
STI interdisciplinary robot competition

Karl Kangur, Marcel Starein, Chun Xie (Group 5)
Assistants: Alessandro Crespi, Gorecki Tomasz

Professor: Auke Ijspeert

11th June 2014

K. Kangur, M. Starein, C. Xie 1

Contents

1 Abstract 5

2 Introduction 6

2.1 STI interdisciplinary robot competition 6
2.2 Team members 6

3 Project description 7

3.1 Competition specifications 7
3.1.1 Arena 7
3.1.2 Bottles 9
3.1.3 Goals 9

3.2 Strategy options 9
3.2.1 Non-selective storage 9
3.2.2 Selective storage 9

3.3 Selected solution 10

4 Project analysis 11

4.1 List of needs 11
4.2 Function specification 11

4.2.1 External 11
4.2.2 Internal 11

4.3 Critical technical points 11
4.4 Solutions identification 11

4.4.1 Movement 11
4.4.2 Object detection 13
4.4.3 Bottle grasping 15
4.4.4 Localisation 17

4.5 Risk analysis 19
4.6 Gantt diagram 19

5 Project design 20

5.1 Robot design 20
5.2 Hardware 20

5.2.1 Motors 20
5.2.2 Servomotors 20
5.2.3 Cage 20

5.3 Electronics 21
5.3.1 Raspberry Pi 21
5.3.2 Raspberry Pi camera 21
5.3.3 PRismino 21
5.3.4 Motor controller 23
5.3.5 Compass 24
5.3.6 5V regulator 24
5.3.7 Power 25
5.3.8 Custom PCBs 25

5.4 Communication between modules 26
5.5 Mechanical design 27

5.5.1 Bought parts 27
5.5.2 Custom parts 27
5.5.3 3D printed parts 28

3

CONTENTS

5.6 Budget management 29
5.7 Software 29

6 Testing 31

6.1 Navigation 31
6.1.1 Obstacle avoidance 31
6.1.2 Finding the recycling area 31

6.2 Bottle grasping 32
6.2.1 Electronics interfacing 32
6.2.2 Programming language selection 32
6.2.3 Benchmarks 33

6.3 Simulation in Webots 33

7 Results 36

8 Conclusion 37

References 38

A Gantt diagram 39

B Chassis drawings 41

B.1 Base 42
B.2 Plow 43
B.3 Robot assembly 44

C Source code 45

C.1 Controller source code in Python 45
C.2 PRismino source code 50
C.3 Motor controller source code 81

4 K. Kangur, M. Starein, C. Xie

1 ABSTRACT

1 Abstract

The STI competition is a interdisciplinary Master semester project in form of a competition
between five teams of three people from different educational backgrounds. The competition’s
goal is to design and build a litter collecting robot and outperform the other robots. The teams
are given funds in order to buy parts, order custom parts from the in-house mechanics or make
use of the available 3D printers.

K. Kangur, M. Starein, C. Xie 5

2 INTRODUCTION

2 Introduction

2.1 STI interdisciplinary robot competition

This semester project is about the design and conception of a litter collecting robot. Five teams
of 3 members compete against each other, the teams have members from different educational
backgrounds.

The team must use methodological product development approach as well as learn to commu-
nicate between peers of different educational backgrounds representing actual product develop-
ment.

The teams are given 1000CHF that they can use to buy elements in order to build the robot and
an additional 1000CHF "virtual" money that is used to order custom parts from workshops or
made with 3D printers and reuse already available elements left from last year’s competition.

An assistant is assigned per team to supervise the work, give advice and report to the professor
in order to evaluate the group’s work.

In the end the students will have received practical experience in product development with all
that it implies: project development, time management, sourcing, communication, testing and
competition.

We developed the most simple robot we could think of in order to have something working early
on, the last year competitors had a lot of trouble during the testing and finishing part so we
wanted to put as much effort as we could in the actual implementation process and thus we
needed a simple platform that was easy to work on. In the end we made a small and very capable
robot that was easy to maintain and modify.

2.2 Team members

Karl Kangur
Master student in Robotic and Autonomous System at EPFL where he did his whole degree
course.

Marcel Starein
Master student in Robotic and Autonomous System at EPFL where he did his whole degree
course.

Chun Xie
Master student in Mechanical Engineering at EPFL.

6 K. Kangur, M. Starein, C. Xie

3 PROJECT DESCRIPTION

3 Project description

3.1 Competition specifications

3.1.1 Arena

The arena is a 8x8m2 square area with different zones and the recycling area as the targeted
delivery area, with obstacles (bricks) inside each zone. The main area is flat with a carpet-like
floor, and it’s the most accessible and bottles brought back from this zone, the 1st zone, give
10 points. The 2nd zone is covered with artificial grass making access a little bit more difficult
and each bottle from that zone gives 20 points. The 3rd zone is surrounded by rocks which
makes access quite difficult, bottles from this area give 40 points. Finally the 4th zone is a raised
platform with 2 access points, one ramp (B2) and some stairs (B3), the bottles from this area
also give 40 points.

The plan view of the arena is as figure 1 shows.

Figure 1: Arena

The actual whole arena and specific Zone 3 and Zone 4 are as figure 2 shows.

K. Kangur, M. Starein, C. Xie 7

3 PROJECT DESCRIPTION

(a) Actual arena

(b) Zone 3

(c) Zone 4

Figure 2: Actual arena, Zone 3 and Zone 4. The brick obstacles are not positioned in the
competition configuration, there should be 2 stacked bricks.

8 K. Kangur, M. Starein, C. Xie

3 PROJECT DESCRIPTION

3.1.2 Bottles

The bottles are common plastic beverage bottles with the volume not exceeding 500ml, transpar-
ent or opaque ones, like the following figures, which are randomly placed in the garbage located
areas.

Figure 3: Bottles

3.1.3 Goals

The robot must first explore the arena in order to find something. It must be capable of avoiding
the obstacles (bricks), detect bottles and then somehow move the bottle to the recycling area,
repeat the process and accumulate points to win.

3.2 Strategy options

3.2.1 Non-selective storage

3.2.1.1 Maximum volume storage

When exploring within the arena, the robot stores the maximum number of bottles at once, and
then brings them all back to the recycling area.

3.2.1.2 Single-piece storage

When exploring within the arena, the robot stores only one bottle at once, and then brings it
back to the recycling area.

3.2.2 Selective storage

Collect the bottles that yield the most points or focus on bringing back the most accessible
bottles.

K. Kangur, M. Starein, C. Xie 9

3 PROJECT DESCRIPTION

3.3 Selected solution

Since we wanted a simple robot we decided we’d focus on the main goals only, that is bringing
back a single bottle, once that was done the robot could theoretically fetch other bottles or we
could even make a multi-robot system. This solution had the main advantage of keeping the
whole system easy to manage and build while keeping our options open for further development.

Our robot was thus built to bring back one bottle at a time and we conceived a simple bottle
storage system that only needed 2 actuators. For bottle detection we decided to go with the same
solution that the last year’s group 5 did: a classifier using Haar Cascades algorithm that proved
to be reliable, we also used the same hardware as they did (Raspberry Pi).

10 K. Kangur, M. Starein, C. Xie

4 PROJECT ANALYSIS

4 Project analysis

We have applied the standard product development approach to help us decide on the best solu-
tion for this project, it begins with a list of needs and this will be the basis for the project scope.
The items shall define the goals of the project and in no way hint to a solution.

4.1 List of needs
– Being able to move inside the arena
– No human interaction
– On-board computation
– Detect garbage
– Move garbage
– Dispose of garbage in the designated area
– Avoid obstacles
– Autonomy of at least 10 minutes

4.2 Function specification
4.2.1 External
The robot must be able to run automatically without interaction from external controller, and
persist its stable behaviors to external noise and disturbance from the surrounding environment.

– No human interaction
– Robustness to external noise and disturbance

4.2.2 Internal
The robot must be able to move itself in the arena on wheels. It must detect and avoid obstacles,
find the bottles and transport as many as possible back to the designated area in 10 minutes.

– Being able to move
– Flat surface
– Power autonomy for at least 10 minutes
– Fast enough so that some waste could be collected within 10 minutes

– Localization
– Find the recycling area

– Object detection
– Differentiate between litter and obstacles
– Avoid obstacles

– Manipulate objects
– Move the litter

4.3 Critical technical points
The critical technical points were (in order): the locomotion, obstacle avoidance, bottle detection,
bottle manipulation and finding the recycling area. We proceeded in this order to solve all these
problems so that we could concentrate on one problem at a time.

4.4 Solutions identification
4.4.1 Movement
The first consideration is the robot’s locomotion. Several strategies for its movement are listed
in table 1, including the specific principles, advantages, disadvantages and risks corresponding to
the strategies.

K. Kangur, M. Starein, C. Xie 11

4 PROJECT ANALYSIS

Table 1: Movement strategy

Strategy Principle Advantage Disadvantage Risk
Custom
chassis

Custom-made
chassis

Can take any
form needed

Takes times to
make

Might not finish
building on time,
might not work

Wild
Thumper

Powerful differen-
tial mobile base

Can navigate any
terrain. Read-
ily available with
the control elec-
tronics, can start
working on it im-
mediately

Requires adapta-
tion

Motors might
break when load
too heavy

Rover 5 Differential mo-
bile base on
tracks

Can navigate any
terrain

Must be ordered May not be pow-
erful enough

Cartesian
robot

Moves in x-y axis
over the whole
terrain

Can move over
any terrain

Too big and
heavy, takes time
to put in place,
doesn’t really go
with the spirit of
this competition

Too expensive

Quadcopter Exploits the 3rd
dimension

Can move over
any terrain, can
see everything
from above

Not allowed Getting disquali-
fied

2-wheel
differential
robot

2 wheeled robot Easy to control,
only 2 motors

Needs a 3rd pas-
sive wheel

May not be pow-
erful enough

Swedish
wheels

Wheels on wheels.
4 wheels

Allows movement
in any direction

Not as precise
as conventional
wheels, odometry
very difficult.
Cannot climb
slopes

No net gain in
locomotion com-
pared to other
methods

Hexapod 6 legged robot Navigation
through com-
plex terrain

Hard to program,
slow, lots of parts

Might take too
long to implement

Quadruped 4 legged robot Can move over
any terrain

Statically unsta-
ble, difficult to
control

Might take too
long to implement

Biped 2 legged robot Can access all ter-
rains

Extremely diffi-
cult to program
and control. Not
statically stable

Too ambitious

12 K. Kangur, M. Starein, C. Xie

4 PROJECT ANALYSIS

Synchrodrive All wheels turn
synchronously
and the chassis
doesn’t rotate

Nothing really Requires a cus-
tom chassis and
lots of moving
parts

Large robot
arm

A serial robot
that is placed in
the middle of the
arena and can
reach any place
on it

Can reach any
area with ease

Extremely ex-
pensive. Difficult
to put in place.
Heavy, poten-
tially dangerous

Probably too ex-
pensive. Might
kill somebody

Crawling Chassis consisting
of multiple sec-
tions with actu-
ated motors in-
between

Can access all ter-
rains

Very difficult to
control, expensive
and time consum-
ing to make

Might not finish
building on time,
might not work

Hopping Movement with a
series of jumps

Can move over
obstacles and
large distances
fast

Hard to control,
to manufacture as
there aren’t any
commercial prod-
ucts

Getting yelled
at because it’s a
stupid idea

Hovercraft Movement on an
air cushion

Can move over
any terrain

Cannot move up
slopes, difficult
to control, noise,
needs a lot of
power

Not enough au-
tonomy, too com-
plicated

In line with the design concept of "as simple as possible", and through the analysis of the ad-
vantages, disadvantages and risks for each listed strategy, a combination of customer chassis and
Wild Thumper becomes the final decision, which means using the wheels of Wild Thumper and
customer chassis, due to the following reasons. On one hand, customer chassis has more simple
structure which is qualified enough for the flat arena, lower cost and more flexibility to add any
needed components; on the other hand, the more powerful chassis of Wild Thumper makes itself
oscillate more on flat arena, even though it is appropriate for many more extreme road conditions,
which makes the robot body lack the stability while moving, not quite satisfying the objective of
moving stable on flat arena, and easily creating some issues during the later sequence of robot
behavoirs.

4.4.2 Object detection

It is crucial for the robot to do object detection, including the bottles, the obstacles (bricks)
and surrounding walls, so that it could do the sequence of behaviors containing avoiding the
obstacles, avoiding the walls, and finding the bottles. Several strategies for object detection are
listed in table 2, including the advantages, disadvantages and risks corresponding to the relative
strategies.

K. Kangur, M. Starein, C. Xie 13

4 PROJECT ANALYSIS

Table 2: Object Detection Strategy

Strategy Advantage Disadvantage Risk
Ultrasound Linear response with

distance, not affected
by target materials,
surfaces and color. Can
detect small objects
over long operating
distances. Resistance to
external disturbances
such as vibration,
infrared radiation, am-
bient noise, and EMI
radiation

Must view a surface
(especially a hard,
flat surface) squarely
(perpendicularly) to
receive ample sound
echo. Requires time for
the transducer to stop
ringing after each trans-
mission burst before
they are ready to receive
returned echoes. Have
a minimum sensing dis-
tance. Changes in the
environment, target of
density, smooth of sur-
faces affect ultrasonic
response

False positive outputs
due to a large operating
angle, detecting an ob-
ject other than the de-
sired target.

Infrared Detect infrared light
from far distances over a
large area. In real-time
and detect movement.

Incapable of distin-
guishing between
objects.

Strong infrared sources
might be detected as ob-
stacles.

Laser
rangefind-
ers

Better accuracy more
quickly. Easy alignment
by employing visible red
laser beam. Detects of
very small targets due
to small measuring spot
size

Suffer from laser noise,
stray light, and speckle
effects interference.

Detect an object other
than the desired target.

Structured
light

Can do 3D imaging us-
ing a simple and cheap
algorithm.

Needs lots of processing
power

Powerful computer
needed.

Tactile sen-
sors

Guaranteed obstacle de-
tection. Allow physical
interaction with objects

Must be close enough
to the obstacle, cannot
abvoid without physical
interaction.

Hit the obstacles while
detecting

Color sen-
sor

High speed, easy to
use and relative inten-
sity display.

Complex calibration
and limited accuracy

Just detect objects with
certain colours

Surface
transducer

Less sensitive to surface
condition

Low transduction effi-
ciency

Need more time and
detect an object other
than the desired target

Camera Cheaper, more informa-
tive and more compact

Limitation of its view
fields

Might not detect the
whole targeted space

14 K. Kangur, M. Starein, C. Xie

4 PROJECT ANALYSIS

Stereovision Can do 3D vision. Complex, poor dynamic
range and still not very
reliable

Powerful computer
needed.

Millimeter
Wave
Radar

Accurate, excellent im-
age identification and
resolution

Too expensive. More expensive than
other technologies

At first we wanted to use only one camera to do everything in order to keep a simple system. The
camera could do different kinds of image processing and in theory detect and differentiate all the
objects. When testing we saw that the camera could not differentiate between the floor and walls
using the color information and was actually quite slow when processing the video stream, this
meant we had to use other sensors to complement the camera. In the end we chose to use the
camera only for the bottle detection as it could do it reliably and use infra red sensors for wall
and obstacle detection.

4.4.3 Bottle grasping

After the achievement of finding bottles, the actuator should have the capacity of grasping and
storing the bottles, so that the robot could complete the recycling target. There are a lot of prac-
tical ways for the robot to the grasp bottles, and several strategies are listed in table 3, including
the principles, advantages, disadvantages and risks corresponding to the relative strategies.

K. Kangur, M. Starein, C. Xie 15

4 PROJECT ANALYSIS

Table 3: Bottle Grasping Strategy

Strategy Principle Advantage Disadvantage Risk
Robotic
arm

Arm with a few
DDLs mounted
onto the robot

Allows picking up
bottle in every po-
sition and in every
terrain

Difficult mechani-
cal realisation and
time consuming
programming

Complex imple-
mentation. High
possibility that
mechanism won’t
work as intended
for different
situations

Clamp Grabbing a bot-
tle in front of
the robot with a
clamp

Depending on
DDLs wanted,
can be very easy
to realise

Needs good preci-
sion in positioning
to grab a bottle

Not being able to
position the robot
to pickup the bot-
tle

Suction Suction mech-
anism to hold
bottles

Easy pick-up and
release

Requires com-
pressor, energy
consuming, can
be hard to posi-
tion on bottle

No good seal
between bottle
and suction mech-
anism, therefor
not being able
to apply enough
suction

Pushing Bottle being
rolled with the
robots chassis

No extra mechan-
ical parts

Can be hard to
perform complex
movements while
keeping bottle
pushed. Hard
when bottle posi-
tioned close to an
edge or corner

Losing the bottle
underway, hence
loosing time with
trying to recuper-
ate it if it is even
possible

Storage bay
for single
bottle

Robot ingests
bottle inside a
storage bay

Easy mechanical
implementation,
carrying bottle
around relatively
easy

Must return to
base for every sin-
gle bottle, must
be well aligned
with the bottle

Low risk

Storage bay
for multiple
bottles

Robot ingests
bottle inside a
storage bay, while
being able to
store a few of
them

No time lost going
back to the base
each time

Robot ingests
bottle inside a
storage bay, hard
to implement
storage system,
requires a bigger
robot

Failure of the
storage system,
not releasing or
stocking bottles
correctly

Deployable
cage

Deploying a cage
to surround the
object, and bring
it back to the
base. The bottle
rolls on the floor

Very easy to
implement, bottle
position doesn’t
have to be exact,
can grab bottle
in any position or
orientation

Can’t bring bot-
tle over rough
terrain, only one
bottle at a time

Low risk

16 K. Kangur, M. Starein, C. Xie

4 PROJECT ANALYSIS

Harpoon Throwing a har-
poon to grab a
bottle

Robot doesn’t
need to move
around much

Requires good
precision, launch-
ing system,
retrieval system

Failure to aim
correctly, and for
the harpoon to
pierce the bottle

Net Throwing a net Robot doesn’t
need to move
around much

Requires good
precision, launch-
ing system,
retrieval system

Failure to aim
correctly, net
not deploying as
planed

Compressed
air

Blowing com-
pressed air on the
bottle to move
the bottle around

No mechanical
moving part

Complex aiming
and bottle trajec-
tory planing, re-
quires compressor
or to carry com-
pressed air

Hard to predict
bottle movement

Scotch Sticky surface Cheap, big supply Adhesive wears
off with dust

Bottle does not
stick to it

In accordance with the concept of "as simple as possible", and through the analysis of the ad-
vantages, disadvantages, and risks for each listed strategy, deployable cage becomes the final
decision, which calls for much more simple mechanical structure, and actuator motion to grasp
and store bottles, with less cost and risk but more availability and reliability.

4.4.4 Localisation

The robot had to have a way to go back to the recycling area when it had collected a bottle so
it had to have some information about where that goal was. It didn’t really need to know where
it was with absolute positioning on the arena as it was meant to roam around randomly to find
the bottles anyway. As long as it could find the recycling area after having collected a bottle
it was enough. Several localisation strategies are listed in table 4, including the advantages,
disadvantages and risks corresponding to the relative strategies.

Table 4: Localisation Strategy

Strategy Advantage Disadvantage Risk
Beacon-
based
positioning

Active beacons avail-
able on the terrain

External conditions
may influence results
and interfere with
sensor values

Sensible to environmen-
tal conditions

Odometry
or encoders

Easy to implement in
software, integrated
into motors. Very
precise

Cumulative error. Ab-
solute positioning still
required

Wheel slip makes robot
lost immediately

Inertial
measure-
ment unit

Cheap and easy to
integrate, ready-made
boards exist with
Kalman filters that
return the x-y position

Cumulative error. Ab-
solute positioning still
required

Fast accelerations might
disturb the system

K. Kangur, M. Starein, C. Xie 17

4 PROJECT ANALYSIS

Global posi-
tioning sys-
tem

Absolute position any-
where on earth

Cannot be used in-
side. Consumes a lot
of power. Not precise
(+/-3m)

Won’t work

Motion
field and
optic flow

Precise, fast Cumulative error. Ab-
solute positioning still
required

RFID Available. Absolute po-
sitioning

Not easy to detect, need
to be right over it to de-
tect it

Robot might not pass
over a tag for a long
time

Linear cam-
eras

Easy to implement Needs a powerful light
source from a beacon.
Might interfere with
other surrounding lights

SLAM
(camera)

Can be made to be very
robust, use existing al-
gorithms

Complex to use, heavy
processing needed

Too slow or not enough
time to optimal imple-
mentation

Markovian
localisation
(camera)

Particle filter localiza-
tion. Algorithm esti-
mates the position and
orientation of a robot as
it moves and senses the
environment

Terrain changes (re-
moved litter)

Might not converge to
actual robot position

Monte
Carlo lo-
calization
(camera)

Grid-based localization,
which uses a histogram
to represent the belief
distribution

Terrain changes (re-
moved litter)

Might not converge to
actual robot position

SURF,
SIFT...
(camera)

Feature point detection Terrain changes (re-
moved litter). Needs a
lot of computing power

Might not converge to
actual robot position

Color blob
based lo-
calisation
(camera)

Detect colors on im-
ages and interpret. Ac-
tive beacons around the
arena can be used. Ter-
rain features are of dif-
ferent color

Bottles are transpar-
ent. Computationally
expensive

Might not converge to
actual robot position

Kinekt 3D imaging, depth in-
formation can be useful

Needs a powerful com-
puter to process data
and correlate to a vir-
tual map

Too time consuming

Visual
odome-
try (ego-
motion)
(camera)

Existing algorithms Needs a lot of comput-
ing power

Computationally too
expensive, cumulative
error

Since the camera is focused on the bottle detection, to reduce the complexity of localisation and
the workload of the camera, the localisation strategy which adopts camera will not be considered,

18 K. Kangur, M. Starein, C. Xie

4 PROJECT ANALYSIS

which corresponds to the concept of "as simple as possible". Taking the availability, implementa-
tion difficulty, reliability and cost into account, the inertial measurement unit becomes the final
decision. Since the target is just to let the robot go to one certain direction that directs the robot
to the recycling area, which is fixed, the absolute heading direction for the robot to is the same,
wherever the robot is within the arena. Then the inertial measurement unit is used as a compass
for absolute heading towards the direction parallel to the recycling area. When a wall is detected
the robot will simply follow it until it finds the only corner which means it has reached to goal.

4.5 Risk analysis

We first identified the problems the groups competing last year had, to summarise: all projects
were way too complicated and it took them a long time to get the mechanical parts they ordered,
once they had them they didn’t have much time to test the robot before the competition and
thus they couldn’t fix the minor problems they didn’t think of at the time. We took note of that
and that was the main reason we searched for a simple solution from the beginning.

The risks we had with our project were mainly the locomotion and software. One of the groups
last year broke their motors right before the competition and their robot couldn’t move, so the
motors have already been a problem and we needed to test them to make sure they worked well.
The software needed to be quite complex and took time to write, so we started to test early on
with the vision system and see what performance we got from the image processing. Again last
year multiple groups were far from ready in terms of robot intelligence during the competition
and were not able to complete the required tasks.

4.6 Gantt diagram

The main tasks and development plan are as follows, and detailed Gantt diagram is seen in
appendix A.

– MS1: Function analysis and solutions identification
– MS2: Function analysis and solutions refinement
– MS3: Development of key functions individually, Refinement of design, Planifications of

project, Feasibility study
– Development and production according to planning
– Software development

Bottle detection algorithm
Object and obstacle detection algorithm
Motor controller programming (H-bridge)

– Hardware development
New 4WD chassis (custom made)
Component sourcing
Deployable cage

– Final assembly
– Trials and optimisation, Testing in real conditions on the arena
– Rehearsal competition
– MS4: Competition, Report writing

K. Kangur, M. Starein, C. Xie 19

5 PROJECT DESIGN

5 Project design

5.1 Robot design

Our robot was designed using an incremental approach. We designed the various systems and
pieces one after the other, making sure everything is working before passing to the next sub
system.

Hardware and software were developed in parallel. On the hardware side, we started with the
motor controller, linking it to all 4 motors and performing various tests. We performed tests
with the motors in order to determine the required reduction gear. Then, we proceeded with the
5V power supply and with the Arduino board. Once the two were connected through I2C, and
testing had been done, we proceeded with connecting the IR sensors, IMU unit and the servo
motors. During all phases, the different components were linked together with veroboards. Once
everything had been tested, we created final printed circuit boards.

5.2 Hardware

5.2.1 Motors

We initially opted for using the WildThumper chassis, with its wheels and motors, as a base
for our robot. However, when we first tried out the chassis, we discovered several flaws. One of
them being the springs for the chassis’ adaptation to extreme road conditions, which makes robot
oscillate more when moving on the flat arena. Therefore, we made a custom chassis, but kept the
motors and wheels.

Initially, we had motors with 34:1 reduction gears, which we thought were fast and powerful
enough for our light robot design. However, after initial testing, we discovered that these motors
offered far too low torque at low speeds and hence decided to try out 75:1 motors. Again, these
motors didn’t offer enough torque at low speeds in order to move our robot, and therefore we
finally switched to 172:1 gearing ratio.

We tried both high powered and low powered motors as the motors were sold in 2 types, the high
power motor offering more torque as per the specifications. However, the high powered motors
aren’t reliable enough for our taste, as the 172:1 version can easily break the gearing, we actually
broke one motor simply when testing it without any load, that shows how reliable these motors
are and we cannot recommend them for the next year competition.

We finally opted for 172:1 low powered motors, which allow us to attain reasonable speeds and
also let us move slowly. The robot needs to be able to move slowly because it is limited by the
slower image processing script used for bottle detection.

5.2.2 Servomotors

We first tried using standard, lower priced servos, in order to actuate the cage. However, the
servo-arms offered with those servos weren’t strong enough in order to directly screw the cage
onto them. Therefore, we decided to order metal arms, as well as new metal servos which would
rigidify our cage mechanism. However, once receiving the servos, we busted one and hence de-
cided to go back to the smaller servos, which, with an adapted arm mount, custom 3D printed,
ended up offering good performance.

5.2.3 Cage

The cage was initially designed to be square, and when in the upper position, placed around the
robot. We quickly found it would be much easier to create a cage which wouldn’t surround the

20 K. Kangur, M. Starein, C. Xie

5 PROJECT DESIGN

whole robot, but stay against the upper position of the robot chassis, as we remove the risk of
getting the cage stuck with the chassis or the wheels. We opted for a round design, which doesn’t
need any precise folding and being constrained is more rigid.

Figure 4: Deployable bottle cage

We tried searching for transparent materials, which would allow us to let the camera see through
the cage. We also wanted a material which deforms in case an unwanted collision occurred. We
ended up opting for a transparent plastic, linked to the servo with custom printed 3D parts.

5.3 Electronics

5.3.1 Raspberry Pi

The Raspberry Pi is a very cheap and relatively powerful small 700MHz computer (figure 5).
We chose it because we already had some experience working with it and it has a significant
community behind it that could help us out in case of problems.

5.3.2 Raspberry Pi camera

For the imaging system there was two alternatives: use a USB webcam or buy the Raspberry
Pi Camera module as seen in figure 6. Since with the webcam, the USB bus would have been a
bottleneck in terms of data exchange with the processor, we opted for the Raspberry Pi Camera,
not only could it take very high resolution pictures (8MP) with a decent quality but also it was
very fast in image acquisition and as we needed live image processing this was an important
aspect.

5.3.3 PRismino

We decided to use this board as it was cheap and available. It’s an Arduino clone board made by
the EPFL robotics club - Robopoly (figure 7).

K. Kangur, M. Starein, C. Xie 21

5 PROJECT DESIGN

Figure 5: Raspberry Pi on-board computer runnung Linux and OpenCV image processing
software

Figure 6: Raspberry Pi camera module

It offers more than enough control pins for all our sensors and servos. The Arduino boards have
a very large community and most libraries are already existing, which make them very easy to
implement and use effectively and fast.

22 K. Kangur, M. Starein, C. Xie

5 PROJECT DESIGN

Figure 7: Robopoly robotics platform micro-controller board

We also made a custom shield for our PRismino, which offers connectors for the servo motors
and IR sensors. It also offers 3.3V I2C lines, a buzzer and a Bluetooth module for wireless
communication, in order to test our robot’s functions easily and for debugging.

5.3.4 Motor controller

Since we were initially using the WildThumper, we also chose the WildThumper motor controller
shown in figure 8. Since we already had the board implemented correctly, we didn’t want switch
to another controller once we decided to ditch the WildThumper.

Figure 8: Motor controller for powering the wheels.

On top of that, the controller was initially designed to work with the WildThumper motors,

K. Kangur, M. Starein, C. Xie 23

5 PROJECT DESIGN

which we were using. It is also equipped with an Arduino, which makes it easily reprogrammable
and easy to integrate with the PRismino

We reprogrammed the WildThumper micro controller to use its timers more efficiently than
the provided code, the new code was based on the Robopoly shield that has a similar way of
controlling its H-bridge.

5.3.5 Compass

5.3.5.1 MPU-9150

This IMU unit offers 3 axis acceleration, gyro and compass outputs and has an integrated DSP
(figure 9). Unfortunately InvenSense has a discouragement policy, by not supplying enough
information for the use of the DMP. It works at 3.3V, instead of using logic level converters, as
the PRismino works with 5V, we simply use pull-up resistors to 3.3V on the I2C lines which
works just as well.

Figure 9: MPU-9150 breakout board

5.3.5.2 GY-85

The GY-85 (figure 10) is a very cheap and also very capable IMU. Instead of having 1 chip that
does all like the MPU-9150 it has 3 chips: one for acceleration, one for gyroscope and a compass.
It also has a 3.3V supply and logic level converter for hte I2C lines making it compatible with 5V
logic. When we compared the MPU-9150 and GY-85 we found that the GY-85 was easier to use
and we could drive our I2C lines at 5V, so we opted for this option.

5.3.6 5V regulator

As the on-board 5V regulator on the motor controller is a linear regulator (LM1084) we decided
that for safety we would decouple the controller and Raspberry Pi from each other. We used
the TPS62133 switching step-down regulator, which was part of the kit developed by the EPFL

24 K. Kangur, M. Starein, C. Xie

5 PROJECT DESIGN

Figure 10: GY-85 IMU board

Figure 11: 5 volt regulator for powering all the logic electronics.

robotics club (Robopoly) as shown of figure 11. This allowed us to get efficient 5V regulation for
the logic part of the robot as the Raspberry Pi was consuming quite a lot of power (300-400mA).

We also noticed that the motor controller 5V regulator actually output 5.54V instead, this was
out of specifications for the Raspberry Pi as well as the micro controller on the motor controller,
which might have an effect on its longevity. Again we must point out the lack of quality with
Pololu products.

5.3.7 Power

Our estimations showed us that the available 7.2V, 3000mAh NiMH battery was more than
enough to power the robot for the expected 10 minutes of the competition. So we bought 2 with
the virtual budget. During testing one could last almost a complete day any they recharged in
only 1 hour.

5.3.8 Custom PCBs

We made a custom connector shield to connect all the sensors and to have the buzzer, I2C lines
for compass and motor controller communication and Bluetooth (figure 12). This made it look
much nicer and more reliable than prototyping cables that were all over the robot.

K. Kangur, M. Starein, C. Xie 25

5 PROJECT DESIGN

Figure 12: Custom connector shield PCB

We also made a PCB for the front lights, we found that when we wanted to use the camera as
obstacle detection system we could see the bricks better when some light was shining on them,
so we made a PCB for high-power LEDs that were attached besides the camera. We also made
a small PCB for rear lights (figure 13) to make the back look like Formula 1 cars in case of
low-visibility on the arena.

Figure 13: Back lights

5.4 Communication between modules

The PRismino, motor controller board and magnetometer unit are all connected onto a 3.3V I2C
bus. The Prismino serves as the master, and controls all motors as well as reads all sensors. The
Raspberry Pi, on the other hand, is communicating via serial (USB) with the PRismino. The
Raspberry is sending bottle positions to the Prismino.

26 K. Kangur, M. Starein, C. Xie

5 PROJECT DESIGN

Since the Raspberry Pi is quite a complex system and may fail in unexpected ways such as
memory corruption we had a backup plan where the robot isn’t able to bring back bottles, but
can still roam around using a simple collision avoidance program on the PRismino and the IR
sensors.

5.5 Mechanical design

5.5.1 Bought parts

The components bought with virtual budget and real budget are respectively shown in Table 5
and Table 6 as follows.

Table 5: Expenses for parts bought with the virtual budget

Part Quantity Price (CHF) Total (CHF) Description

Raspberry
Pi

1 36.20 36.20 Main computer board for the robot
intelligence, does the image process-
ing of the camera.

Raspberry
Pi Camera

1 31.55 31.55 Camera for robot vision

SD Card 8
GB

1 10.00 10.00 Needed for the Raspberry Pi

Motor con-
troller

1 75.70 75.70 Wild Thumper motor controller

Battery 1 19.95 19.95 NiMH rechargeable battery pack
Fuse board 1 0.00 0.00 Battery connector/fuse board for se-

curity
Motor 4 34.95 139.80 172:1 DC motor with encoder
Wheel 4 7.50 30.00 WildTumper 120x60 mm wheel
IR sensor 4 18.60 74.40 80 cm IR proximity sensor
9 Degrees
of Freedom
IMU

1 34.95 34.95 Used as compass for robot return

Total 472.50

5.5.2 Custom parts

We asked the mechanics to make some of the parts for the robot as they had to be adapted for
the task in hand. The chassis was custom made as the WildThumper chassis was impractical
and bulky, and we needed a solid frame with lots of attachment points in order to mount all the
electronics on it.

Although the WildThumper chassis does have a lot of holes and is quite versatile, but we did not
want to have the suspension which could influence the camera’s point of view, and indeed if the
robot was swaying every which way, the camera, which had to be quite high, would move a lot as
well, and the image processing would have been affected.

The custom chassis was made to be easily manufactured and as modular as possible, and we
ended up with two pieces of 2mm thick aluminium sheet metal parts that had to be bent. The
main chassis part had holes for the 4 motors and lots of holes for electronics mounting. The

K. Kangur, M. Starein, C. Xie 27

5 PROJECT DESIGN

Table 6: Expenses for parts bought with the real budget

Part Quantity Price (CHF) Total (CHF) Provider

Commande Conrad 1 159.10 159.10 Conrad
Commande Pololu 1 211.37 211.37 Pololu
Header 1x3P, 6373-A3A-
102/2223-2031, Molex

10 0.14 1.40 Distrelec

PRismino 1 7.00 7.00 Robopoly
Bluetooth module (HC-05) 1 6.00 6.00 Robopoly
Lentille optique 1 7.00 7.00 Robopoly
Composants électriques
pour shield

1 3.00 3.00 Robopoly

Sevomoteurs 3 10.00 30.00 Robopoly
Power-board 1 5.00 5.00 Robopoly

Divers composants élec-
troniques

1 5.00 5.00 Robopoly

TVA 1 5.00 5.00 Robopoly
GY-85 6DOF 9DOF IMU
Sensor Module

1 8.5 8.5 DealExtreme

Total 448.37

second part was a plow that had the function of pushing the bottles, otherwise the robot would
have rolled over the bottles, and also it held the servomotors for the deployable cage. It took
three weeks for the 2 custom parts to be made.

As the hole separation on the custom chassis could be arbitrary, we decided for 16mm separation
as this makes it compatible with LEGO parts as they are perfect for very fast prototyping.

5.5.3 3D printed parts

We had a total of ten 3D printed parts on the robot to hold our various electronic parts on the
custom chassis.

– Battery holder
– H-bridge, fuse board and 5V regulator board support
– Raspberry Pi support
– Camera support
– Servo motor holders
– IR sensor supports
– Cage - servo links
– PRismino support
– Compass holder
– Read cage support

We also made some prototype parts that needed to be modified, but did not end up on the robot
itself, which were also included in the 3D printed parts total cost. In total we spent 186.01CHF
on the printed parts.

28 K. Kangur, M. Starein, C. Xie

5 PROJECT DESIGN

Figure 14: 3D printed rear cage support with robot name on it

5.6 Budget management

We tried using as many parts as possible available from the catalogue, as they are easily available
and we were able to continue our project as fast as possible. Of course, some of the components
required, such as the small servos for the cage, weren’t available and hence were bought with the
real budget.

The whole budget for this project is shown in Table 7 as follows.

Table 7: Expenses for the whole budget

Provider Virtual budget(CHF) Real budget (CHF)

Distrelec 0.00 1.40
Pololu 0.00 211.37
Robopoly 0.00 68.00
Conrad 0.00 159.10
Virtual 472.50 0.00
3D printed parts 186.01 0.00
DealExtreme 0.00 8.50

Total 658.51 448.37

5.7 Software

The software design approach is similar to the rest of the project, and keeping it simple is the
most important. According to the targeted functions, the design theory and flowchart is shown
as Figure 15.

The obstacle avoidance was the first thing we had to implement, this meant that the robot was
able to roam around without hitting anything and thus the next step of actually detecting bottles
could be implemented.

The obstacle detection is done using the camera and 4 infra-red sensors on the front of the robot,
as the camera cannot discern between the floor and wall colors (maybe this could be changed in
the next year’s competition) we had to use additional sensors.

K. Kangur, M. Starein, C. Xie 29

5 PROJECT DESIGN

Figure 15: Program flowchart as a state machine

30 K. Kangur, M. Starein, C. Xie

6 TESTING

6 Testing

6.1 Navigation
There are several tasks during the navigation, including the avoidance of obstacles, finding the
recycling area, and the appropriate time point to grasp or release bottles. And as one of most im-
portant sensors for the robot, IR sensors simply returned analog values according to if something
was blocking it or not, and we interpreted this on the PRismino and made it avoid obstacles, find
a wall when homing and follow a wall when trying to reach the recycling area.

Figure 16: Front sensors for navitation and bottle detection, 1 camera and 4 infra-red sensors.
Some high-power LEDs besides the camera allow the robot to detect bottles in the dark.

6.1.1 Obstacle avoidance
4 Infrared sensors are used for obstacle avoidance, and using some simple thresholding values
the robot is able to avoid all bricks and walls inside the arena. The IR sensors are located at a
high enough position to only detect bricks. However, this system will also detect bottles which
are standing up as the obstacles, and hence will not be picked up by the system. The obstacle
avoidance is implemented in the navigation function, and will always be "active" when the robot
is moving forward. Hence, when a desired heading is given and an obstacle is in the way, the
robot will not follow the desired heading but instead avoid the obstacle.

6.1.2 Finding the recycling area
Once a bottle has been collected, the robot uses the compass readout to follow the heading of the
base. The robot will start searching for a wall. Each time it encounters an obstacle it will check

K. Kangur, M. Starein, C. Xie 31

6 TESTING

if the obstacle is a brick or a Wall. If a wall has been detected, the robot will determine if it has
encountered the left or right wall, and if a brick is detected, it will simply continue towards the
desired heading while avoiding the obstacle. The robot will then follow the wall until it reaches
the recycling area.

We wanted to put the compass right behind the camera for it to be accessible, but it turned
out that being so close to the floor affected the compass in unpredictable ways as there were
metal bars in the building structure. After having done various tests, it was discovered that if
the compass is placed high enough, at least 60 cm above the ground, it will not be affected by
the metallic structures. Hence, the compass is placed on a pole which allows to ensure correct
heading readouts.

6.2 Bottle grasping

The first strategy we had was to use the camera for obstacle and bottle detection, but when
we tried in real conditions, the changing lighting conditions made it impossible to make a robust
system using the low level image processing we wanted (color thresholding) so we had to abandon
this idea. We also wanted to use the camera to detect the yellow beacon, but it was really hard
to see it from far away.

Finally we decided that we would only use the camera to report all the bottle positions as it
was already a slow algorithm and use lower-level sensors for obstacle avoidance (IR sensors) and
homing (compass) with another micro-controller (the PRismino).

Bottle grasping was based on the last year competition group 5 approach. They used the same
hardware and bottle detection, and they had created the classifier for the Haar Cascade algorithm
to recognise plastic bottles, aluminium cans and glass bottles (which was their goal), which took
them 3 days to generate.

We tested it with our script and it worked really well. Instead of reusing their C++ code we
wanted to make something different at first, but ended up doing the same approach, that is
dedicating bottle detection to a higher level computer and doing lower level computation with a
micro-controller. Since the deadline was really close and we had a tested system we stuck with
our program.

6.2.1 Electronics interfacing

The Raspberry Pi worked with 3.3V and the Rismino at 5V and applying 5V to the Raspberry Pi
pins could damage it, then we found an elegant solution of using the USB port of the Raspberry
Pi. It turns out the Raspberry Pi can be powered via the USB port with 5V, so we connected the
PRismino and the Raspberry Pi via USB, and power was going from the PRismino to the Rasp-
berry Pi, but communication from the Raspberry Pi to the PRismino via the serial connection to
send the information about the bottle position.

We could not use I2C as there was an issue of the Raspberry Pi not being able to be set as slave.
We needed the PRismino to control the I2C elements like the motor controller and compass, so
even if we wanted we couldn’t have used this communication method.

6.2.2 Programming language selection

When choosing the programming language we had to consider multiple things: computation
power needed for image processing algorithms, experience with the language, available libraries,
etc. The most important aspect was to get something to work in order to see how the camera
performs and then work on optimising and making the code run faster.

32 K. Kangur, M. Starein, C. Xie

6 TESTING

After installing the Raspberry Pi camera driver [2] we first tried to make a test program using
Python language, and it was relatively easy to implement image processing using OpenCV as
there are lots of examples on the Internet and in the OpenCV documentation.

Then we tried some lower level approach with C++, also using OpenCV image processing li-
braries. The frame rate was better compared to Python, but it used the OpenCV native methods
to grab the frames which could be improved on.

Josh Larson has developed a camera API [1] for the Raspberry Pi camera that uses the Multi-
Media Abstraction Layer (MMAL) which is a Broadcom API and allows for lower level camera
access than OpenCV methods. This improved the frame rate yet more.

6.2.3 Benchmarks

We ran some benchmarks to compare the 3 methods we tested in order to get a good idea on the
performance gains: C++ using MMAL, C++ with native OpenCV functions and Python using
the Picamera package [4].

The tests consisted of running the same image processing algorithms that we considered for the
competition and we also compared with or without preview as while programming we needed
visual feedback as to see what the camera was doing, but during the competition there won’t be
a screen and it adds some significant overhead.

The results were interesting as with a small image of 256 by 128 pixels we obtained similar results
in frame capture using Python and C++ with MMAL where as native OpenCV functions were
much slower. Showing the the preview window made only a difference of about 1 frame per
second.

In the end we kept Python as our main programming language because it was much simpler to
implement and offered decent speed when doing image processing. Some important aspects such
as serial communication with the PRismino and memory management require very tedious work
and having to compile the program with C++ every time we needed testing was wasting too
much time.

The final program has quite a complex structure using multiple threads for serial communication
and image processing. Python offers a very easy way to implement all these features, but has
some overhead compared to C++. We made the compromise of having a slower program on the
Raspberry Pi than we could have made, but one we knew was tested and reliable enough.

6.3 Simulation in Webots
We used Webots to simulate our robot in a virtual environment, identical to the competition
arena for the most part. Webots allows to simulate mobile robots and to make a completely
custom robot type, and it can even import 3D models from other programs such as SolidWorks.
We modeled our robot and the arena to have an idea on the issues that may arise during the com-
petition. It was really helpful to have this tool as we immediately saw some potential problems
that would’ve taken a lot of time to fix later.

The potential problems we saw were the camera position: the robot could not see all the area in
front of it and thus some obstacles might remain outside of its field of view, if it were to collide
with them it could get stuck. We tried two solutions for this: moving the camera back or use a
180° lens in order to widen the field of view. Cellphone lens’ are really cheap nowadays and we
got some off of eBay, but the delivery was really slow so thanks to the simulation we were able to
order the parts early in the competition and have and test them in time.

Another issue that could have been a problem is the bottle grabbing area in front of the robot:
when the bottle was inside and the robot was pushing it tented to roll over the bottles, because of

K. Kangur, M. Starein, C. Xie 33

6 TESTING

Figure 17: Webots simulation with the robot programmed to detect walls and bottles with a
simplistic color based detection. On the bottom left is the camera output, on the bottom right is

the processed image.

Figure 18: 180 degrees lens bought from eBay to augment the camera’s field of vision

the WildThumper’s big wheels, good adherence and powerful motors it simply might have rolled
over the bottle it was delivering to the recycling area. Adding a simple plow in front of the robot
immediately fixed that.

The Webots simulation was by no means perfect, since it ran on a much more powerful computer
than what was going to be on the robot itself so image processing was much faster in simulation.
Colors and lighting conditions were absolutely perfect, and something that was going to be a
problem during the competition. Physics were not always true to what was going to be on the
arena, tuning all the parameters to get a near-perfect simulation would’ve taken too much time.

We do recommend making a simulation at the beginning for the next year competitors, an easily

34 K. Kangur, M. Starein, C. Xie

6 TESTING

simulated robot can be actually made just as easily and much of the implementation problems
can be seen in advance. Webots is quite well documented [5] and only takes a couple of hours to
master.

K. Kangur, M. Starein, C. Xie 35

7 RESULTS

7 Results

The robot performed really well during the competition, and it won with 45 points bringing back
4 bottles from the main area to the 100% zone and leaving one in the 50% zone. At first it had a
problem when closing the cage as the bottles were not perfectly aligned. It also lost a bottle while
trying to bring it back to the recycling zone, because the robot tried passing though the rocks.

As expected it detected some false positives, but our countermeasures worked really well and it
by double checking it never brought back a "virtual fake" bottle.

Some areas were really difficult to predict, especially the rocks and the area near the ramp. Near
rocks the camera picked up a lot of false positives (but didn’t bring them back) and near the
ramp it simply went crazy and couldn’t get out of a loop, even with all our countermeasures.
Fortunately during the competition it didn’t go near the ramp.

On grass the IR sensors had tendency to pick up the grass as an obstacle sometimes, putting
them higher up might solve this issue.

Our state machine code that made the robot play a sound every time it changed states, which
made it really easy to know what the robot was doing during the competition, when it searched
for bottles and found one we knew right away that it had found one and was in the next state of
trying to grab it. This was also really useful when debugging.

We are quite satisfied with our controller, lots of code was written the day before competition in
order to solve the particular issues the robot had, for example we noticed that when the robot
detected a false positive bottle right in front of it for some reason it tried to bring it back, we
assumed a bottle cannot appear in front of the robot magically and made it consider it a false
positive in this particular case (bottle appearing right in the pick-up zone). When it had to
move towards the bottle it had to detect the bottle multiple times which ensured that bottle was
a genuine one. Another issue we solved at the last minute was that the robot could not turn
on itself after grabbing a bottle and orienting itself towards the goal as sometimes an obstacle
was right out of its field of vision, special cases on IR sensors when detecting obstacles were
implemented to avoid damaging the robot.

Much more could been done if we had time, we could probably detect the rocks somehow in order
to avoid that area, add more special cases to minimise the chance of coming back empty handed,
such as a final check on the bottle when the cage was closed, but we thought with such short
notice we could lose more bottles than win... it was a compromise between making the code even
more complex and trusting the program we had already tested and approved.

We got enough time to test our robot on the real arena, but if we had more time on it we could
have probably made an even better controller. Having the arena in advance and being able to
test on it one week before in the real competition setting really helped us to understand where
we had to put more effort in order for our robot to work.

36 K. Kangur, M. Starein, C. Xie

8 CONCLUSION

8 Conclusion

This project was a very difficult one, we learned to apply the things we were taught in some
courses and we had to design, develop, program and test a robot from scratch.

We wanted to make the most simple robot we could think of and reuse parts from the last years
competition in order not to wait for parts deliveries. We ended up with a more complex robot
than we needed, but we still succeeded in building it and making it work.

Out of the 2000CHF we were given, we used about 1000CHF, so we could’ve made a second robot,
but already making one took so much time and energy and since one of the most important part
on the robot was the software we decided to invest our time in the programming instead of
building multiple robot.

We knew that during the last year competition some groups had problems with broken motors
so we took special care when choosing ours, we always used them within specifications but we
still managed to break all 4 motors that were supposedly impossible to break the way we used
them. The lessons we learned from this is: do not buy cheap products if you want them to work,
especially Pololu products, we have learned to never trust motors sold by this company or cheap
electric motors altogether. Since it’s a critical part of the robot it’s important to invest what is
needed and not take the cheap and unreliable stuff.

For the next year’s competition we recommend doing a simulation (using Webots or another
robot simulation software) when the main idea is found and while the parts arrive. This way it’s
possible to work on the software even before the robot is completed and it allows to see some
potential problems the robot might have. We also recommend a modular design, we were able
to change our strategy 2 days before the competition because we had such an easily modifiable
platform.

We found out that we know a lot about the theory of building a robot, but in practice theory is
not applicable. The most demanding part was, of course, the testing and finding out what could
go wrong, this needed testing on the real arena and we had to fix problems fast as we only had a
couple days to do it.

We had a great time building the robot and thanks to all the friendly "competition" we got to
share our ideas, help out and learn from each other, see different approaches for the same problem
and learn to work together.

K. Kangur, M. Starein, C. Xie 37

REFERENCES

References

[1] Josh Larson Camera Board API
https://github.com/Josh-Larson/CameraBoardAPI

[2] Linux Projects How to install or upgrade UV4L on Raspbian (for the Raspberry Pi)
http://www.linux-projects.org/modules/sections/index.php?op=viewarticle&artid=14

[3] OpenCV Documentation
http://docs.opencv.org

[4] Picamera Documentation
http://picamera.readthedocs.org/en/release-1.4/

[5] Webots Tutorial 6: 4-Wheels Robot
http://cyberboticspc1.epfl.ch/cdrom/common/doc/webots/guide/section7.7.html#

tutorial_4_wheels_lowlevel

[6] David Hamp-Gonsalves OpenCV/Python Color Tracking
http://www.davidhampgonsalves.com/opencv-python-color-tracking

[7] pySerial Documentation
http://pyserial.sourceforge.net/

[8] Achu’s TechBlog Object detection in OpenCV using Haartraining
http://achuwilson.wordpress.com/2011/02/13/object-detection-using-opencv-using-haartraining/

[9] All about openCV Creating a haar cascade classifier aka haar training
http://opencvuser.blogspot.ch/2011/08/creating-haar-cascade-classifier-aka.html

[10] Computer Vision Software FAQ: OpenCV Haartraining
http://www.computer-vision-software.com/blog/2009/11/faq-opencv-haartraining/

comment-page-1/

[11] Naotoshi Seo Tutorial: OpenCV haartraining (Rapid Object Detection With A Cascade of
Boosted Classifiers Based on Haar-like Features)
http://note.sonots.com/SciSoftware/haartraining.html

[12] DAGU product support Understanding the Wild Thumper controller
https://sites.google.com/site/daguproducts/home/tutorials/

understanding-wild-thumper

[13] Let’s make robots Wild Thumper Robot Controller
http://letsmakerobots.com/node/21598

38 K. Kangur, M. Starein, C. Xie

https://github.com/Josh-Larson/CameraBoardAPI
http://www.linux-projects.org/modules/sections/index.php?op=viewarticle&artid=14
http://docs.opencv.org
http://picamera.readthedocs.org/en/release-1.4/
http://cyberboticspc1.epfl.ch/cdrom/common/doc/webots/guide/section7.7.html#tutorial_4_wheels_lowlevel
http://cyberboticspc1.epfl.ch/cdrom/common/doc/webots/guide/section7.7.html#tutorial_4_wheels_lowlevel
http://www.davidhampgonsalves.com/opencv-python-color-tracking
http://pyserial.sourceforge.net/
http://achuwilson.wordpress.com/2011/02/13/object-detection-using-opencv-using-haartraining/
http://opencvuser.blogspot.ch/2011/08/creating-haar-cascade-classifier-aka.html
http://www.computer-vision-software.com/blog/2009/11/faq-opencv-haartraining/comment-page-1/
http://www.computer-vision-software.com/blog/2009/11/faq-opencv-haartraining/comment-page-1/
http://note.sonots.com/SciSoftware/haartraining.html
https://sites.google.com/site/daguproducts/home/tutorials/understanding-wild-thumper
https://sites.google.com/site/daguproducts/home/tutorials/understanding-wild-thumper
http://letsmakerobots.com/node/21598

A GANTT DIAGRAM

A Gantt diagram

K. Kangur, M. Starein, C. Xie 39

A GANTT DIAGRAM

F
igu

re
19:

G
antt

D
iagram

40 K. Kangur, M. Starein, C. Xie

B CHASSIS DRAWINGS

B Chassis drawings

K. Kangur, M. Starein, C. Xie 41

 3
60

 206

 4
0

 8

 R
10

 43

 163

 8
0

 2
80

 28 A

B

UP 90° R 0.74

UP 90° R 0.74

D
O

W
N

 9
0°

 R
 0

.7
4

D
O

W
N

 9
0°

 R
 0

.7
4

 12.50

 2
5

3.20

6.

80

 4

 21

 1
6.

50

 3
3.

50

DETAIL A

SCALE 1 : 1

 1
2

 2
8 1

6

4.8

0

 12

 28
 16

DETAIL B

SCALE 1 : 1

Thickness: 2mm

0

Base

P01

Group 5
2014-04-14Karl Kangur

WEIGHT:

Al, 2mm
A4

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

B CHASSIS DRAWINGS

B.1 Base

42 K. Kangur, M. Starein, C. Xie

 3
00

 100
 50

 R10

A

UP
 2

0°
 R

 0
.7

4

 1
6

 10
 26

 16
 4.80

DETAIL A

SCALE 1 : 1

Thickness: 2mm

Plow

P02

Group 5
2014-04-03Karl Kangur

WEIGHT:

Al, 2mm
A4

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

B CHASSIS DRAWINGS

B.2 Plow

K. Kangur, M. Starein, C. Xie 43

10

9

7

8

4
5

6

3

2

1

ITEM NO. PART NUMBER DESCRIPTION Défaut/Q
TY.

1 base Robot chassis 1
2 battery Battery pack (7.2V, 3000mAh) 1

3 motor WildThumper motor, 34:1 4

4 controller WildThumper motor controller 1

5 raspberrypi On-board computer 1

6 assembly Raspberry Pi camera 1

7 wheel WildThumper wheel 4

8 plow Front plow 1

9 servomotor Standard servomotor 2
10 cage Deployable bottle cage 1

Fei

A01

Group 5
2014-04-04Karl Kangur

WEIGHT:

A4

SHEET 1 OF 1SCALE:1:5

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

B CHASSIS DRAWINGS

B.3 Robot assembly

44 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

C Source code

C.1 Controller source code in Python

1 #!/usr/bin/env python
2 import time
3 import sys
4 from cv2 import waitKey
5
6 import comm
7 import camera
8
9 # types of elements to detect

10
11 class RobotControl:
12 def __init__(self, port, baudrate):
13 # configuration for the serial connection to the robot
14 self.port = port
15 self.baudrate = baudrate
16
17 def connect(self):
18 # start serial communication thread
19 try:
20 print "Connecting to robot"
21 self.commThread = comm.CommThread(self.port, self.baudrate)
22 self.commThread.start()
23 except:
24 print "Could not connect to robot"
25 return
26
27 preview = False
28 # run the code with or without the preview, by default it’s disabled
29 if len(sys.argv) > 1:
30 if sys.argv[1]:
31 preview = True
32
33 # start the camera thread
34 try:
35 print "Starting camera"
36 self.cameraThread = camera.ImageProcessing(256, 128, preview)
37 self.cameraThread.start()
38 except:
39 print "Could not start camera"
40 return
41
42 # start the control loop
43 self.control()
44
45 def control(self):
46 # wait for the camera and communication threads to start
47 while not self.commThread.isAlive() and not self.cameraThread.isAlive():
48 time.sleep(0.1)
49 pass
50
51 print "Starting robot control loop"
52
53 # play 880hz sound to indicate scropt start when working without a screen
54 print "Beep"
55 self.commThread.write(’t’ + chr(880 >> 8) + chr(880 & 0xff))
56
57 # turn on the led lights on the robot
58 print "Turning light on"

K. Kangur, M. Starein, C. Xie 45

C SOURCE CODE

59 self.commThread.write(’l’ + chr(1))
60
61 print "Enable bottle detection"
62 self.commThread.write(’0’)
63
64 while True:
65 try:
66 self.stateSearching()
67
68 # check for keyboard input
69 if self.checkInput():
70 break
71
72 time.sleep(0.1)
73 except (KeyboardInterrupt , SystemExit):
74 print "User forced exit"
75 break
76 except Exception as e:
77 # when an error occurs make sure to end the dependant threads
78 print e
79 self.stopThreads()
80 break
81
82 # turn off the led lights on the robot
83 print "Turning light off"
84 self.commThread.write(’l’ + chr(0))
85
86 print "Disable bottle detection"
87 self.commThread.write(’0’)
88
89 print "Control loop exited"
90 self.stopThreads()
91
92 def stopThreads(self):
93 print "Stopping threads"
94 self.commThread.stop()
95 self.commThread.join()
96 self.cameraThread.stop()
97 self.cameraThread.join()
98
99 def checkInput(self):

100 # check for user input
101 key = waitKey(10) & 0xff
102
103 if key == 27:
104 print "Manually stopped"
105 return True
106 elif key == ord(’w’):
107 self.commThread.write(’s’ + chr(self.maxSpeed) + chr(self.maxSpeed))
108 elif key == ord(’a’):
109 self.commThread.write(’s’ + chr(-self.maxSpeed + 255) + chr(self.maxSpeed))
110 elif key == ord(’d’):
111 self.commThread.write(’s’ + chr(self.maxSpeed) + chr(-self.maxSpeed + 255))
112 elif key == ord(’s’):
113 self.commThread.write(’s’ + chr(-self.maxSpeed + 255) + chr(-self.maxSpeed +

255))
114 elif key == ord(’1’):
115 self.commThread.write(’u’)
116 elif key == ord(’2’):
117 self.commThread.write(’d’)
118 elif key == ord(’q’) or key == 32:
119 self.commThread.write(’s’ + chr(0) + chr(0))

46 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

120 elif key != 255:
121 print key
122
123 return False
124
125 def stateSearching(self):
126 data = self.cameraThread.checkDataQueue()
127 if data:
128 self.commThread.write("!" + chr(data["position"][0] + chr(data["position"][1])

)
129 print "Bottle detected", data["position"]
130
131 robot = RobotControl("/dev/ttyACM0", 9600)
132 robot.connect()

Listing 1: Python main program

1 #!/usr/bin/env python
2 import sys
3 import serial
4 import threading
5 import time
6 import socket
7
8 class CommThread(threading.Thread):
9 def __init__(self, port, baudrate):

10 # script crashes without this
11 super(CommThread , self).__init__()
12 # save handle
13 self.comm = serial.Serial(port=port, baudrate=baudrate , timeout=1)
14 # an event that can be used for anything, here used to stop the thread
15 self.running = threading.Event()
16
17 def write(self, data):
18 # send data to the device
19 try:
20 return self.comm.write(data)
21 except:
22 return False
23
24 def setSpeed(self, speedLeft , speedRight):
25 # must be unsigned value
26 if speedLeft < 0:
27 speedLeft += 255
28
29 if speedRight < 0:
30 speedRight += 255
31
32 return self.write(’s’ + chr(speedLeft) + chr(speedRight))
33
34 def run(self):
35 print "Communication thread started"
36 # make sure we’re still running
37 while not self.running.isSet():
38 # see if there is something in the incoming buffer
39 if self.comm.inWaiting():
40 self.process(self.comm.readline())
41
42 # wait for a bit or it will consume all the CPU
43 time.sleep(0.2)
44
45 def process(self, data):
46 if data == ’p’:

K. Kangur, M. Starein, C. Xie 47

C SOURCE CODE

47 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
48 # create a socket to an external website
49 s.connect((’google.com’, 0))
50 ip = s.getsockname()[0].split(".")
51 # transform list of strings to list of integers
52 ip = map(int, ip)
53 # send the external ip address via serial to the arduino board
54 self.write(chr(ip[0]) + chr(ip[1]) + chr(ip[2]) + chr(ip[3]))
55
56 def stop(self):
57 print "Stopping communication thread"
58 self.running.set()

Listing 2: Communication thread

1 #!/usr/bin/env python
2 import io
3 import picamera
4 import threading
5 import cv2
6 import numpy as np
7 import Queue
8
9 # types of elements to detect

10 OBSTACLE , BOTTLE = range(2)
11
12 class ImageProcessing(threading.Thread):
13 def __init__(self, width, height, preview):
14 super(ImageProcessing , self).__init__()
15
16 self.obstacleThreshold = 100000
17
18 self.preview = preview
19
20 self.width = width
21 self.height = height
22
23 self.camera = picamera.PiCamera()
24
25 self.camera.resolution = (self.width, self.height)
26
27 # boost colors
28 self.camera.saturation = 100
29
30 #self.camera.shutter_speed = 10000
31 #self.camera.awb_mode = u’off’
32 #self.camera.exposure_mode = u’fixedfps’
33 #self.camera.meter_mode = u’spot’
34 #self.camera.exposure_compensation = 10
35 #self.camera.framerate = 2
36 #self.camera.sharpness = 0
37 #self.camera.video_stabilization = True
38
39 #self.configureCamera()
40
41 # load the xml file for
42 self.cascadeXml = cv2.CascadeClassifier(’bottle.xml’)
43
44 # load the mask that hides the non important parts of the image
45 self.mask = cv2.imread("mask.png", 0)
46
47 self.stream = io.BytesIO()
48 self.dataQueue = Queue.Queue()

48 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

49
50 # if enabled show the preview window
51 if self.preview:
52 cv2.namedWindow("Preview", flags=cv2.cv.CV_WINDOW_AUTOSIZE)
53
54 # event to stop the thread
55 self.running = threading.Event()
56
57 def run(self):
58 print "Image processing thread started"
59 # make sure we’re still running
60 while not self.running.isSet():
61 # take the picture
62 self.camera.capture(self.stream, format=’jpeg’, use_video_port=True)
63
64 # construct a numpy array from the stream
65 data = np.fromstring(self.stream.getvalue(), dtype=np.uint8)
66
67 self.stream.truncate()
68 self.stream.seek(0)
69
70 # "decode" the image from the array, preserving colour in BGR format
71 self.img = cv2.imdecode(data, cv2.CV_LOAD_IMAGE_COLOR)
72
73 # image that can be modified by the image processing for preview purposes
74 if self.preview:
75 self.previewImage = self.img
76
77 #self.detectObstacles()
78 self.detectBottles()
79
80 if self.preview:
81 try:
82 cv2.imshow("Preview", self.previewImage)
83 except:
84 pass
85
86 # destroy the preview window
87 if self.preview:
88 cv2.destroyAllWindows()
89
90 def stop(self):
91 print "Stopping image processing thread"
92 self.running.set()
93
94 def detectBottles(self):
95 # get a gray picture
96 gry = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY)
97
98 # run the haar cascade algorithm (slow)
99 haar = self.cascadeXml.detectMultiScale(gry, 1.1, 6)

100
101 # update preview
102 if self.preview:
103 for (x,y,w,h) in haar:
104 cv2.rectangle(self.previewImage , (x,y), (x+w, y+h), (255, 255, 255), 1)
105
106 # normalised value between 0 and 1 of the first bottle position
107 if len(haar):
108 bottleX = (haar[0][0] + haar[0][2] / 2);
109 bottleY = self.height - (haar[0][1] + haar[0][3] / 2) ;
110 self.dataQueue.put({"type": BOTTLE, "position": (bottleX, bottleY)})

K. Kangur, M. Starein, C. Xie 49

C SOURCE CODE

111
112 def detectObstacles(self):
113 colorFloorL = np.array([8, 30, 30], np.uint8)
114 colorFloorH = np.array([28, 255, 255], np.uint8)
115
116 # convert to hue, saturation , value format
117 hsv = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV)
118
119 colorThreshold = cv2.inRange(hsv, colorFloorL , colorFloorH)
120 colorThreshold = np.invert(colorThreshold)
121
122 cv2.erode(colorThreshold , cv2.getStructuringElement(cv2.MORPH_ELLIPSE , (7, 7)),

colorThreshold , (-1, -1), 1)
123 np.bitwise_and(colorThreshold , self.mask, colorThreshold)
124
125 # average values vertically and split screen in 4 horizontally
126 sumVertical = np.sum(colorThreshold , axis = 0)
127 splitHorizontal = np.array([np.sum(sumVertical[0:63]), np.sum(sumVertical

[64:127]), np.sum(sumVertical[128:191]), np.sum(sumVertical[192:255])])
128 # print "H", splitHorizontal
129
130 if self.preview:
131 # show obstacle position with the overlay on the image
132 mask = np.invert(colorThreshold)
133 np.bitwise_and(self.previewImage[:,:,0], mask, self.previewImage[:,:,0])
134 np.bitwise_and(self.previewImage[:,:,1], mask, self.previewImage[:,:,1])
135 np.bitwise_and(self.previewImage[:,:,2], mask, self.previewImage[:,:,2])
136 pass
137
138 peakX = splitHorizontal.argmax()
139
140 # obstacle threshold has been reached, obstacle has been detected
141 if splitHorizontal[peakX] > self.obstacleThreshold:
142
143 # average values horizontally and split screen in 4 vertically
144 sumHorizontal = np.sum(colorThreshold , axis = 1)
145 splitVertical = np.array([np.sum(sumHorizontal[0:31]), np.sum(sumHorizontal

[32:63]), np.sum(sumHorizontal[64:95]), np.sum(sumHorizontal[96:127])])
146 #print "V", splitVertical
147
148 peakY = splitVertical.argmax()
149
150 self.dataQueue.put({"type": OBSTACLE , "position": (peakX, peakY)})
151
152 def checkDataQueue(self):
153 if not self.dataQueue.empty():
154 return self.dataQueue.get()
155 else:
156 return False

Listing 3: Image processing thread

C.2 PRismino source code

1 /*
**

2 *
3 * Title: STI competition Arduino code for the Tokamak robot.
4 * Date: 2014-06-06
5 *

50 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

6 **
*/

7 #include <Servo.h>
8 #include <prismino.h>
9 #include <Wire.h>

10 #include "robot.h"
11
12 Tokamak robot;
13
14 // transition structure
15 struct transition
16 {
17 enum state_codes state_source;
18 enum return_codes return_code;
19 enum state_codes state_destination;
20 };
21
22 // state functions and codes must be in sync
23 return_codes (*state[])(void) = {
24 stateSearching ,
25 stateFetchingBottle ,
26 stateLowerCage ,
27 stateGoHome ,
28 stateRaiseCage
29 };
30
31 struct transition state_transitions[] = {
32 {STATE_SEARCHING , OK, STATE_FETCHING_BOTTLE},
33 {STATE_SEARCHING , REPEAT, STATE_SEARCHING},
34 {STATE_FETCHING_BOTTLE , OK, STATE_LOWER_CAGE},
35 {STATE_FETCHING_BOTTLE , REPEAT, STATE_FETCHING_BOTTLE},
36 {STATE_FETCHING_BOTTLE , FAIL, STATE_SEARCHING},
37 {STATE_LOWER_CAGE , OK, STATE_GO_HOME},
38 {STATE_GO_HOME , REPEAT, STATE_GO_HOME},
39 {STATE_GO_HOME , OK, STATE_RAISE_CAGE},
40 {STATE_RAISE_CAGE , OK, STATE_SEARCHING}
41 };
42
43 enum state_codes currentState;
44 enum return_codes returnCode;
45 comm_methods inputMethod;
46
47 // pointer to the current called function in the state machine
48 return_codes (*stateFunction)(void);
49
50 // other global variables
51 volatile uint8_t bottlePosition;
52 volatile uint8_t bottleDistance;
53 sides sideWall;
54
55 volatile uint32_t timeBottleLastSeen;
56 volatile uint32_t timeNextBottleCheck;
57 uint32_t timeCheckBattery;
58 volatile boolean booleanBottleUpdate;
59 boolean booleanBottleSecondTry;
60 boolean booleanFalseBottle;
61
62 // ## SETUP
63
64 void setup()
65 {
66 // set pin output mode (sources current)

K. Kangur, M. Starein, C. Xie 51

C SOURCE CODE

67 pinMode(LED, OUTPUT);
68 pinMode(PIN_LIGHTS , OUTPUT);
69
70 // enable button pull-up
71 pinMode(BTN, INPUT);
72 digitalWrite(BTN, HIGH);
73
74 // play a sound on boot, repeated sounds will indicate very low battery voltage
75 robot.playSound(ONEUP);
76
77 // initialise serial bus for communication with the Raspberry Pi
78 Serial.begin(9600);
79
80 // initialise the bus for communication with the computer via Bluetooth
81 #ifdef ENABLE_BLUETOOTH
82 Bluetooth.begin(9600);
83 #endif
84
85 // join i2c bus as master
86 Wire.begin();
87 // disable internal pull-ups to 5V as there are external 2K pull-ups to 3.3V
88 digitalWrite(SDA, LOW);
89 digitalWrite(SCL, LOW);
90
91 #ifdef ENABLE_COMPASS
92 // wait for the imu to boot
93 delay(500);
94 // put the HMC5883 IC into the correct operating mode
95 // open communication with HMC5883
96 Wire.beginTransmission(I2C_COMPASS_ADDRESS);
97 // select mode register
98 Wire.write(0x02);
99 // continuous measurement mode

100 Wire.write(0x00);
101 Wire.endTransmission();
102 #endif
103
104 // initialise global variables
105 bottlePosition = 0;
106 bottleDistance = 0;
107
108 timeCheckBattery = millis() + TIME_CHECK_BATTERY;
109 timeBottleLastSeen = 0;
110
111 sideWall = RIGHT;
112 booleanBottleUpdate = 0;
113
114 // reset the robot state
115 reset();
116
117 currentState = ENTRY_STATE;
118 }
119
120 // ## MAIN LOOP
121
122 void loop()
123 {
124 if(Serial.available())
125 {
126 processInput(USB);
127 }
128

52 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

129 #ifdef ENABLE_BLUETOOTH
130 if(Bluetooth.available())
131 {
132 processInput(BLUETOOTH);
133 }
134 #endif
135
136 uint16_t irLeft, irCenterLeft , irCenterRight , irRight;
137 robot.readIrSensors(&irLeft, &irCenterLeft , &irCenterRight , &irRight);
138
139 Bluetooth.print(irLeft);
140 Bluetooth.print("\t");
141 Bluetooth.print(irCenterLeft);
142 Bluetooth.print("\t");
143 Bluetooth.print(irCenterRight);
144 Bluetooth.print("\t");
145 Bluetooth.println(irRight);
146
147 //Bluetooth.println(robot.getHeading());
148
149 // toggle robot running state via the button on the shield
150 if(!digitalRead(BTN))
151 {
152 robot.playSound(POWERUP);
153 robot.flags.running = !robot.flags.running;
154
155 // robot has been stopped
156 if(!robot.flags.running)
157 {
158 robot.stop();
159 // reset robot state to ENTRY_STATE
160 currentState = ENTRY_STATE;
161 }
162
163 // wait for button debounce
164 delay(1000);
165 }
166
167 #ifdef ENABLE_CONTROLLER
168 // check battery level and make a beep if it’s too low
169 if(millis() > timeCheckBattery)
170 {
171 robot.checkBattery();
172 }
173 #endif
174
175 if(robot.flags.running)
176 {
177 // current function to call according to the state machine
178 stateFunction = state[currentState];
179 // actually call the function
180 returnCode = stateFunction();
181 // fetch next state
182 currentState = lookupTransitions(currentState , returnCode);
183 }
184 }
185
186 // ## STATE TRANSITIONS
187
188 // returns the new state according to the current state and the return value
189 state_codes lookupTransitions(state_codes state, return_codes code)
190 {

K. Kangur, M. Starein, C. Xie 53

C SOURCE CODE

191 uint8_t i;
192 // default return state is the entry state
193 state_codes nextState = ENTRY_STATE;
194 // see if a state transition matches and switch to the next state
195 for(i = 0; i < sizeof(state_transitions) / sizeof(transition); i++)
196 {
197 if(state_transitions[i].state_source == state && state_transitions[i].

return_code == code)
198 {
199 nextState = state_transitions[i].state_destination;
200 if(nextState != state_transitions[i].state_source)
201 {
202 robot.playSound(COIN);
203 }
204 break;
205 }
206 }
207 return nextState;
208 }
209
210 // ## ROBOT STATES
211
212 return_codes stateSearching()
213 {
214 // check if a bottle has been seen and change state
215 if(bottlePosition && millis() > timeNextBottleCheck)
216 {
217 robot.stop();
218 booleanBottleSecondTry = 0;
219 booleanFalseBottle = 1;
220 return OK;
221 }
222
223 // make robot roam the arena set deviation to 0 to go straight when there are no

obstacles
224 robot.headTo(0);
225
226 return REPEAT;
227 }
228
229 return_codes stateFetchingBottle()
230 {
231 // check that the last time a bottle has been seen doesn’t exceed a limit
232 if(millis() > timeBottleLastSeen)
233 {
234 timeNextBottleCheck = millis() + TIME_NEXT_BOTTLE_CHECK;
235
236 // a bottle hasn’t been seed since TIME_BOTTLE_SEEN_TIMEOUT milliseconds , it was

probably a false positive
237 if(booleanBottleSecondTry)
238 {
239 bottlePosition = 0;
240 return FAIL;
241 }
242
243 // back up a little bit just to be sure it was a false positive
244 booleanBottleSecondTry = 1;
245
246 robot.setSpeed(-CONST_SPEED_BOTTLE , -CONST_SPEED_BOTTLE);
247 delay(500);
248 robot.stop();
249 delay(1000);

54 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

250 }
251
252 // make the 0-255 bottle position value signed
253 int8_t deviation = 127 - bottlePosition;
254 static uint32_t timeBottleApproachingLastCheck = 0;
255
256 if(deviation > -CONST_DEVIATION_OK && deviation < CONST_DEVIATION_OK)
257 {
258 // if the bottle is close enough or it was lost while approaching from it (the

bottle is right next to the robot), lower the cage
259 if(bottleDistance > CONST_BOTTLE_SIZE_LOWER_CAGE || millis() >

timeBottleApproachingLastCheck)
260 {
261 // if the bottle magically appeared in front of the robot consider it a false

positive
262 if(booleanFalseBottle)
263 {
264 bottlePosition = 0;
265 return FAIL;
266 }
267
268 // just to be sure move forwards for a little while
269 robot.setSpeed(CONST_SPEED_BOTTLE , CONST_SPEED_BOTTLE);
270 delay(500);
271 robot.stop();
272
273 return OK;
274 }
275
276 // approach the bottle only if the robot got an update on the bottle position
277 if(booleanBottleUpdate)
278 {
279 robot.setSpeed(CONST_SPEED_BOTTLE , CONST_SPEED_BOTTLE);
280 booleanBottleUpdate = 0;
281 timeBottleApproachingLastCheck = millis() + TIME_GRAB_LOST_BOTTLE;
282 }
283 }
284
285 // head towards the bottle at a lower speed
286 if(booleanBottleUpdate)
287 {
288 robot.turn(deviation , CONST_SPEED_BOTTLE);
289 delay(CONST_SPEED_SET_DELAY);
290 robot.stop();
291 booleanBottleUpdate = 0;
292 timeBottleApproachingLastCheck = millis() + TIME_GRAB_LOST_BOTTLE;
293 }
294
295 // the bottle was not perfectly detected in front of the robot the first time, so

it’s probably a true bottle
296 booleanFalseBottle = 0;
297
298 return REPEAT;
299 }
300
301 return_codes stateLowerCage()
302 {
303 // make sure the wheels are stopped
304 robot.stop();
305 robot.setCagePosition(CAGE_DOWN);
306 robot.playSound(ONEUP);
307 return OK;

K. Kangur, M. Starein, C. Xie 55

C SOURCE CODE

308 }
309
310 /*return_codes stateFindWall()
311 {
312 uint16_t irLeft, irCenterLeft , irCenterRight , irRight;
313 robot.readIrSensors(&irLeft, &irCenterLeft , &irCenterRight , &irRight);
314
315 // get the heading angle between -180 and 180 degrees
316 int16_t deviation = robot.getHeading() - CONST_HEADING_HOME;
317
318 // must check of it will enter an infinite loop
319 static uint32_t timeAntiRecheck = 0;
320 static uint32_t timeTurnTime;
321
322 if(
323 millis() > timeAntiRecheck &&
324 (irLeft > CONST_IR_OBSTACLE_SIDE_CAGE || irRight > CONST_IR_OBSTACLE_SIDE_CAGE)
325)
326 {
327 // if the robot is too close to a wall it’s impossible for it to be a wall
328 if(irLeft > CONST_IR_TOO_CLOSE || irRight > CONST_IR_TOO_CLOSE)
329 {
330 timeAntiRecheck = millis() + TIME_WALL_RECHECK;
331 return REPEAT;
332 }
333
334 // see if this is an obstacle or a wall
335 // the obstacle was on the left, turn left and check if the robot can see it

with its right side sensor, if at this point the left is still detecting the
obstacle it’s a wall

336 if(irLeft > irRight)
337 {
338 // the "obstacle" was on the left, turn towards the left to check for a wall
339 sideWall = LEFT;
340 timeTurnTime = millis();
341 robot.setSpeed(-CONST_SPEED_OBSTACLE , CONST_SPEED_OBSTACLE);
342
343 // wait until the right sensor sees the obstacle
344 while(analogRead(SENSOR_IR_RIGHT) < CONST_IR_OBSTACLE_SIDE_CAGE);
345
346 // stop before checking the other IR sensor
347 timeTurnTime = millis() - timeTurnTime;
348 robot.setSpeed(0, 0);
349
350 // check if the left sensor still sees the obstacle , if yes it’s a wall
351 if(analogRead(SENSOR_IR_LEFT) > CONST_IR_OBSTACLE_FAR)
352 {
353 return OK;
354 }
355 }
356 // the obstacle was on the right, turn right and check if the robot can see it

with its left side sensor, if at this point the right is still detecting the
obstacle it’s a wall

357 else
358 {
359 // the "obstacle" was on the right, turn towards the right to check for a wall
360 sideWall = RIGHT;
361 timeTurnTime = millis();
362 robot.setSpeed(CONST_SPEED_OBSTACLE , -CONST_SPEED_OBSTACLE);
363
364 // wait until the right sensor sees the obstacle
365 while(analogRead(SENSOR_IR_LEFT) < CONST_IR_OBSTACLE_SIDE_CAGE);

56 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

366
367 // stop before checking the other IR sensor
368 timeTurnTime = millis() - timeTurnTime;
369 robot.setSpeed(0, 0);
370
371 // check if the left sensor still sees the obstacle , if yes it’s a wall
372 if(analogRead(SENSOR_IR_RIGHT) > CONST_IR_OBSTACLE_FAR)
373 {
374 return OK;
375 }
376 }
377
378 // false positive , turn back
379 if(sideWall == LEFT)
380 {
381 robot.setSpeed(CONST_SPEED_OBSTACLE , -CONST_SPEED_OBSTACLE);
382 }
383 else
384 {
385 robot.setSpeed(-CONST_SPEED_OBSTACLE , CONST_SPEED_OBSTACLE);
386 }
387 delay(timeTurnTime);
388
389 timeAntiRecheck = millis() + TIME_WALL_RECHECK;
390 }
391
392 // head towards the direction the compass indicates
393 robot.headTo(deviation);
394
395 return REPEAT;
396 }*/
397
398 return_codes stateGoHome()
399 {
400 return robot.goHome();
401
402 /*uint16_t irLeft, irCenterLeft , irCenterRight , irRight;
403 robot.readIrSensors(&irLeft, &irCenterLeft , &irCenterRight , &irRight);
404
405 int16_t deviation = robot.getHeading() - CONST_HEADING_HOME;
406
407 // at this point we know the robot is in front of the wall
408
409 // turn towards the home heading within a margin
410 Serial.println(deviation);
411
412 if(deviation > CONST_DEVIATION_OK)
413 {
414 robot.setSpeed(-CONST_SPEED_BOTTLE , CONST_SPEED_BOTTLE);
415 }
416 else if(deviation < -CONST_DEVIATION_OK)
417 {
418 robot.setSpeed(CONST_SPEED_BOTTLE , -CONST_SPEED_BOTTLE);
419 }
420 else if(irLeft > irRight)
421 {
422 // wall is on the left, turn left a little bit for the next state
423 robot.setSpeed(CONST_SPEED_MAX , 0);
424 delay(TIME_TURN_FOLLOW_WALL);
425 robot.setSpeed(0, 0);
426 sideWall = LEFT;
427 return OK;

K. Kangur, M. Starein, C. Xie 57

C SOURCE CODE

428 }
429 else if(irRight > irLeft)
430 {
431 // wall is on the right, turn left a little bit for the next state
432 robot.setSpeed(0, CONST_SPEED_MAX);
433 delay(TIME_TURN_FOLLOW_WALL);
434 robot.setSpeed(0, 0);
435 sideWall = RIGHT;
436 return OK;
437 }
438 else
439 {
440 robot.headTo(deviation);
441 }
442
443 return REPEAT;*/
444 }
445
446 return_codes stateFollowWall()
447 {
448 uint16_t irLeft, irCenterLeft , irCenterRight , irRight;
449 robot.readIrSensors(&irLeft, &irCenterLeft , &irCenterRight , &irRight);
450
451 // follow the left wall
452 if(sideWall == LEFT)
453 {
454 // a wall was detected on the right, it can only be the goal
455 if(irRight > CONST_IR_OBSTACLE_SIDE_CAGE)
456 {
457 robot.stop();
458 return OK;
459 }
460
461 // go straight with an offset to the left
462 //robot.headTo(CONST_SPEED_MAX - 1);
463 robot.followWall(&irLeft, LEFT);
464 }
465 else
466 {
467 // a wall was detected on the left, it can only be the goal
468 if(irLeft > CONST_IR_OBSTACLE_SIDE_CAGE)
469 {
470 robot.stop();
471 return OK;
472 }
473
474 // go straight with an offset to the right
475 //robot.headTo(-(CONST_SPEED_MAX - 1));
476 robot.followWall(&irRight, RIGHT);
477 }
478
479 return REPEAT;
480 }
481
482 return_codes stateRaiseCage()
483 {
484 robot.setCagePosition(CAGE_UP);
485
486 // announce the glorious point it just probably got
487 //robot.playSound(FLAGPOLE);
488
489 if(robot.flags.wall == WALL_RIGHT)

58 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

490 {
491 robot.setSpeed(-CONST_SPEED_MAX , -(CONST_SPEED_MAX -10));
492 }
493 else
494 {
495 robot.setSpeed(-(CONST_SPEED_MAX -10), -CONST_SPEED_MAX);
496 }
497 delay(1000);
498
499 while(robot.getHeading() < 160 && robot.getHeading() > -160)
500 {
501 if(robot.flags.wall == WALL_LEFT)
502 {
503 robot.setSpeed(CONST_SPEED_MAX , -CONST_SPEED_MAX);
504 }
505 else
506 {
507 robot.setSpeed(-CONST_SPEED_MAX , CONST_SPEED_MAX);
508 }
509 }
510
511 robot.stop();
512
513 // reset the robot state before restarting
514 reset();
515
516 return OK;
517 }
518
519 void reset()
520 {
521 robot.flags.wall = NO_WALL;
522 bottlePosition = 0;
523 timeNextBottleCheck = millis() + TIME_NEXT_BOTTLE_CHECK;
524 booleanBottleSecondTry = 0;
525 }
526
527 // ## USER INPUT METHODS
528
529 void processInput(comm_methods method)
530 {
531 inputMethod = method;
532 digitalWrite(LED, HIGH);
533 switch(input())
534 {
535 case ’0’:
536 // force robot state to searching
537 output("Toggle robot\n");
538 bottlePosition = 0;
539 robot.flags.running = !robot.flags.running;
540
541 if(!robot.flags.running)
542 {
543 robot.stop();
544 }
545 robot.playSound(POWERUP);
546 break;
547 case ’1’:
548 output("Set state: searching\n");
549 currentState = STATE_SEARCHING;
550 break;
551 case ’2’:

K. Kangur, M. Starein, C. Xie 59

C SOURCE CODE

552 output("Set state: fetching bottle\n");
553 currentState = STATE_FETCHING_BOTTLE;
554 break;
555 case ’3’:
556 output("Set state: go home\n");
557 currentState = STATE_LOWER_CAGE;
558 break;
559 case ’4’:
560 output("Set state: follow wall\n");
561 currentState = STATE_GO_HOME;
562 break;
563 case ’5’:
564 output("Set state: raise cage\n");
565 currentState = STATE_RAISE_CAGE;
566 break;
567 case ’B’:
568 // a bottle was seen
569 bottlePosition = input();
570 bottleDistance = input();
571 timeBottleLastSeen = millis() + TIME_BOTTLE_SEEN_TIMEOUT;
572 booleanBottleUpdate = 1;
573 break;
574 case ’S’:
575 robot.setSpeed(input(), input());
576 break;
577 case ’t’ :
578 play((input() << 8) | input(), 500);
579 break;
580 case ’.’ :
581 output("Lower cage\n");
582 robot.setCagePosition(CAGE_DOWN);
583 break;
584 case ’,’ :
585 output("Raise cage\n");
586 robot.setCagePosition(CAGE_UP);
587 break;
588 case ’m’ :
589 output("Turn lights on\n");
590 robot.setLights(true);
591 break;
592 case ’n’ :
593 output("Turn lights off\n");
594 robot.setLights(false);
595 break;
596 case ’w’:
597 output("Go forwards\n");
598 robot.setSpeed(CONST_SPEED_MAX , CONST_SPEED_MAX);
599 break;
600 case ’a’:
601 output("Go left\n");
602 robot.setSpeed(-CONST_SPEED_MAX , CONST_SPEED_MAX);
603 break;
604 case ’s’:
605 output("Go backwards\n");
606 robot.setSpeed(-CONST_SPEED_MAX , -CONST_SPEED_MAX);
607 break;
608 case ’d’:
609 output("Go right\n");
610 robot.setSpeed(CONST_SPEED_MAX , -CONST_SPEED_MAX);
611 break;
612 case ’q’:
613 output("Stop\n");

60 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

614 robot.stop();
615 break;
616 default:
617 output("Command not recognised\n");
618 }
619 digitalWrite(LED, LOW);
620 }
621
622 char input()
623 {
624 if(inputMethod == USB)
625 {
626 return Serial.read();
627 }
628 else if(inputMethod == BLUETOOTH)
629 {
630 return Bluetooth.read();
631 }
632 }
633
634 char output(const char* data)
635 {
636 if(inputMethod == USB)
637 {
638 Serial.print(data);
639 }
640 else if(inputMethod == BLUETOOTH)
641 {
642 Bluetooth.print(data);
643 }
644 }

Listing 4: Arduino main program

1 /*
**

2 *
3 * Title: STI competition Arduino code for the Tokamak robot
4 * Date: 2014-06-06
5 *
6 **

*/
7 #include <Servo.h>
8 #include <Wire.h>
9 #include <prismino.h>

10 #include "robot.h"
11 #include "pitch.h"
12 #include "sound.h"
13
14 Tokamak::Tokamak()
15 {
16 // initialise default values
17 this->flags.enableFrontLeds = false;
18 this->flags.running = false;
19 this->flags.cagePosition = CAGE_UP;
20 }
21
22 void Tokamak::setCagePosition(cage_positions position)
23 {
24 this->servoRight.attach(S1);
25 this->servoLeft.attach(S2);
26

K. Kangur, M. Starein, C. Xie 61

C SOURCE CODE

27 uint8_t r, l;
28
29 if(position == CAGE_UP)
30 {
31 // both sevomotors have 160 steps between up and down positions , so this is

allowed
32 for(l = SERVO_LEFT_DOWN , r = SERVO_RIGHT_DOWN; r < SERVO_RIGHT_UP; r++, l--)
33 {
34 this->servoLeft.write(l);
35 this->servoRight.write(r);
36
37 delay(CONST_MAX_SERVO_SPEED);
38 }
39 }
40 else if(position == CAGE_DOWN)
41 {
42 for(l = SERVO_LEFT_UP , r = SERVO_RIGHT_UP; r > SERVO_RIGHT_DOWN; r--, l++)
43 {
44 this->servoLeft.write(l);
45 this->servoRight.write(r);
46
47 delay(CONST_MAX_SERVO_SPEED);
48 }
49
50 }
51
52 // always detach the motors so that they are free-running and do not consume power

in resting positions
53 this->servoLeft.detach();
54 this->servoRight.detach();
55
56 this->flags.cagePosition = position;
57 }
58
59 void Tokamak::setSpeed(int8_t speedLeft , int8_t speedRight)
60 {
61 // controller has been disabled
62 #ifndef ENABLE_CONTROLLER
63 return;
64 #endif
65
66 Wire.beginTransmission(I2C_MOTOR_CONTROLLER_ADDRESS);
67 Wire.write("s");
68
69 // make sure not to go over the maximum speed limit (100 or -100)
70 if(speedLeft > CONST_SPEED_MAX)
71 {
72 Wire.write(CONST_SPEED_MAX);
73 }
74 else if(speedLeft < -CONST_SPEED_MAX)
75 {
76 Wire.write(-CONST_SPEED_MAX);
77 }
78 else
79 {
80 Wire.write(speedLeft);
81 }
82
83 if(speedRight > CONST_SPEED_MAX)
84 {
85 Wire.write(CONST_SPEED_MAX);
86 }

62 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

87 else if(speedRight < -CONST_SPEED_MAX)
88 {
89 Wire.write(-CONST_SPEED_MAX);
90 }
91 else
92 {
93 Wire.write(speedRight);
94 }
95
96 Wire.endTransmission();
97
98 // a small delay is needed so that the speed could actually be applied to the

wheels
99 delay(CONST_SPEED_SET_DELAY);

100 }
101
102 void Tokamak::stop()
103 {
104 this->setSpeed(0, 0);
105 }
106
107 void Tokamak::checkBattery()
108 {
109 Wire.beginTransmission(I2C_MOTOR_CONTROLLER_ADDRESS);
110
111 // casting needed for some reason
112 uint8_t available = Wire.requestFrom((uint8_t)I2C_MOTOR_CONTROLLER_ADDRESS , (

uint8_t)6);
113
114 // read 6 bytes, 2 by 2, high byte first: voltage, left motor current, right motor

current
115 if(available == 6)
116 {
117 this->batteryVoltage = (Wire.read() << 8) | Wire.read();
118 this->currentLeft = (Wire.read() << 8) | Wire.read();
119 this->currentRight = (Wire.read() << 8) | Wire.read();
120 }
121 else
122 {
123 // inform i2c error
124 play(TONE_I2C_ERROR , 500);
125 }
126
127 Wire.endTransmission();
128
129 if(this->batteryVoltage < CONST_BATTERY_LOW)
130 {
131 play(TONE_BATTERY , 500);
132 }
133 }
134
135 void Tokamak::setLights(boolean state)
136 {
137 digitalWrite(PIN_LIGHTS , state);
138 }
139
140 int16_t Tokamak::getHeading()
141 {
142 #ifndef ENABLE_COMPASS
143 return 0;
144 #endif
145

K. Kangur, M. Starein, C. Xie 63

C SOURCE CODE

146 int16_t x = 0, y = 0, z = 0;
147
148 Wire.beginTransmission(I2C_COMPASS_ADDRESS);
149 // select register 3, X MSB register
150 Wire.write(0x03);
151 Wire.endTransmission();
152
153 Wire.requestFrom(I2C_COMPASS_ADDRESS , 6);
154 if(6 <= Wire.available())
155 {
156 x = (Wire.read() << 8) | Wire.read();
157 z = (Wire.read() << 8) | Wire.read();
158 y = (Wire.read() << 8) | Wire.read();
159 }
160 else
161 {
162 // inform i2c error
163 play(TONE_I2C_ERROR , 500);
164 return 0;
165 }
166
167 int16_t angle = atan2(x, z) * 180 / M_PI;
168 return angle;
169 }
170
171 void Tokamak::turn(int16_t deviation , int8_t speed)
172 {
173 int8_t speedLeft = 0;
174 int8_t speedRight = 0;
175
176 // limit deviation to maximum allowed speed
177 if(deviation > speed)
178 {
179 deviation = speed;
180 }
181 else if(deviation < -speed)
182 {
183 deviation = -speed;
184 }
185
186 if(deviation < -CONST_DEVIATION_OK)
187 {
188 speedLeft = speed;
189 speedRight = -speed;
190 }
191 else if(deviation > CONST_DEVIATION_OK)
192 {
193 speedLeft = -speed;
194 speedRight = speed;
195 }
196 else
197 {
198 speedLeft = 0;
199 speedRight = 0;
200 }
201
202 this->setSpeed(speedLeft , speedRight);
203 }
204
205 void Tokamak::headTo(int16_t deviation , int8_t speed)
206 {
207 navigation_avoidance(deviation);

64 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

208 return;
209
210 /*int8_t speedLeft = 0;
211 int8_t speedRight = 0;
212
213 uint16_t irLeft, irCenterLeft , irCenterRight , irRight;
214 this->readIrSensors(&irLeft, &irCenterLeft , &irCenterRight , &irRight);
215
216 // these values are incremented over time and reset after every TIME_ANTI_LOOP

seconds
217 static uint8_t antiLoopCountLeft = 0, antiLoopCountRight = 0;
218 static uint32_t timeAntiLoop = 0;
219
220 // every TIME_ANTI_LOOP seconds reset the anti-loop timer and wheel counters
221 if(millis() > timeAntiLoop)
222 {
223 // every TIME_ANTI_LOOP seconds reset the anti-loop timer and wheel counters
224 antiLoopCountLeft = 0;
225 antiLoopCountRight = 0;
226 timeAntiLoop = millis() + TIME_ANTI_LOOP;
227 }
228
229 // limit deviation to maximum allowed speed
230 if(deviation > speed)
231 {
232 deviation = speed;
233 }
234 else if(deviation < -speed)
235 {
236 deviation = -speed;
237 }
238
239 // check if the robot has entered an infinite loop
240 if(antiLoopCountLeft > CONST_LOOP_TURN_TIMES && antiLoopCountRight >

CONST_LOOP_TURN_TIMES)
241 {
242 // if the cage is deployed reverse a bit
243 if(this->flags.cagePosition == CAGE_UP)
244 {
245 this->setSpeed(-speed, -speed);
246 delay(500);
247 }
248
249 // set speed immediately
250 if(deviation > 0)
251 {
252 this->setSpeed(speed, -speed);
253 }
254 else
255 {
256 this->setSpeed(-speed, speed);
257 }
258
259 delay(TIME_ANTI_LOOP_TIMEOUT_TURN);
260
261 // reset the counters
262 antiLoopCountLeft = 0;
263 antiLoopCountRight = 0;
264 }
265 // avoid obstacles using the IR sensors
266 else if(irCenterRight > CONST_IR_OBSTACLE_CENTER_CAGE)
267 {

K. Kangur, M. Starein, C. Xie 65

C SOURCE CODE

268 // turn on itself
269 speedLeft = speed;
270 speedRight = -speed;
271 antiLoopCountLeft++;
272 }
273 else if(irCenterLeft > CONST_IR_OBSTACLE_CENTER_CAGE)
274 {
275 speedLeft = -speed;
276 speedRight = speed;
277 antiLoopCountRight++;
278 }
279 else if(irRight > CONST_IR_OBSTACLE_SIDE_CAGE)
280 {
281 // block one wheel, reverse the other
282 speedLeft = -speed;
283 speedRight = 0;
284 antiLoopCountLeft++;
285 }
286 else if(irLeft > CONST_IR_OBSTACLE_SIDE_CAGE)
287 {
288 speedLeft = 0;
289 speedRight = -speed;
290 antiLoopCountRight++;
291 }
292 else if(deviation < -CONST_DEVIATION_OK)
293 {
294 speedLeft = speed;
295 speedRight = speed + deviation;
296 }
297 else if(deviation > CONST_DEVIATION_OK)
298 {
299 speedLeft = speed - deviation;
300 speedRight = speed;
301 }
302 else
303 {
304 // simply go forwards
305 speedLeft = speed;
306 speedRight = speed;
307 }
308
309 this->setSpeed(speedLeft , speedRight);*/
310 }
311
312 void Tokamak::followWall(uint16_t *sensorValue , sides side, int8_t speed)
313 {
314 if(side == RIGHT && *sensorValue < CONST_IR_WALL_FOLLOW_MIN)
315 {
316 this->setSpeed(speed, speed >> 2);
317 }
318 else if(side == RIGHT && *sensorValue > CONST_IR_WALL_FOLLOW_MAX)
319 {
320 this->setSpeed(speed >> 2, speed);
321 }
322 else if(side == LEFT && *sensorValue < CONST_IR_WALL_FOLLOW_MIN)
323 {
324 this->setSpeed(speed >> 2, speed);
325 }
326 else if(side == LEFT && *sensorValue > CONST_IR_WALL_FOLLOW_MAX)
327 {
328 this->setSpeed(speed, speed >> 2);
329 }

66 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

330 }
331
332 void Tokamak::readIrSensors(uint16_t *irLeft, uint16_t *irCenterLeft , uint16_t *

irCenterRight , uint16_t *irRight)
333 {
334 *irLeft = analogRead(SENSOR_IR_LEFT);
335 *irCenterLeft = analogRead(SENSOR_IR_CENTER_LEFT);
336 *irCenterRight = analogRead(SENSOR_IR_CENTER_RIGHT);
337 *irRight = analogRead(SENSOR_IR_RIGHT);
338 }
339
340 // a sound is an array of notes
341 note notesCoin[] = {
342 {B5, 100},
343 {E6, 200}
344 };
345
346 sound soundCoin = {sizeof(notesCoin) / sizeof(note), notesCoin};
347
348 note notesPowerUp[] = {
349 {G3, 50},
350 {B4, 50},
351 {D4, 50},
352 {G4, 50},
353 {B5, 50},
354 {A4b, 50},
355 {C4, 50},
356 {E4b, 50},
357 {A5b, 50},
358 {C5, 50},
359 {B4b, 50},
360 {D4, 50},
361 {F4, 50},
362 {B5b, 50},
363 {D5, 50}
364 };
365
366 sound soundPowerUp = {sizeof(notesPowerUp) / sizeof(note), notesPowerUp};
367
368 note notesOneUp[] = {
369 {E4, 100},
370 {G4, 100},
371 {E5, 100},
372 {C5, 100},
373 {D5, 100},
374 {G5, 100}
375 };
376
377 sound soundOneUp = {sizeof(notesOneUp) / sizeof(note), notesOneUp};
378
379 note notesFlagpoleFanfare[] = {
380 {G2, 100},
381 {C3, 100},
382 {E3, 100},
383 {G3, 100},
384 {C4, 100},
385 {E4, 100},
386 {G4, 300},
387 {E4, 300},
388 {A2b, 100},
389 {C3, 100},
390 {E3b, 100},

K. Kangur, M. Starein, C. Xie 67

C SOURCE CODE

391 {A3b, 100},
392 {C4, 100},
393 {E4b, 100},
394 {A4b, 300},
395 {E4b, 300},
396 {B2b, 100},
397 {D3, 100},
398 {F3, 100},
399 {B3b, 100},
400 {D4, 100},
401 {F4, 100},
402 {B4b, 300},
403 {B4b, 100},
404 {B4b, 100},
405 {B4b, 100},
406 {C5, 600},
407 };
408
409 sound soundFlagpoleFanfare = {sizeof(notesFlagpoleFanfare) / sizeof(note),

notesFlagpoleFanfare};
410
411 // function that actually plays the sounds
412 void Tokamak::playSound(sounds theSound)
413 {
414 #ifndef ENABLE_SOUND
415 return;
416 #endif
417
418 sound soundPtr;
419
420 // pointer to the sound object
421 switch(theSound)
422 {
423 case COIN:
424 soundPtr = soundCoin;
425 break;
426 case POWERUP:
427 soundPtr = soundPowerUp;
428 break;
429 case ONEUP:
430 soundPtr = soundOneUp;
431 break;
432 case FLAGPOLE:
433 soundPtr = soundFlagpoleFanfare;
434 break;
435 }
436
437 uint16_t frequency , duration;
438 uint8_t length = soundPtr.length;
439 for(uint8_t i = 0; i < length; i++)
440 {
441 // get data from program memory
442 frequency = soundPtr.notes[i].pitch;
443 duration = soundPtr.notes[i].duration;
444
445 // if the next note is the same then make a short pause
446 uint8_t pause = 0;
447 if(i < length - 1 && frequency == soundPtr.notes[i + 1].pitch)
448 {
449 // 5 millisecond pause
450 pause = 5;
451 }

68 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

452
453 // play the right pitch for the determined duration
454 play(frequency , duration - pause);
455
456 // play is not a blocking function so one has to manually set a delay
457 delay(duration);
458 }
459 }
460
461 void Tokamak::resetReturnBase(void)
462 {
463 this->flags.wall = NO_WALL;
464 }
465
466 return_codes Tokamak::goHome(int16_t direction_home)
467 {
468 //tell RASP to stop looking for bottles -> accelerates image processing
469 //tell RASP to start looking for beacon
470
471 //getHeading();
472 //gotoHeading(direction_home);
473 uint16_t irFarLeft = analogRead(SENSOR_IR_LEFT);
474 uint16_t irFarRight = analogRead(SENSOR_IR_RIGHT);
475
476 if(this->flags.wall == NO_WALL)
477 {
478 this->flags.wall = detectWall();
479 gotoHeading(direction_home);
480 if(this->flags.wall != NO_WALL)
481 {
482 //Serial.println("wall detected");
483 this->setSpeed(0,0);
484 }
485 }
486 else
487 {
488 if(this->flags.wall == WALL_LEFT)
489 {
490 // Serial.println("WALL LEFT");
491 if(irFarRight > CONST_IR_OBSTACLE_SIDE_CAGE)
492 {
493 this->setSpeed(0,0);
494 play(440, 500);
495 return OK;
496 }
497 else navigation_avoidance(-6);
498 }
499 else if(this->flags.wall == WALL_RIGHT)
500 {
501 // Serial.println("WALL RIGHT");
502 if(irFarLeft > CONST_IR_OBSTACLE_SIDE_CAGE)
503 {
504 this->setSpeed(0,0);
505 play(440, 500);
506 return OK;
507 }
508 else navigation_avoidance(6);
509 }
510 }
511 return REPEAT;
512 //if(beacon_detected) //stop, open cage, wallSide = 0;
513 }

K. Kangur, M. Starein, C. Xie 69

C SOURCE CODE

514
515
516 uint8_t Tokamak::detectWall(void)
517 {
518 uint16_t irFarLeft = analogRead(SENSOR_IR_LEFT);
519 uint16_t irFarRight = analogRead(SENSOR_IR_RIGHT);
520 static uint32_t timeAntiRecheck;
521
522 if((irFarLeft < 100 && irFarRight < CONST_IR_OBSTACLE_SIDE_CAGE) || (irFarLeft <

CONST_IR_OBSTACLE_SIDE_CAGE && irFarRight < 100))
523 {
524 return NO_WALL; // no wall detected
525 timeAntiRecheck = millis() + TIME_WALL_RECHECK;
526 }
527 else
528 {
529 if(millis()<timeAntiRecheck) return NO_WALL;
530 if (irFarLeft > irFarRight)
531 {
532 if(irFarLeft < 200)
533 {
534 this->setSpeed(-100,+100);
535 delay(TIME_WALL_CHECK_TURN);
536 this->stop();
537 irFarLeft = analogRead(SENSOR_IR_LEFT);
538 irFarRight = analogRead(SENSOR_IR_RIGHT);
539 delay(50); //wait for IR
540 if (irFarLeft > 100 && irFarRight > 100)
541 {
542 this->setSpeed(+100,-100);
543 delay(TIME_WALL_CHECK_TURN+500);
544 //Serial.println("WALL LEFT");
545 return WALL_LEFT; // wall detected on the left
546 }
547 else
548 {
549 this->setSpeed(+100,-100);
550 delay(TIME_WALL_CHECK_TURN);
551 timeAntiRecheck = millis() + TIME_WALL_RECHECK;
552 return NO_WALL;
553 }
554 }
555 else
556 {
557 //incase the robot wants to turn on itself, but an obstacle is too near

and would destroy the deployed cage
558 this->setSpeed(-100,-100);
559 delay(1000);
560 }
561 }
562 else
563 {
564 if(irFarRight < 200)
565 {
566 this->setSpeed(+100,-100);
567 delay(TIME_WALL_CHECK_TURN);
568 this->stop();
569 irFarLeft = analogRead(SENSOR_IR_LEFT);
570 irFarRight = analogRead(SENSOR_IR_RIGHT);
571 delay(50); //wait for IR
572
573 if (irFarLeft > 100 && irFarRight > 100)

70 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

574 {
575 this->setSpeed(-100,+100);
576 delay(TIME_WALL_CHECK_TURN+500);
577 return WALL_RIGHT; // wall detected on the left
578 }
579 else
580 {
581 this->setSpeed(-100,+100);
582 delay(TIME_WALL_CHECK_TURN);
583 timeAntiRecheck = millis() + TIME_WALL_RECHECK;
584 return NO_WALL;
585 }
586 }
587 else
588 {
589 //incase the robot wants to turn on itself, but an obstacle is too near and

would destroy the deployed cage
590 this->setSpeed(-100,-100);
591 delay(1000);
592 }
593 }
594 }
595 }
596
597 void Tokamak::gotoHeading(int16_t direction_home)
598 {
599
600 int16_t currentHeading = this->getHeading();
601 int16_t error;
602
603 error = currentHeading - direction_home;
604
605 // in order to avoid the -180 -> 180 jump
606 if(error > 180){
607 error = error - 360 ;
608 }
609 else if(error < -180){
610 error = error + 360 ;
611 }
612
613 //reduce error so that the navigation function can use it
614 if(error >100) error = 100;
615 else if(error <-100) error = -100;
616
617 this->navigation_avoidance(-error);
618 }
619
620 void Tokamak::navigation_avoidance(int16_t error)
621 {
622 uint16_t irLeft, irRight, irFarLeft , irFarRight;
623 int8_t speedL,speedR;
624 static int8_t countL,countR;
625
626 irFarLeft = analogRead(SENSOR_IR_LEFT);
627 irFarRight = analogRead(SENSOR_IR_RIGHT);
628 irLeft = analogRead(SENSOR_IR_CENTER_LEFT);
629 irRight = analogRead(SENSOR_IR_CENTER_RIGHT);
630
631 static uint32_t timeAntiLoop = 0;
632
633 if(millis() > timeAntiLoop)
634 {

K. Kangur, M. Starein, C. Xie 71

C SOURCE CODE

635 // every 3 seconds reset the anti-loop timer and wheel counters
636 countL = 0;
637 countR = 0;
638 timeAntiLoop = millis() + TIME_ANTI_LOOP;
639 }
640 if(countL > 3 && countR > 3) // this condition is to not get stuck
641 {
642
643 if (this->flags.cagePosition == CAGE_DOWN) //reverse
644 {
645 speedL = -CONST_SPEED_OBSTACLE;
646 speedR = -CONST_SPEED_OBSTACLE;
647 this->setSpeed(speedL, speedR);
648 delay(500);
649 }
650 if(error >0)
651 {
652 speedL = CONST_SPEED_OBSTACLE;
653 speedR = -CONST_SPEED_OBSTACLE;
654 }
655 else
656 {
657 speedL = -CONST_SPEED_OBSTACLE;
658 speedR = CONST_SPEED_OBSTACLE;
659 }
660 // set speed immediately
661 this->setSpeed(speedL, speedR);
662 // turn for 1 second
663 delay(1000);
664 // reset the counters
665 countL = 0;
666 countR = 0;
667 }
668 // avoid obstacles using the IR sensors
669 else if(irRight > CONST_IR_OBSTACLE_CENTER_CAGE)
670 {
671 // turn on itself
672 speedL = CONST_SPEED_OBSTACLE;
673 speedR = -CONST_SPEED_OBSTACLE;
674 countL++;
675 }
676 else if(irLeft > CONST_IR_OBSTACLE_CENTER_CAGE)
677 {
678 speedL = -CONST_SPEED_OBSTACLE;
679 speedR = CONST_SPEED_OBSTACLE;
680 countR++;
681 }
682 else if(irFarRight > CONST_IR_OBSTACLE_SIDE_CAGE)
683 {
684 // block one wheel, reverse the other
685 speedL = -CONST_SPEED_OBSTACLE;
686 speedR = 0;
687 countL++;
688 }
689 else if(irFarLeft > CONST_IR_OBSTACLE_SIDE_CAGE)
690 {
691 speedL = 0;
692 speedR = -CONST_SPEED_OBSTACLE;
693 countR++;
694 }
695 else
696 {

72 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

697 if(abs(error)<5)
698 {
699 // under an error of 5 units go straight
700 speedL = CONST_SPEED_MAX;
701 speedR = CONST_SPEED_MAX;
702 }
703 else
704 {
705 if(error >0)
706 {
707 if(error == 100 && irFarRight > 100)
708 {
709 speedL = CONST_SPEED_OBSTACLE;
710 speedR = -CONST_SPEED_OBSTACLE;
711 }
712 else
713 {
714 speedL = CONST_SPEED_OBSTACLE;
715 speedR =(100 - abs(error));//* CONST_SPEED_OBSTACLE / 100);
716 }
717 //Serial.write("turn right\t");
718 }
719 else
720 {
721 if(abs(error) == 100 && irFarLeft > 100)
722 {
723 speedL = -CONST_SPEED_OBSTACLE;
724 speedR = CONST_SPEED_OBSTACLE;
725 }
726 else
727 {
728 speedL = (100-abs(error)); //* CONST_SPEED_OBSTACLE / 100);
729 speedR = CONST_SPEED_OBSTACLE;
730 }
731 //Serial.write("turn left\t");
732 }
733 }
734 }
735
736 this->setSpeed(speedL, speedR);
737 }

Listing 5: Robot class

1 /*
**

2 *
3 * Title: STI competition Arduino code for the Tokamak robot
4 * Date: 2014-06-06
5 *
6 **

*/
7 #ifndef _PRISMINO_MASTER
8 #define _PRISMINO_MASTER
9

10 // comment this line when testing without the motor controller
11 #define ENABLE_CONTROLLER
12 // comment this line to disable all bluetooth functionalities
13 #define ENABLE_BLUETOOTH
14 // comment this line to turn off sounds
15 #define ENABLE_SOUND
16 // comment this line to disable compass

K. Kangur, M. Starein, C. Xie 73

C SOURCE CODE

17 #define ENABLE_COMPASS
18
19 #define Bluetooth Serial1
20
21 #define I2C_MOTOR_CONTROLLER_ADDRESS 0x04
22 #define I2C_COMPASS_ADDRESS 0x1E
23
24 #define PIN_LIGHTS 9
25
26 #define SENSOR_IR_LEFT 0
27 #define SENSOR_IR_CENTER_LEFT 1
28 #define SENSOR_IR_CENTER_RIGHT 2
29 #define SENSOR_IR_RIGHT 3
30
31 #define SERVO_LEFT_UP 10
32 // set up position to 5 when the mast is installed
33 //#define SERVO_LEFT_UP 50
34 #define SERVO_LEFT_DOWN 170
35 #define SERVO_RIGHT_UP SERVO_LEFT_DOWN
36 #define SERVO_RIGHT_DOWN SERVO_LEFT_UP
37
38 #define TONE_I2C_ERROR 3300
39 #define TONE_BEEP 440
40 #define TONE_BATTERY 1100
41
42 #define TIME_CHECK_BATTERY 1000
43 #define TIME_ANTI_LOOP 3000
44 #define TIME_ANTI_LOOP_TIMEOUT_TURN 1000
45 // if a bottle hasn’t been detected during this time consider it a false positive
46 #define TIME_BOTTLE_SEEN_TIMEOUT 2000
47 // after a false positive the robot won’t check for a bottle for this amount of time
48 #define TIME_NEXT_BOTTLE_CHECK 1000
49 // when an obstacle has been seen instead of a wall in the STATE_FIND_WALL state do

not check for a wall for this amount of time
50 #define TIME_WALL_RECHECK 4000
51 #define TIME_TURN_FOLLOW_WALL 1500
52 #define TIME_TURN_AROUND 1000
53
54 #define TIME_WALL_CHECK_TURN 700
55
56 #define TIME_GRAB_LOST_BOTTLE 500
57
58 // in percent the maximum allowed setting speed
59 #define CONST_SPEED_MAX 100
60 // in percent the maximum speed while avoiding obstacles
61 #define CONST_SPEED_OBSTACLE 100
62 // in percent the speed of approach when a bottle was seen, 60 is not enough with

low-power 172:1 and 7.2V battery
63 #define CONST_SPEED_BOTTLE 80
64 // after every setSpeed() wait this long before continuing
65 #define CONST_SPEED_SET_DELAY 50
66
67 // this is the threshold when to lower the cage, the constant indicated the minimum

box size the bottle must be detected in
68 #define CONST_BOTTLE_SIZE_LOWER_CAGE 90
69 // acceptable error when heading towards a direction (goes straight forward)
70 #define CONST_DEVIATION_OK 15
71 #define CONST_DEVIATION_OK_STRICT 5
72 // number of times the robot must change direction without going forwards for it to

be considered stuck
73 #define CONST_LOOP_TURN_TIMES 3
74

74 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

75 // in milliseconds , the pause time between 1 degree change
76 #define CONST_MAX_SERVO_SPEED 10
77 // calibrated value, about 7.1V
78 #define CONST_BATTERY_LOW 470
79
80 // IR sensor value under which an obstacle is detected
81 #define CONST_IR_OBSTACLE_SIDE 300
82 #define CONST_IR_OBSTACLE_CENTER 310
83 // IR sensor values to use when the cage is deployed
84 #define CONST_IR_OBSTACLE_SIDE_CAGE 160
85 #define CONST_IR_OBSTACLE_CENTER_CAGE 140
86 // value at which there an obstacle far away
87 #define CONST_IR_NO_OBSTACLE 100
88 #define CONST_IR_TOO_CLOSE 250
89
90 // when following a wall the sensor should remain between these values
91 #define CONST_IR_WALL_FOLLOW_MIN 160
92 #define CONST_IR_WALL_FOLLOW_MAX 200
93
94 #define CONST_IR_OBSTACLE_FAR 100
95
96 // direction towards which to go when going home
97 #define CONST_HEADING_HOME 50
98
99 enum comm_methods

100 {
101 USB,
102 BLUETOOTH
103 };
104
105 enum cage_positions
106 {
107 CAGE_UP,
108 CAGE_DOWN
109 };
110
111 enum state_codes
112 {
113 STATE_SEARCHING ,
114 STATE_FETCHING_BOTTLE ,
115 STATE_LOWER_CAGE ,
116 STATE_GO_HOME ,
117 STATE_RAISE_CAGE
118 };
119
120 enum return_codes
121 {
122 OK,
123 FAIL,
124 REPEAT
125 };
126
127 enum sounds
128 {
129 COIN,
130 POWERUP,
131 ONEUP,
132 FLAGPOLE
133 };
134
135 enum sides
136 {

K. Kangur, M. Starein, C. Xie 75

C SOURCE CODE

137 LEFT,
138 RIGHT
139 };
140
141 enum state_wall
142 {
143 NO_WALL,
144 WALL_LEFT ,
145 WALL_RIGHT
146 };
147
148 //#define ENTRY_STATE STATE_SEARCHING
149 #define ENTRY_STATE STATE_SEARCHING
150
151 class Tokamak
152 {
153 public:
154 struct Flags
155 {
156 uint8_t enableFrontLeds :1;
157 uint8_t cagePosition :1;
158 uint8_t running: 1;
159 uint8_t wall: 2;
160 };
161
162 Servo servoLeft;
163 Servo servoRight;
164 uint16_t batteryVoltage;
165 uint16_t currentLeft;
166 uint16_t currentRight;
167
168 char readInput(comm_methods);
169 void sendOutput(comm_methods , const char*);
170
171 Flags flags;
172
173 Tokamak();
174 void setCagePosition(cage_positions);
175 void setSpeed(int8_t, int8_t);
176 void turn(int16_t, int8_t);
177 void stop(void);
178 void setLights(boolean);
179 void checkBattery(void);
180 int16_t getHeading();
181 // default speed is the maximum
182 void headTo(int16_t, int8_t = CONST_SPEED_MAX);
183 void readIrSensors(uint16_t*, uint16_t*, uint16_t*, uint16_t*);
184 void playSound(sounds);
185
186 void followWall(uint16_t*, sides, int8_t = CONST_SPEED_MAX);
187 void navigation_avoidance(int16_t);
188 void gotoHeading(int16_t direction_home = CONST_HEADING_HOME);
189 void resetReturnBase(void);
190 return_codes goHome(int16_t = CONST_HEADING_HOME);
191 uint8_t detectWall(void);
192 };
193
194 #endif

Listing 6: Robot header

1 #ifndef _sound_h
2 #define _sound_h

76 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

3
4 // define a note with a pitch and a duration
5 struct note
6 {
7 uint16_t pitch;
8 uint16_t duration;
9 };

10
11 // define a sound that has a length (number of notes) and a list of notes
12 struct sound
13 {
14 uint8_t length;
15 note *notes;
16 };
17
18 #endif

Listing 7: Sound header

1 // Frequencies for equal-tempered scale, A4 = 440Hz
2 // Reference: http://www.phy.mtu.edu/~suits/notefreqs.html
3
4 #ifndef _pitch_h
5 #define _pitch_h
6
7 // Scientific name
8 #define C0 16
9 #define C0s 17

10 #define D0b 17
11 #define D0 18
12 #define D0s 19
13 #define E0b 19
14 #define E0 21
15 #define F0 22
16 #define F0s 23
17 #define G0b 23
18 #define G0 25
19 #define G0s 26
20 #define A0b 26
21 #define A0 28
22 #define A0s 29
23 #define B0b 29
24 #define B0 31
25 #define C1 33
26 #define C1s 35
27 #define D1b 35
28 #define D1 37
29 #define D1s 39
30 #define E1b 39
31 #define E1 41
32 #define F1 44
33 #define F1s 46
34 #define G1b 46
35 #define G1 49
36 #define G1s 52
37 #define A1b 52
38 #define A1 55
39 #define A1s 58
40 #define B1b 58
41 #define B1 62
42 #define C2 65
43 #define C2s 69
44 #define D2b 69

K. Kangur, M. Starein, C. Xie 77

C SOURCE CODE

45 #define D2 73
46 #define D2s 78
47 #define E2b 78
48 #define E2 82
49 #define F2 87
50 #define F2s 93
51 #define G2b 93
52 #define G2 98
53 #define G2s 104
54 #define A2b 104
55 #define A2 110
56 #define A2s 117
57 #define B2b 117
58 #define B2 123
59 #define C3 131
60 #define C3s 139
61 #define D3b 139
62 #define D3 147
63 #define D3s 156
64 #define E3b 156
65 #define E3 165
66 #define F3 175
67 #define F3s 185
68 #define G3b 185
69 #define G3 196
70 #define G3s 208
71 #define A3b 208
72 #define A3 220
73 #define A3s 233
74 #define B3b 233
75 #define B3 247
76 #define C4 262
77 #define C4s 277
78 #define D4b 277
79 #define D4 294
80 #define D4s 311
81 #define E4b 311
82 #define E4 330
83 #define F4 349
84 #define F4s 370
85 #define G4b 370
86 #define G4 392
87 #define G4s 415
88 #define A4b 415
89 #define A4 440
90 #define A4s 466
91 #define B4b 466
92 #define B4 494
93 #define C5 523
94 #define C5s 554
95 #define D5b 554
96 #define D5 587
97 #define D5s 622
98 #define E5b 622
99 #define E5 659

100 #define F5 698
101 #define F5s 740
102 #define G5b 740
103 #define G5 784
104 #define G5s 831
105 #define A5b 831
106 #define A5 880

78 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

107 #define A5s 932
108 #define B5b 932
109 #define B5 988
110 #define C6 1047
111 #define C6s 1109
112 #define D6b 1109
113 #define D6 1175
114 #define D6s 1245
115 #define E6b 1245
116 #define E6 1319
117 #define F6 1397
118 #define F6s 1480
119 #define G6b 1480
120 #define G6 1568
121 #define G6s 1661
122 #define A6b 1661
123 #define A6 1760
124 #define A6s 1865
125 #define B6b 1865
126 #define B6 1976
127 #define C7 2093
128 #define C7s 2217
129 #define D7b 2217
130 #define D7 2349
131 #define D7s 2489
132 #define E7b 2489
133 #define E7 2637
134 #define F7 2794
135 #define F7s 2960
136 #define G7b 2960
137 #define G7 3136
138 #define G7s 3322
139 #define A7b 3322
140 #define A7 3520
141 #define A7s 3729
142 #define B7b 3729
143 #define B7 3951
144 #define C8 4186
145 #define C8s 4435
146 #define D8b 4435
147 #define D8 4699
148 #define D8s 4978
149
150 // Piano key number
151 #define P01 28
152 #define P02 29
153 #define P03 31
154 #define P04 33
155 #define P05 35
156 #define P06 37
157 #define P07 39
158 #define P08 41
159 #define P09 44
160 #define P10 46
161 #define P11 49
162 #define P12 52
163 #define P13 55
164 #define P14 58
165 #define P15 62
166 #define P16 65
167 #define P17 69
168 #define P18 73

K. Kangur, M. Starein, C. Xie 79

C SOURCE CODE

169 #define P19 78
170 #define P20 82
171 #define P21 87
172 #define P22 93
173 #define P23 98
174 #define P24 104
175 #define P25 110
176 #define P26 117
177 #define P27 123
178 #define P28 131
179 #define P29 139
180 #define P30 147
181 #define P31 156
182 #define P32 165
183 #define P33 175
184 #define P34 185
185 #define P35 196
186 #define P36 208
187 #define P37 220
188 #define P38 233
189 #define P39 247
190 #define P40 262
191 #define P41 277
192 #define P42 294
193 #define P43 311
194 #define P44 330
195 #define P45 349
196 #define P46 370
197 #define P47 392
198 #define P48 415
199 #define P49 440
200 #define P50 466
201 #define P51 494
202 #define P52 523
203 #define P53 554
204 #define P54 587
205 #define P55 622
206 #define P56 659
207 #define P57 698
208 #define P58 740
209 #define P59 784
210 #define P60 831
211 #define P61 880
212 #define P62 932
213 #define P63 988
214 #define P64 1047
215 #define P65 1109
216 #define P66 1175
217 #define P67 1245
218 #define P68 1319
219 #define P69 1397
220 #define P70 1480
221 #define P71 1568
222 #define P72 1661
223 #define P73 1760
224 #define P74 1865
225 #define P75 1976
226 #define P76 2093
227 #define P77 2217
228 #define P78 2349
229 #define P79 2489
230 #define P80 2637

80 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

231 #define P81 2794
232 #define P82 2960
233 #define P83 3136
234 #define P84 3322
235 #define P85 3520
236 #define P86 3729
237 #define P87 3951
238 #define P88 4186
239
240 #endif

Listing 8: Pitch header

C.3 Motor controller source code
1 /*

**

2 *
3 * Title: WildThumper Motor Controller sketch
4 * Date: 2014-05-27
5 *
6 **

*/
7 #include <wildthumper.h>
8 #include <Wire.h>
9

10 #define I2C_ADDRESS 4
11
12 #define TIME_CHECK_BATTERY 500
13 #define CONST_BATTERY_LEVEL_GOOD 470
14
15 #define PIN_BACK_LIGHT 12
16 #define TIME_BACK_LIGHT_BLINK 50
17 #define TIME_BACK_LIGHT_PASUE 500
18
19 // must be an even number
20 #define CONST_BACK_LIGHT_BLINK_TIMES 6
21
22 uint32_t backLightNextBlink = 0;
23 uint32_t backLightBlinkTimes = CONST_BACK_LIGHT_BLINK_TIMES;
24
25 WildThumper controller;
26
27 uint8_t batteryGood = 1;
28 uint8_t buffer[6];
29 uint16_t input;
30 uint32_t timeCheckBattery = 0;
31
32 void setup()
33 {
34 pinMode(LED, OUTPUT);
35 digitalWrite(LED, HIGH);
36
37 pinMode(PIN_BACK_LIGHT , OUTPUT);
38
39 Wire.begin(I2C_ADDRESS);
40 // disable internal pull-ups
41 digitalWrite(SDA, LOW);
42 digitalWrite(SCL, LOW);
43
44 Wire.onReceive(receiveEvent);

K. Kangur, M. Starein, C. Xie 81

C SOURCE CODE

45 Wire.onRequest(requestEvent);
46 }
47
48 void loop()
49 {
50 // check the battery every now and then
51 if(millis() > timeCheckBattery + TIME_CHECK_BATTERY)
52 {
53 // show the battery state on the on-board LED
54 if(controller.battery() < CONST_BATTERY_LEVEL_GOOD)
55 {
56 batteryGood = 0;
57 digitalWrite(LED, LOW);
58 }
59 timeCheckBattery = millis() + TIME_CHECK_BATTERY;
60 }
61
62 if(millis() > backLightNextBlink && batteryGood)
63 {
64 if(backLightBlinkTimes)
65 {
66 backLightBlinkTimes --;
67 digitalWrite(PIN_BACK_LIGHT , !digitalRead(PIN_BACK_LIGHT));
68 backLightNextBlink = millis() + TIME_BACK_LIGHT_BLINK;
69 }
70 else
71 {
72 backLightBlinkTimes = CONST_BACK_LIGHT_BLINK_TIMES;
73 backLightNextBlink = millis() + TIME_BACK_LIGHT_PASUE;
74 }
75 }
76 else if(millis() > backLightNextBlink && !batteryGood)
77 {
78 // if the battery has gone under the threshold level blink continuously
79 digitalWrite(PIN_BACK_LIGHT , !digitalRead(PIN_BACK_LIGHT));
80 backLightNextBlink = millis() + TIME_BACK_LIGHT_BLINK;
81 }
82 }
83
84 void requestEvent()
85 {
86 input = controller.battery();
87 buffer[0] = input >> 8;
88 buffer[1] = input & 0xff;
89
90 input = controller.currentLeft();
91 buffer[2] = input >> 8;
92 buffer[3] = input & 0xff;
93
94 input = controller.currentRight();
95 buffer[4] = input >> 8;
96 buffer[5] = input & 0xff;
97
98 Wire.write(buffer, 6);
99 }

100
101 void receiveEvent(int howMany)
102 {
103 static int8_t speedLeft = 0;
104 static int8_t speedRight = 0;
105
106 while(Wire.available())

82 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

107 {
108 char c = Wire.read();
109 if(c == ’s’)
110 {
111 speedLeft = Wire.read();
112 speedRight = Wire.read();
113 controller.setSpeed(speedLeft , speedRight);
114 }
115 }
116 }

Listing 9: Motor controller source code

1 /*
**

2 *
3 * Title: WildThumper Motor Controller Library v1.0
4 * File: wildthumper.cpp
5 * Date: 2014-05-27
6 * Author: Karl Kangur <karl.kangur@epfl.ch>
7 *
8 **

*/
9 #include <wildthumper.h>

10
11 static volatile int8_t speedLeft , speedRight;
12
13 // initialisation routine setting up the timer, enabling pins and interrupt vectors
14 WildThumper::WildThumper(void)
15 {
16 // h-bridge uses timer/counter 2 (8-bit), channels A and B
17 // stop timer, set port operations to normal and waveform generation mode to Fast

PWM (mode 3)
18 // counter top value is 0xff (255) which gives 16MHz/256 = 62.5kHz, a prescaler is

required
19 TCCR2A = (1 << WGM21) | (1 << WGM20);
20 // stop the timer set by Arduino (stops the default PWM)
21 TCCR2B = 0;
22
23 // set h-bridge control ports to output mode
24 DDRB |= (1 << 3);
25 DDRD |= (1 << 6) | (1 << 5) | (1 << 3);
26
27 // enable interrupt vectors
28 TIMSK2 = (1 << OCIE2A) | (1 << OCIE2B) | (1 << TOIE2);
29 // enable overflow and compare interrupts for channels A and B
30 TIFR2 = (1 << OCF2A) | (1 << OCF2B) | (1 << TOV2);
31
32 // just in case enable interrupts if not already done by Arduino
33 asm("sei");
34 }
35
36 // sets pwm for h-bridge
37 // pin mapping reference for the Atmega168: http://arduino.cc/en/Hacking/

PinMapping168
38 void WildThumper::setSpeed(int8_t _speedLeft , int8_t _speedRight)
39 {
40 // stop the PWM by clearing the prescaler
41 TCCR2B = 0;
42
43 // reset the h-bridge by clearing all port values
44 PORTB &= ~(1 << 3);

K. Kangur, M. Starein, C. Xie 83

C SOURCE CODE

45 PORTD &= ~((1 << 6) | (1 << 5) | (1 << 3));
46
47 // do not allow higher or lower values than 100 or -100
48 if(_speedLeft < 0)
49 {
50 speedLeft = _speedLeft < -100 ? -100 : _speedLeft;
51 }
52 else
53 {
54 speedLeft = _speedLeft > 100 ? 100 : _speedLeft;
55 }
56
57 if(_speedRight < 0)
58 {
59 speedRight = _speedRight < -100 ? -100 : _speedRight;
60 }
61 else
62 {
63 speedRight = _speedRight > 100 ? 100 : _speedRight;
64 }
65
66 // set compare interrupt
67 uint16_t temp;
68
69 // PWM compare value between 0 and 255
70 temp = (long) 255 * (speedLeft > 0 ? speedLeft : -speedLeft) / 100;
71
72 OCR2A = temp & 0xff;
73
74 temp = (long) 255 * (speedRight > 0 ? speedRight : -speedRight) / 100;
75
76 OCR2B = temp & 0xff;
77
78 // reset timer
79 TCNT2 = 0;
80
81 // set prescaler to 64 (enable timer), do not set a lower prescaler
82 // it won’t work because of hardware restrictions (power transistors do not

commute fast enough)
83 // this gives 16MHz/256/64 = 976.5625Hz, documentation says maximum frequency is

24kHz
84 TCCR2B |= (1 << CS22);
85 }
86
87 // interrupt vectors for pin toggling
88 ISR(TIMER2_COMPA_vect)
89 {
90 if(speedLeft > 0)
91 {
92 PORTD &= ~(1 << 3);
93 }
94 else if(speedLeft < 0)
95 {
96 PORTB &= ~(1 << 3);
97 }
98 }
99

100 ISR(TIMER2_COMPB_vect)
101 {
102 if(speedRight > 0)
103 {
104 PORTD &= ~(1 << 5);

84 K. Kangur, M. Starein, C. Xie

C SOURCE CODE

105 }
106 else if(speedRight < 0)
107 {
108 PORTD &= ~(1 << 6);
109 }
110 }
111
112 ISR(TIMER2_OVF_vect)
113 {
114 if(speedLeft > 0)
115 {
116 PORTD |= (1 << 3);
117 }
118 else if(speedLeft < 0)
119 {
120 PORTB |= (1 << 3);
121 }
122
123 if(speedRight > 0)
124 {
125 PORTD |= (1 << 5);
126 }
127 else if(speedRight < 0)
128 {
129 PORTD |= (1 << 6);
130 }
131 }
132
133 uint16_t WildThumper::battery(void)
134 {
135 return analogRead(PIN_BATTERY);
136 }
137
138 uint8_t WildThumper::currentLeft(void)
139 {
140 return analogRead(PIN_CURRENTL);
141 }
142
143 uint8_t WildThumper::currentRight(void)
144 {
145 return analogRead(PIN_CURRENTR);
146 }
147
148 uint8_t WildThumper::currentTotal(void)
149 {
150 return this->currentLeft() + this->currentRight();
151 }

Listing 10: Motor controller library

1 /*
**

2 *
3 * Title: WildThumper Motor Controller Library v1.0
4 * File: wildthumper.h
5 * Date: 2014-05-27
6 * Author: Karl Kangur <karl.kangur@epfl.ch>
7 *
8 **

*/
9 #include <Arduino.h>

10

K. Kangur, M. Starein, C. Xie 85

C SOURCE CODE

11 #ifndef _wildthumper_h
12 #define _wildthumper_h
13
14 // Servo output definitions
15 #define S0 2
16 #define S1 4
17 #define S2 7
18 #define S3 8
19 #define S4 9
20 #define S5 10
21 #define S6 12
22
23 // Other constant definitions
24 #define PIN_BATTERY 0 // Analog input 00
25 #define PIN_CURRENTL 6 // Analog input 06
26 #define PIN_CURRENTR 7 // Analog input 07
27 #define LED 13
28
29 void setSpeed(int8_t, int8_t);
30
31 class WildThumper
32 {
33 public:
34 WildThumper(void);
35 void setSpeed(int8_t, int8_t);
36
37 uint16_t battery(void);
38 uint8_t currentLeft(void);
39 uint8_t currentRight(void);
40 uint8_t currentTotal(void);
41 uint8_t charging(void);
42 };
43
44 #endif

Listing 11: Motor controller library header

86 K. Kangur, M. Starein, C. Xie

	Abstract
	Introduction
	STI interdisciplinary robot competition
	Team members

	Project description
	Competition specifications
	Arena
	Bottles
	Goals

	Strategy options
	Non-selective storage
	Selective storage

	Selected solution

	Project analysis
	List of needs
	Function specification
	External
	Internal

	Critical technical points
	Solutions identification
	Movement
	Object detection
	Bottle grasping
	Localisation

	Risk analysis
	Gantt diagram

	Project design
	Robot design
	Hardware
	Motors
	Servomotors
	Cage

	Electronics
	Raspberry Pi
	Raspberry Pi camera
	PRismino
	Motor controller
	Compass
	5V regulator
	Power
	Custom PCBs

	Communication between modules
	Mechanical design
	Bought parts
	Custom parts
	3D printed parts

	Budget management
	Software

	Testing
	Navigation
	Obstacle avoidance
	Finding the recycling area

	Bottle grasping
	Electronics interfacing
	Programming language selection
	Benchmarks

	Simulation in Webots

	Results
	Conclusion
	References
	Gantt diagram
	Chassis drawings
	Base
	Plow
	Robot assembly

	Source code
	Controller source code in Python
	PRismino source code
	Motor controller source code

