S

L

&
3

g
R
Sbip:

2
N CL S
e'%‘e“‘“‘“ ‘ﬁa
~==CO es= u'ls

/
v
rver

L 3
in
™~

S,
&

]
i
=

2
e S

°

fia )

© Rob Hulsebos

September 2018



About the author

Author Rob Hulsebos has been involved with industrial networks since their beginning in 1993. He studied
Computer Science with a specialization in data communication. Working as a software-engineer for a PLC
vendor, he made implementations for Profibus, AS-Interface, Bitbus, Ethernet, TCP/IP, various proprietary
protocols, and several Modbus versions.

As of 1998 he has been active as a teacher for Mikrocentrum (Eindhoven, T, herlands), providing

courses on the basics of industrial networks, Profibus and industrial Et for more than 3500 students.
He also publishes about ongoing developments in industrial networki utch trade press, and has

written several books about this subject.

In 2010, Rob found the missing link during the reverse engi
operation of the virus could be explained. Since then, R ersecurity,

where his experience in software-development and the i to improve
industrial products.

But as of 2018 Rob is still using Modbus! | ow implementations of Modbus for

an industrial controls vendor. Customers ng t time still face the same issues as
twenty years ago: lack of documentation. Fo rote a book about Modbus,
despite its popularity. This book is the first at theory of Modbus and

edition; the author welco
Contact the author a

Het Kempke 8, 5

Modbus The Manual Page ii



CHAPTER 1. PAST AND FUTURE 6
THE HISTORY 6
WHERE DO WE FIND MODBUS? 7
THE SPECIFICATION 7
THE MARKET POSITION 8

WHERE CAN | USE MODBUS?
THE FUTURE OF MODBUS

USAGE IN INDUSTRIAL ETHERNET PROTOCOLS

O NO VA WN PR

LITERATURE

CHAPTER 2. VERSIONS

1.  THEFAMILY
2.  DIFFERENCES BETWEEN THE MEMBERS OF THE FAMILY

CHAPTER 3. THE OSI-MODEL AND MODBUS

WHY SEVEN LAYERS?

THE HUMAN OSI| MODEL

IDENTICAL LAYERS

EXAMPLES OF OSI-LAYERS

THE OSI-MODEL IN RELATION TO MODBUS

vk wnN e

CHAPTER 4. THE PHYSICAL LAYER

MISSING PHYSICAL LAYER
RS232

RS422 AND RS485
CONVERSION

W e

CHAPTER 5. DATALI 30
1.  MASTERS AND SLAVES 30
2. 31
3. 34
3. 39
4, 39
5. 39
6. 40
7. 43
8. 44
CHAPTER 6. APPL 47
1.  MobicoN PLC FUNCTIONING AND INTERFACE 47
2.  BIT/REGISTER ADDRESSING 49
3. FUNCTION CODES 51
4. FUNCTION CODE NUMBERING 52
5. RELATION TO THE MODICON PLC MODEL 54
6.  VENDOR CHOICE 55
7.  ERROR HANDLING ON THE MASTER 58
8.  ERROR HANDLING ON THE SLAVES 62
9.  MASTER / SLAVE COOPERATION 65
10.  CONNECTION SETUP 66

Modbus The Manual Page iii



CHAPTER 7. DATA PRESENTATION 68

1. Bits 69
2. INTEGERS / WORDS 71
3.  LONG INTEGERS / DOUBLE WORDS 73
4.  FLOATING POINT 74
5. FIXED POINT 76
6.  SCALING 77
7. CHARACTERS 78
8.  STRINGS 79
9. TiME 81
CHAPTER 8. PROTOCOL CONVERSION 82
1. Mobsus/ASCII To /RTU AND VICE-VERSA 82
2. MobBus/TCP 1o MobBus/RTU 82
3. Mobsus/RTU To MobpBus/TCP 83
4.  ETHERNET TO MopBUS/RTU orR MobBus/ASCII 84
5.  MobBsus 7o CAN/OPEN 84
6. MobBusTo SEMI 85
7.  ETHERCAT WITH MopBUS/TCP 85
8.  ETHERNET/IP TO MoDBUS/TCP 85
9.  ANYTHING ELSE TO/FROM MODBUS 86
CHAPTER 9. PERFORMANCE CALCULATI 87
1.  REMOTE I/O SCANNING 87
2. SIMPLE PERFORMANCE MODEL 90
3. PERFORMANCE MODEL 90
4.  MobBUs/ASCII CALCULATI 92
5.  Mobsus/RTU caLcu 93
6. MobBUS/TCP cALCULA 94
7. NOTES ON PERFORMANCE PR 95
97

97

98

98

99

100

101

101

CHAPTER 11. IN PRA 102
1. COMMON MISTAKES 102
2. VISUAL DIAGNOSTICS ON SERIAL INTERFACES 103
3. THE “OFF BY ONE” PROBLEM 103
4.  REGISTER 9999 AND HIGHER 104
5. SENDERTOO FAST 105
6.  TIMEOUT HANDLING 105
7.  POLLING / SCANNING 106
8. MAXIMUM NUMBER OF MASTERS 106
9.  MAXIMUM NUMBER OF SLAVES 107

Modbus The Manual Page iv



10.
11.
12.
13.
14.
15.

USING BROADCASTS

LIMITS ON THE MESSAGE LENGTH AND THE DATA
NETWORK ANALYSIS

TCP PROGRAMMING MISTAKES

TCP/IP PORT NUMBERS

USEFUL FUNCTION CODE 08 DIAGNOSTICS

CHAPTER 12. CYBERSECURITY

108
108
110
112
114
115

116

i A

WEAKNESSES

MODBUS FIREWALLS
INTRUSION DETECTION SYSTEMS
NEW DEVELOPMENTS

APPENDIX A: RS232

W oK NV R WDN R

10.
11.

APPENDIX B: R$485

ORIGIN

THE PHYSICAL LINK

THE CABLE

THE CONNECTOR

VOLTAGES

BITRATE / BAUDRATE

DATA TRANSMISSION

SERIAL TRANSMISSION FORMAT

PARITY
PROGRAMMING
TROUBLESHOOTING RS232

116
116
117
118

119

A

WO NU R WD R

N
©

ORIGIN
THE PHYSICAL LINK
THE CABLE

THE CONNECTOR

119
119
121
122
123
124
125
125
126
127
127

129

129
129
131
132
132
132
133
133
133
133

Modbus The Manual

Pagev



CHAPTER 1. PAST AND FUTURE

1. The history

The original development of Modbus was done by Modicon in 1979 for use with its own PLC's. Later
Modicon was acquired by AEG which itself was acquired by Schneider, which is still considered the
Modbus Organization
ider launched

‘owner’ of Modbus, even though the intellectual rights were transferred t

(www.modbus.org). Around 2000, with the start of industrial Ethernet
mpetitors, which were in
t still had to develop

Modbus/TCP which became very popular due to the absence of serj
development until ca. 2005. Even then, protocols like Ethernet/

christened the new protocol “IDA” and formed a trade a i called IDA, attracting other
vendors (such as Phoenix Contact), wit
compete with ProfiNet. A first versio
association members could find no co A further, both Schneider
and Phoenix left IDA. This left both compa ! i | Ethernet technology.

Phoenix subsequently joined ProfiNet (Sie i

merged with the Modbus User’s
a few years, the IDA developments were

further. But due't
hackers searching the Internet for industrial equipment to hack. Many studies were made about a
“Secure Modbus”, but nothing much happened. Then in 2015 Schneider released the M580
controller with a version of Modbus called “Secure Modbus/TCP”. It uses the “IPSec” (IP Secure)
protocol, giving authentication of devices and detection of rogue network messages, without

esses in the protocol, Modbus/TCP devices became the #1 target for

sacrificing speed. In August 2018, there was the surprising announcement of the release of the
specification for “Modbus/TCP Security” [MBUSSECURE].

Modbus The Manual Page 6



2. Where do we find Modbus?
Modbus is found in lots of equipment, ranging from very simple embedded devices to PLC’s and
(industrial) controllers and SCADA products. Due to the simplicity of Modbus and the low costs for
electronic parts it is a good fit for embedded devices. In many SCADA systems the Modbus
implementation is often available for free, making it the first choice for smaller industrial systems.
Traditionally this is almost always the Modbus/ASCII or /RTU version, as it can be run over simple
serial ports. For embedded devices Modbus/TCP is also more and more seen, because Ethernet-
implementations have become very cheap.

Modbus is also available in the (industrial Ethernet protocol) called et/IP, as Schneider has
chosen this protocol as its standard “Industrial Ethernet” protoc
existing customers to migrate from Modbus to Ethernet/IP, th m was extended to
also officially support Modbus (also eased by Schneider b

directors of the Ethernet/IP user group).

Modbus/TCP is also often found in devices supportin
implementation of Modbus/TCP can be easily added. Si trial Ethernet protocols (i.e.
ProfiNet) support TCP/IP for all non-real-time tasks, one ca dbus/TCP next to the real-time

protocol.

Finally, we see Modbus/TCP appear in cyk
“firewalls” or “secure router”. This is beca | ices are not properly protected

us traffic, and reject all Modbus messages not
otocols are invulnerable, only that

abbreviations, es it more difficult to read.

The reason for changing the terminology is unknown; it may have to do with historical reasons, or
with marketing reasons, as client/server sounds more sophisticated. Anyway, the change will bring
confusion® to a market which for more than 30 years has learned to live with the master/slave
terminology.

! Personally, | find the effort could have better been spent in changing the ancient Modicon PLC terminology,
like “coils”. Who knows what a coil does nowadays in an industrial controller?

Modbus The Manual Page 7



Before the Modbus User’s Group existed, Schneider was the owner of the specification. The original
specification document is called “PI_MBUS-300”, and can still be found on internet in many places.
For reference purposes, it is also available from www.modbus.org. Although outdated, the

document is surprisingly easy to read, so may be a good starting point for learning about the
Modbus/ASCIl and RTU protocols.

After the introduction of Modbus/TCP, the Modbus User’s Group has rewri
the description of the function codes is now separate from the physical

n the specification, so

pecification. Also, the
specification has been updated with more examples and flowcharts ove ambiguity on how to

process incoming network messages.

Be aware that many Modbus impleme ecifications to
the letter, especially the error handli

4. The market position

market very early, and this helped to boost
were up-and-running, while many other

hed. Also, many questionnaires fail to recognize the distinction between
(for example) Mod odbus/TCP, TCP/IP and Ethernet: if you are a Modbus/TCP user on
Ethernet, which technology should you tick in a questionnaire? And what if you use Modbus/TCP in
Ethernet/IP?

and which ma

The Swedish company HMS publishes a yearly (since 2015) overview of the market shares of
industrial network protocols, based on sales of their own products. In 2015 the serial Modbus was
the 2™ most popular fieldbus protocol (7% market share) and Modbus/TCP the 4" Ethernet protocol
(4%). In 2017, the market shares hadn’t changed much (see figure).

Modbus The Manual Page 8



Industrial Ethernet: 52%
Annual growth: 22%

Other Fieldbus EtherNet/IP
i 15%

PROFINET
12%

Modbus-RTU
6%

PROFIBUS DP

Fieldbus: 42%
Annual growth: 6%

4

arket, i.e. no protocols listed
rotocols that are used in
ed. These are application areas where

P is still listed as the #4 protocol of industrial
rks. Probably the figures would change
uld be counted in.

Modbus The Manual Page 9



Other

FF HSE o7 95
Sercos-3 2.1

EtherCat 3.1
4.2 4

Powerlink ; \ 402 Ethernet

Modbus/TCP 6.4 TCP/IP

Ethernet/IP 139

ProfiNet 14.5 55 Gbit Ethernet

5. Where can I use Modbus?

Modbus is a very general protocol, allo application. | have seen it in

g for use in many s

machinery automation, process contro ildi test systems, ships, press
brakes, safety controllers, etc. After all, tocol doesn’t much care
what the bit is used for.

There is one exceptior ) ! or safety applications, for
example a PLCre as for emergency stops and light curtains.
Why not? The pro i ‘ Ji guarantee that the data sent and received is

rofiSafe (=on top of Profibus/DP), CIP Safety (on top of CIP), Ethercat
unately there is no Modbus/Safety!

Even though Modbus is approaching its 40" birthday, it is still “alive and kicking”. Despite its
simplicity (as compared to modern industrial network protocols), or perhaps because of its

% This publication is not the right place to describe what this extra layer must do, but a book has been written
about safety networks: Reinert, "Sichere Bussysteme fiir die Automation" Hiithig Verlag 2001, ISBN 3-7785-
2797-5 (yes, it is in German).

Modbus The Manual Page 10



simplicity, it is still very popular. It is still being implemented in new devices, due to its low cost
requirements for electronics and software.

Despite this popularity, the Modbus User’s Group is not active in designing new extensions to
Modbus. Modbus/TCP was the last major innovation (and a very successful one at that!).

Surprisingly, Schneider Electronics launched the “M580 EPAC” (Ethernet Programmable Automation
Controller) with Modbus/TCP allowing the use of the “IPSec” (IP Secure). IPSec adds a level of safety
data), authentication

to a network: confidentiality (by encrypting data), integrity (no modificati
ot knowing with whom
part of a TCP/IP network
are encrypted. This

(knowing that you are communicating with the right party), and anon
you are communicating). The M580 does not support all of IPSec; t
message is not encrypted. TCP/IP’s administrative fields in a ne

nown that Schneider was
/TLS). A presentation on
during the S4x17 security
nts. Finally, in August 2018

Version J of the “Modicon Modbus
Protocol Reference Guide” was the
Modbus specification for several
decades. It is still being referenced
by many vendors.

The document is no longer formally
valid; it has been split up in two
separate documents (see below),
describing the physical layer and
application layer.

[MBUSSERIAL] | Modbus_over_serial_line_V1.02.pdf A formalized description of the serial
December 2006 line interface, valid for Modbus/ASCII
and Modbus/RTU.

[MBUSAPPL] Modbus_Application_Protocol_V1_1b3.pdf | The description of all the commands

Modbus The Manual Page 11



(function codes), valid for
Modbus/ASCII, Modbus/RTU and

Modbus/TCP.
[MBUSSECURE] | Modbus/TCP Security The specification of the Modbus/TCP
MB-TCP-Security-v21 2018-07-24 Security protocol.

All documents can be retrieved directly from the website www.modbus.org. Older versions can be

A

found everywhere on internet.

Modbus The Manual Page 12



CHAPTER 2. VERSIONS

1. The family
Modbus is not a single protocol, but a whole family, developed during three decades. Some of them
are still used, others have already disappeared. Here’s an overview (not chronological):

Modbus/ASCII The first version, where the messages are sen dable text (hence the

“ASCII”). Occasionally it is still used.

Modbus/RTU The successor of Modbus/ASCII, abo
overhead. This is still a very popul S$232 or RS485
networks.

Modbus/TCP The “industrial Ethernet” of TCP
and therefor usable on al

Modbus/UDP i atagram Protocol) instead of

ely that devices from different
each other as they will have completely

Modbus/SFB

Iternative name for Modbus/ASCIl or /RTU. It came into being when
bus/2 was developed, and the need arose to distinguish the ‘older’
ions. But the name never caught on.

Modbus/2 (als
Modbus-II)

riginally thought as the successor of Modbus/1, this version was hardly
ever used due to its difficult cabling methodology (RG6 coaxial cable). It
has now disappeared from the market.

Modbus The Manual Page 13



G Maternal
R

Modbus/+ The “ModbusPlus” (sometimes calle
passing protocol on an RS485 wir
its specification was not put in

Schneider systems.
Modbus/SL The name used for serial
Modbus/TCP Security P, released in 2018.

Enron Modbus A variant of | ron for use in the process
industry, sup i nd floating-point numbers

JBus ' % identical to it but with a few

Secure Modbus/ ing the “IPSec” protocol, released by Schneider

odbus/TCP as transport. It uses a special function
transport UMAS-protocol messages in the data part of a

ure”) instead of a physical address (i.e., 00020). By using

bus this way, modern Schneider PAC controllers can use UMAS, while
es without UMAS-support can still use the traditional Modbus

tion codes. Since UMAS is a protocol completely different from

dbus, we will not discuss it in this publication.

In the remainder ofthis publication, we will mainly focus on Modbus/RTU. Where appropriate, the
differences with Modbus/ASCII will be described. Modbus/TCP is itself based on Modbus/RTU, and
where appropriate we will describe the details.

* The specification of UMAS is not publicly available, but on www.lirasenlared.xyz/2017/08/the-unity-umas-
protocol-part-i.html much information can be found.

Modbus The Manual Page 14




2. Differences between the members of the family

Although all are members of the same family, this does not mean that they are “on speaking terms”
with each other. This is usually due to different ways of cabling, network speeds, protocol
implementations, etc. It is best to assume that there is zero compatibility.

Luckily, in practice one doesn’t encounter all the members of the Modbus family, probably only
Modbus/ASCII, Modbus/RTU and Modbus/TCP. These operate more or less identically, so protocol
converters can be bought.

Enron Modbus and JBus are both similar to Modbus/RTU, you shou
Modbus/RTU network with little difficulty.

le to connect thisto a

Modbus The Manual Page 15



CHAPTER 3. THE OSI-MODEL AND MODBUS

Understanding Modbus is not difficult, since the protocol specification is quite small (some 50
pages), compare this to the documents for Profibus, which needs around 600 pages, or Ethernet
(2000+ pages). Nevertheless, it is still a lot of information. The well-known “0OSI 7-layer model” is the
world’s leading reference architecture on networks, and understanding th I-model helps in

understanding how network protocols work.

1. Why seven layers?
A network protocol is sometimes very complex, taking se
describe. Without any logical structure there is no wa

s of pages to

operly design a prot

Application

appeared that 8 would have been be i . Presentation
OSIl-model was not changed. "

The names of the seven layers are standa

the easy-to-remember sentence “All Peopl
Network

Datalink

_, N WD U O~

Physical

One layer highe alink layer, those separate 0 and 1 bits are combined to ‘network
messages’. These bits’belong together, and are delivered as a group on a receiving device. To which
device the message is delivered is determined by a ‘network address’, which must be unique on the
network. Measures are also taken to detect damaged bits (i.e. sent as 0 but received as 1, or vice-
versa). If so, the datalink layer at the receiving device ignores the whole message.

Modbus The Manual Page 16



* Layer 7/ Application

—  Use of the network: email, Y0, web, terminal, file

transfer, efc. Application

+ Layer 6/ Presentation

— Alphabet, notation, units, encryplion, compression.
+ Layer 5/ Session

— Login (& log out).
+ Layer 4/ Transport

- Source-to-Destination contact

—  Reliahility (error detection and reparation).
* Layer 3/ Network

— Sending and receiving multiple network messages over
multiple networks. Network
* Layer 2/ Datalink
— Sending and receiving complete network messages
over one cable
+ Layer 1/ Physical

— All electrical, mechanical, optical, physical, efc. (i.e. Physical
cables, connectors, voltages, transmission speed, elc)
(‘what we can see, feel and measure’).

Presentation

Datalink

= N Wb 0O

At the network layer, we see functionality to transmi rk messages over m networks in a

can also detect er ) 3 ) hem. This is now the task of the transport
ithin certain limits of course). If the repair
action(s) fail, the tra : nown what happened. So the transport error
ave to worry about reliability anymore; if the
epair errors better than the transport layer can

audio and video ream, which must be perfectly synchronous.

The presentation layer takes care of how data is transferred: which alphabet do we use (ASCII,
Unicode, or something else?).How are floating point numbers transmitted? Or strings? Which
mathematical units do we use (kilometres or miles?). Do we send data not-encoded or encoded, and

4 As usual, there are exceptions to this: the so-called “Forward Error Correction” as in Bluetooth, because it is
more efficient in wireless environments with their high bit error rate. FEC corrects errors on the receiver of a
network message, instead of detecting errors and subsequently asking for a retransmission (“Backward Error
Correction” - BEC), which takes more time (but is more efficient in wired networks with a low bit error rate).

Modbus The Manual Page 17



if so, according to which algorithm? Do we compress data or not, and if so, according to which
algorithm?

Finally, at the application layer we see functionality to be used by us: web browsing, email sending
and receiving, file transfer, remote login, gaming, streaming audio, video, network printing, file
sharing, skype, social media, etc. With Modbus, we see here the functionality that we can use: read,
write, and control a PLC, or a remote I/O module, a drive, a terminal, etc.

Note that the application layer is not the application (a mistake m ery often); it provides

services to the application software. For example, a web brow s the application layer

protocol (such as HTTP) to get webpages from a remote se

The OSI-model is often mentioned in presentations abo ina
proper way, leaving the listeners in a state of confusion: w. elevant? | therefor often use an
analogy.

Surprising as it may seem, the OSI modelis also af ion between humans. We

employ exactly the same ways of commu
between humans is also

“software” for this is

+ layer 7/ Application
— Meeting, sales pitch, course, smalltalk,
discussion, etc. Application

* Layer 6/ Presentation

— Common knowledge (i.e. jargon, units, money,
time, trade, company, products, ... Presentation

Layer 5/ Session

— “May! have Mr. / Ms. X onthe phone?”
Layer 4 / Transport

— “Excuse me, canyou saythatagain ?”

— “Didyoumean....?”

“OK, | understand”

Layer 3 / Network

— Thiswe don’t have
Layer 2 / Datalink

— Grammar of alanguage (NL, French, German, Datalink

Network

R NN WS OO

+ Layer 1/ Physical ]
— Vocal chords, ears, 50...20 kHz, air Physical

Starting at the bottom, our human physical layer is mostly the air, over which we talk and listen,
using frequency modulation between some 20 Hz and 20 kHz and with amplitude modulation (speak
soft / shout), via our vocal chords and ears. But this is not the only physical layer we have; deaf
people can transmit sign language with hand movements and ‘read’ this visually, or blind people can
feel Braille script.

Modbus The Manual Page 18



The next higher layer is the grammar of the language we use, which is independent of the physical
layer: Dutch, French, English, German... Humans do not have a network layer; we cannot talk from A
to B with many intermediate humans in between. Messages get garbled and we have no social
system in place that we can use to ‘route’ how a message must be sent onwards to its destination.

The human transport layer exists, and is used to detect errors in communication, although not
always flawless due to the ambiguities in the grammar of our languages. But we can ask a person to
repeat something that we didn’t understand correctly, we can acknowledge messages, we can ask
questions back, etc.

Our session layer consists of the social conventions on how to star ersation, i.e. by “Excuse

please, may |...”, or with colleagues or family members by calli me first, attracting

Chinese, Russian, etc.), how are fractional numbers written ,5), how is time handled (AM:PM
or 24-hours system), etc. In daily life t use these conventions

ame implementations for all seven OSl-layers.

Let’s take ple. Our usual way of communicating (talking/listening) fails if one
person is dea 1 on physical layer must now be found. So write everything on paper,
which the other
script. We can con

an read. Works fine, unless the person is blind. We could then use Braille
e to use the same language (= the higher OSl-layers can still be the same!)

Unless, of course, one person speaks/writes English, and the other Dutch. Despite having a common
physical layer, there is now a mismatch at the datalink and communication is impossible — we
hear/read the other’s messages, but cannot understand them.

Modbus The Manual Page 19



The solution could be for one person to use the other language (= download a 2" protocol layer in
your brain), or to use an interpreter. In both cases there is a translation between languages, and
communication will work.

When using electronic devices, we see exactly the same. A USB-device cannot communicate with an
Ethernet device; the physical layer is different (connector, wire, speed) as is the datalink layer. You
need a converter. Modbus devices also cannot communicate with (say) Profibus devices, as the layer
7 protocol is different. Even when both use RS485 as physical layer, there is not the same
implementation in all 7 layers, so it still is no going to work.

I use this example because | see this going wro
two devices with an RS485 interface, and the
must be possible. But this also depends o,
protocol layers.

very often. A user has
at communication
the 6 other

4. Examples of OSI-layers

When we look at the protocols used in

| layer 7, we see a miliar abbreviations. Not

surprisingly, because we often work applications

ese protocols. Below we give a
few examples, and the tasks done by e

Sending / receiving email: SMTP,

er, getinco

ders, send mail, erase, handle

) o

ile, get file, put file, create directory, delete

Remote I/0xModbus, Profibus/DP, AS-Interface, CAN, ...

Read inputs, set outputs, get diagnostics, write parameter / setpoint, give command,

A device may support multiple application protocols in parallel. A good example of this is your PC/
mobile phone / tablet. It allows web browsing, email handling, video / audio streams, etc. All these

Modbus The Manual Page 20



are handled concurrently by the operating system on the device. Very simple devices probably only
support one application protocol — for example, Modbus!

Examples of OSl-layer 6

Regarding data presentation, one of the oldest is “ASN.1” (Abstract Syntax Notation 1), but this is
seldom used in industrial network protocols. Profibus/FMS used the “FER” (Fieldbus Encoding Rules),
a simpler implementation of ASN.1, but this also has not caught on.

In practice many protocols simply follow hard-coded presentation rules
“Little Endian” format for multi-byte datatypes (in effect saying: “Us

s the “Big Endian” or
handle it!”). Floats and
doubles are encoded as specified in IEEE-754. Strings have many rmats: ASCII, Unicode.

File formats are plenty: ZIP, TIFF, JPG, MP3...

Modbus devices often follow the “Big Endian” format,
represents its data in chapter 7.

always! We will how Modbus

Examples of OSl-layer 5

Layer 5 protocols are relatively unknown, but there are se
Session Protocol), PPTP (Point-to-Poi

ame a few: ASP (AppleTalk

elling Protocol), twork File System), etc.
Examples of OSl-layer 4

DP (both from the TCP/IP family

the bandwidth-constrained modems. Nowadays this is not an issue
anymore.

Examples of O

Each network protocol has a layer 2, so we can name any protocol here: Modbus, Profibus, Ethernet,
USB, ...

Examples of OSl-layer 1
The physical part of a network is what every user sees. Some well-known standards:

RS232, the “serial” interface, also called “COM

Modbus The Manual Page 21



port” on PC’s. Each pin in the connector has a
dedicated function. Voltages uses are in the
range -15V (for a ‘1’) to +15V (for a ‘0’). One data
bit can be sent at a time, hence the name ‘serial’.
Speeds are in the range 110 bit/s up to 115
Kbit/s. Two devices can be connected.

Centronics, the “parallel” interface on PC’s used
to connect printers in the past. Eight data bits can
be sent at a time, hence the name “parallel”. The
speed depends on the electrical handshake
between the two devices.

USB, the “Universal Serial Bus” to connect small

equipment. It can power devices via 2 wires, and
communicate over 2 other wires over a maxi
distance of 5 meter. Speeds are in the range
1,2 Mbit/s to 9,6 Gbit/s.

Ethernet, the high-speed network
PC’s to the LAN.

antennas (and ha
listurbances).

relation to Modbus
Having explainedt -model’s seven layers, it will be a surprise to learn that Modbus does not

specify them all. For example, when we take Modbus/ASCIl and Modbus/RTU:

a) No standard physical layer. Of course every network needs a physical layer, so every Modbus
vendor must choose one. In practice, most vendors use RS232 or RS485, but even then
sometimes two devices cannot work together for differences in their physical layer
implementations.

Modbus The Manual Page 22



b) No network layer. It is not possible to connect two (or more) separate Modbus networks and
make one larger network out of this. If this is needed, it must be handled by the application
software itself.

c) No transport layer. As a consequence, error detection and error repair automatically
become the responsibility of the application software.

d) No session layer. It is not necessary to “log in” on a Modbus device — if two (or more) devices
are on the same physical network, they implicitly trust each other and can communicate
with each other.

e) No presentation layer. This becomes the responsibility of the a on software.

And in Modbus/TCP:

a) No physical layer. In practice this will usually be the Et

b) No datalink layer. It is not necessary for Mo

Ethernet datalink protocol use
c) No session layer (see above).

Modbus The Manual Page 23



CHAPTER 4. THE PHYSICAL LAYER

1. Missing physical layer

Modbus/ASCII and Modbus/RTU

The serial Modbus versions do not specify which physical layer must be
strange, since every network (Modbus and all others alike) require a
coax cable, fibre-optic cable, infrared, twisted-pair, wireless radi
communicate, both must have the same physical layer imple . e Modbus does not
two Modbus

r the network. This is
al layer: a copper wire,
der for two devices two

implementation cannot communicate with anyone el prove
the sales figures for such a device. Therefore, most Modb i se one of the following physical
layers:

- RS232. The simplest version e
- RS422/RS485, 2-wire or 4-wire.

up with 3 or 5 wires instead.

P N
RS232 RS485, 2w RS485, 4w

essary, so one can end

arked “M” is ‘master’ of the network; the devices marked “S” are the slaves. These

roles are edin mo tail in the next chapter.

Which physical ice implements is normally found in the documentation. An example:

Modbus The Manual Page 24



Industrial Ethernet V\;aidmi.illar Interface GmbH & Co. KG
IE-GW-MB-2TX-1RS232/485 e

D-32758 Detmold

Technical data

Serial signals

RS-232 TxD, RxD, RTS, CTS, DTR, RS-422 TxD+, TxD-, RxD+, RxD-,
DSR. DCD, GND GND

RS-485 2-wire RS-485 4-wire TxD+, TxD-, RxD+, RxD-,
Data+, Data-, GND GND

Modbus/TCP
Modbus/TCP also doesn’t specify a physical layer. It does
that is capable of handling TCP, in practice this is usua
Ethernet), ADSL (telephone line), fibre-optic cable,
internet, etc. This gives enormous flexibility in using

ve to; it runs hysical layer

rnet, but it can als

able, microwave, satellite,

Theoretically, you could allow communication between t CP devices via internet, one at

home and the other at the south pole effort as connecting two

Modbus/TCP devices in a factory (exc the device i on the south pole).

2. RS232

RS232 (Recommende i physical [ayers still in use in industrial
automation. The fi 60’s for the purpose of connecting terminals to
modemes. In the ” port on a PC, for connecting equipment

e popularity of RS232 declined rapidly, due
d higher-speeds. But for industrial

an often-used interface, due to its low cost and

data
T S e - T
= > =
G G

The maximum distance that can be achieved with RS232 is often specified as only 15 meters. It is a
little-known fact that this distance depends on the electrical characteristics of the cable; with so-
called “low impedance” cable distances of 50 meters and more can be achieved.

Modbus The Manual Page 25



RS232 is a low-speed link: allowable bitrates start at 50 bit/s, maximum bitrate is 115200 bit/s, but
many devices support only 19200 or 38400 or 57600. In order for two devices to communicate, they
must have a common bitrate.

More information
Appendix 13 gives more detailed information about R$232.

3. RS422 and RS485

RS485 is a very commonly used physical layer for industrial networks ot only used in Modbus,
but also in popular protocols like Profibus. In contrast to RS232, R uch better suited for
industrial applications, as it allows for much longer networks ( r), more devices

(usually maximum 32, sometimes even 64 or 128) and hig

which devices can be attached
ich make that there are rules
network: trunk length,
les will cause

pesn’t function at all.

RS485 exists
Nowadays, mos

, one using two signal wires, and another using four signal wires.
o-wire version is used, but sometimes one encounters the four-wire

version.

Connecting two-wire RS485 devices to four-wire RS485 devices may not always
work, due to the four-wire devices hearing their own transmissions back. Ask the
vendor of a four-wire device to find out whether it may be connected on a 2-wire
network.

Modbus The Manual Page 26



Filtering out noise

A good reason for using RS485 in industrial application is that it very resilient to electrical
disturbances caused by EMC, due to the “balanced transmission” technique. All data is sent over two
wires, and the voltage difference between the two wires determines whether a ‘0’ or a ‘1’ is sent /
received. Electric disturbances influence the voltages on both wires in an equal amount, so the
voltage difference remains the same, in effect cancelling out the noise. This behaviour makes RS485
especially capable

VN
i z.00v 2 2.00v 165/s +52082 S00%2/ ’ £2 STOP

g2 Do fus et o B et o pp bR R

(below). Large amount of nois

The connector
In [MBUS300] no specification was given a the later [MBUSSERIAL],
both the well-known R14i i ector are described.
FRONT TP
1 8 8
Common ——¢
Do —t
D1 —1

Is on hS connector for the two-wire RS485 version.

in the last decade for use with non-Ethernet networks, due its small
ng (thanks to Ethernet). On a device, always the female connector is
found. Unfor s often confused as being the Ethernet-interface of a device, which

doesn’t have to ore confusing is that for Modbus/TCP devices it is the Ethernet interface.

The 9-pin sub-D connector can be found in either its male or female version.

Modbus The Manual Page 27



Female (Front view) Male (Front view)

P

T R R 1, 2 & 4
Qg O 0O 0 O ¢ & o o

©\[3785 8]/©| |@\[374 3 §|/@

DO D1 Common Common D1 DO

than the RJ45 or 9-
on a device, it may still
g large Modbus networks

Note that many vendors have decided to use other conn
pin sub-D. And even when one of these connectors is
be that the signals are on different pins. This mak
always a time-consuming task.

More information
Appendix 14 gives more detailed information abou

4. Conversion
Sometimes, a device has a R$232 inte

ust connect vice using RS485 (of vice-
versa). This is not directly possible, due t : differences. verter is necessary, which

are readily available on the market.

Also increasingly com eed to con
RS232 or RS485. Thi sy s there are
the market.

port to a Modbus device using

supply

quire an external power-supply, as they can get power from USB (5V /
ed RS232 modem control output signals. This is very useful especially as no
additional power supply is needed (and associated 110/230V outlet), but it also has its drawbacks,
which are often not well described.

0.5A) or from any

So take care when using RS232/RS485 converters:

- Due to the limited amount of power, it is not possible to have a 32-device network and
running at very high speeds and over long distances. Usually you can have only one of these
three.

Modbus The Manual Page 28



- On laptops, RS232 signals are often at -9V or +9V, instead of the maximum -15V / + 15V. This
further limits the capabilities on RS485.

- The smallest converters have no space for a galvanic isolation between the RS232 and RS485
electronics. This means that when there is a voltage spike on the RS485, the RS232
electronics may get damaged, as could be the motherboard (usually a PC or PLC).

- The modem control signals cannot be used.

In any permanent system, the author recommends the
galvanically isolated converters.

externally powered,

Fibre optic converters
When there is a need to cover longer distances than ic converters
is a good solution. Usually they are used in pairs, s
unmodified at the second converter. This is done co
network protocol, including Modbus/ASCIl or /RTU.

TRENDndg

B IR L RAT

21
@RIV ERTER

Modbus The Manual Page 29



CHAPTER 5. DATALINK LAYER

The Modbus datalink layer specifies the (binary) format of the network messages, the speed with
which messages are transmitted, the way devices operate on the cable and how errors are detected
(but not repaired).

1. Masters and slaves

On any bus-wired network (like RS485), there must always be a mechanismito prevent multiple
devices transmitting at the same time. Modbus implements the so-called “master/slave” algorithm
to prevent simultaneous transmissions from multiple devi€es.Jlt works as follows:

- Onthe network, exactly one device is designatedto execute the “master” role.
Usually this is a PLC, or a PC, or an intelligent device.

- All other devices on the network execute the “slave? role.£very slave needs a (unigue)
network address, set by the user.

The cooperation between the master and the slaves is as follows:

- The mastertransmits a network message, meant for exactly one slave. This is indicated in
the network message by the “slave address” field (see below).

- All slaves receive this network message.

- Every slave compares the “slave address” field in the network message to its own slave
address (as configured earlier).

- If there is no match, a slave ignores the network message completely.

- If there is a match, the slave must execute the command in the network message.

Modbus The Manual Page 30



- Inthe meantime, the master is waiting for the answer (it may not send any other network

message until the answer is received).
- When the slave is ready, it sends an answer back to the master.
- The master processes the answer, and can then start again.

By this way of working, there can always be only one active transmitting device on the network; the

master and the slaves alternate.

Why is this important? Remember that on the RS485 Modbus versiéns,all devices share the
same network cable. Having multiple devices transmit at the s e would mean that
they disturb each other’s traffic. On RS232 this cannot occu, o the separate RX/ TX
lines, but one cannot have more than one device anywa us/TCP it should
theoretically be possible to have multiple devices activ .. if only the

software would support it!
This very simple way of working has some serious

- The master plays an important role on a Mod

network stops.
- The master must wait for an anSwe . low in answering, the master is

connotation of the terms master and slave, the Modbus User Group has
he terminology used today is that Modbus is a “client/server” network.
ing of Modbus is not changed at all!

changed the spe
Luckily, the way o

2. Network addresses

As on any network, devices must have a unique ‘network address’, sometimes also called ‘slave
address’ or ‘unit identifier’. This is needed because every device hears all transmissions of all other
devices; how can a slave know which message is destined for him? Therefore a network address

Modbus The Manual Page 31



must be set on a device. Modbus only requires network addresses for slaves; a master doesn’t need
one.

The network addresses must be configured on all slaves before they are switched on. How this is to
be set, may be determined by the vendor of the device(s). Note that each slave address may be used
only once on any network; it is a gross error to have two (or more) devices with the same address!

Network addresses in Modbus are 8 bits in size, so can have the value 0..255: However, the Modbus

specification mentions:

- Address “0” is meant for commands sent as ‘broadcast’ (s
- Addresses 248..255 are reserved for “future extension ensions have not
been written for more than 30 years. Therefore, s e of these network

addresses.

A “broadcast” is a special feature of Modbus. Whe
where normally the slave address is used, the messa
slaves on the network.

After having received a broadcast, a s

tted” notation, for example: 172.16.5.35. These addresses are normally
istrator, either a “static” (fixed) setting known at power-up, or a
P-address is assigned on request by a DHCP server available

Modbus The Manual Page 32



IP address

["192.166.100.100 |

Slave ID First Register Mo, of Regs

f(s0001 ]| $ 10

only point-to-point communication.

Additionally to the IP-address, any Modbus/TCP server m
allowing concurrent usage of multiple network proto
the range 1..65535) indicates which protocol is use
incoming messages on to the right protocol handler.
webservers. Modbus/TCP uses port 502. The number 5

authority (on request of Schneider). I

IANA B
Port TCP #+# UDP ¢ m ¥ Description +
status'

Reserved | Reserved | Official

0 In programming APIls (not in communication between hosts), uests a system-allocated
N/A NIA Unofficial . ngﬁ] ¢ ). req =Y
(dynamic) port"
¥’ . TCP Port Service Multiplexer (TCPMUX). Historic. Both TCP and UDP have been
1 Yes Assigned | Official

assigned to TCPMUX by IANA.™ but by design only TCP is specified.®

Remote Job Enlrym was historically using socket 5 in its old socket form, while MIB PIM

5 Assigned | Assigned | Official B ) ) ) )
has identified it as TCP/5® and IANA has assigned both TCP and UDP 5to it
7 Yes Yes | Official Echo ProtocofI"™
Yes, and 5 S 2]
1 es Official Discard Protocol
g scTp!
No Yes | Unofficial | Wake-on-LAN™
Yes Yes | Official Active Users (systat service) 1'%
Yes Yes | Official Daytime Protocol™®
Yes No  Unofficial | Previously netstat servicel™'
Yes Yes | Official Quote of the Day (QOTD)"™
Yes Yes | Official Message Send Protocoll *I'
Yes Yes | Official Character Generator Protocol (CHARGEN)ZY!
Yes, and : i . 10
scTP!M Assigned | Official File Transfer Protocol (FTP) data transfer’

Yes, and . _
geppit | Assigned | Official sfer Protocol (FTP) control (commangd)l™ E 1122
i . curity Association and Key Management Protocol (ISAKMP) / Internet Key
500 Assigned | Yes | Official a
E lge (IKE)'
502 Yes e Official Modbus Protocol
504 Yes Yes Official Citadel, multiservice protocol for dedicated clients for the Citadel groupware system
510 Yes Yes | Official FirstClass Protocol (FCP), used by FirstClass client/server groupware system
Yes Official Rexec, Remote Process Execution

512

Yes Official comsat, together with biff

Some vendors allow different ports (i.e. 503 or higher) but in most cases their usage is completely
unnecessary. The port is chosen on each server, and may be set to the same value on all devices on a
network.

Modbus The Manual Page 33



For outgoing Modbus/TCP traffic, a port on the master is also needed. Normally this is automatically
assigned by the TCP/IP protocol stack; it does not have to be configured by the user.

3. Message formats
Modbus has a message format not unlike all other datalink protocols. A network message consists of
three parts:

- a“header” with administrative information, followed by ...
- the “data” section in which the user-provided data is kept, a
- atthe end a short “trailer” (also called: “footer”) which is etect any damaged bits

while the message was in transmission.

VN
Header Data Trailer
Destination Your data! To detect that no bits have
Sender been damaged in transmission
Amount of data
Other admin. details

Modbus has three
for Modbus/TCP.

Modbus/ASCII, one for Modbus/RTU, and one
function code is used (see chapter 6).

Modbus/ASCII

ch sends a message;
art (of a variable length);
sum” (explained below);

> Theoretically, Modbus/ASCII allows the LF character to be set to a character more to your liking with a special
command. The author has never seen this used, however.

Modbus The Manual Page 34




Except for the starting colon, the carriage return and the line feed, Modbus/ASCII has a unique
method of transmitting the characters (bytes) in a network message, unlike any other network the
author has ever seen. It goes as follows:

- Each byte (8 bits) is split in two “nibbles” of 4 bits each.

- Each nibble, with a binary value in the range 0000...1111 (= decimal 0 to 15) is seen as a
hexadecimal value coded with the hexadecimal digit: 0123456789ABCDEF.

- Each hexadecimal digit is converted to the corresponding ASCll-code for that character. The
ASCII table uses 7 bits characters. So, bits 0000 are translated to which has ASCII value
(hex)30. Bits 0001, digit 1, have ASCII value (hex) 41. Bits 101 A, becomes ASCII value
(hex)41. Etc.

register) and “nr” (number of registers to read):

muuuuu‘
TTTT T

LLLLLLLI o
ANNNNNNN

Add :
and CRLF
g B
s |[Thits|p |s Transmission

on the line
On th ivi ices, everse translation takes place: the ASCll-characters are converted
back tot two successive nibbles are stored in a byte. All bytes following the
colon are as en the CR LF is received the message is complete and can be sent up (in

the protocol sta ther processing.

Modbus/RTU
The Modbus/RTU format is slightly different:

- There is no dedicated starting character; the message just starts with the slave address
(same function as above);

- Next comes the data part (of a variable length);

- Next comes the “CRC” (Cyclic Redundancy Check, explained below);

Modbus The Manual Page 35



- And the message ends when no more data comes for at least the duration of (the
transmission time of) 3.5 characters.

CRC 3.5 character

silence

When a message is in transmission, there may not be more than 3.5 charac
any two characters in the message. If this occurs, the receiving devices
of the message, and start processing all data received so far. Becaus
will be ignored.

r time silence between
rpret this as the end
essage is not complete, it

DooEEERN

3,5 character pause

Cyclic Redundancy Check l

N
sadrI 03 I arh I arl I nrh I nrl I crchI crcl I' pause
'_.s E 0,‘." \

s |8 bits| p sI

startbit (1) /" / \ "\ Stopbit (1 or 2)

Databits (8) Paritybit (0 or 1)
\ 4

Modbus/ASCII and Modbus/RTU is substantial. From the

0 bits on the network for Modbus/ASCII. As we will see

ad, but only 3 bits per byte (11 bits in total). So roughly
o times (20/11) more network bandwidth than Modbus/RTU does,
bnsiderably slower in use (at the same bitrate). This also depends on
eds of all devices on the network, so in real life the difference may be

Modbus The Manual Page 36



(CsUM)

Start Slave- Function- Functioncode Check Message
address code specific content sequence termination

R I I I
Jd 0 O 1

RTU 3
(CRC) 3.5 byte silence
For example, suppose that the master wants to send a messag code 3 to slave 6 to
read 3 registers starting at 107 (hex 6B). The raw data of th es “06 03 00 6B 00

03”. On a Modbus/ASCII network, this would result in t

3A 30 36 30 33 30 30 36 42 30 0 33 CsSuMl CSUM2

On Modbus/RTU, only 11.5 bytes are needed:

06 03 00 6B 00 03 CRCIgCRC2 <silenc

ansmission format differs.

Note that the information contents of are equal, on

Modbus/TCP
own header, but does not have

data corruption are done by the

a CRC and silence peri : e checks 0
TCP protocol: any er repaired by TCP, or an error is given. This
means that the re er has to worry about handling of corrupted

data.

transaction|| protocol
identifier | identifier

thisid is, di
an increasing number (5, 6, 7, ...) and there are also implementations that use it for own

rs per vendor. Some implementations always use the same value, others use

purposes.

The author prefers the system where the master increases the transaction id for each new
command, as it makes it very easy to follow the traffic between a client and a server with a
network analyser tool like Wireshark. It also allows for easy detection of any missing

Modbus The Manual Page 37



messages or duplicate messages (usually caused by faulty server protocol stack
implementations).

Protocol ID

The “protocol identifier” is a field that for the last two decades has never been used in
Modbus/TCP. It is a 16-bit number, and must have the value 0. Probably this field was
invented by Schneider to allow for new versions of Modbus/TCP.

Number of bytes that follow

This is a 16-bit field indicating the amount of data that fol is is necessary in TCP®

because otherwise the receiver doesn’t know how mu
Unit ID

The “unit id” is an 8-bit field that is often u .
in Modbus/ASCIl and Modbus/RTU networ . it is not
necessary to select devices this way, as the TC
most cases this field is given the value 0.

In Modbus/TCP-to-Modbus/R C used to provide the slave
address to which the message . slaves are accessed via

is sent:

(

TTIT11]
1 it 70 3 ET

Transaction ID Number of bytes that follow

Protocol ID
(always 0)

Modbus/TCP has no need for a checksum or CRC, as a much better protection against corrupted
data is provided by Ethernet (if used), and TCP/IP itself. It is also not needed to delimit any message

e Many other network protocols using TCP do this too. Only when all messages have the same lengths such a
field isn’t necessary, but in Modbus messages have no predictable length.

Modbus The Manual Page 38




with special start- or stop-characters or periods of silence, as the Modbus/TCP implementation
always ‘knows’ how much data it can expect.

Same protocol!
It is important to realize that all devices on the network must talk the same protocol, since
Modbus/ASCII devices cannot communicate with Modbus/RTU devices (and vice-versa) and with
Modbus/TCP devices (and vice versa). Also Modbus/RTU devices cannot communicate with
Modbus/TCP devices (and vice-versa), even though the message formats are very similar; a
converter is needed’.

3. Bitrate

When using RS232 or RS485, all devices on the same cable
bitrates are supported may differ per device; consult t
information. If there is no bitrate common to all devi i (or more)

separate networks.

Basic | Advanced | Timing | Reset | Activation | Teminal |

Hexfile: C:\Users\Desktop“Modbus_Deneme\18452_Modbus_Slave‘\Modbu_Deneme - E]
Device:

Baud rate

ecessary (between 10, 100, and 1000 Mbit/s).
the access points automatically set the most optimal bitrate
o0 devices and the wireless signal quality.

5. Parity bit and stop bit(s)

When using R$232 or RS485, all devices on the network must have the same setting for the parity

bit: none, odd, or even. It is recommended to always use a parity bit, as this increases the reliability
of the network due to a better capability to detect damaged bits (at the expense of taking up 10%

” The converter is needed anyway, because of the different wiring.

Modbus The Manual Page 39



more bandwidth). There is no difference in error detection quality between the odd or even parity
methods. Most networks use even parity.

Related to the parity setting is the number of stop bits:

- When no parity bit is used, 2 stop bits must be used.
- When using the odd or even parity method, 1 stop bit must be used.

The usage of two stopbits is uncommon in modern serial communications software, and some

vendors might not support it. Check in advance whether the equipmenty/. re that you intend to

buy supports this

Many vendors also allow the use of one stop bit (instead of tw parity. It is

recommended to configure the network this way if possible tely unnecessary

bit per character (10% less overhead!).

Modbus/TCP
When using Modbus/TCP, no parity bit is used, this i
TCP has a more advanced “checksum” algorithm (see be

used in nd also not on

6. Checksum

& There is one error a checksum cannot detect: the removal or insertion of bytes in a message with the value
zero. This is simply because the value of a checksum doesn’t change when (not) adding zero. For this reason,
network messages protected by checksums must have an additional measure to detect this, for example using
only fixed length messages, or via a “length” field indicating how much data is present in a network message.

Modbus The Manual Page 40



SENDER | RECEIVER

User Data

‘User Data

Build network message Extract user data

Network Message Network Message

Calculate

Possible
disturbances

Example
As an example, sup

. If the value is greater than (hex) 100,
us then specifies to calculate the 2's complement
om (hex) 100), giving 4F, and this is then the checksum

00 01 4F

> the checksum calculation, and if it gives the same result the message
is undamage

Error detection ¢
An 8-bit checksum can detect the following errors:

- 100% of all network messages with one corrupted bit

? For Modbus implementers: a trick is possible: the receiver can check the correctness of the message by adding
the values of all bytes, including the checksum byte. If the result of the addition (modulo 256) is O, then the
message is undamaged.

Modbus The Manual Page 41



- 100% of all network messages with 2, 3, 4, 5, 6, 7 or 8 consecutive corrupted bits (a so-called
“burst error”)
- 99,6% (=255/256) of all network messages with 9 or more consecutive corrupted bits

Modbus/ASCII uses the checksum algorithm because it is easy to calculate. At a time when CPU’s
were still quite slow, this was an important advantage over the computationally intensive CRC
algorithm of Modbus/RTU (see below). However, the checksum algorithm has it weaknesses, and
with modern CPU’s the CRC algorithm processing power is not a problem anymore.

Undetected corrupted data
Note that the checksum algorithm does not detect all possible corr data, so sometimes a

corrupted bit will pass the checks anyway and end up in the ap h might then take

wrong decisions. Of course the question is then: how likely is t per day would be
unacceptable, once per million years would not be a pro dual error rate”.
The standard IEC-60870-5-1 gives some data about ed there is
the one as used in (serial) Profibus. But since Profib

and the use of these doesn’t differ much from the usag 870-5-
1 is probably a good indication on how Modbus behaves.

The IEC-60870 shifts the problem back error detection algorithm) is
not a solution for badly wired networks, i tronics, or networks
which have too many electronic disturba guency converters,

electric motors, soft starter i i . 00 much corrupted bits, the
likelihood that a che s Two examples (from the IEC-
60870-5-1):

dability of 1 bit per 100000 is already good; when there are even less
ual error rate decreases very quickly: 10 times less errors is a 10 times less

example disturb
disturbances the re
undetected errors. For example, a network with 1 disturbed bit per 10 million will have a residual
error rate of once per 550500 yearslo.

0 often got complaints from users who could not explain strange errors in their data. This is then often
attributed to “corrupted data” on the network (“It’s not my fault”). Normally | don’t believe such explanations,
given the data above. After investigation, it is usually a programming error.

Modbus The Manual Page 42



Modbus/TCP

Modbus/TCP does not use a checksum, as TCP does this already: it uses a 32-bit checksum internally.
When corrupted data is detected, TCP will execute repair actions automatically; this is not even
visible for the application layer.

7. Cyclic Redundancy Check (CRC)
The Cyclic Redundancy Check (CRC) is much better in the detection of tran
checksum algorithm. Most modern industrial networks therefor use a

ission errors than the

The value of the CRC is calculated on the message data in the Mo age, just as the
checksum is calculated. It is then appended to the network m . iver of the message
does the same CRC calculation, and compares the result wi here are no

number. Next we dg ision: divided by a 16-bit number which has been
he division is finished, there will be a

yramming language, which is much more efficient than longhand
division a ithms.

Modbus/RTU U

“"

RC algorithm, mathematically described as x'®+x™*+x*+1 or as
polynomial 800 colloquially known as “CRC-16", “CRC-16-IBM” or “CRC-16-ANSI”. There are
many more CRC-algorithms working on 16 bits data, but Modbus only uses the one according to the
above mathematical description.

™ The answer is: there is no match between the calculated CRC and the received CRC, so the user data is
considered to be damaged, while in fact it isn’t. But there is no way to know this! (unfortunately).
2 Explained in more detail on https://en.wikipedia.org/wiki/Cyclic_redundancy_check.

Modbus The Manual Page 43



| could not find data about the error detection qualities of the Modbus CRC-16 algorithm, as
comparison therefore some data about the CCITT-16 algorithm, which can detect:

- Any arbitrary combination of an odd number of corrupted bits;

- Any arbitrary combination of two corrupted bits;

- Atleast 99,8% of any arbitrary combination of 4 or 6 corrupted bits;

- Atleast 99,99% of any arbitrary combination of 8 or 10 corrupted bits;

- Atleast 99,999% of any arbitrary combination of 12, 14 or 16 corrupted bits;
- All consecutive 16 corrupted bits;

- 99,9985% of more than 16 consecutive corrupted bits.

This shows us that sometimes a damaged bit passes all security ill end up in the
application software. As already discussed earlier (checksu d that a damaged

bits slips by is very, very small, with CRC much smaller t

Modbus/TCP
When using Modbus/TCP with Ethernet as physical d by
Ethernet’s 32-bit CRC (on top of the TCP checksum). Th
Modbus/RTU CRC. This is why the Modbus/TCP messages
it would not add any extra error dete
the CPU due to the double work.

tain a CRC like in Modbus/RTU;

lity, and would crease the processing load on

8. Error detection
The detection of er

5 is done di n Modbus/ASCIl and /RTU, and Modbus/TCP.

Modbus/ASCIl and

, see above).
essive characters in a message
" in each message.

art with a start-bit of value ‘0’.
ts that follow (7 or 8) must be correct.

Normally these checks are performed by the serial I/O controller chip, a “UART” (Universal
Asynchronous Receiver Transmitter). If a problem is detected, a “framing error” or a “parity error” is
given. The consequence is that the data is discarded, a character is missing from the network
message, and this in turn will cause the entire message to be discarded.

Modbus The Manual Page 44



At the 2™ level, the characters in a message must follow each other back-to-back. After the stop bit
of the first character, ideally immediately the start bit of the next character follows. But especially on
older (slower) CPU’s and UART’s this is impossible to achieve. Modbus allows for a short pause
between two subsequent characters, but not more than 1.5 character transmission time.

At the 3" level, the checksum (or CRC) is calculated on the received data. The result of this
calculation must match the checksum (or CRC) as received in the message. If they do not match,
there is an error somewhere (Modbus doesn’t know where), so the whole message is discarded. You

also do not get an error message reported back. Perhaps the device has ostic counter that

increments, so you can see later how much of this type of error has o
“function code 8” that can be used™ to read out diagnostics coun

d. Modbus has a special

Modbus/TCP

In Modbus/TCP, errors are detected and handled differ

If Ethernet is used at the lowest level, g sages are detected by Ethernet’s
usage of a CRC (its own). When the me d by the receiving device’s

Ethernet controller, and not further prog 2 intermediate switch (or
router) between the sending and receiving

When managed switc , ented; its value (and many

other diagnostics) rea ia the SN ocol (Simple Network Management Protocol).

Power B Faup| @ Pott | i Pori2 | B Pot3 | i3 Port4 SIMATIC NET Industrial Ethernet Switch
D Port5 | B Port6 | B Port7 | i Port8 SCALANCE X208
SCALANCE3

Statistics Packet Error

“size

Oversize  Jabbers  Collisions

#3 Agent
#{0 Switch

L Statistics
Packet Size
i B Packet Type
E [l Packet Error

En-ﬂmmhu».’

(" Refresh ) ( Reset Counters )

® Unfortunately it is often not implemented.

Modbus The Manual Page 45




A managed switch with an embedded webserver can show statistics counters on the number of
errors, such as CRC errors, per port. Here port 5 would be a prime candidate for further investigation.

If the message arrives undamaged at the final destination, it is passed on to TCP/IP for further
processing. Both IP and TCP have their own error-detection algorithms. Errors at this level are of
another category, for example:

- Messages received in a different order than transmitted (this will be corrected);

- Messages completely missing (see below);
- Duplicated messages (these are filtered out);

Whenever a message is discarded by Ethernet, TCP will detect thi he original sending
device to retransmit the message. This is completely handled

software on the original sending device will be unaware t

TCP will attempt to repair any error it sees, and ma
reporting an error. When TCP does so, be assured
and little else can be done to improve on this.

This behaviour of TCP/I
the application softwar
programmed).

etimes cause la ys in message processing, causing

if this is not properly

As TCPis so good i o es no sense for the application software to

™ | have seen machines stall for 12 minutes while the protocol stack was busy repairing unrepairable
communication errors before finally reporting a failure. This was on a WindowsXP machine using DCOM, which
seemed to double any TCP timeout “just in case”. After having experienced this a few times, the operators just
power-cycled the machine, this made the machine working again in 3 minutes.

Modbus The Manual Page 46




CHAPTER 6. APPLICATION LAYER

Before we can discuss the application layer functionality of the Modbus protocol, it is necessary to
understand how a Modicon PLC works. Even though most Modbus users never physically encounter
a real Modicon (or its successor: Schneider) PLC, the Modbus protocol still reflects how such a PLC is

interfaced. The original Modbus specifications [MBUS300] assumed Modic nowledge to be

present in the reader, in [MBUSAPPL] more is explained about the Modi C memory model.

1. Modicon PLC functioning and interface
A PLC (Programmable Logic Controller) is a generic electr
which can be programmed to handle a specific task a

rial automation,

ically and repeatedly: ‘sensors’

with which it can know the state of the outside wo d ‘actuators’ to influence it.

Sensors can be of a ‘digital’ type, or an ‘analogue’ type. can only have two states:
on/off, high/low, open/close, slow/fast
usually measure a physical value, i.e. &

/right, etc. Analogue sensors
, intensity, flow, RPM, etc. of
which there can be an infinite number

(TR LLL)

der PLC, with from left to right: a power-supply, the PLC itself, I/0
modules and network interfaces. Source: Schneider Electric.

A PLC contains the program that reads in the current state of all its sensors, decides what state the
system is in and what step should be taken next, and uses this knowledge to program the actuators.
In effect, the PLC is controlling a machine or production line. PLC’s are programmed for their task by
a software-engineer on a desktop-PC or laptop. Via a network connection the program is then
loaded into the PLC, after which it can function autonomously.

Modbus The Manual Page 47




The processing capacity of a PLC is limited, and for larger machines one PLC cannot control the
whole machine. Multiple PLC’s are then used, each one controlling a part of the system. But, since
they are controlling the same machine, they must coordinate their efforts. An “industrial network” is
then used to allow the PLC’s to communicate with each other. Modbus is a well-known example of
such a network (there are a few hundred others).

Industrial networks (and Modbus) are also used to connect PLC’s to so-called, “visualisation systems”

or “human machine interfaces”. Often these are PC’s with graphics pro ing software which

shows the operators the state of the machine, what products it is m whether the machine is
up to speed, where something goes wrong, etc. The visualisatio ble to draw these

diagrams based on information extracted from the PLC’s.

and outputs, in its internal memory. Additionally, a e used for
storage of intermediate results. And finally the PLC

A Modicon PLC has four memory areas: puts” (digital), “input registers”
memory). Coils, inputs and
registers are numbered starting from 1 i i to 65535 in modern
devices. Vendors often implement devic i i , i.e. when the device
does not have so many coils, inputs or regi

A

PLC
address
| 1ot . bt _ < 16bits <« 16bits
00001 10001 30001 40001
09999 19999 39999 49999
Coils Inputs Input Registers Holding Registers

Read lFJr'rte Read l Readl Read lFJr'rte

The Modicon memory model is old-fashioned. Modern PLC’s operate according to the IEC-61131
standard, which has storage for inputs (of any type) called %I, outputs (of any type) called %Q, and
scratchpad memory called %M. When such a PLC has a Modbus interface, the IEC-61131 style
memory is mapped onto the Modicon PLC memory areas according to a vendor-specific way; consult
the vendor’s documentation for this.

Modbus The Manual Page 48



What happened to memory area 20000 — 299997 This memory area was used by

Modicon PLC’s with so-called “sequencers”. When later in Modicon 484 PLC’s this
functionality was obsolete, this memory area was not re-used for other purposes
for compatibility reasons.

Example:

H

PLC

address

00001~

Modbus Coil

Status Information

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010

Stopped (=0) / Runming (=1)
Unload (=0)/ Load (=1)
General Warmning

General Shutdown-Warning
General Shutdown

General Service

General Start Failure
Emergency Stop

Manual (=0) /Automatic (=1)
Local (=0)/ Remote (=1)

IR

¥

00010

Stopped/Running

UnloadiLosd

General Warning

Local/Remats

Coils

s e

devices disallow access to bits or registers with addresses > 9999. This
hioned behaviour, and anyway such checks should be implemented on
ices, not on the master device.

2. Bit / register addressing
Modbus employs a confusing addressing scheme for all bits and registers. As mentioned above, all
bits and registers are numbered from 1..9999. To this an offset is added which specifies the memory

area:
Coils Offset 0
Inputs Offset 10000 (decimal)
Modbus The Manual Page 49




Input Registers Offset 30000
Holding Registers Offset 40000
Extended Memory Offset 60000

For example, holding register 56 may also be called 40056, and 34567 is the same as input register
4567. Conversely, if documentation mentions an address 45678, you know automatically that it is

holding register 5678.

sed — it is the
ster address. So you see
values, and this result is

As we will see later, in the network messages themselves the offset is n
combination of function code and offset that determines the real bi
values like 56 and 4567. Additionally, Modbus always subtracts

register 56 you must program 40 for you.
Other vendors allow you to use ad
software what you mean: a coil, an inp
register?

A problem arises when using addresses espond to input register

lication software wants to use offset 10000/30000/40000 or
00/400000, depends on the vendor.

In documentation, some vendors use the offsets, but others do not. The same holds for software
packages: sometimes you must program without offsets, and sometimes they must be added (after
which the software package subtracts the offset immediately before sending it out in a network

message).

Modbus The Manual Page 50




3. Function codes
Commands that can be sent over a Modbus network are not called like that; instead they are called
“function code” (fc). This is real Modbus jargon, used often in documentation, in software etc., so

127

110 i
i User-Defined

we will use that terminology too.

: User-Defined

1

Which function codes exist is described i
below). These are called “public” function in range 1..64,73..99 or 111..127.

There are also a few *

Modbus The Manual Page 51



Apart from the memory access function codes, there are also function codes for local loopback and
diagnostics, and for Modicon PLC programming and control®.

The maximum amount of application data that can be read or written in a single network message is:
250 bytes (125 registers, 2000 bits). Sometimes a lower limit of 240 bytes (120 registers, 1920 bits) is
seen, as this was mentioned in the original Modbus specification [MBUS300] and many vendors
copied that.

4. Function code numbering
All function codes have a number in the range 1..127. These nu irly well-known within
the Modbus community, and after a while one knows them b

know which function codes are implemented in equipme

The table below gives the (decimal) numbers + des
Modicon PLC specific jargon: “coil”, “input register”,
that some function codes have multiple names, for exa

[MBUSAPPL].
FC Description (ant
01 Read Coil Status
02
03

04

m Controller / Poll Program Complete (Modicon PLC only)
ultiple Coils / Write Multiple Coils

Multiple Registers / Write Multiple Registers

ort Slave ID / Report Server ID

ogram 884/M84 (Modicon PLC only)

18

19 Reset Communications Link

20 Read General Reference (Modicon PLC only) / Read File Record
21 Write General Reference (Modicon PLC only) / Write File Record
22..64 Reserved for future extensions

22 Mask Write 4X Register / Mask Write Register

23 Read-Write 4X Registers / Read-Write Multiple Registers

™ The author has never seen these function codes used, as they are too specific for that brand of equipment.

Modbus The Manual

Page 52



24 Read FIFO Queue (Modicon PLC only)

43 Read Device Identification / Encapsulated Interface Transport /
CANOpen General Reference

65..72 Free for users

73..99 Reserved for future extensions

90 Tunneling of the UMAS protocol

91 Used by the SEMI extensions

100..110 Free for users
111..124 Reserved for future extensions
125..127 Reserved

The Modbus User Group has listed which function codes are to
latest version of the Modbus specification [MBUSAPPL] is clea
the specification [MBUS300], which mainly reserved all f

hat purposes. The
earlier versions of
n codes for M

In practice this didn’t make much sense, since ther
implementations worldwide for violations of the spe
anyway. With the current specification, the Modbus Us
function codes in two clearly defined re elihood that a future Modbus
extension clashes with user-defined f

Function codes 65..72 and 100..110 are re defi odes, for example when
a certain type of application want to do so i hat is i ssible to do with the

standard function code :
90 for their UMAS p .N : , both the master AND the slave(s) must

ication it is written that they are ‘specifically’ reserved, but it does not
for whom)™.

What does a fi i de do?
Per function code 't pecification describes what it does, how the request network message is
built, how the response message is built, which errors can be given, and an example. This makes the

Modbus specification very easy to read and understand. An example:

™ In older literature it appears that these function codes were once used for reprogramming activities of
Modicon PLC firmware.

Modbus The Manual Page 53



6.3 03 (0x03) Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers in a
remote device. The Request PDU specifies the starting register address and the number of
registers. In the PDU Registers are addressed starting at zero. Therefore registers numbered
1-16 are addressed as 0-15.

The register data in the response message are packed as two bytes per register, with the
binary contents right justified within each byte. For each register, the first byte contains the
high order bits and the second contains the low order bits.

Request

Function code 1 Byte 0x03

Starting Address 2 Bytes 0x0000 to OxFFFF

Quantity of Registers 2 Bytes 1 to 125 (0x7D)
Response

Function code 1 Byte 0x03

Byte count 1 Byte 2x N*

Register value N* x 2 Bytes

"N = Quantity of Registers

Here is an examire of a reﬂuest to read reiisters 108 — 110:

Field Name (Hex) Field Name (Hex)
Function 03 Function 03
Starting Address Hi 0o Byte Count 06
Starting Address Lo 6B Register value Hi (108) 02
No. of Registers Hi 00 Register value Lo (108) 2B
No. of Registers Lo 03 Register value Hi (109) 00
Register value Lo (109) 00
Register value Hi (110) 00
Register value Lo (110) 64
An example taken from the Modb ifi 'me 03 (Read Holding

Registers). It sho
“response” fi i g on the amount of registers
needed.

Modbus The Manual Page 54



PLC
address
I - P . Y < 16bits « 16bits
00001 10001 30001 40001
08599 19988 39999 49999
Coils Inputs Input Registers Holding Registers
Readljlurite Readl Readl Readl}ldrite
FC: 1,5,15 2 4 3,6,16
A 4
Digital outputs (coils and holding registe ent status can also be read back
(what did | set that output to again?). : i re, so their programs do not

rous, as the PLC-setting
1’s knowledge. Many vendors
gle Coil) or 15 (Write Multiple

st paper. It is a specification of what can be used
implemented. Any vendor may decide for himself which

ent he makes and sells; when there is no need for having

t. So the simplest Modbus device has to support one

om holds both for master devices and slave devices.

Modbus The Manual Page 55



Spec

Vendor Y

since the name is not standardized it is bé
see that function codes 03 and 16" are al

correspond more-or-le ‘read’ and ‘

2.2 Supported Modbus functions

The Elektronikon MkIV modbus implemenentation supports the following message type , depending on the type of
data mvolved (see details below)

Function 01 : read coil status
Function 03 : read holding register
Function 06 - preset single register
Function 08 : loop back test

ple taken from a vendor’s documentation listing
nction codes are supported. Source: Atlas-Copco.

7 some vendors mention the supported function codes with their hexadecimal value, so this would be 10. There
is no reason to get confused, since function code 10 (decimal) is only available on Modicon PLC’s (which are no
longer sold).

Modbus The Manual Page 56




3.5 Reading and Writing of Data

The Modbus interface can be used via the protocol Modbus TCP. Using Modbus TCP enables
read- and write access (RW, RO, WO) to the Modbus register.

The following Modbus commands are supported by the implemented Modbus interface:

Modbus command Hexadecimal value Data volume (number of registers)
Read Holding Registers 0x03 1te 125
Read Input Registers 0x04 1t0 125
Write Multiple Registers 0x10 1t0 123

Another example taken from a vendor’s manual listing whic
Note the hexadecimal notation for function code rce: SMA

7.4 Modbus function codes

In the Medbus protocol, the funclion codes define which data is to be read or written. With
a single request, the registers 1 ... 123 can be read or written.

Table 7-2 Supported Modbus function codes

Code number | Function code Description
fc03 Read Holding Register | Read process output data
(address area 40010 ... 40999)
fc04 Read Input Register Read process input data
(address area 30010 ... 30999)
fc16 Write Multiple Registers | Write multiple output registers word by word
i Other function codes exist in the Modbus protocol, but they are not supported.

manual li which function codes are supported, and clearly

OT supported. Source: Phoenix Contact.

Modbus The Manual Page 57



THE UNIVERSITY OF MICHIGAN
MopBUS/TCP CONFORMANCE

TEST LABORATORY

statistics

The following table lists the devices which have passed testing, and their
supported function codes.

_'c(,m - . FCiFC FC FC FC FCFC FC|FC|FC FC
e 1234567 81501691

| — 170 ENT

[Modicon liwooo [ | X4l [ 4 | L

[Endress & |

'Hauser Promass 83 | X X X X X

Flowtec 2 L 8 LB )

CcP | |

Georges (CVI XX | X |X|X|X XX

Renault |

| 170 ENT ' '

Modicon 11001 X X
Busworks

Acromag [983EN- XXX |X|X|X X [X
4012

Balogh [BIET170 | | [Xx | [ ] [ [x]

| Carriere |

Schneider Digital 600

Electric Retrofit XX X X
Trip Relay

Example from the (no longer operationc t the University of

des in vari ices.

Is damaged, the slave ignores it. This means that the slave
nction code, and will send nothing back to the master.

Master

-

Read ... wwy, Slaveseesnothing,

Waits onanswer ... so.does noting!
Waits on answer ...
Waits onanswer ...
Waits on answer ...
Waits on answer ...

Waits onanswer ...

Waits onanswer ...

Modbus The Manual Page 58



2) The master’s message to a slave is received without errors. This means that the slave will
execute the function code, and send an answer message back to the master, but then this
message is damaged. The master will ignore it.

Master

)

e

!

<

esponse
islost..

Timeoutexpires =

Response (on retry)

back. Now the master/slave protocol re
clear that this is not a clever way of work
network then stops completely®®.

Stupid as this may so

an be processed on the slave, after which the response is
‘retry” the master has automatically detected and repaired the error,
g to be involved.

'8 As errors always occur on any network (sooner or later), this is ticking time bomb. Reboot everything!

Modbus The Manual Page 59



Master Slave
Time Y _
l [::::::]Illii E ! ﬁ ": u ||

Starts timeout u
mny, Slaveseesnothing,
so does nothing!

S5
|
I
|

Error detection

R Timeoutexpires
Vs Thistime OK,
i

(“retry”)

i <_____-——-——" processingand reply

Reply

- What is the timeout setting: tt
- Which error is given to the appl
- Which diagnostics is available?

slave. If this is not ¢ er continues retrying for ever, in case a slave
respond. What the maximum number of retries

can be, may differ p in the range 1..5%.

Starts timeout g

Timeout expires®
Starts timeout :

Errorto
application [
Timeout expfres;
Starts timeout g

| |

n
Timeoutexpires=

When the maximum number of retries is reached, this is an indication of serious problems:

- Either the slave is completely non-functional, or
- There are lots of electrical problems on the network.

¥ Such small numbers of retries are also seen in other industrial network protocols, like AS-Interface, who uses
2 retries, and Profibus/DP which by default has 1 retry (but can be configured to have any in the range 1..8).
I

Modbus The Manual Page 60



It is often easy to distinguish between these two cases: when only one slave is non-functional, there
will be retries for this slave only, but not for the other slaves. When there are electrical network
problems, most likely all slaves will have retries.

It is therefore useful to have a master-implementation which keeps track of the number of retries per
slave, instead of the just the total number of retries for the whole network.

Some retries are evil!
Good as retries may seem, there is one aspect that should be taken care o w does the slave
bit-for-bit identical to

and it must be executed.

detect that it receives a retry? It cannot distinguish a retried message,
the original message. As far as the slave is concerned, it is a new m

actions, modifies its environment, etc. This is because of t i aster sends the
same command again.

But suppose that we are in a situation where the o sed, and
a response was sent back, but the response is lost. Th
this is a new command. It does not know what the maste i retry), because it does not

know that the 1st response was lost. s

Master

I8
\b.

. Response

islost...

Henoauoelos \
|

“produce 50"

= “produce 50

Response (onretry)

A 4

e is instructed to produce 50 units (of some product on a production

ports its result to the master, which then gets lost. The master then
produces another 50 units. The response is then sent back to the

master, who production order of 50 is OK. But actually 100 units are produced.

A similar problem occur when the slave modifies its environment, i.e. “turn left 30 degrees” or
“increase temperature by 5 degrees”. Every state-changing command is dangerous if received and

processed multiple times.

In all modern industrial network protocols, there is a mechanism to detect retries messages, which
are then filtered out. A simple way to do this is to use a sequence number, incrementing by 1 for
each new message (56, 57, 58, 59...). When a retry is done, the slave may see the same sequence
number more than once (57, 57, 58, 58, 59....), and it can now properly handle this.

Modbus The Manual Page 61



Unfortunately, Modbus has no such mechanism! This means that every state-changing command on
a slave must be implemented in such a way that multiple reception of the same command is no
problem. For example, by using an toggle bit (0/1/0/1...), a strobe bit (0 1), etc. This also needs
support on the master side, usually the application program.

Whenever possible, avoid the use of relative data (relative to a previous command or actual state of
a slave); only use absolute values, i.e. “turn left to course 85 degrees” or “increase temperature to

35 degrees”.

8. Error handling on the slaves

Whenever a slave receives an undamaged message with a req ster, it will first check

the message for any possible errors. This are not transmissi rors made on the

master, for example a programming error.

If such an error is detected, processing of the requ , nt back

to the master. Such errors are called “exceptions” in
by programming errors, and as such occur often in new s
are solved, they should no longer occu

1

Illegal Function

he function code that the

used by a programming error
ot readlng the documentation about

ode). Once this is solved, this exception should

tput / holding register does not exist. Usually
is caused by a programming error on the master.

a vendor may specify that its device has 200 holding
registers (1..200). If an attempt is made to read / write holding
register 300, exception 2 is given.

Illegal Data

A field in the Modbus message has a value which is invalid.

Example: the maximum amount of registers that can be accessed
with some commands is 120, but the field in the message can
contain a much higher value. On any value > 120 this exception 3 is
given.

In the Modbus specification [MBUSAPPL] it is specifically mentioned
that this exception code must not be used on register contents
outside a valid range for the application software. Exception 4 must
be used for this.

Modbus The Manual

Page 62




4

Slave Device Failure

An unrecoverable error occurred in the slave while it was handling
the request.

Example: a vendor may specify that a holding register may be set to
values in the range 1..5. If an attempt is made to set this holding
register to the value 6, exception 4 is given.

Note that if a function code is used to
unclear at which coil or holding regis

ultiple registers, it is
error was detected.

5

Acknowledge

So actually this isn’
sent to complete the

6

Slave Device Busy

se. The master/client is advised to retransmit
er time, hopefully the slave/server is then free.

Negative Acknowledge

There is a problem with the extended memory (offset 6XXXX) in the
slave, which appears to hold corrupted information. This a specific
error related to function codes 20 and 21 for Modicon PLC’s, not
seen on modern Modbus devices which have no memory with

parity.

9

Not used.

10
Gateway Path Unavailable

When using gateways (typically to convert from Modbus/TCP to
Modbus/RTU), this exception is given when the gateway does not
know how to reach the slave. This typically occurs when the
gateway is not properly configured.

Modbus The Manual

Page 63




Note that when using Modbus/TCP, the field “unit identifier” in the
network message is often enough to indicate to the gateway which
slave is intended, when the unit identifier is equal to the slave
address. But this does not have to be the case when the gateway
has multiple serial networks connected.

11

Gateway Target Device Failed
To Respond

When using gateways (typically to convert from Modbus/TCP to
Modbus/RTU), this exception is given when the gateway has sent a
request message to a slave, but this slave did not respond within the
configured time.

onnected, not powered,
also be at the master

This typically occurs when the sla
or its software is not running.
(client), when using a wrong sl

dbus/TCP gateways
, so the Modbus/TCP mas
imeout handli

Note that there are a
do not use this ex
still implement its

market that
ient) must

was sent as “broadcast”. This is
ts, even when the message
ware on a slave (or
display) to see whether

No exception code is back when the m
because a slave neve

contains an error. So

In the original Mod ifi exceptions were just mentioned, but not much
0 be used. For example, some vendors just

of Modbus devices more similar, although it is not guaranteed that
art. The example below shows the flowchart for the processing of

2 Personally, a long time ago | made software for a device which reported exception code 3 upon illegal values
for a register, whereas today | know | would have to use exception code 4.

Modbus The Manual Page 64




h 4
ME Server receives mb_req_pdu

NO A
Function code
supported

YES

ExceptionCode = 01 NO L
0x0001 = Quantity of Registers = 0x007D >

:

YES
ExceptionCode = 03
NO Starting Address == OK
AND

Starting Address + Quantity of Registers == QK

YES
ExceptionCode =02 r

Request Processing

NO ¢

ReadInputRegisters == OK >

ExceptionCode = 04 YES
r
MB Server Sends mb_rsp

h 4 h 4 h J v
MB Server Sends mb_exception_rsp - »

aster. When an error is detected, an exception message is
bove). For example, when using function code 3:

Modbus The Manual Page 65



Master

Slave-address

Functioncode
J Functioncode specific data
ul L Slave 09
09 03 nn
I _*

J Functioncode specific answer
OK
09 03 mm
| "— B

-or-

e,

Error

Functioncode + 128 means: error

l Error (exceptioncode)

=]

09 131

An exception message is very short. It contains the
plus 128 (hex 0x80), followed by the exception cod
master does with the exception just being reported de

address, followed by the

(see the previous section).

3.3 Example
Example: read from Analogue input 1, Status and Value
Query
Field Name Example ( Hex)
Slave address 01
Function 09 ( Wrong function, should be 03 )
Starting Address High 00
Starting Address Low 00
Number of powmts High 00
Number of points Low 02
CRC 5C 0A
9+128=
Response 89 (hex)
Field Name Example ( Hex)
Slave address 01
Function 89 ( Exception reply ) «}
Exception Code 01 ( Illegal Function in query )
CRC 86 50

Example of a

r’s documentation showing the handling of an unsupported

e on this device, which triggers an exception code 01.

A major difference between Modbus/TCP, and Modbus/ASCII and RTU, is that the first is
“connection oriented”, and the second/third are “connectionless”. The connection oriented way of
working is enforced by TCP.

Connection oriented communication is identical to the way humans use the telephone. You set up
the connection by dialling a number, and waiting for the other party to respond. If so, the
connection is established and the conversation can start. At some moment the conversation is

Modbus The Manual Page 66



finished, and the connection is stopped. If the other party doesn’t pick up the phone, you know
something’s amiss and it makes no sense to talk — the connection is not established. Probably you’ll
try later.

TCP works the same: before two devices can communicate with each other, they must also set up
the connection. When accepted by the other party, communication can start (for an infinite amount
of time). If no more communication is needed, the communication can be stopped (disconnect).

The advantage of connection oriented communication is that one gets ng if no further

communication is possible. The telephone system will give a signal t parties that you’ve been
disconnected. TCP will give an error to both devices that they've
checks the connection status; it does this automatically witho

the server.

nected. It continuously
t from the client or

Connect ?
Accept !
—_— FC request RTU-like
longas message
is needed e FCreply exchange

Modbus The Manual Page 67



CHAPTER7. DATA PRESENTATION

Modbus has only two datatypes: “bits” (0/1), and 16-bit “registers”. Bits can be read and written,
one by one, or in larger groups. Registers can also be read and written, one by one, or in larger
groups. Different function codes are available for this (see chapter 6).

Simple as it may seem, the way groups of bits are to be handled in Mo o has a relation to the

CPU (processor) the software is running on. This is also true for regi ometimes conversions are
necessary. These conversions must often be programmed as par, ication software on the

master device.

Bits and registers (and groups of them) are no longer y datatypes used in n industrial

systems. What can one encounter in practice:

- Registers of 32 or even 64 bits, in signed or un
Floating point numbers of 16, 32, 64, 80 or 128 bi
- Character strings, in ASCIl or

Less common are:

- Fixed point numbers
- Binary-coded de
Characters

Modbus does not na makes that different vendors devise

different w i is'often comes as a surprise during

When a byte parameter is read, the upper 8-hits of the Modbus register will be 0. When a byte
parameter is written, the upper 8-bits must be set to 0.

® long integer parameters have a length of 4 bytes and are mapped on two consecutive Modbus
registers. The first register contains bit 32-16, the second register contains bit 15-0.

® Floating point parameters have a length of 4 bytes and are mapped on two consecutive Modbus
registers. Floats are in single precision IEEE format (1 sign bit, 8 bits exponent and 23 bits fraction).
The first register contains bit 32-16, the second register contains bit 15-0.

e String parameters can have a length of maximal 16 bytes and can take up to 8 Modbus registers
where each register contains two characters (bytes). The upper byte of the first register contains
the first character of the string. When writing strings, the write action should always start from the
first register as a complete block (it is not possible to write a part of a string). If the string is shorter
than the specified maximum length the string should be terminated with an 0.

Excerpt from a vendor’s manual where their way of handling different datatypes is described.

Modbus The Manual Page 68



MODBUS REGISTERS
PARAMETER NAME PARAMETER ACCESS PDU ADDRESS REGISTER NUMEER
TYPE Hex Dec Hex Dec
Wink Unsigned char (W 0x0000 0 0x0001 1
Initreset Unsigned char RW 0x000A 10 0Ox000B 11
Valve output Unsigned int RW 0Ox001F 31 0x0020 32
Measure Unsigned int R Ox0020 32 0x0021 33
Setpoint Unsigned int RW Ox0021 33 0x0022 34
Setpoint slope Unsigned int RW Ox0022 34 0x0023 35
Analog input Unsigned int R 0x0023 35 0x0024 36
Control mode Unsigned char RW 0x0024 36 0x0025 37
Sensor type Unsigned char RW 0x002E 16 0x002F 47
Capacity unit index Unsigned char RW Ox002F 47 0x0030 48
Fluid number Unsigned char RW 0x0030 48 0x0031 49
Alarm info Unsigned char R 0x0034 52 0x0035 53
Temperature Unsigned int R Ox0427 1063 0xD428 1064
Modbus slave address Unsigned char RW O0x0FAA 4010 Ox0OFAB 4011
Polynomial constant A Float RW Ox28128..0x8129 | 33064..33065 | OxB129.0x812A | 33065..33066
Polynomial constant B Float RW 0x2130..0x8131 | 33072..33073 | Ox8131..0x8132 | 33073..33074
Palynomial constant C Float RW 0x8138.0x313%9  33080.33081 OxB8139_0xB1A 33081..33082
Polynomial constant D Float RW 0x8140.0x8141  33085.33085 0x8141. 0xB142 33085933090
Sensor differentiator dn Float RW 0x8158.0x8159 @ 33112 33113 Ox8159 _0xB15A 33115333114
Sensor differentiator up Float RW 0x8160..0x8161 | 33120..33121 | Ox8161..0x8162 | 33121.33122
Capacity Float RW Ox2168..0x8169 | 33128.33129 | OxB160.0x81l6A | 33129.33130
Fluid name String (10 bytes) RW 0x8188. 0x818C @ 33150.33164 0xB189. 0x818D 3316133165

Excerpt from a vendor’s manual descri the various data econd column) used for various

parameters.

1. Bits
Two types of bits are k ond to a PLC’s digital outputs
e usage of relays, before the solid-state

rrents.

Bits are accessed with function codes 1 and 5. A slave can have up to 65535 bits in its memory. They
are numbered sequentially from 1 to 65535; bit number 0 does not exist (according to the Modbus
specification). The function of each bit is determined by the device’s supplier and is normally
documented in the manual.

Modbus The Manual Page 69



(1]2[3]4]s[6|7]8]. |n

Writing a new value for a single coil will pose no problem for any application (using function code 05

— Force Single Coil). More difficult are function codes 01 (Read Coil Status) and 02 (Read Input
Status), both of which allow for a group of bits to be read.

is is caused by
from the Modbus
oups of 16 or more,

Simply as it seems, in practice the numbering of bits is not always intuiti
different numbering systems for groups of bits in a byte, which is di
convention shown in the picture above. And for larger groups of
there are two different numbering conventions, as used on (In LC’s according to the

programming standard IEC-61131.

For example, suppose that you are us
want to read the value of coil 1. That
numbering system. But on most modern
bits in a byte:

It now depends o
Perhaps the program you get the value of the bit at the second-

right posi r, the pr hought, “bit 1 is the leftmost”, so then you get

7155 L@ [3 123 [0 s laa f13 121 10] 9 | .
W

Modbus The Manual Page 70



This is Motorola’s:

3514 131212 [10] 9 |8 |7 [6 |5 |43 230

And this in use on a PLC according to IEC-61131:

of1]|2(3]4afs]|e[7]s]o[t0]11f12]13[14]15

Again it depends on the vendor what you have to send on Mod

value of a certain bit.

Accessing bit 0 is sometimes impossible, because Mo
simply to not use bit 0 in a PLC program.

2. Integers / words

- 0..65536
- -32768..

When a register is sig : according to the “2’s-complement” standard?®
which is used by all modern € F decades. The value of bit 15 (the leftmost bit)

Whenitisa

Decimal Value Binary Value Decimal Value
00000000.00000000 0 11111111.11111111 -1
00000000.00000001 1 11111111.11111110 -2
00000000.00000010 2 11111111.11111101 -3
00000000.00000011 3 11111111.11111100 -4
00000000.00000100 4 11111111.11111011 -5

2t is not possible to determine whether a group of 16 bits is signed or unsigned just by looking at the bits; you
always need the vendor’s documentation for this.

? There also exists a “1’s complement” standard, allowing for values to be represented in the range -
32767..+32767, with support for a -0 and a +0, but | have never seen this used.

Modbus The Manual Page 71




00000000.00000101 5 11111111.11111010 -6
00000000.00000110 6 11111111.11111001 -7
00000000.00000111 7 11111111.11111000 -8
00000001.00000000 256 11111111.00000000 -257
01111111.11111111 32767 10000000.00000000 -32768

The byte with (leftmost) bits 15..8 is called the “Most Significant Byte” (MSB) or (alternatively) the
“High” or “H” byte. The other byte, containing (rightmost) bits 7..0 is called the “Least Significant
Byte”(LSB), the “Low” or “L” byte.

How the H and L bytes are stored in memory depends on the CPU stem. Some store the H /

L bytes in memory exactly in this sequence: H first, then L. This i ig Endian” format,

other, it is just: there are two possible choices, one gr
vendors chose the other sequence.

You have to know how the CPU works ue of 16-bit data. For example,
suppose that the memory contains a byt i
the “Big Endian” format, these two bytes \

V=0%*256+
On a CPU using t
V=0+1%*256
essive bytes have the values 10 and 20.

dian” fo has: V=10 * 256 + 20 = 2580
ndian” format has: V =10+ 256 *20=5130

On any ne just Modbus!) the distinction between Big Endian / Little Endian
format is rele B a message are sent and received sequentially, so for a 16 bit field there
are two bytes, anc one is the H byte and which one is the L byte? The receiving CPU has to
know this, in order to store the bytes in the right sequence in its memory (swapping them), in order

to calculate V in the right way.

Modbus uses “Big Endian”

Modbus specifies the “Big Endian” format as mandatory for all 16-bit fields in the function code
headers. It is then logical to assume that this is also the format to be used for application data. In the
current Modbus specification this is indeed written down as such [MBUSAPPL, section 4.2].

Modbus The Manual Page 72



But in the earlier Modbus specification [MBUS300] this was not specified as clearly, except
mentioning it in the examples that the “Hi” byte must always be transferred first*>. But some
vendors thought ‘if it is not specified that it can legally be done differently’, and as a result they
transmit the 16-bit fields in the function code headers as “Big Endian”, but user data (registers) in
the “Little Endian” format.

This is a big mistake; its will put a huge conversion effort on the network master (for Modbus/ASCII
and /RTU); | haven’t seen it on Modbus/TCP (yet) perhaps those implemen read the [MBUSAPPL]
specification.

3. Long integers / double words
When 16 bits are not enough to store data in, the next st

consecutive registers are chosen.

The following example is taken from a i ow 32 bits are stored in
two (consecutive) registers 1 and 2, with

3.6.2 32-Bit Integer Values

32-bit integers are stored in two Modbus registers.

Modbus register 1 2

Byte 0 1 . 3

2410 31 1610 23 8to 15 Oto /7

‘ Source: SMA

» For me this is clear enough: Big-Endian. And so many others read it so as well.

Modbus The Manual Page 73




Configuration &]

General | Com  Optien | Conn. TCPAP |
r Connection:
" Serial « TCPAP Concel |
 Order for FLOAT objects: —— ~ Order for DWORD objects:
" HB Controler FLOAT " Intel Format DWORD
* Standard Modbus FLOAT * Motorola Format DWORD
[T RTS Handshake TCP - configuration File:
[~ Offset1 |Defauliso
mak. Block size: Send Delay:
64 10 ms
Reconnect Timeout:
2000

Some vendors take advantage of the freedom that the t
use the “Little Endian” / Intel standard:
advantageous when both the master
R2 do not have to be swapped twice, g

mat is not specified, and they
ed by the MSW. This is
U, because the registers R1 and

numbers in calculations was very

r (very slow!) software packages. It was not
in value differed per vendor. This made
ipment from different vendors difficult.

* This performance improvement is so small that it is completely dwarfed by the effort needed to explain
customers what to do, and the effort spent by users trying to find out why their network seems to come up with
apparently very strange data.

Modbus The Manual Page 74



The IEEE-754 “double” format for single-precision (top) and double precision (bottom), consisting of 1
“sign” bit, an 8 or 11 bit exponent and a 23 or 52-bit fractional part (sometimes also called
“mantissa”).

IEEE-754 specifies varies floating-point formats: 32 bit size, 64 bit size, 80 bit size, 128 bit size. Until
recently, the 32 bit format was the most common, until the rise of 64 bit processors in PC’s. For
industrial systems the 32 bit “single precision” format is still widely used, giving numbers with 6

(decimal) digits of precision with a maximum range of 10%. The 64-bit “do precision” format has

15 (decimal) digits of precision, with a maximum range of 10°%.

This publication is not the right place to explain the inner, IEEE-754, which may

prepared to handle th rt them doesn’t mean that

This doesn’t rela 1 i alues, howeverithere are still 4 bytes which need to be

onsecutive):

n and exponent and some of the fraction bits, and which register only
s on the vendor. Some vendors transmit register A first, and other
vendors regist register, you might also see the bytes swapped. So there are multiple
possible ways to t it a 32-bit floating point value:
B1 B2 B3 B4

B2 Bl B4 B3

B3 B4 Bl B2

B4 B3 B2 Bl

Modbus The Manual Page 75



If the vendor documentation is not clear enough about how a floating point value is transmitted, it is
not easy to find the transmission format because the 32 bits do not easily convert to a human-
understandable format. Although it is not very difficult to convert a bit pattern into the associated
floating point value, several tools are online to assist you. To name one: www.binaryconvert.com.

Float (IEEE754 Single precision 32-bit)

Most accurate representation = 2.5E0

2.5

0x40200000 = 01000000 00100000 00000000 00000000

Sign Exponent Mantissa
l NEEEEEEE SNEEEEEEEEEEEEEEEEEEEEE
0 10000000 01000000000000000000000

Copyright @ 2009-2018 Frangois Grondin. All Rights Reserved.

e because are 8 bytes involved.

Sometimes the usag . ulations with such numbers require a lot of
dprocessor (which can be expensive for

have a com four digits. The maximum range than decreases from 65535 to 6553,5

(or-3276,8 ..32 now there is one digit available for fractional results.

For example, suppose a slave has a measured value = 123,4 that must be sent to the master.
Multiply it by 10 to get an integer value: 1234, and store this in a Modbus register. Master
reads this from the slave as: 1234. The application program on the master side ‘knows’ this
is a fixed point number, so divides the data by 10 to get the actual value again: 123,4.

Modbus The Manual Page 76



When writing data, the same algorithm is used. Suppose that the master wants to write a
value 567,8 to a slave. Multiply it by 10 and send 5678 to the slave, who will then divide it by
10 again to get the real value 567,8.

It is also possible to have two fractional digits in a register (giving a factor 100). This limits the usable
range to 0..655,35 (or to -327,68 .. 327,67). If 16 bits is too restrictive, of course it is possible to have
fixed point notation with a 32-bit value stored in two (consecutive) registers.

A

2.3.2.4 “Value” register Interpretation
This depends on the type of mputs.

2.3.2.4.1 Pressure Input

The Pressure Input Value 1s a 2 byte integer, and confams the actual reading in mbar (0.001 bar)
For negative values, standard 2-complement notation is used.

Example: Value = 7040 decimal or 0x1B80 hexadecimal = 7.040 bar.
Value = -1000 decimal (2-complement) or 0xFC18 = -1.000 bar

For sensor error the value the value 32767 or 7FFF (hex) 1s returned.

On some high pressure compressors (with working pressures above 30 bar) a special Pressure Input can be defined
that returns data in cBar (0.01 bar) in stead of mBar.

You are not limited to multiplications even a facto Id be used — this would give
you values like 3, 3%, 4, 4%, 5, etc. As |

up to you to decide.

agree, this is OK, entirely

ed with different conversion

Note that the applicati e running o

algorithms simulta e different fixed point formats.

6. Scaling
This.

int notation ertain offset. One sees this often with analogue

ssuch as 4.: puts. The example below shows such a module, which
presents a value of eger value 1500, and uses values > 8000 (hexadecimal) to

e an erroneous sit o standard for this; every vendor can have its own

Modbus The Manual Page 77



Analog RAD-DAIOB-IFS inputs and outputs
Table 7-9 Representation of analog RAD-DAIO6-IFS values
Data word

hex dec / error code 0..20mA 4 ..20mA | OV..10V
0000 0 0mA - ov
1770 6000 4 mA 4 mA 2V
7530 30000 20 mA 20 mA 100V
7F00 32512 21.67 mA 21.67mA 10.84V
8001 Overrange »21.67 mA | »21.67 mA -
8002 Open circuit - <3.2 mA -
8080 Underrange <0 mA - -

-10V  hex 0000, decimal O
ov hex 8000, unsigned deci

7. Characte
Characters are usue oded according to the ASCII standard. This is so old a standard that | have
never seen a device that doesn’t support it*. Note that this ASCII is the same as in Modbus/ASCII
which codes its network messages according to this standard, using the characters
0123456789ABCDEF: and CarriageReturn CR and LineFeed LF.

? To be true: there are other standards invented to decode characters, such as EBCDIC (used in IBM
mainframes), but | have never seen this.

Modbus The Manual Page 78




8. Strings

Strings of charact

be able to read/write strings, i.e. for error messages, or for putting texts on a display, or for getting
text from an input device, etc. So we do see Modbus devices with strings on the market.

Decimal Hexadecimal Binary Octal Char Decimal Hexadecimal Binary Octal Char | Decimal Hexadecimal Binary Octal Char
0 ] 1] 0 (NULL] 48 30 110000 60 0 96 &0 1100000 140 °
1 1 1 1 {START OF HEADING] 49 31 110001 61 1 97 61 1100001 141 a
2 2 10 2 {START OF TEXT] 50 32 110010 62 2 a8 62 1100010 142 b
3 5 i | 3 {END OF TEXT] 51 i3 110011 63 3 99 63 1100011 143 ¢
4 4 100 4 (END OF TRANSMISSION] 52 34 110100 64 4 100 64 1100100 144 d
1 L 101 5 (ENQUIRY] 53 35 110101 &5 5 101 65 1100101 145 e
6 6 110 6 [ACKNOWLEDGE] 54 36 110110 66 6 102 66 1100110 146 f
T 7 111 ¥ [BELL] 55 37 110111 &7 7 103 67 1100111 147 g
8 8 1000 10 (BACKSPACE] 56 38 111000 70 8 104 68 1101000 150 h
9 9 1001 11 (HORIZONTAL TAB] 57 39 111001 71 9 105 69 1101001 151 i
10 A 1010 12 (LINE FEED] 58 3A 111010 72 : 106 BA 1101010 152 j
11 B 1011, . 13 [VERTICAL TAB] 59 3B 111011 73 H 107 6B 1101011 153 k
12 c 1100 14 {FORM FEED] 60 3ac 111100 74 < 108 6C 1101100 154 |
13 D 1101 15 [CARRIAGE RETURN] 61 3D 111101 75 = 109 6D 1101101 155 m
14 E 1110 16 [SHIFT OUT] 62 3E 111110 76 > 110 6E 1101110 156 n
15 F 1111 17 [SHIFT IN] 63 3F 111111 77 7 111 6F 1101111 157 o
16 10 10000 20 [DATA LINK ESCAFE] 64 40 1000000 100 @ 112 70 1110000 160 p
17 11 10001 21 {DEVICE CONTROL 1) 65 41 1000001 101 A 113 71 1110001 161 gq
18 12 10010 22 {DEVICE CONTROL 2] 66 42 1000010 102 B 114 T2 1110010 162 r
19 13 10011 23 [DEVICE CONTROL 3] 67 43 1000011 103 C 115 73 1110011 163 s
20 14 10100 24 [DEVICE CONTROL 4] 68 44 1000100 104 D 116 74 1110100 164 t
21 15 10101 25 (NEGATIVE ACKNOWLEDGE]| 69 45 1000101 105 E L 75 1110101 165 wu
22 16 10110 26 [SYNCHRONQUS IDLE] 70 46 1000110 106 F 118 76 1110110 166 W
23 17 10111 27 (ENG OF TRANS, BLOCK] 7l a7 1000111 107 G 119 77 1110111 167 w
24 18 11000 30 [CANCEL] 72 48 1001000 110 H 120 78 1111000 170 x
25 19 11001 31 (END OF MEDIUM] 73 49 1001001 111 1 121 79 1111001 171 ¥y
26 1A 11010 32 [SUBSTITUTE] 74 44 1001010 112 ) 122 TA 1111010 172 =z
27 1B 11001 . 33 {ESCAPE] 75 4B 1001011 113 K 123 7B 1111011 173 {
28 1C 11100 34 [FILE SEPARATOR] 76 4c 1001100 114 L 124 7c 1111100 174 |
29 1D 11101 35 [GROUP SEPARATOR] 77 4D 1001101115 ™M 125 7D 1111101 175 }
30 1E 11110 36 {RECORD SEPARATOR] 78 4E 1001110 116 N 126 TE 1111110 176 =~
31 1F 11111 37 [UNIT SEPARATOR] 79 4F 1001111 117 © 127 7F 1111111 177 (DEL)
32 20 100000 40 (SPACE] 80 50 1010000 120 P

33 21 100001 41 ! 81 51 1010001 121 Q

34 22 100010 42 i B2 52 1010010 122 R

35 23 100011 43 # 83 53 1010011123 S

36 24 100100 44 $ 84 54 1010100124 T

37 25 100101 45 % 85 55 1010101 125 U

38 26 100110 46 & 86 56 1010110 126 ¥

39 27 100111 47 L 87 57 1010111 127 W

40 28 101000 50 { 88 58 1011000 130 X

41 29 101001 51 ) 89 59 1011001131 Y

42 2A 101010 52 # 90 54 1011010 132 Z

43 2B 101011 53 + 91 5B 1011011133 |

44 2C 101100 54 ' 92 5C 1011100 134

45 2D 101101 55 - 93 5D 1011101 135 ]

46 2E 101110 56 . 94 5E 1011110 136 ~

47 2F 101111 57 !/ 95 5F 1011111137 _

e also not officially supported in Modbus. But in many cases it is practical to

% There are several other standards to decode characters of all sorts of alphabets, but it is unlikely you ever

encounter them in Modbus equipment. Start with reading https://en.wikipedia.org/wiki/Unicode for an

introduction to Unicode, UTF-8, UTF-16 and many, many more...

Modbus The Manual

Page 79




Again, due to the absence of any specification on how strings must be stored in a device, there is a
lot of variation to be found. Usually, strings are stored in consecutive groups of registers. Each
register can then store two ASCII characters, or one Unicode character.

When there are ASCII-two characters per register, it is in the style of Modbus MSB/LSB sequencing
that the first character is stored in the MSB of a register, and the second character in the LSB. But it
can also be done differently (see the example below).

How long can a string be? Some vendors allow for dynamic texts, but t length of the string

must then be known. A popular implementation (as in the C progra anguage) is to indicate

the end of the string by a ‘zero’ (binary 00000000) byte.

But other implementations keep a separate value for the ’s length, i.e. ber 12 for a
string with 12 characters. The length is often stored in
practical for writing, but not so practical for readin

in a second command the actual number of charact

ASCH with
ASCIWith  endzero,  ASCH with _
end zero swapped length field Unicode
n
Hle e|H
n+1
I ]| (I
n+l
0] 4 . (0]
W (0 o (w
r|l |
d|! I]d
0 0

e
Registers

characters, whe g length is even a whole extra register (two bytes) must be written.
Strings should not overwrite other strings. Is it allowed to write in the middle of the string? If so, no
terminating zero may be needed (because there is already one). Can strings be shortened or
extended? Carefully check the vendor documentation.

The author of the software on a slave must also exercise caution when modifying the contents of
registers containing string data, as the master can read them at the same time as they are modified.
The software must modify a string (and its terminating zero, or the length field) in an atomic action.

Modbus The Manual Page 80



9. Time

Depending on the vendor of a device, this can either mean the current ‘time-of-day’ (number of
seconds since midnight), or the number of seconds or milliseconds since a certain epoch, for
example 1-1-1970, 1-1-1900 or the start of the Gregorian calendar.

Dates can be represented in a standardized string format, i.e. “2018-07-13719:10:12.450”, but also
in many other formats such as “DDMMYYYY”, “MMDDYYYY”, “YYYYMMDD"”, months as numeric

value or as string (“Jan”, “Feb”), years with or without the century, etc. Consult the vendor

documentation for more information.

Modbus The Manual Page 81



CHAPTER 8. Protocol conversion

Because there are so many Modbus variants, sometimes it so happens that in one application a
device with a different Modbus protocol variant is to be integrated. As we have seen in previous
chapters, it is not possible to connect Modbus/ASCII to /RTU devices (and vice-versa), because the

datalink protocol is different. Even when these devices have the same physiecal layer (RS232 or

RS485), when the datalink protocol doesn’t match, no communication i

The same holds when connecting Modbus/TCP or ASCIl or RTU
different physical layer than RS232 or RS485.

As this happens often in daily practice, many vendors
converters” or “gateways” that convert the physic
to the other. With such devices it is possible to have SCll or
/RTU device, or vice-versa. Technically speaking, a gate
protocol A to B, and vice-versa B to A), but of course it can d that Modbus/ASCIl and / RTU

are not different protocols.

1. Modbus/ASCII to /RTU and v
Because Modbus/ASCI
but still needs a CP ; - on. The translation can be so quickly (relative

dbus/RTU are o' between them is not difficult

2. Modbus/TCP to Modbus/RTU
Gateways that convert from Modbus/TCP to Modbus/RTU are relatively easy to make, as the
protocols are quite alike. From an incoming Modbus/TCP request, the 6-byte header is stripped, the

CRC must be calculated and added, and then the Modbus/RTU message can be transmitted. Upon
receiving the response, the CRC is first checked, and when OK the 6-byte header is sent followed by
the data part.

Modbus The Manual Page 82



As the 6-byte header contains a “Transaction ID” which is not sent over Modbus/RTU, the gateway
must store this field for use in the header of the response message. This makes that a gateway can
handle only one request per Modbus/RTU network. As this is identical to what a Modbus/RTU
master can do, it enforces no extra restrictions.

Weidmiiller <_

Online Catalogue = Active Indusirial Ethemet » Modbus TCP/RTU Gateway

Modbus TCP/RTU Gateway

» Slave mode supports 16 TCP masters and up to 62 serial slaves simultaneoush
* Master mode suppaorts 32 TCP slaves simulianeously

* Integrated Modbus protocol analysis

= Redundant DC power supply inputs

» Cascaded Ethemnet ports for easy cabling

Some gateway vendors allow access to more than one Mo network per gateway. The

internal implementation of the gate i between the traffic for all

re difficult to implement, due to the way TCP/IP

As the setting up onnection in TCP can sometimes be quite slow, the master should take care
e first function block is not too short. As soon as the connection is
established, the timeout can be set to a shorter interval. However many Modbus/RTU masters do

not allow this.

that any timeout fo

A gateway can also implement that it sets up the connection to the Modbus/TCP server as soon as
the power is turned on. This way, no special handling of the first function block is needed.

Modbus The Manual Page 83



4. Ethernet to Modbus/RTU or Modbus/ASCII

These boxes look very similar to a Modbus/TCP gateway to the serial Modbus versions, but there is a
big difference: they have no Modbus knowledge. What comes in on Ethernet is transmitted 1:1 over
the serial line; what comes in over the serial line is transmitted 1:1 on Ethernet.

So, when the serial communication is Modbus/ASCIl, you’ll get Modbus/ASCll-on-Ethernet, this is
not Modbus/TCP. When the serial communication is Modbus/RTU, you still don’t get Modbus/TCP,

although it may look very recognizable. But remember that Modbus/TCP n extra header, and

no CRC. The converter box will not add the header and not strip the CR

Nevertheless, it can be a good solution in certain systems due t

5. Modbus to CAN/Open

The CAN in Automation User’s Group (CiA) has dev ing TCP-
to-CAN/Open gateways. Part 2, formally labelled “Ci ifi i s/TCP
protocol.

y N

‘PC or PLCl CiA 309 network device
or tool

+—+—» e.g. TCP/IP network using CiA 309-X protocols
a

CiA 309-1
services

CiA 301 || CiA 301 up to CiA 301
services || services services

\ J
CiA 301

CiA 309 gateway device\

up to up to up to network
devices
Node 127 I— Node 127 Node 127
" L J
CANopen CANopen CANopen
network 1 network 2 network 127

309 TCP-to-CAN gateway (source: CAN in Automation)

By means of the CiA 309 protocols, an application program can access every device in all connected
CAN/Open networks. This is mainly useful for remote configuration, remote diagnostics, and
relatively low-speed applications. A first version 1.1.0 of the CiA 309-2 was released in 2006; its
specification is publicly available from the CiA website. As of 2015, version 1.3.0 of the CiA 309-2 was
released, adding support for Modbus extended exceptions. This specification is not publicly available
(for members only).

Modbus The Manual Page 84



On Modbus/TCP, function code 43 is reserved for the “CAN/Open General Reference”. Basically, it
uses the data part of the function code to give commands to the gateway what to do.

CiA 309 does not allow for CAN/Open “PDO” commands®’. The “SDO” commands are supported, as
are “NMT” (network management) and gateway management commands. Because the function 43
messages are limited by the Modbus specification to contain no more than 253 data bytes, larger
chunks of data can be read/written by a sequence of “Extended Requests” and “Extended

iA 309-2 follows what
AN itself (where a

Responses” which are repeated until a larger chunk of data is transferred.

the CAN/Open protocol itself does when transferring large chunks of d
CAN-message can only contain 8 data bytes).

6. Modbus to SEMI

The Modbus User’s Group has developed a specificati
SEMI sensor bus. SEMI is the association of vendor
equipment, who has written specifications for how t i colsin
the semiconductor machinery market.
The specification is freely available fr ite. Version 1.1 was released in

2004. It describes two methods of com e first using n code 91, the second using

the (existing) function code 3 and 16.

d the Modbus/TCP messages are then sent out over an Ethernet, on
can be connected.

8. Ethernet Modbus/TCP

Ethernet/IP is an indUstrial Ethernet variant developed by the ODVA User’s Group (Open DeviceNet
Vendors Association, www.odva.org). Although Modbus/TCP was not initially part of Ethernet/IP, it
was added when Schneider became a member of the board of directors of ODVA.

7In CAN/Open, a “Protocol Data Object” is used for fast communication between devices. There can be
maximum of 8 per device, they can be send per broadcast at high rates, can contain up to 8 bytes data (as
limited by CAN), and have no extra protocol overhead. The “Service Data Object” is slower, has more overhead,
can only be sent point-to-point, but they can be very large in size and there can be several thousand per device.

Modbus The Manual Page 85



Architectural diagram of the CIP family of products

9. Anything else to/from Mod
Many other existing protocols can be co
search on internet reveals many vendors.

List of Gateways

Modbus Translation

&

EtherNet/IP"
Modbus/TCP

Connection Management, Routing

Connection Management, Routing

Componet
Network and Transpor

Cc:rmpc:iNerw

bset of the

ControlNet
Network and Transport

Safety Obe;:;;
Library

Safoty o8
and Messages

—————— |
|

ControlNet™

f Modbus (source:

y Chipkin:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Modbus RTU

Modbus RTU to Allen-Bradley CSP
Modbus RTU to ATMI ACM and TGM
Modbus RTU to Armstrong FA403
Modbus RTU to BACnet Ethemet
Modbus RTU to BACnet IP
Modbus RTU to BACnet MSTP
Modbus RTU to BACnet Arcnet
Modbus RTU to Barrington Microstar
Modbus RTU to BACnet 1P
Modbus RTU to ControlNet
Modbus RTU to Cummins

Modbus RTU to Caterpillar

Modbus RTU to Canatal

Modbus RTU to DF1

Modbus RTU to Data Highway Plus
(DH)

Modbus RTU to DeviceNet
Modbus RTU to DNP3

Modbus RTU to Ethernet IP
Modbus RTU to Edwards

Modbus RTU to Fike Cheetah
Maodbus RTU to GE-EGD

Modbus TCP

Modbus TCP to Allen-Bradley CSP
Modbus TCP to ATMI ACM and TGM
Maodbus TCP to Armstrong FA403
Modbus TCP to BACnet Ethernet
Modbus TCP to BACnet IP

Modbus TCP to BACnet MSTP

= Modbus RTU to GE SNP (SNPx)
= Modbus RTU to GE TLC

= Modbus RTU to Gamewell FCI

= Modbus RTU to Federal Signal

Ultravoice

= Modbus RTU to Mircom FX2000
= Modbus RTU to GE TLC

= Modbus RTU to HTTP

- Modbus RTU to Kohler

= Modbus RTU to KNX

= Modbus RTU to Lonworks

= Modbus RTU to Modbus ASCII

= Modbus RTU to Metasys N2

= Modbus RTU to Modbus TCP

= Modbus RTU to Modbus Plus (MB})
= Modbus RTU to MetOne Particle

Counters

= Modbus RTU to Multistack Compu25
= Modbus RTU to M-Bus

= Modbus RTU to McQuay Microtech

= Modbus RTU to Modbus TCP

= Modbus RTU to Notifier 3030

= Modbus TCP to GE SNP (SNPX)
= Modbus TCP to GETLC

= Modbus TCP to Gamewell FCI

- Modbus TCP to Federal Signal

Uliravoice

= Modbus TCP to Mircom FX2000

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Modbus RTU to Notifer 320/640
Modbus RTU to Notifer Legacy
Panels

Modbus RTU to National Time and
Signal

Modbus RTU to Omron FINS
Modbus RTU to OPC

Modbus RTU to Optomux Opto22
Modbus RTU to Profibus

Modbus RTU to GE SRTP
Modbus RTU to Rapid Engineering
ICsI

Modbus RTU to Simplex 4100
Modbus RTU to Silent Knight Fire
Modbus RTU to Siemens Fire Safety
Modbus RTU to SIA Security Industry
Modbus RTU to Stulz

Modbus RTU to SNMP

Modbus RTU to Telnet

Modbus RTU to TL1

Modbus RTU to TAC I-Net
Modbus RTU to TOA V33900
Modbus RTU to XML

Modbus TCP to Notifer 320/640
Modbus TCP to Notifer Legacy Panels
Modbus TCP to National Time and
Signal

Modbus TCP to Omron FINS

Modbus TCP to OPC

VA).

s variants. A quick

Modbus The Manual

Page 86



CHAPTER 9. Performance calculations

In almost all industrial applications, the system must be able to react on external events within a
maximum time. When an industrial network is used, the speed of the network also becomes
relevant. The bitrate on the cable is an important parameter; a network running at 115.2 Kbit/s is

faster than one running at 9.6 Kbit/s. But: is it fast enough? Before we can ‘ves’, calculations

need to be done taking into account:

- The number of devices on the network;
- The bitrate;

- The overhead in the network protocol;
- The speed of the software.

For Modbus, this is no different than for any other
details. We will now first discuss a basic performance
for Modbus/ASCIl and /RTU.

1. Remote I/0 scanning

I/0 modules (as configured by the user), and one by one the master
2: it is sent a network message with new settings for the outputs, and
master has prot¢ aves, one “I/O Cycle” is finished: all outputs have been transferred to the
slaves, and the inp ave been read. The time needed for this is the so-called “cycle time”. When a

cycle is finished, the master immediately starts with the next cycle.

Modbus The Manual Page 87



giving a machine or production line more products
or less deviation in mechanical tolerances, etc. It is

the network fast enough? In every cy
whose value changes quicker than the
time.

Signal- 4
value

Cycles i

correctly sampled with a given cycle time (blue dots). But the same
r the quickly-changing green signal; many important signal changes are
not seen.

% The cycle time is not directly related to the bitrate of a network. Usually, a higher bitrate will also cause a
shorter (better) cycle time. But this is not automatically true; some networks need a higher bitrate just to
compensate for (excessive) overhead in their network messages. The result is that efficient industrial protocols
can achieve a short cycle time on a low bitrate, and competing protocols need a high bitrate to achieve the
same cycle time. For application software, the only thing of importance is the cycle time. Sales persons trying to
impress you with high bitrates in their products probably don’t know what they’re selling.

Modbus The Manual Page 88



>

Signal- 1
value

Cycles i

When the cycle time becomes ten times faster (green dots) th%y-ch
also properly read. In most remote |/O networks, all sign sampled at th

green signal is now
frequency, so

the signal that changes the most determines the cycl

Some remote I/O networks allow different cycle tim are

sampled quicker; slow-changing signals are sampled slo t waste bandwidthfor
network messages that contain the same data over and ag rawback is that such networks

difficult to calcu cycle time. We will not go into

are more difficult to configure, and it

More refinement ble when also taking software overhead into account (section 3). Even more
refinement is possible when we also take into account how a specific network protocol works; we

will do this for Modbus/ASCII (section 4) and Modbus/RTU (section 5).

The outcomes of the calculation(s) determine whether the network is suitable for use in the
application to be made, i.e. when the cycle time is short enough. When the cycle time is too long,
the network must be redesigned, i.e. using less devices, running at a higher speed (bitrate), etc., or:
you should perhaps use another network protocol.

Modbus The Manual Page 89



2. Simple performance model
A simple performance model [1] for any I/O system is given by the formula:

_nx8x (2 X Overhead + Inputs + Outputs)

Tc -
Bitrate
Where:

Tc The calculated cycle time (in seconds).

n The number of I/0 modules (slaves) on the network. How many t is known from the
application requirements.

8 The number of bits per byte.

2 One request message (from master to a slave), an response messa slave back to
master).

Overhead The number of bytes of overhead in each message. This information can dinthe
network protocol specification.

Inputs The average number of bytes in a network mes: i ut data, usually the number of

many inputs there are is known from

the application requiremen s for 1 bit; an analogue signal for 16 bits.

Outputs The average number of by ) 3 ut data, usually the number of
output bits divided by 8 and ny outputs there are is known
from the application require bit; an analogue signal for 16

Bitrate . ue is normally dependent on the length

annels on every device;
erhead for network messages for inputs and outputs;

If we take these factors into account, formula [2] is getting more detailed:

n

Overhead; + Inputs; Overhead, + Outputs,
Tc = Z ( - + Tpsi + - + Tpm)
Bitrate Bitrate

i=1

Here we have:

Modbus The Manual Page 90



Overhead;

Overhead,

Inputs;

Outputs;

Tps;

Tom

Overhead for the network message with input data (in bits) for module i. This information can be
found in the network protocol specification

Idem, but for the network message for the outputs (in bits) for module i. The overhead can be the
same as for the inputs, but can also be different.

The total number of bits used for inputs on device i. How many bits there are is known from the
application requirements. Usually any digital signal counts for 1 bit; an analogue signal for 16 bits.

Idem, but for the outputs on device i.

Pause time between two network messages (in seconds) on the sl ally the processing time for

incoming telegrams, and any application overhead.

This time will differ per device, but it is very difficult to g as vendors seldom publish

information about it. In practice the only way to get a network, connect

the device, connect a network-analyser, and mea time between th essages.

Pause time between two network message onds) on the master, usually essing time for

incoming responses, application processi the time needed to decide on the n

message.

This time will probably differ per device. It is the su
stack and the application sg
be, as the vendor does not

cessing time of the Modbus protocol
e. It is therefore not

to ask a vendor how long this time will
our application s

It is the experience of the aut
for long processing times, while

ers blame the protocol stack
ftware which is slow!

Modbus The Manual Page 91



Graphically we can depict this as:

£

= "?ﬂ?uest

ﬂ t

v

a .
= Processing...
EE——

- a

£ Response
= 5

E t

pport this behaviour with a single function code. Instead, two function

riting the output data and one for reading the input data; this makes
that in tota sages are sent. In the example below we assume that function codes 3
and 16 are use : e the most common®. When using other function codes, the values for
the overhead mu anged. We now also add the overhead of the serial transmission format

(start bit, parity bit and stop bit) which may seem negligible but is still 3 bits on every 7 bits.

?*? Some masters have the capability to use function code 23, which allows data to be written and read from a
slave with a single command. This is considerable more efficient than using function codes 3 and 16.
Unfortunately, function code 23 is seldom implemented — and if it is, remember: both the master and a slave
must support it.

Modbus The Manual Page 92



This gives [3]:

n
1+d+p+s)x(12+2x (11 + 2 X Inputs; + 15 + 2 X Outputs;
TC=Z(( P+s) ( ( P P ))+2prsi+2><Tpm>

: bitrate
i=1
In which:

d The number of bits per byte in the Modbus/ASCII serial transmission format, which is normally 7 (some
vendors use 8 data bits).

1 One start bit.

p Has the value 1 when a parity bit is used, or else the value 0, ity bit is used.

s The number of stopbits: usually 1, sometimes 2.

12 Four times 3 bytes overhead per network mess, rt delimiter “:”, carria CR, line feed LF).
These are not expanded from two nibbles t tes on the network, so shoul multiplied by
2 as is done for the remainder of the net

2 In Modbus/ASCII each byte of application data s on the network.

11 A total of 11 bytes overheadigbytes for the request dress, function code 3, starting address H
and L, number of registers hecksum), and 4 byt e response message (slave address,
function code 3, byte count

2 Aregister is 2 bytes.

15 A total of s, function code 16, starting address

, checksum) and 7 bytes for the response message
dress H and L, number of registers H and L, checksum).

Inputs;

Outputs;

he network cable. More than half of the bandwidth is thus lost on
each b surprise that Modbus/ASClI is hardly used in moderns system (in

favour of ) we describe below).

5. Modbus/RTU calculation
Modbus/RTU is much more efficient than Modbus/ASCII as it does not split each byte in two. This
gives the following formula for calculating the cycle time [4]:

. i((1+d+p+s)X(14-+13+2><Inputsi+17+2xOutputsi)
c =

+2XTpsi+2XT
bitrate ps pm)

i=1

In which (for the others see above):

Modbus The Manual Page 93



14 The 3.5 character delay after each message, times 4 (for the four messages exchanged).

13 Total amount of overhead: 8 in the function code 03 request, and 5 bytes in the function code
response (one byte more per message than with Modbus/ASCII, because the CRC is 2 bytes in size
while the checksum is only 1 byte).

17 Total amount of overhead: 9 in the function code 16 request and 8 in the function code response (one
byte more per message than with Modbus/ASCIl, because the CRC is 2 bytes in size while the checksum
is only 1 byte).

Because of the smaller transmission time of network messages, the valu psi and Tpm are

relatively more important.

6. Modbus/TCP calculation
Although on first thought the calculations for Modbus/ bus/RTU due
to the similarity of the protocol, this is not entirely taken into
account. This is not so easy to quantify, since it dep
TCP/IP protocol stack implementation®.

Sometimes one runs into strange surpri ws: in order to have a responsive
user-interface (keyboard, mouse), the iori e CPU, and the protocol
support comes second. This may result ery v i incoming network
message; the author has experienced wit
to over two hundred milliseconds.

bits for a CRC, and finally each message has a
ow a receiving device to process incoming messages.

message must have a length of at least 46 bytes. When a message
of data, it must be padded with zero bytes. So, whatever it takes, an

least 64+48+48+16+46*8+32+96 = 672 bits long.
Inside the data P/IP fields are stored. Both protocols have their own overhead, which is:

- 20 bytes(at least) for IP, and
- 24 bytes (at least) for TCP.

3% Sometimes one runs into strange surprises. For example, on Windows: in order to have a responsive user-
interface (keyboard, mouse), the user-interface has priority for the CPU, and the protocol support comes
second. This may result in very varying processing times of incoming network message; the author has
experienced with his own software that this can vary from sub-milliseconds to over two hundred milliseconds.

Modbus The Manual Page 94



Luckily, by chance (or by design ?) this fits snugly in the 46 byte Ethernet minimum data field, so in
this case using TCP/IP adds no overhead to any Ethernet message. There are even 2 bytes left for
other use, but this is not enough for Modbus/TCP.

Following the TCP/IP header comes the 5-byte Modbus/TCP header, which is itself followed by the
function-code specific data. For example, a function code 3 request will add another 5 bytes. So the
total length of the Ethernet message is 64+48+48+16+(20+24+5+5)*8+32+96=736 bits. This is much
more than the same function code uses in Modbus/ASCIl or Modbus/RTU, but in Ethernet the

transmission speed is much higher. At 100 Mbit/s, the 736 bits cost only seconds transmission

time, probably negligible in comparison to the software overhead in nt and/or the server.

However, the best ‘win’ is the enormous raw speed of Ethernet 0 to 1000 Mbit/s and
sometimes even 10000 Mbit/s. In practice we see that the spe
dominated by the software implementations on the clie erating systems

then run on.

7. Notes on performance problems

Although Modbus is generally not useddmapplications requi h-speed performance (i.e. with

millisecond cycle-times), sometimes i e too slow, eve n-demanding applications.

1. 3 is decreases the transmission time

susceptible
When using i itrate | probably help very little, as modern

of data to be transferred. This helps a bit, but not much in relation to
lodbus protocol.

4. Decrease the Tpm®! and Tps>>. This is one of the most effective ways of decreasing the cycle
time, but usually impossible for ordinary users unless you have access to the source-code of

31 The author once worked with a master with had a Tpm of more than 70 milliseconds. After seriously
complaining to the vendor and ignoring their complaints “What you want is impossible” they managed to bring
this back this to less than a millisecond, giving a big boost in application performance.

Modbus The Manual Page 95



the master and (all the) slaves.
5. Use a network with fewer devices. For example, splitting a network in two smaller networks,

each with half the devices of the original network, will decrease the cycle time by 50%, at
the expense of having to buy an additional Modbus master.

A

* A customer once had a Modbus/RTU slave that could only process 3 commands per seconds, despite a high
bitrate. After investigation it turned out that the slave had a Tps processing-time of 300 milliseconds per
command, this immediately explains why only 3 commands per second could be given (remember: the master
must wait for the answer from the slave before it can continue).

Modbus The Manual Page 96



CHAPTER 10. Implementing Modbus

Using Modbus is something entirely different than implementing it. In this chapter | provide some
tips for fellow programmers, based on my own experiences in making Modbus protocol stacks.
When | started doing this, there was no internet and no open-source. Nowadays, first look at what is
made something that

available on internet (start on: www.modbus.org). Perhaps somebody alre

you can use directly. But perhaps there’s nothing there, or not possible bination with your

application, or the licensing terms are too costly... then you still hav rt programming yourself.

1. Serial I/0 or Ethernet?
A serial port is cheap, and easy to program. At low bi

say, <= 38.4 Kbit/s) it pose no

problem for any modern CPU. Things to watch out

- With Modbus/ASCII, 7 bits characters must be bits for Modbus
- The parity bit should be programmable (odd, even

- The number of stop bits shou

ogrammable (1

When transmitting network messages (3
characters are transmitted with no inter : o-called ‘back to back’

it buffer. Have the Modbus software fill this buffer with one
any commands with only one byte.

as ended, and that a new one starts after the pause. As the first part is
essage, and the second part does not look like Modbus at all, both parts
by the receiver. The master will get no response back, and report an error.

not a complete
are silently ignored

Modbus/RTU intermessage pause

In Modbus/RTU, the maximum pause time is set (by the specification) to 3.5 times the transmission
time for a single character. It is a fixed value, which cannot be configured differently. So the
transmitter must make sure that there is never such a large transmission delay between two
consecutive characters.

Modbus The Manual Page 97



Unfortunately, the 3.5 character time limit is seldom enforced. First, the .5 part is very difficult to
implement, so many vendors set the limit to 4, or higher. This no problem due to the half-duplex
way of working of Modbus; when a receiver needs more time before it decides that it has received a
complete network message, it is just responding a little bit slower.

2. TCP/IP
Any implementation of Modbus/TCP requires a TCP/IP. Nowadays, these a
probably out-of-the-box available in any embedded platform, with a st

ery common and
“sockets” API

ing with TCP/IP for some
oft with WinSock) I'd

(Application Programmers Interface). Sockets are the standard way
30 years, and although there are vendors that offer their own AP,
recommend using use those API’s only when needed.

Because socket interfaces are so stable, a lot of docu
internet. It is not difficult to comprehend, if you ha
changed in these 30 years, the “old” examples still
for your own implementation.

Note that any Modbus/TCP device rec is in contract to serial Modbus
masters which do not need a network ither dynamically set (via

Calculating the CF st be done according to the algorithm specified by Modbus, a 16-bit CRC. In
[MBUS300] an example of an implementation in C is given; on internet more examples can be found
for other programming languages.

Modbus The Manual Page 98



A | B & D|E|F|G|H[I[J|K[LIMN[O|P[Q|R[ST| U M W AA AB

1 Courlesy of

2

3| This sheet requires the Analysis Toolpak to be loaded. Select the Tools Menu > Add-Ins... > check Analysis Toolpack SI

4

5| input hex string #bytes crc bu’

6 [610930 ] 3 2654 |

& [ 1 . simpl rnodbus ca

8 112(3|4|5/6[7[8[9(10/11]12/13]14/15/16 Rev04 - Mar. 13, 2016
9 | xor constant] 1 0 10 0 0 0 0 0 0 0 0 00 0 1] xor with this constant if the shifted bit was 1

10

11| byte# Hex Start with 16trues |1 1(1|1|1[1(1|1|1|1|1]|1[1]|1]|1|1

12 1 |61 | ooooooooot100001 o 0 0 0 0 0 00 01100001

13 xorthe 2linesabove |4 1 1 1 1 1 1 1 1001 1110 xor means "are they different?"

14| shift xor 1 a iy @ if the two input bits are different the result is 1 (true).
15 shift xor 2 BN 0 0 SESIEEREE N O 0 . O if the two input bits are the same the result is 0 (false).
16 | shift xor 3 0B 0 0 SSUEEEEEEEE I 0 | O S

17| shift xor 4 B 00 0|0 SRSt (| (| 0 shift xor: shift all bits to the right one space. add a 0 at the far left
18 shift xor & O 0|0 0] 0 IS () 0 If bit16 was 1, xor the result with the xor constant.
19 shift xor 6 0/ O 0000 NS (

20 shift xor 7 00|08 0/ 0|00 K iE " A8
21 shift xor 8 B 0 B 0 I 0 0 0 0 SR O TEA8  orc for a 1 byte string " 7E 7 A8
22 2 [ o9 T ooooooooooooiooi fo 0o 0000000001001

31 shift xor 8 R O [0 9§ OO EB26  'trc for a 2 byte string I B8 | 2%
32 | 3 [__30 ] oooooooooo110000 Jo 0 0 0 0 00 000110000

41 shift xor 8 1 B B DRl el Ko 265A "ere for a 3 byte string 5A

Calculation of a CRC is a CPU-intensive task, reason
example in [MBUS300] uses a (pre-calculated) loo
of needing more memory. Implementations which do
slower.

The 2 bytes of the calculated CRC mus in the right (MSB, LSB) order. In

implementation is using, the bytes might'acei . iver of your messages
will then assume the message is damaged,

PLC’s, and other intelligent devices that are to be programmed by the
user aster / client” role

* You do not want to check your master’s implementation against your own slave’s implementation, because if
both implementations are wrong, they accept out each other’s wrong CRC and everything will work — but not
with any other Modbus implementation in the world.

Modbus The Manual Page 99



5. Memory map of slaves / servers
Before starting any implementation of a slave / server, the network map of the device needs to be
specified:

- Which “coils” are made available?
- Which “inputs”? In many devices there are no. Note that digital and analogue inputs can also
be represented as data in (read-only) holding registers; this saves the implementation of

several function codes.

- Which “outputs”? In many devices there are none.
- Which “holding registers”?

Since this is all very application dependent, not much general a

Performance optimization
For optimum performance, it is optimal to use only se
i.e. no “hole” in them. This is because Modbus doe
consecutive group. When this is not so and there is

al coils/inputs/outp ding register,

read /
write commands.

Additionally, put the most commonly ils/i ding registers together. For
example, registers 1 and 50 can be rea
must then be read as well. It is better to
the command to read just these 2, instead
2..49. On Modbus/TCP thj speed of Ethernet, but on the
much slower serial lin > em in Modbus/RTU and even more so in

Modbus/ASCII.

ing the data for registers

register memor 0. This sound strange, why do this when Modbus specifically has separate

function codes for them? This is because some masters do not support the associated function
codes, meaning that the application software on those masters cannot access your device’s coils,

inputs and/or outputs.

But access to the holding registers with function codes 3 and 16 is almost always available. So what
you can then do (for example), is to define a holding register to ‘shadow’ 16 coils. A coil can then be
set via using function codes 6 or 16, and also via the function codes 5 and 15. Building in such
versatility in a slave/server helps the application programmer a lot!

Modbus The Manual Page 100



The same trick can be used for the inputs and outputs. For Modbus this does not make any
difference, it does not know where data comes from or where it goes to — that is completely up to
the device software.

6. Which function codes ?
As we have discussed earlier, the Modbus specification gives considerable freedom in deciding which

function codes are supported in any given device. The minimum set of functien codes to be

supported are 3 and 16, always implement these as this gives the best that your device can

communicate with others.

The other function codes can be added later. Once you have 3 thers is not much

extra work.

7. Parallel communication
In Modbus/ASCIl and Modbus/RTU, it is not possible to
— a master must wait for the response from the first slave
g, it holds up the
pout that. So a

slaves
ay send a request to the next

parallel with mult

slave. So if the first slave is slow in an nication with the others.
Unfortunately there is nothing that ca

handle each application request one by @

implementation can simply

In Modbus/TCP, this can i 1 C ) design of the master, as it
must be able to kee

Modbus The Manual Page 101



CHAPTER 11. In practice

1. Common mistakes
When implementing a Modbus network with new equipment for the first time, most people run into
problems: it just doesn’t work! The master gives errors, no devices seem to communicate, and if

they do, they send/receive the wrong data, or are too slow, etc.

Network problems can arise in many places, and they all seem to ha same outcome: no
communication! Haphazard searching for the root-cause doesn’t
structured fault-finding methodology, in principle following th
(wiring), datalink layer (Modbus protocol, serial communi i yer (Modbus

function codes).

. Instead, follow a
om-up: physical layer

Physical layer

Correct cross-connection of TX and RX signals o
One device supports RS232 while the other(s) RS48
Devices with 2-wire RS485 an
Correct wiring modem of contre .
check this. When the TX LED on the b i blinking, i
transmitted.

Presentation layer

- Master doesn’t understand data format(s) of a slave.
- Slave doesn’t understand data format(s) of the master.

Application layer

- Using the correct slave addresses.
- Network port available and properly configured.

Modbus The Manual Page 102



- Application software running.

- The master uses a function code not supported by a slave.

- The master uses broadcast which is not supported by a slave.

- Error messages showing no exceptions, retries, etc. But: if you see exceptions coming back,
this shows that the physical layer and datalink layer are OK, since the exception is sent by a
slave.

- The timeout setting on the master is too short.

- More than 1 master.

- No master.

Another trick that sometimes helps to find where the problem resi e another master, for
example a Modbus test tool, where you can manually control odes are sent, and

when. If this works, it is proof that the slave is functioning, ing i are the datalink

aid the user in visually diagnosing the s ice. s no such requirement in
[MBUS300], many Modbus devices have behave differently than
specified in [MBUSSERIAL].

A yellow LED should k i sage reception or sending. It is also allowed

The same hold
1”). After a lot of ation the programmer modifies his software to access register “X-1” in order
to access the intended register “X”3*. Why this behaviour?

: one writes to register “X”, but the data shows up in register “X+1” (or “X-

Remember that the Modicon memory maps always start at 1; there is no coil / input / output /
register 0. But on the network (in the messages) the counting starts at 0. So, many vendors have the

** And then later comes a colleague, who thinks there is a bug in the software and modifies it to use value X
again. To his surprise the application now doesn’t work anymore.

Modbus The Manual Page 103




software subtract 1 for you automatically. For example, a program may want to access register
40019, and then on the network you see 40018. The slave / server gets the 40018, adds the 1, and
then we access register 40019 again. So if all is OK the -1 / +1 is completely transparent for the user.

Now the problems begin with vendors that do not subtract the 1 before transmission. On the
network one sees (same example) register 40019. If the slave still adds the 1, it will now access
register 40020.

There also vendors that do not add the +1. If you now have a master / at subtracts the 1, but

the slave / server does not add +1, you are now accessing register 4

You could be lucky, with a master/client that doesn’t subtract server that doesn’t

add the +1. In this case everything works as expectedl

Application | Modbus master Modbusslave Application
prc;gggms makes this... makes this... gets...
40019 e 19 | om0 40019 | 40019
40019 40001Mdb18 | /w +a0000 40018 40018
40019 40 19 Newer e 40020 40020
40019 oo 18 oy 40019 40019

\ 4

s of devices, e that do/don’t subtract 1, and those that
lient where this becomes visible, and application software can
ervers are present in the network.

4. Register 9999 and higher

In the original Modbus specification [MBUS300] the maximum coil / input / output / register is 9999.
Some vendors of masters / client take this limit very literally, and do not allow a program to access
anything beyond the 9999. Although for 99% of the applications this is not an issue (as a system with
9999 registers is quite large) sometimes it is. For example, on modular equipment, it could be so
programmed that extension module ‘n’ on such a device has registers ‘n * 1000’ and up.

Modbus The Manual Page 104



In the Modbus protocol, there is no reason to put a limit at 9999, and it has disappeared from the
current specification [MBUSAPPL]. The fields in the network messages are all 16 bits, allowing access
to coils / inputs / outputs / registers numbered from 0 up to 65535. Many vendors allow full access
to this range, but you are warned: some don’t. There is no way to circumvent this limit as it is
probably hardcoded in the software.

5. Sender too fast
Sometimes you run into a (Modbus/RTU or Modbus/ASCIl) device whic
messages because it cannot handle the pace with which characters

ccasional loss of
ing in. This shouldn’t
happen, after all the vendor has specified that this bitrate could his device (or perhaps

the application load on the CPU is too high).

bitrate. But

the next lower bitrate is often substantially lower 400 to
28800, or 19200 to 9600. This means that the applic
data, or slaves will respond slower to devices.

The solution usually chosen is to have the network an equipment run on

But there’s another trick possible: use it. vices now use one stop bit but
all of them can be configured to use t is! bit will cause 10% (one

tocol stacks there is only one setting of the timeout value, even

. In such a system the slowest slave determines the timeout value for
all others as v
The length of a timeout may also differ on the number of registers or bits to be processed. In the
first place the slave has more work to do internally. In the second place the network telegrams are
(much) longer. It is not uncommon to see that when an application program is modified to process
larger blocks of data, suddenly timeout values may occasionally appear to be too short.

Modbus The Manual Page 105



7. Polling / scanning

In PLC's, it is custom to “poll” or “scan” all devices on a network for their inputs and outputs. This is a
very simple way of accessing the 1/0 of any remote I/0 module, no application programming is
needed and just configuration needs to be set.

In Modbus, this is not so easy as it sounds, due to the enormous diversity in Modbus equipment, and
the lack of standardization regarding implemented function codes, registers, and data types (as we
have discussed earlier). This means that “plug & play” running of a networkdis,not possible, unless
the master can be configured to handle all existing variation in equipm r can only handle the
Modbus devices of the vendor itself).

Because a Modbus slave may never autonomously send data t ly way for a master
to remain up-to-date with the state of each slave is to re

actual input settings, any error, or any diagnostic dat

“poll” it — ask ve for its status,
often this must be d ends on the

? Or as fast as possible? The r must be

application software: every second? Or once per

able to handle these application wishes.

ically poll all slave same rate, for example 1-2-3-4-1-

For a programmer, it is convenientto c
2-3-4-1-2-3.... But it can be done diffe es at a higher rate because its

data is needed faster: 1-2-1-3-1-4-1-2, & e application on the master
wants to control its slaves!

Polling / scanning of sl
can be sent to the

example, in a hig bility application, one of the masters can be ‘active’ and the second one in
‘standby’. The standby master doesn’t do anything, except keeping an eye on the first master, and

taking over its duties when it fails.

* The author once attempted to implement this. And then, when | thought | could handle all existing devices in
the world, yet another way of implementing Modbus showed up at the next customer.

% This is contrast with many modern fieldbus protocols like Profibus/DP and AS-i; when a slave doesn’t hear
anything from the master within a certain (configured) interval, it assumes the master is no longer operational,
and then the slaves set their outputs to a safe state (usually: 0).

Modbus The Manual Page 106




When using Modbus/TCP, an Ethernet-network may support multiple Modbus/TCP clients. This is
because TCP/IP separates the network-traffic from these clients from each other; they do not disturb
each other’s messages as on the serial Modbus networks. However it may not be guaranteed that
when two clients communicate with the same server, it still works.

But there should be no problem when two (or more) clients communicate only with their own
servers, even when they are all on the same network.

ice (i.e., a PC with
o allows a device to be

It is even possible to run two (or more) Modbus/TCP clients on the same d

Windows or Linux), also because TCP/IP separates the network traffic.
both a Modbus/TCP client and Modbus/TCP server simultaneously!
implementations of Modbus/TCP do not support his.

ul as it sounds, most

9. Maximum number of slaves
The maximum number of slaves on any Modbus-n

Modbus/TCP (due to TCP/IP using

c) The support for a.aumber of slaves na PC, orinaPLC or other

(specified as such BUS300] and also in [MBUSSERIAL]. But since a complete byte is reserved in
the Modbus messages for the address, values 1...255 are theoretically possible (the 256" value, 0, is
used for broadcasts). There is nothing in the Modbus protocol forbidding the use of network

addresses 247...255, and indeed many vendors allow this.

Modbus The Manual Page 107



10. Using broadcasts

In [MBUSSERIAL] it is specifically stated: “All slave nodes must recognize the broadcast address”.
This is an improvement on [MBUS300], which did mention the usage of broadcast addresses, but
only “... which all slaves recognize”.

Mixed operation
Apparently the author only had Modicon PLC’s in mind, because a lot of Modbus/ASCII or

Modbus/RTU devices do not support broadcast. Theoretically, this means that a master would not
be able to send messages to the broadcast address and you would have
to each slave individually (causing a big performance hit).

d the same message

Luckily, there is an escape which can sometimes be used. Rem n a slave does not

support broadcasts, it will ignore any message sent to this add . i her slaves on the
network that do support broadcasts, they will still react thers don’t is
completely irrelevant, all slaves operate individually.
to the broadcast address: those devices that supp s that

don’t support broadcasts will ignore it*’.

Processing time
When a message is sent per broadcas

The master should ) peed of the slowest slave, and

only after that per the master is consistently too fast, the slowest

ands and at a certain moment memory runs

t.mentioned in the Modbus specification [MBUS300] or [MBUSSERIAL]
- The presence of a 1-byte “NumberOfBytesThatFollow” field in several Modbus messages,
with a possible value in the range 1..254.

¥ Technically this is called a “multicast”- one message to a selected group of devices.

* This is not a typical Modbus problem; this occurs on any network using too many broadcasts. Use them
sparingly!

Modbus The Manual Page 108




- Any (lower) limits set by the vendor, this is usually caused by having only limited resources
present on a CPU (such as memory, processing power). Several examples for Modicon PLC’s
are given in [MBUS300, Appendix B], but should always be documented by the vendor.

For example, the number of coils / inputs/ outputs / registers than can be read / written with one
command must fit in 240 bytes (= 120 inputs / outputs / registers, or 1920 coils). These values are
those as mentioned in [MBUS300], and even though they are related to the capabilities of no longer
existing Modicon PLC’s, somehow they stuck and many vendors use the same limitations.

- Read coils: 2000
- Read inputs / outputs / registers: 125

- Write coils: 1968
- Write outputs / registers: 123

Where do these higher limits come from, and why

enforced by the usage of an 8-bit checksum in Modbus/A at the starting colon : and the
sum is not calculated over these

serial Modbus.

oing to communicate with each other, the
of the two must be enforced. This must be

pport an unofficial extension to function code 3 (Read Multiple
uch larger amount of data, theoretically up to 64 Kbytes per
command. This | on Ethernet, which allows the transfer of such large amounts given the

high bitrates of 100'Mbit/s or 1 Gbit/s, giving a big gain in performance.

* This limit is specifically mentioned in [MBUS300] in a few places.
1t is unclear why Modbus/ASCII has set the limit to 240 bytes, perhaps the original designers thought that this
number would be easier to remember than 246 or 250, also depending on the direction the data goes.
41 .. . . .
This is a guess, the real reason is lost in the fog of history.

Modbus The Manual Page 109




3 T R Y e
A EEEEHEEEEC

The extension makes use of the fact that the field “NumberOfBytesThatFollow” (bf) must normally
always have an even value (because the number of bytes is twice that of t
The value 255 is now used to indicate that the next two bytes are now
number of bytes that is going to follow. With 16 bits, values up to 6
32767 registers to be read with a single command.

umber of registers).

o contain the real
re possible, allowing for

The advantage of this way of working is that it is fully com
usage for small amount of data (< = 254 bytes). Again,
consult the vendor documentation!

n unofficial exten Modbus/TCP,

12. Network analysis

Modbus/ASCII and Modbus/RTU

Modbus The Manual Page 110



Functioncode 03 = Read Multiple Registers
Startat register0

Tenregisters
CRC

Toslave1

Communicat..

000008-Tx
000009-Rx -8 iy et
000010-Tx:01 03 00 00 00 DA CS CD
000011-Rx:01 03 14 2D 41 00 00 OO OO 19 9F SF 67 00 OO0 DO OO SE 41
000012-Tx:01 03 00 00 00 DA CS5 CD

000013-Rx:01 03 14 57 18 00 00 0O OO0 19 9F SF 67 00 DO OO0 0O SE 41
000014-Tx:01 03 00 00 00 OA CS CD

000015-Rx:01 03 14 57 18 00 00 00 OO0 19 9F 2F 15 00 0O OO 0O 42 42
000016-Tx:01 03 00 00 00 DA CS CD

000017-Rx:01 03 14 57 18 00 00 OO OO0 19 9F 2F 15 OO0 00 00 00 42 42
000018-Tx:01 03 00 00 00 DA CS CD

000019-Rx:01 03 14 57 15 00 00 00 OO0 19 9F 2F 15 00 00 00 00 42 42

00 31 AD SF 67 00 00 00 0O SE 41

000020-Tx; &,
000021-Rx 00 00719 FE 2F 1S 00 00 00 00 42 42—
<] 3

et

b
From slave1 Twenty bytes data follow Contents offirst register
Functioncode 3 withouterrors

Modbus/TCP

When using Ethernet for Modbus/TCP, other equipment i “network tap” and “network

analyser” software. The tap is inserted neen an Ethernet- and the device to be analysed. It

An example of Wi 's di S{TCP message for function code 05:

Mo, Time Source Destination Protocal Length Info

63 ©.893872 192.168.11.74 192.168.11.3 Modbus/TCP 65 Response: Trans: 182613 Unit: 255, Func: 2: Read Discrete Inputs
65 ©.882817 192.168.11.3 192.168.11.74 Modbus/TCP 66 Query: Trans: 168262; Unit: 255, Func: 2: Read Discrete Inputs
67 ©.882309 192.168.11.74 192.168.11.3 Modbus/TCP 65 Response: Trans: 182623 Unit: 255, Func: 2: Read Discrete Inputs
63 0.000036 192.168.11.3 192.168.11.74 Modbus/TCP 66 Query: Trans: 18263; Unit: 255, Func: 2: Read Discrete Inputs
69 0.804681 192.168.11.74 192.168.11.3 Modbus/TCP 64 Response: Trans: 18263; Unit: 255, Func:  2: Read Discrete Inputs
70 9.660633 192.168.11.3 192.168.11.74 Modbus/TCP 66 Query: Trans: 18264; Unit: 255, Func: 2: Read Discrete Inputs
72 9.882716 192.168.11.74 192.168.11.3 Modbus/TCP 111 Response: Trans: 18264; Unit: 255, Func: 2: Read Discrete Inputs
73 9.800833 192.168.11.3 192.168.11.74 Modbus/TCP 66 Query: Trans: 18265; Unit: 255, Func: 5: Write Single Coil

> Frame 73: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface @
> Ethernet II, Src: Vmware_bc:c3:32 (@0:508:56:bc:c3:32), Dst: GeFanucA 83:5:69 (80:09:91:03:f5:69)
» Internet Protocol Version 4, Src: 192.168.11.3, Dst: 192.168.11.74
Transmission Control Protocol, Src Port: 52758, Dst Port: 502, Seq: 289, Ack: 489, Len: 12
¥ Modbus/TCP
Transaction Identifier: 18265
Protocol Identifier: @
Length: 6
Unit Identifier: 255
v Modbus
.88@ 8181 = Function Code: Write Single Coil (5)
Reference Number: 9998
Data: eeee
Padding: @x@e

98 89 91 83 5 69 @@ 58 56 bc c3 32 @8 80 45 @0
@8 34 29 3b 40 B8 50 B6 0@ 82 c@ ad @b 83 c@ ad
@b 4a ce 16 81 f6 be ee 83 1c le 17 5b 9e 5@ 18
8838 00 T 97 c4 00 00 phRRE -l - R
eadle

i Apart from the troubleshooting purposes for which it is made, it is also a good tool to learn how network-
protocols work.

Modbus The Manual Page 111




At the top, we see a list of the messages that Wireshark captured, with at the right a summary of the
contents. In the middle there is a dissection of a message, per protocol layer (Ethernet, IP, TCP,
Modbus/TCP header and function code specific contents). At the bottom there is hexadecimal dump
of the complete network message.

Wireshark can also show you how two devices communicate; this is done by “Following the TCP
stream”. Shown in red and blue are the messages that both devices send to each other.

Popoooee 28 00 @0 0@ 0@ 86 T 85 27 fc @0 00
00000000 28 @1 @0 @0 @0 06 TT @2 e1 30 @9 @a
focaoeaC 28 @1 @0 00 08 B5 ff 62 02 @8 8l
P000000C 28 02 @0 @0 @0 06 TT @2 e1 30 00 @a
feeaoal7 28 @2 60 0@ 08 85 ff 62 02 @8 a1
00000018 28 03 00 @0 00 06 ff @2 27 6e 00 01
BoBERRE22 28 @3 @0 00 00 B4 ff 62 01 o8
[eEEEe24 28 04 @0 B0 e 86 ff @5 27 ee ff o
BoBEER2C 28 @4 @0 00 00 B6 T 85 27 oe T 00
BOEEEE30 28 05 @0 @0 @@ 86 Tf @2 el 8@ 88 @a
BoEEOB3E 28 @5 @0 60 @@ 65 T 82 62 o8 el
BEEEE3C 28 06 @0 B0 @@ 86 Tf @2 el 8@ 88 @a
BoeEER4S 28 @6 @0 00 0@ 65 T 82 02 o8 61

[oEEEE48 28 07 G0 60 60 66 ff @2 0 o0 el Be I
PoRERR4E 28 @7 @@ 0@ @@ 33 ff @2 38 55 55 55 @5 95 @0 94 [fremssis mL e
BOOR0ASE 00 00 60 0D 09 PO d3 8@ @d a5 ab 82 B8 55 ea ab  ........ ..... u..
PoOOORGE 06 T9 7d d5 57 @@ 55 55 fd 57 55 55 55 55 4d 55 .« }.W.UU .WUUUUMU
eeeave7E bs ff ff ff 3T 66 a6 38 88 R

20000054 28 O5 00 @0 00 06 ff @2 01 3a 0@ 16
BoBEEEET 28 @8 @0 B0 @@ B6 ff B2 O3 aa aa @a
DORPPEEA 28 @9 B0 B0 @0 86 ff 82 81 830 89 ea
BoBEEEO3 28 @0 @0 60 @@ 65 T 82 62 o8 81
BeREEEEC 28 @a B0 B0 @@ 86 ff @2 27 ee @@ 8l
BOBEOROE 28 @a @0 00 08 64 T 62 61 o1
BeEEEe78 28 6b @0 ee ee ec ff @2 81 fe ee ce

26,767 client pke(s). 26,767 server pkefs), 57,533 tum(z)h

Entire conversation (748 kB) - Show and save dataas HexDump ~ | Stream
Find: | | Find Mext |
Filter Out This Stream | Frint Save as Back Close Help
Wireshark has much more functionality tha ample information about it
pok stores, rses for it.

the TCP message seem to be missing. But this is not really so; the
ut needs to be retrieved by the application software).

optimization in TCP that it doesn’t have to send large chunks of data
ion. Depending on the memory space available in the destination, it may
data immediately, and the rest at a later moment. The software on the
destination must be aware of this: that it can get less data than expected. This is not a bug in TCP;
the other data will arrive, not now but a little later. So the software on the destination must
continue to collect data from TCP until it has all the data it needs.

asawholetot
send only a part o

For example, when a sender transmits 50 bytes, TCP may:

- Deliver all 50 bytes at the same time. This is what usually happens.

Modbus The Manual Page 112



- Deliver 40 bytes immediately, and 10 bytes later.
- Deliver 20 bytes immediately, then another 20, and then the last 10.
- Or any other combination of chunks of data totalling 50 bytes.

For example, when using the “socket” API, a programmer would have to code in C something like*:

int nrbytes = 50;
char buf[nrbytes]; // To store the data in
int startbyte = 0; // To remember what we already have
while nrbytes > 0 do
int nrreceived = receive (socket, &buf[startbyt bytes)
nrbytes = nrbytes - nrreceived;
startbyte = startbyte + nrreceived;

end

The next step would be to know: how many bytes* am |
the Modbus/TCP header, fields “nbh” and “nbl” (fro
function code 03):

dle? This infor is provided in
arlier show example ssage for

TTTT.
00l e e ) X B I 1

Transaction ID Number of bytes that follow

Protocol ID
(always 0)

The implementation s

v we have all the a that belongs together, which can now be processed further.

TCP as an op e, originating at a time when network bandwidths were still very low.
TCP tries to coa ch data as possible in one TCP packet, because one (large) packet with

much data has muchiless overhead than many small packets each with a little bit of data.

Nice as this feature sounds, it may have one big drawback: your data may be held up in the sending
device for a fraction of a second. For the purpose for which this feature was developed (terminal

“ For simplicity’s sake no error handling is show.
* It could be argued that the “nbh/nbl” fields are not strictly necessary, as one could read the byte containing

the function code, and then the (known) fields following it. But then the software would need to know every
function code’s message format.

Modbus The Manual Page 113



I/0), this “fraction of a second” was no problem. But for industrial communication, this can be a big*
problem, severely limiting communication speed.

The TCP-feature is called “Nagle’s algorithm” which we will not further discuss here, as there is a lot
of information available on it on internet (i.e. en.wikipedia.org/wiki/TCP_delayed_acknowledgment).
It is enabled by default on any TCP protocol stack.

The relation to Modbus/TCP is that the Nagle delay can be easily triggered when the software

ly) triggered by a
it) the 6-byte
Modbus/TCP data, and

executes a “write, write, read” sequence. The double write is often (unkn
Modbus/TCP programmer who makes his code first ‘write’ (= offer for
Modbus/TCP header, immediately followed by the ‘write’ of the re
then the ‘read’ for accepting the answer.

Luckily, the Nagle algorithm can be turned off. If you writ
of code; if you just buy equipment it is to be hoped th are. Note that
this must be done at both devices. Alternatively, if
Modbus/TCP messages in two chunks — the code is

14. TCP/IP port numbers
Modbus/TCP servers should use TCP po as mentioned in the

a server to use other ports than 502, and that is for use on
with multiple R$232/485 ports (say COM1, COM2, etc.). There must be a
way for the client tospecify which serial port is to be accessed. One way to do this is by hard-coding
a logical connection: port 502 goes to COM1, port 503 to COM2, port 504 to COM3, etc.

Ethernet/serial

*> When the author first encountered this, his software could only handle 5 messages per second on a 1-Gbyte
network with a 2,5 GHz PC.

Modbus The Manual Page 114




15. Useful function code 08 diagnostics
When a slave supports function code 08 and subfunction 11..18 (0x0B..0x12), it may be able to
inform the master about the current values of its statistics counters:

Bus Message Count

Bus Communication Error Count
Slave Exception Error Count
Slave Message Count

Slave No Response Count
Slave NAK Count

Slave Busy Count

Bus Character Overrun Count

ill not discuss it f

Since this functionality is seldom implemented in slave
[MBUSSERIAL] Appendix A for a detailed descriptio
incremented.

owcharts on when each

Personally, | find the lack of diagnostics on many modern problem. Without further
equipment, there is no way to know howw ming. For example, retries may
help to solve transmission problems, but il ir o retries, especially on new
networks. If there are, this is an indicatian ef ba i bling, etc. and the system
should not pass the acceptance tests.

get an error. And |0 ’ i at network communication goes slower and

slower.

* Not only on Modbus this is a problem, but on most industrial networks. The use of managed switches on
(industrial) Ethernet will help us a lot! (but then someone must still read the diagnostics data).

Modbus The Manual Page 115



CHAPTER 12. Cybersecurity

Since the rise of “industrial Ethernet”, Modbus/TCP has gained a reputation to be one of the most
vulnerable protocols for hackers. Technically this is nothing new; the (serial) Modbus/ASCIl and /RTU
are just as vulnerable as Modbus/TCP, but the difference lies in the connection of Modbus/TCP
devices to Internet. Whereas in the past a hacker had to travel to be in the sical vicinity of a
Modbus/ASCII or Modbus/RTU in order to hack it, a Modbus/TCP can b

anywhere on the internet, if no proper precautions are taken.

be accessed from

1. Weaknesses

The weaknesses of a Modbus/TCP device (usually a s an be any of the foll

- The lack of an authentication mechanism in us, acceptingincoming com from

any client, either normal or fake.
- Implementations not resistant to TCP/IP protocol example, a “ping of death”)
- Implementations not resistant d messages;
- Implementations not resistant
- Implementations not capable o
- Allowing any bit or register to be

Allowing registe i C pnormal range;

epts and checks all incoming external traffic. But Modbus/TCP is not a
dors recognize, because it is not commonly used in IT environments.
echanism that can be set is to forbid Modbus/TCP completely, by

2. Modbus firewalls

To fill this gap various vendors have developed industrial firewalls, especially built for watching the
use of Modbus/TCP, checking the contents of all Modbus/TCP network messages and disallowing all

Modbus The Manual Page 116



that is dangerous or unwanted®’. One of the first such firewalls that came in the market was
Belden’s “Tofino”, which is brand-labelled by many other vendors active in process automation.

Tofine™ Modbus TCP Enforcer

Modbus Master

. d

Maodbus Slave

The Tofino is installed in the signal path between the Mo
server. All network messages between them are insp
criteria. Messages that do not pass these criteria a
at the server.

Specifications

Supports Multiple Multiple master and slave Modbus devices are supported, with a unigue set of inspecti W '
Connections rules and options for each master/slave connection o J
o
oy,
Default Filter Policy Deny by default- any Modbus function code. or reqister or coil address, that is not on th S \h,\
‘allowed’ list is automatically blocked and reporied -, ~

Modbus Function Codes  Supports functions 1-8, 11-17, 20-24, 40, 42, 43, 43, 66, 67, 91, 100, 125, 126

User-Settable Options The following options may be set on a per-connection basis:
+ Permitted Modbus function codes
* Permitted register or coil address range
+ Sanity check enablefdisable
+ State tracking enable/disable
+ TCP Reset on blocked traffic (utilizing TCP transport protocol)
+ Modbus exception reply on blocked fraffic

Transport Protocols Both Modbus/TCP and Medbus/UDP supported

Throughput 1000 packets per second with full content inspection

ard firewalls usua not reco e Modbus/TCP, because it is not a real IT-protocol. Usually

ly block it completely by disallowing access over TCP port 502.

to’s PA220R recognize Modbus, and many other common industrial
protocols.

3. Intrusion detection systems

Whereas a firewall blocks unwanted devices and protocols in a network, but only for the network
traffic that passes through the firewall, an “intrusion detection system” (IDS) never blocks any traffic,
but can monitor all traffic on a network when connected to a switch “span” or “mirror” port.

¥ One wonders why the vendors of Modbus slaves/servers do not implement sanity checks in their own
software.

Modbus The Manual Page 117



IDS’s exist in all sorts (even as open-source), but recognition of industrial protocols is often lacking.
For this one needs an IDS specifically built for industrial systems, such as “SilentDefense” from the
(Dutch) company SecurityMatters®.

4. New developments
In 2018, Schneider released the specification for “Modbus/TCP Security” on the www.modbus.org
f client and server,

website. It adds very useful features to Modbus/TCP, such as authenticati

role-based validation, and encryption of data. At the moment this publi is written (September
2018) no implementations of Modbus/TCP Security were publicly a

little experience available.

on the market, so there is

One issue (that also pops up with other network protocols ryption. It is true

that hackers now have no visibility into the application e same is true for er, and for
firewalls / IDS’s. When a hacker is able to ‘break’ in

nothing unusual. So whether we gain, or loose, by

lient or server, these sys
tion is to be determined.

“1am employed by them.

Modbus The Manual Page 118




Appendix A: RS232

1. Origin

RS232 (“Recommended Standard 232”) was launched in 1969. It specifies an “interface” designed for
connecting terminals to modems, with which one could remotely login on a company or university
mainframe. In the following decades, the specification was updated time gain, giving us

versions RS232A, B, C, D, Eand F.

For almost two decades RS232C stayed the latest version, until

ANSI/EIA/TIA organisation, so formally “RS” no longe
232. In the F version®, again a harmonisation with CCI

So, RS232C is the most commonly me ioni you encounter a product with

RS232D, E or F, it will probably work fin i i S$232 product.

2. The physical li
The simplest RS23 consi

data data
T —_— - T
= - -
G G

of R@still often seen. The modem-control signals may come into
red is always a surprise, due to the large amount of variation (and

). Even when there are almost no modems used nowadays, a lot of
software sti dem-signals of RS232 and expects these signals to work. When
connecting tw es for the first time, it is often a time-consuming job*° to get this right, as

there are no stan ere. A few examples:

* The differences between RS232C and the D, E, and F versions are so small or irrelevant for ordinary use that
most companies seem to have missed them. The author has encountered only once in 20 years that a company
mentioned to support RS232F in a product.

* The experience of the author is that the wiring setup of devices with which you have never worked before,
and of which the documentation is not well-written, may easily take half a day (spent in trial-and-error setups).
|

Modbus The Manual Page 119



© TxD TxD
RxD><RxD

GND «—> GND
RTS RTS @ (3] RTS><RTS ©® RTS RTS
CTS CTS CTS CTS CTS:—l |:CTS
DSR DSR
DCD DCD
O DSR DSR ® DSR DSR
DTR DTR
DCD DCD DCD DCD
DTR DTR
Always begin at (1), this is of course always necessary. Ne t on how the

modem control signals are to be wired. In practice, we following combi

(1)

(1) +(2)

(1) +(3)

(1) +(3) +(4)

(1) +(3) +(6)

(1) +(5)

(1) +(5) +(4)

(1) +(5) + (6)
This list is certai ys to connect two RS232 devices together, the
picture above asst d symmetrically, but this does not always

have to be so, especia nt vendors. For example, we can have:

on the other@

Peripheral
RX D°—"
[ e = [ ' up

"—0’{]— cD
-—o<]— DSR
' ._04 CTS ATS 04_"
' »—a:(] RX TX 3(:
|!—0<]— Rl

Modbus The Manual Page 120



Example of wiring RS232 according to (1)+(3) (Source: Maxim)

Phoenix Contact, in its manual for the Trusted Wireless radio module, describes several wiring
variants:

A B

DCE DTE DCE DTE

1| - cD |1 1 - CD |1
2| T —= RX |2 20 TX = RX |2
3| BX [« T¥ [3 3| BX = TH |3
4| - - |4 4| - OTH |4
5 |GNDje »GND|5 5 |GND »GND|5
6| - - |B 6| - DSRH (&
7 |RTS RTS|7 7|RTS = RTS |7
8 |CTs CTs|8 8|CTS = CTS |8
9| - Rl |2 9| - Rl |9

Figure 4-10  9-pos. D-SUB straight-through cable pinouts for 3-wire (A) and 5-wire (B)

A B b

DCE DTE DCE DTE
1T - coli] | T = cD
2| TX Rx 12| | [2]7x RX
e < x]s] | Bl sl
4| — - |4 4 - DTR
5 |GNDl«—>|GND|5| | [5|GND l«—|GND
6] - ~ 6] | [6] - DSA
7 |RTS rTsl7| | [7]RTS RTS
81CTS crslsl | lslemsie<<lcrs
al — Rl |9 a| — Rl

Figure 4-11 9-pos. D-SUB null cable pinouts for 3-wire (A) and 5-wire (B)

to be used, but only mentions the electrical characteristics
iderable freedom in choosing the cable, also due to its
ot very demanding.

e total capacitance (in Farad) of the cable and the receiver electronics,
picoFarad). Subtract from this number the value for the receiver
electronics (say, and then divide 2400 by the cable’s capacitance per meter (say, 100
aximum length of 24 meters. Many vendors set the limit at 15 meter if the

capacitance of the cable is unknown.

pF/meter), giving a

In reverse, when using low-capacitance cable® (say, 30 pF/meter) the maximum length can be 80
meters (this fact is little known!).

L Such cable exists, but may have the drawback that it must never get wet.

Modbus The Manual Page 121




A problem with using RS232 over longer distance is that both devices should have a good common
ground. When this is not available, there will be a lot of communication problems, or even
equipment might burn out®”. The website of www.robustdc.com gives a lot of good advice on how to

properly use R$232 in an industrial environment.

4. The connector
Originally, RS232 defined a 25-pin D-connector. The functions of each pin argclearly defined, but the
| set of names which

ead “TX” instead of “BA”?

name of a pin varies depending on the norm. Next to this we have an un
have become a de-facto standard in everyday use; isn’t it much easie

Pin nr DIN

(25 pins) 66-020 Function
| Protective ground (
2 | 103 BA D1 Transmitted data
3| 104 BB D2 Received data
4 | 105 CA S2
5| 106 CB M2
For Sending)
6 eady
7
8
9
10
Select Transmit Frequency

Backward channel CD

Backward channel ready

Backward channel TX

Transmitter signal element timing
(DTE)
Backward channel RX

Receiver signal element timing
(DCE)
Local Loopback

Transmit backward channel line
signal

Connect data set to line
Data Terminal Ready

Data signal Quality Detect
Remote Loopback

Calling Indicator

Data Signal Rate Selector

*2 | once had a burnt-out PC which was connected to a PLC; both were fed via their own power-outlet only 5
meters separated from each other. There was an 110V voltage difference between both earth pins. A shocking
experience if | would have touched both devices simultaneously. Now only the PC motherboard fried out.

Modbus The Manual Page 122




112 cl M4 (idem) (idem)
24 | 113 DA T1 TSET Transmitter Signal Element Timing
25 | 142 PM1 Tl Test Indicator

Two pins (9 and 10) have never been given a function. Additionally, one CCITT V.24 signal number
“133” (Ready For Receiving) has not been given a pin. If present, usually pin 9, 18 or 25 is used
instead.

The large number of signals is almost never used. For most application
DSR, RTS, CTS and Rl suffice. For this a 9-pin D-sub connector suffic
connector on PC’s it has almost replaced the 25-pin connector (

gnals RX, TX, DCD, DTR,
due to the usage of this
days seldom seen,
usually on older products).

Which signal is used on which pin is diffe seet

| 9-pin ||25-pin|| pin definition
E ||DCD (Data Carrier Detect)
2 |3 |[RX(Receive Data)

3 |2 |[TX(Transmit Data)

|
|
|
|
4 |20 |[DTR (Data Terminal Ready) |
7 ||GND (Signal Ground) |
|
|
|
|

IDSR (Data Set Ready)
|IRTS (Request To Send)
||CTS (Clear To Send))
|IRI (Ring Indicator)

5. Voltages

The electrical voltages of the signals are specified by RS232 to be in the range -15V..-3V or
+3V..+15V. Voltages in the range -3V..+3V are invalid. Modern equipment often uses -12V / +12V or
even -9V / +9V (laptops). This is still OK according to the RS$232 specification, but note that this
influences your signal margin on long cables. It could very well happen that a PLC with a Modbus

master is able to communicate with a slave a long distance away, but then that PLC is replaced by a

Modbus The Manual Page 123



Modbus master running on a laptop (i.e. for troubleshooting purposes, or remote configuration), no
communication is possible®.

Start-bit 1/bitrate
15V
() A
B | | - '
i Valid
! voltage
i range
v i
| Time -»
OV 1 T T
-3V i
Valid
voltage
range
Idle i | 1 h |
l15v Data hits Stop bit
T 0 1 1L 1 0 0 0) (1)

Peculiar is that when a RS232 link is idle (i.e. not tr
15V). This corresponds to a binary ‘1’. This also hol

egative (-
it

ing data), the voltage at
stop bit. Adinary ‘0’ and a

correspond to a positive voltage (+15V).

6. Bitrate / baudrate
RS232 does not define with which bitrate
between 0 and 115200 bit/s is possible. In
used, due to the capabiliti

ted. So any possible value
of all possible bitrates is

So we only see:

50, 110, 150

evice using a different bitrate will not be able to communicate with anyone
else. Exactly how the bitrate is configured on a device depends on the vendor (consult the device’s

to the same bitra

documentation). On a network with ‘n’ devices from various vendors you may well end up with ‘n’
different configuration methods.

*3 The author once experienced this with software developed on a desktop PC, which ran fine with a Modbus
slave. But the customer installed my software on his laptop, and it didn’t work with the same slave.

Modbus The Manual Page 124




7. Data transmission

RS232 does not define how data (0’s and 1’s) is to be transmitted. It goes no further than defining
the voltage levels for a ‘0’ and ‘1’, but does not define how large amounts of data (= more than 1 bit)
are to be transmitted. Actually it cannot do this, as an OSI-layer 1 specification does not have this
knowledge; this is defined in OSl-layer 2 (datalink).

In practice, data transmission over RS$232 is always done according to the “UART” format, where
data is transmitted character-per-character, each preceded by a start bit and followed by a stop bit.
The UART format is described in the next section “Serial Transmission F

Multiple consecutive characters, forming a “network telegram”, ar d by the network
protocol. This is of course different per network protocol; the

chapters 5 and 6.

working is described in

8. Serial Transmission Format
Each character is sent according to a standard format:

- When no transmission is active, the line has the val
- One ‘start bit’, which always
- 5,6, 7 or 8 data bits. Modbus o : 3 bi SCII) or 8 data bits (for

Modbus/RTU).

)
-

M TN AN T

5/6/7/8 None /even /odd / mark/ space 1/1,5/2

e Loy

:0) :0) or :1) :0) or ‘17 :1) :0) :1) :1)

Modbus The Manual Page 125



The configuration settings for the number of data bits, the parity bit and the stop bits must be
identical for all devices on the network. How exactly this is configured on a device depends on the
vendor (consult the device documentation for this).

General Connechion |

— Connection preferences

Do [ENG—_] ()

Barity: M one ll

Stop bitz: {1 j

9. Parity

“Parity” is a very simple algorithm to detect damaged bi

- A‘Qissent, butis received a
- A‘l"issent, but is received as a

bits (7+1 or 8+1) must be even.
mber of ‘1’ bits (7+1 or 8+1) must be odd.

Modbus The Manual Page 126



gl 0|1|1|0|1|0|0|0I
Even parity -~ :
Data with calculated
parity (at the back) 0|1 |1 |0|1 |0 |0 |0|1 I
Transmission
e e [O]TATA[T]0T0T0T 1}

Recalculte
parity
Are they T ;
the same? eauaf
Conclusion: a
bit is damaged
over the network

e 7 or 8 data bits.
Iculated by the receiving

After the calculation of the parity bit, all 7+1 or 8+1 bit
that receives these bits does the same (even or odd) calcu

detection”.

The receiver of t

Due to the large
operate on two dev
connected to each other in a few seconds (or to be disconnected).

Modbus The Manual

of signals, it is often difficult to find out how all the modem control signals

es. A “breakout box” helps to see what is going on, and allows signals to be

Page 127



XD a0 HEDIH
2E2-5H
R5-232
Hreake- Dut «Box

Electrically, a breakout box is very simple. It helps to
devices together, without needing any soldering.

Break-out box

Connector Pin Switch Pin Connector
o o o e
2 (RX) 2
®\ Indicator of
signal status
@ >

3 (TX)

Connection wire
placed by user

Modbus The Manual Page 128



Appendix B: R$485

1. Origin
RS485 became a standard in 1983, developed by the Electronics Industry Association (EIA). The

letters “RS” stand for “Recommended Standard” or “Radio Standard”. Officially RS485 doesn’t exist
anymore today, since the EIA has transferred it to the “Telecommunicatio
The official name is now “ANSI TIA/EIA-485” .Nevertheless, many vend
RS485.

dustry Association”.
d users) still name it

RS422 and RS485 are often confused with each other, where
(bidirectional) version of RS422. There are also many ven
and a 4-wire network ‘RS485’. Both are not correct. Th tween RS422

and RS485; RS485 can be used in RS422 networks, the other way around.

2. The physical link

RS485 specifies a physical link using t , called™:

A>, TxD/RxD+, TXDO/RXDO,

** One often wonders what the purpose of a standard is, if nobody follows it.

> According to Lynn Linse of Digi, on a thread in the control.com website (control.com/thread/1026208408),
there are two different ways of labelling A and B. The first vendor who made RS485 chips, Texas Instrument, did
it wrong, but before this was known many other vendors copied what Tl did. Later, vendors did it better, but
now there are two systems in use and you never know whether one vendor’s A must be connected to another
vendor’s A, or perhaps to the B. Luckily, connecting the wrong wires together brings to damage.

Modbus The Manual Page 129




19.5V

Vi

TR T YA
i "‘MH’I' bt LA

1
dlld || uﬂ L

! ‘WU H ov (oiir)
|

2V/Di MW \ I
™ uJ“l""‘\'fd

il llﬂLlh
Trig'd
~ — Receiver
/ N Output ’
|
=500 mV ]
-93.6ns 20 ns/Div 106.4 ns

The heavily disturbed A and B si
RS485 receiver, which deliv ean signal (bottom)
changing from a ‘0’ to a ‘1’ (source: i tor AN-1047)

op) do not pass an

An RS485 network consist of two long wires, carrying the al, often called the “trunk”.
Additionally, there is a third wire, being . es can be attached to the trunk,
either directly or via a short cable (cal

All devices share the same cable, which is
official designation is “bus”. On the bus, on i e an active transmission at any
time; all others may re

higher OSI-protoco is. s, this is taken care of via the master/slave
way of working.

Terminator Terminator
(10r3) B (1or3)
Digital-To-RS485 : o : A
conversion /\ ! \ : \
elektronics : : ! E ! :
TX (on) RX ' TX (offf RX : TX (off) RX
CPU CPU CPU

Electrical view of an RS485 network, with the trunk at the top and three devices connected
via stubs. The electronics in each device split the outgoing and incoming data streams. Only
one transmitter may be active at any time.

Modbus The Manual Page 130



Termination resistors

At both ends of the trunk, so-called “termination resistors” must be connected. There are two
systems for this, the first uses one resistor between both wires, the second also has three: one
resistor between both wires, but also a pull-up and a pull-down resistor. Which of the two is needed
depends on the vendor; nowadays most vendors use one resistor, but you might encounter older
equipment requiring three.

Maximum number of devices
The maximum number of devices on a RS485 link is often given as: 32. Thi

e default maximum,
based on the electrical output power of each transmitting device (32 % ads”) and the power
consumption of each receiver (1 “unit load”). But there are also R tronic circuits of which
128 devices can be

he UL factor of

the receiver consumes only % unit load (UL), or % UL. In such c
connected to the same physical link. Unfortunately vendor

their equipment’s receiving electronics, which is why it i t to always assu

3. The cable

RS485 does not specify which type of cable must be used. use it is related to the

electronics in the devices, which shou ics of the cable. Normally the

vendors specify this.

e: high-voltage power lines, electric motors, robots,
converters, etc.

ources away
Use shielde
- Use twisted-pair cable

- Usage of parity, checksum and CRC's
- Executing retries

- Application checks.

The first three can be done by you, Modbus does the 4™ and (usually also the) 5", and finally the 6"
line of defence is again up to you (in the application software).

Modbus The Manual Page 131



4. The connector

RS485 does not define a standard connector to be used. Often the 9-pin sub-D is used, either the
male or female version, but others can be seen as well. Additionally, which pin is used for what
signal is also undefined.

Note that even when two devices have the same type of connector, it is not guaranteed that the
signals are on the same pin!

5. Voltages
RS485 does not specify the voltages to be used. In practice, they

This usually suffices, except in very noisy environments. A s higher voltages
(i.e. with a pair of converter devices), or to use fibre opti

6. Bitrate / baudrate
Just as with RS232, RS485 does not define with which bitr
So any possible value between 0 and

ate data is to be transmitted.

bit/s is possible. In ice, only a very small subset of all

possible bitrates is used, due to the ca he electronic its used for RS485.

So we usually only see:

50, 110, 150,

bit/s, but due to Profibus/DP’s means of
are possible. However this is not encountered

General settings

parameter options remarks
addressing address configurable from 1 to 247 (default 1)
broadcast support yes
baud rate 9600
19200 (default)
38400

57600 Baud (MBC3 type only)
115200 Baud (MBC3 type only)
electrical interface RS485 2W-cabling
data bits RTU =8, ASCIl =7
stop bits i The use of no parity requires 2 stop bits

Excerpt from a vendor’s manual showing which bitrates / baud rates are supported, and also that a
2-wire RS485 cabling system is used. Furthermore it also shows that the device supports usage of
broadcast. Source: Bronkhorst Hi-Tech.

Modbus The Manual Page 132



7. Data transmission
This is identical to RS232 (see appendix A).

8. Serial transmission format
This is identical to RS232 (see appendix A).

9. Parity
This is identical to RS232 (see appendix A).

10. Troubleshooting RS485

Troubleshooting RS485 is sometimes easier than wit
that can be wired wrong. But troubleshooting can
of devices on a network, each of which can be the so
wiring, this device can cause problems for other devices, etimes difficult to detect

(especially on longer networks).

Typical issues:

- The wrong type of cable is used
- The cable (trun}

Modbus The Manual Page 133



ENron Modbus.........ceevieeiieiiesie e 14
A error-reparation. ...58
TR AT AL 7
EVEN PAFILY coovviiiiiiei i 126
EVIl FEEIY e 61
1) CoL=T o] o] I PO TPPPPN 62

extended addressing... i o 50

extra stop bit.........dii

B

Big ENAIan .ooocuvvieciieecieeecee et 72
DIErate oo 124
breakout DOX......cccviiiiiiiiiiiiciec e 127
DrOQACASE ... 64
broadcast address......cocuveveerieeieeeeeee e 108
C

CANOpen General Reference........ccccccevenuenne.

ChECKSUM (..
checksum qQUAlILY «oveeeereeeeeeee e

CiA 309-2

zlic Redundancy Check..Saiiie oo e H

HIgh DYLE e 72
HIMIS. o ettt sttt st s sbe e e s 8
hOldiNG rEGISTErS ..eeveeeiieee e 48

damMaged DIts SueeeMiec.ceveveeesdeststareeeeeeeeereeeeeeseesesenenens 58 HT TP et e 20

datalink layer .....1 W 16

D-connector.............7 AT 122

diagnostics COUNTErS ...l i 45 I

double precision float.......cceceeverieninieneeeeeee 75

double word IDA. et e e s s raraaes 6

DWORD ........... IDS ............................................................................... 117
IEC-60870-5-1.....ceeiiiieeieiiiee et 42
JEC-61131 oottt .48

E IEC-61131 bit NUMBENING c...eveeeeeeiereeeeee e 71
IEEE-754 ..ottt e

Encapsulated Interface Transport..........cocccvveverieeunnns 53 lllegal Data Address

Modbus The Manual Page 134



Illegal Data Value ......cccuvieiiiiiiiiiee e 62
Illegal FUNCHION......coeiiieieieeieeeeeee e 62
infinity...........
input registers
INPUES oo

Intel bit numbering

MOdbUS/TCP SECUTItY...ccvverrereerrerecrrenreereenreerrenens 14,118
MOABUS/UDP .....oveieeeeteeeteeetee ettt 13
Modbus-II
MOICON .ttt e

Most Significant BYte ........cceceeeeiererieeneniesieeeeseeieee 72
Most Significant Word

Motorola bit nUMbEering .......cccccocvieeviiieiiiiee e, 71

intrusion detection system ........ccccceevveieviiieeeniee e, 117
(L2 Yo Lo [ TSR 98
IPSEC ittt 6
J

JBUS ettt 14, 104, 109
JOtt Ol e 6
L

Least Significant Byte.......coceeveererienienieenenieseneeseniene 72
Least Significant Word ........ccccoeeeeneniencnienenceneeee

Little Endian .......cccceeveeuvennenne.
oNg 10Ng WOId ...cveeiiiieiieieieeeeee e

long word

Longitudinal Redundancy Check..
[WoToT o] oX-Tol Q=T SR
Low byte

Memory Parity Errora.........

Modbus Organization s s 6
Modbus/+ ... 4 ... 14
MOADBUS/L .t 13
MOABUS/2 ...ttt 13
MOABUS/ASCIl ..ttt 13
MOADBUS/IDA ..ottt 6
MOABUS/RTU ....veiieiieteecteeectee ettt 13
MOdbUS/SAFELY ..cveeererieieeeee e 10
MOADBUS/SFB ...ttt 13
MOABUS/SL ..ottt et e 14
MOABUS/TCP ..ottt 13

OSI 7-layer Model......cccovereeiirieieeeeeeeeeee e 16
[ V7= 1= T S 36
P

PANTY Dit..eiiiiieiiiie e 126
PAILY lINE .eiiiiiiiiie et 130
[ oY= a3 0o | - ot A 6
physical [ayer......c.cooiiiiiiiiiece e
POIIABA ..ttt
Poll Program Complete ... .
polynomial 8005 .........ccovcvieiriiiieiiie et
Presentation layer.........ccueeceereeeceese e
Preset Multiple REISTErs .......cccueviereerieneniereeieeeeiene 52
Preset Single RegISter........cccvvviievviiieeiiieecciee e, 52
ProfiSafe. i 10
Program 484.........ccoooviiiiiiiiiiiii s 52
Program 884/MB84.........c.cccuevveeveveereeireereesresreeiseeseensenns 52
Program Controller .........coeeveeieieneeneneeeneeieseeiee 52
Programmable Logic Controller .........ccccevcveeeiiieeennenn. 47

Modbus The Manual

Page 135



protocol identifier.......ccccecciiiiiiieiiniiiece e 38

Q

(o TUE o IV V] o FO OSSP 73
R
Read Coil StatUus ......ccovvuiieiiiiiiciieeeciee e 52

Read Coils
Read Device Identification

Read Discrete INPULS......ccccveeiiiiieeciieeeciee e 52
Read EXCeption Status .......cccccevereerierieenienienieseesienieens 52
Read FIFO QUEUE ......eeeeiieiieeieeieeeiee st 53
Read File RECOId ....ccviveieeiie e

Read General Reference .....occeeereeneneeneneceeseeie e
Read Holding Registers
Read INpUt REGISTENS ....coveerverieiiriieie e
Read INPUL STAtUS.....eevvirieriirieieeeeee e
Read Output Status
Read-Write 4X Registers
Read-Write Multiple Registers
Report Server ID
REPOrt SIAVE ID ..ot
Reset Communications Link
residual error rate....

signed value
SilentDefense...Suiiih. .......

Simple Network Management Protocol...........cccccuveene. 45
single precision float ........cceeevireiinienineeen 75
Slave Device Busy.........

Slave Device Failure

ck... e —————— 40

Application Services.........ccceeuveeenns 14

WiF@SNArK......eeeeeeveeeeiieeeeee e 111
Write File ReCOrd ......ceveiveieeeieeceeeeece e 52
Write General Reference ........cccocvevveevieviieenieenieennen, 52
Write Multiple COils ......covereiniiieiinieeeeeeee e 52
Write Multiple REgISters .......ccevvveveriivieeriieecciee e 52
Write Single Coil....cuviiiiiiiiiii e 52
Write Single ReGISTer......ccviiiiiiieireeeeeeeeeeee 52

Modbus The Manual

Page 136



