed to try and get the other algorithm to perform at least as well as the
benchmark. The actual experiments that were performed are outlined in the
Result Analysis section. All experiments were averaged over ten runs.

5 Result Analysis

5.1 Determining the benchmark

For the first experiment, the images were scaled to 20x30 pixels with nearest-
neighbor resizing. The image was sampled as 5x5 grid resulting in 25 hidden
nodes. The total number of dimensions equated to 651. When the two al-
gorithms were run on default settings, back-propagation out performed PSO
by a large margin. After an average of 10 runs, back-propagation was able to
reach the target MES in around 2 minutes and 23 seconds. Back-propagation
was defined as the benchmark and the following experiments involved trying to
improve the performance of PSO.

5 RESULT ANALYSIS 10

BP Parameters
Learning rate 0.3
Jitter Epoch 73
Jitter Noise Limit 0.03

PSO Parameters
pMin -1 pMax 1
d 651 p default
p 62 w default
k default c default

Figure 1: The parameters for the first experiment.

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120 140

MES

Time (seconds)

PSO

0.0001

0.001

0.01

0.1

0 20 40 60 80 100 120 140

MES

Time (seconds)

Backpropogation

Figure 2: The initial runs. Note the scale differences between graphs.

5 RESULT ANALYSIS 11

5.2 Reducing image size

After the network was optimised by back-propagation it was tested on the train-
ing set to determine if it resulted in a high quality adaptable network. On
average it recognised a face successfully 98% of the time and recognised a non-
facial image 99.93% of the time. These are very good results and show that
back-propagation produces high quality results as well as performing well.

It was believed that the large amount of dimensions may have been causing
the PSO to perform poorly. The images were re sized to 18x12 pixels which
was deemed the minimum to still have recognisable features. The edges of the
image were also cropped to cut out the neck region and to remove some of
the redundant white space around the edges of the faces. This decreased the
amount of dimensions down to 289. This slowed down back-propagation to
about 3 minutes and 3 seconds to reach the target MES. The performance of
PSO reduced slightly.

Minimum fitness
Back-propagation 0.000025

PSO 0.163258131

Figure 3: Minimum fitness after 3 minutes and 3 seconds.

5.3 Experimenting with parameters

After that, it was decided that the parameters for PSO would need to be changed
from the default. Many different experiments were run with the results listed
below.

0.1

0.12

0.14

0.16

0.18

0.2

0 100 200 300 400 500 600

MES

Time (seconds)

62 Particles (Default)
124 Particles
200 Particles

Figure 4: Experiments with different particle sizes.

5 RESULT ANALYSIS 12

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 100 200 300 400 500 600

MES

Time (seconds)

c = default
c = 0.5
c = 0.9

Figure 5: Experiments with different c values.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 100 200 300 400 500 600

MES

Time (seconds)

Local Best
Global Best

Figure 6: Experiments with LBest and GBest topologies.

5 RESULT ANALYSIS 13

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 100 200 300 400 500 600

MES

Time (seconds)

-1,1
-25,25
-50,50
-75,75

-100,100

Figure 7: Experiments with different bounds.

As shown in these graphs, the results were very erratic. It appeared strange
that the results improved with greater bounds on the particles. Considering that
the search space of the problem is exclusively within the limits of neural network
weighting (-1 to 1), the particles shouldn’t be moving outside this range often.
Also, the shape of the graphs seemed odd, with sudden jumps in fitness and
then no improvement for long stretches of time. Code was written to determine
how many particles were going out of bounds on each iteration and some runs
were measured. Over the course of a standard PSO run with default parameters,
it was found that on average about 1000 out of bounds were occurring every
iteration. From this, the conclusion was drawn that the particles may be over
excited and that they may need some dampening. Experiments were done by
reducing the value of ω in increments of 0.1 until the best performance was
found. It was found that the best value for ω is 0.2. The graph was also a much
better shape, with constant improvement rather than erratic jumps in fitness
but it still didn’t come close to back-propagation in performance.

5 RESULT ANALYSIS 14

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600

MES

Time (seconds)

0.5
0.4
0.2
0.1

0

Figure 8: Experiments with different values of ω.

What is interesting is that even when ω was set to 0, the algorithm still
functioned almost as well as when all the other values were used. With ω set to
0, random exploration is effectively disabled and the swarm moves only by the
influence of its own personal best and the influence of its neighborhood.

5.4 Velocity Constraints

A paper by Xiaorong Pu et al [7] uses velocity constraints to try and reduce
premature convergence, alleviate the effects of dimensional increases and prevent
the particles from going out of bounds. The paper reported success with this
method, so the PSO algorithm for this project was modified slightly.

On every iteration each particle was checked for velocities that exceeded a
set maximum vMax. If a certain dimension of a particle was exceeding vMax
it was clamped to the average absolute velocity vaverage of every dimension of
every particle.

vaverage =
1

M ∗N

M∑
i=1

N∑
i=1

(|vij |) (4)

Where:

M = Is the size of the swarm.

N = Is the number of dimensions.

i = Index of the particle.

5 RESULT ANALYSIS 15

j = The dimension of the particle.

v = Velocity.

After running experiments with the value of vMax from 0.2 to 1.4 in incre-
ments of 0.2, the best performance was found with 0.2. The values of 0.1 and
0.15 were then tested. The most interesting results are graphed in figure 9.

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600

MES

Time (seconds)

0.15
0.2
0.4
0.6
0.8

Figure 9: Experiments with different values of vMax.

This shows that the velocity clamping did improve the performance of PSO,
but still not enough. The results are very similar to the best result in figure 8
when χ was set to 0.2. Next experiments were run that used velocity clamping
with a χ value of 0.2.

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600

MES

Time (seconds)

0.2
0.4
0.6
0.8
1.0

Figure 10: Experiments with different values of vMax when χ = 0.2.

It seems that combining the best value of χ found so far (0.2) with vMax
clamping resulted in no net gain, as seen in figure 10. The results seemed to
bunch together, most likely because the random factor was reduced.

6 DISCUSSION 16

6 Discussion

From these results, it seems that Particle Swarm Theory is not an ideal choice for
training neural networks of this magnitude. Out of all the papers cited in this
study, not one had anywhere near the amount of connections in their nueral
networks that this projects did. Generally, experiments that train a neural
network with PSO involve a fraction of the amount of nodes and connections
that this experiment does [5,10,13]. Although there may still be a way to modify
PSO to make it competitive with back-propagation, it was not found in these
experiments.

It seems that when PSO encounters a problem with an excessive number of
dimensions, the particle velocities can go out of control and need to be dampened
so that the problem is explored correctly.

An interesting point of further research would be to change the PSO equation
to use the error gradient at each connection to influence the particles. This
would make the particle swarm more informed and would combine the best of
both worlds.

7 Conclusion

Back-propagation, for all its simplicity and antiquity still seems to be a very
effective way to train neural networks with an unusually large number of weights.
Particle Swarm Theory still needs improvements so that it is able to handle
problems that are highly dimensional such as large neural networks. The next
step would be to investigate ways to improve PSO and the work undertaken in
the project would be a good benchmark for this type of reasearch.

8 APPENDIX 17

8 Appendix

8.1 E.N.F.O.R.M.Research Tools

8.1.1 Run Editor

Figure 11: The E.N.F.O.R.M. run editor.

The run editor is where each experiment is designed and the images processed
in preparation for the optimiser. There are 2 main sections of the run editor:
Test Data and Optimisation.

Sources The images are added either manually or from a set generated by
the Face Explorer explained in 8.1.6 . The global size of the training images is
selected here, along with the option to crop or stretch images of different aspect
ratios.

Pre-processing Options can be selected here to apply processing to each im-
age in the the training set before they are used. Stretch contrast and histogram
correction are commonly used as they normalize the lighting slightly and bring
out a better contrast which helps with smaller images.

Input Groups The way that the image is divided up into hidden nodes is
defined here. A grid, which is type of input group used in this project, slices
the image both horizontally and vertically and sends the input from each grid
location to a hidden node. Horizontal and vertical input groups only cut the
image up in one direction creating slices that are attached to hidden nodes.

Global Parameters These parameters apply to both types of optimisation
and simply impose limits to the execution of an experiment so that it doesn’t
run forever. The values chosen for these are further explained in 4.4. The
buffer size is how many iterations are stored in memory before the experiment
is paused and the data is flushed to disk.

8 APPENDIX 18

Back-propagation These parameters control how back-propagation will func-
tion during a run. The learning rate parameters adjust the learning rate of the
back-propagation algorithm and can be fixed or vary during the run according
to a function of the number of performed iterations. The function of learning
rate is further explained in 4.2.1. The jitter epoch is the number of iterations
between applying jitter to the neural network and the noise limit is maximum
amplitude of the noise applied to the neural network. Jitter is further explained
in 4.2.1.

PSO These parameters control how PSO will function during a run. They
map directly to the parameters mentioned in 4.2.2.

Save/Load This is where you save or load an experiment that has been de-
signed. Upon saving the images are re sized, cropped, preprocessed and embed-
ded in the experiment file so that it is portable.

8.1.2 Optimiser

Figure 12: The E.N.F.O.R.M. optimiser.

This where the neural network is optimised and the results stored back in the
experiment file.

File list The experiment files are added here to be added to the queue and
facilitate batch runs.

Master properties The number of runs each sets how many identical runs
are added to the optimisation queue for each experiment. The number of threads
sets how many simultaneous runs the optimiser can process. It is limited by the
amount of available processors (or cores) available in the system as any more
threads than this would result in no performance gain and create instability
in the results due to unpredictable scheduling by the operating system. The

8 APPENDIX 19

number of threads is actually limited to 1 less than the available processors as
1 processor is reserved for co-ordinating the other threads and the UI thread.

Thread info These are mainly self-explanatory, each thread has it’s own tab
with info on the current run it is processing.

Save batch file The optimiser has the ability to save the file list and master
properties to a batch file that can be imported by the command line version of
the optimiser. This is used for running an optimiser on headless systems such
as through ssh terminals.

8.1.3 Network Tester

Figure 13: The E.N.F.O.R.M. network tester.

The network tester simple allows you to test the results of the optimisation runs
on specific images or testing sets generated by the Face Explorer (see 8.1.6). This
tool is mainly for quickly testing if a run was successful and does not generate
the final results used in this report.

8 APPENDIX 20

8.1.4 Results Analyser

Figure 14: The E.N.F.O.R.M. results analyser.

The results analyser goes through every run in an experiment file and averages
them, and dumps the result in a text file that can be opened in a spreadsheet
program such as Microsoft Excel or LibreOffice Calc for further analysis.

8.1.5 Image Tool

Figure 15: The E.N.F.O.R.M. image tool.

This tool was used to generate training and testing sets from image categories,
to check images and batch re size images. It also has other general purpose
functions used in the project.

8 APPENDIX 21

8.1.6 Face Explorer

Figure 16: The E.N.F.O.R.M. face explorer.

Face explorer allows you to access the F.E.R.E.T. database and create training
and testing sets.

The face browser on the left side allows you to select different subject IDs
so you can view them and also any associated information. The left tick box
designates that the image is part of the training set and the right tick box
denotes the converse.
The query box is used to filter the subjects on their properties. The syntax is
identical to an SQL where clause.
An example of such a query could be:

gender = ’female’ and yob <1950

This would select all female subjects with a year of birth that is less than 1950.
You can also use LIKE statements to wild card parameters.
For example:

gender like ’ma%’

This example would return all male subjects as the % symbol acts as a wild
card which extends the ’ma’ to male. As you type the face browser is updated
dynamically.

The select alternate button selects every alternate check box so that half the
faces are put into the training set and the other half into the testing set.

8 APPENDIX 22

8.2 The Set of Non-Facial Images

32 Animals

40 Artwork

35 Attractions

20 Birds

25 Buildings

42 Cars

44 Cities

14 Education

12 Events

9 Flowers

35 Food and Drink

19 Fruit and Vegetables

32 Game Screen shots

46 Icons

10 Indoor Locations

14 Insects

21 Landscapes

8 Music

26 Objects

23 Outdoor Locations

10 People

23 Plants and Nature

7 Scenery

7 Sea Creatures

18 Settings

10 Signs

9 Space

32 Sport and Recreation

35 Structures

9 Technology

65 Things that look like faces

14 Tools Machinery

11 Toys

37 Vehicles

12 Weather

8.3 Code

To impliment the velocity clamping there were some minor modifications done
to the Standard PSO code.2

1 // For every dimension
for (d = 0 ; d < pb . SS .D; d++)

3 {
//Acumulate average v e l o c i t y o f current run

5 lAve += Math . Abs (PSOResult .SW.V[s] . v [d]) ;
//Count D∗S

7 vNum++;

9 //The average v e l o c i t y i s c a l c u l a t e d one i t e r a t i o n be f o re
i f (i t e r > 1)

11 {
//Clamp v e l o c i t y to average

13 i f (PSOResult .SW.V[s] . v [d] > vMax)
{

2The version of Standard PSO used can be found at https://github.com/firestrand/

Standard-PSO

https://github.com/firestrand/Standard-PSO
https://github.com/firestrand/Standard-PSO

LIST OF FIGURES 23

15 PSOResult .SW.V[s] . v [d] = vAve ;
}

17 else i f (PSOResult .SW.V[s] . v [d] < −vMax)
{

19 PSOResult .SW.V[s] . v [d] = −vAve ;
}

21 }
//Update po s i t i on

23 PSOResult .SW.X[s] . x [d] = PSOResult .SW.X[s] . x [d] + (PSOResult .
SW.V[s] . v [d]) ;

}
25

. . .
27

//After i t e r a t i o n complete c a l c u l a t e average
29 vAve = lAve / (double) vNum;

8.4 List of figures and bibliography

List of Figures

1 The parameters for the first experiment. 10
2 The initial runs. Note the scale differences between graphs. . . . 10
3 Minimum fitness after 3 minutes and 3 seconds. 11
4 Experiments with different particle sizes. 11
5 Experiments with different c values. 12
6 Experiments with LBest and GBest topologies. 12
7 Experiments with different bounds. 13
8 Experiments with different values of ω. 14
9 Experiments with different values of vMax. 15
10 Experiments with different values of vMax when χ = 0.2. 15
11 The E.N.F.O.R.M. run editor. 17
12 The E.N.F.O.R.M. optimiser. 18
13 The E.N.F.O.R.M. network tester. 19
14 The E.N.F.O.R.M. results analyser. 20
15 The E.N.F.O.R.M. image tool. 20
16 The E.N.F.O.R.M. face explorer. 21

References

[1] Scott E. Fahlman. An empirical study of learning speed in back-propagation
networks. Technical report, 1988.

[2] Julius Gatune and Aryn Thomas. A look at facial recognition.

[3] M. Gori and A. Tesi. On the problem of local minima in backpropagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:76–
86, 1992.

REFERENCES 24

[4] D Nguyen and B Widrow. Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights. International
Joint Conference on Neural Networks, 3:21–26, 1990.

[5] John Paul, T. Yusiong, and Prospero C. Naval. Training neural networks
using multiobjective particle swarm optimization.

[6] P. Jonathon Phillips, Hyeonjoon Moon, Syed A. Rizvi, and Patrick J.
Rauss. The feret evaluation methodology for face-recognition algorithms,
1999.

[7] Xiaorong Pu, Zhongjie Fang, and Yongguo Liu. Multilayer perceptron
networks training using particle swarm optimization with minimum veloc-
ity constraints. In Derong Liu, Shumin Fei, Zeng-Guang Hou, Huaguang
Zhang, and Changyin Sun, editors, Advances in Neural Networks - ISNN
2007, 4th International Symposium on Neural Networks, ISNN 2007, Nan-
jing, China, June 3-7, 2007, Proceedings, Part III, volume 4493 of Lecture
Notes in Computer Science, pages 237–245. Springer, 2007.

[8] Henry A. Rowley, Student Member, Shumeet Baluja, and Takeo Kanade.
Neural network-based face detection. IEEE Transactions On Pattern Anal-
ysis and Machine intelligence, 20:23–38, 1998.

[9] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education, 2003.

[10] Ganesh K. Venayagamoorthy Salman Mohaghegi, Yamille del Valle and
Ronald G. Harley. A comparison of pso and back-propagation for train-
ing rbf neural networks for identification of a power system with statcom.
volume 5 of Acoustics, Speech, and Signal Processing, 1991. ICASSP-91.,
1991 International Conference on, pages 3321–3324. Institute of Electrical
and Electronics Engineers, 2005.

[11] Inc. The MathWorks. Neural network toolbox - limitations and cautions [of
back propogation]. http://www.kxcad.net/cae_MATLAB/toolbox/nnet/

backp32a.html.

[12] Xin Yao. Evolving artificial neural networks, 1999.

[13] Masood Zamani and Alireza Sadeghian. A variation of particle swarm
optimization for training of artificial neural networks. Computational In-
telligence and Modern Heuristics, 2010.

[14] Zongmei Zhang, Zhifang Sun, and Hiroki Tamura. Local linear wavelet neu-
ral network with weight perturbation technique for time series prediction.
In CSSE (4)’08, pages 798–801, 2008.

http://www.kxcad.net/cae_MATLAB/toolbox/nnet/backp32a.html
http://www.kxcad.net/cae_MATLAB/toolbox/nnet/backp32a.html

	Abstract
	Introduction
	Literature Review
	The Model
	The Artificial Neural Network
	The Algorithms
	Back-propagation
	Particle Swarm Optimisation

	Research Software
	Testing Methodology
	Creating a test set

	Result Analysis
	Determining the benchmark
	Reducing image size
	Experimenting with parameters
	Velocity Constraints

	Discussion
	Conclusion
	Appendix
	E.N.F.O.R.M.Research Tools
	Run Editor
	Optimiser
	Network Tester
	Results Analyser
	Image Tool
	Face Explorer

	The Set of Non-Facial Images
	Code
	List of figures and bibliography

