
A niagara program with contexts can be seen as a graph, where each node is a
pool, and edges between pools are operations. In this higher level representation,
pools have context, which indicates where the money is coming from. Context
can be seen as types, and asserting their coherence on the graph is akin to a
typing problem.

This document proposes a formalization of contexts, define a typing systems,
and proposes inference rules for the context of pools which are proven to give a
correctly typed graph.

Mathematical preliminaries
Definitions
Let X be a set. We define a partial equivalence relation (P.E.R.) r on X as a
binary relation that is symmetric and transitive. Partial reflexivity is not an
axiom but a theorem stating that

∀x, y, x ∼ y =⇒ (x ∼ x)

which stems from the fact that if there are such an x and y, by symmetry y ∼ x
and by transitivity x ∼ y ∼ x.

Like equivalence relation, P.E.R.s correspond directly to partial partitions of
X. A partial partition of X is a set of mutually disjoint subsets of X. Going
from a P.E.R. ra to a partial partition Ca and back is done by considering the
equivalence classes of the relation.

To a P.E.R. ra, we can associate its perimeter pa, that is the set on which the
equivalence relation is total (the union of the equivalence classes).

Operations on P.E.R.
Let ra and rb be two P.E.R.

Conjunction

The conjunction rc = ra ∧ rb is defined by: x ∼c y iff any of the following is true:

• x, y ∈ (pa ∩ pb) and x ∼a y and x ∼b y
• x, y ∈ pa \ pb and x ∼a y
• x, y ∈ pb \ pa and x ∼b y

The equivalence classes Cc of rc are given by:

Cc = {ca ∩ cb, ca ∈ Ca, cb ∈ Cb} ∪ {ca ∩ pb, ca ∈ Ca} ∪ {cb ∩ pa, cb ∈ Cb}

1

Conjunction is both associative and commutative.

Disjunction

The disjunction rc = ra ∨ rb is defined by the transitive cloture of (x ∼ y iif
x ∼a y or x ∼b y).

Projection

Let Y be a subset of X. The projection rc = ra ↓ Y of ra on Y is defined by
x ∼c y iff x, y ∈ Y and x ∼a y

The projection of the equivalence classes is {c ∩ Y, c ∈ Ca}

Projection without loss

A projection is without loss iff, for all x, y ∈ X such that x ∼a y, x ∈ Y implies
y ∈ Y .

In terms of equivalence classes: for all c in Ca, c ⊆ Y or c ⊆ Y .

Order

We say that ra ≤ rb (is partially finer) iff for all x, y ∈ X, x ∼a y ⇒ x ∼b y.

In terms of equivalence classes, ∀ca ∈ Ca, ∃cb ∈ Cb, ca ⊆ cb

Remark: disjunction is an upper bound for this order relation but conjunction is
not a lower bound.

Properties
• (r ↓ P) ↓ P = r ↓ P
• r ↓ P ≤ r
• pr↓P ⊆ P
• (ra ∧ rb) ↓ P = (ra ↓ P) ∧ (rb ↓ P)
• Let c be a class of (

∧
ri), then for all i, either c ⊆ pri or there exist a class

d of ri such that c ⊆ d.

Type system
An operation has both an input and an input. It also has an associated projection
on a set P . Our types are partial equivalence relations. The input and output
have types ri and ro. We say that our operation is well typed if and only if:

• ri ↓ P is without loss, and
• ri ↓ P ≤ ro

2

Our graph is well typed iff all its operations are well typed and for all variables
v, with type rv, and corresponding children operations C:

pv ⊆
⋃

c∈C

(prc ∩ Pc)

Because each operation is well typed, this is equivalent to

pv ⊆
⋃

c∈C

Pc

Moreover it is tightly typed if it is correctly typed and for all variables v, with
type rv, and corresponding parent operations P :

pv ⊆
⋃

p∈P

(prp
∩ Pp)

Inference
Backward inference
In backward inference we are gonna assign upper bound to each variables type
with the guarantee that all correct typings are less than this upper bound and
the bound itself is a correct typing.

The proof is done by induction.

The basis case is a graph with only entries that are also outputs (ie, a graph
without any operation). The upper bounds for all variable is ⊤, the equivalence
relation with only one class, X itself.

Let’s consider a graph with bounds for each variable respecting the property
above. We add “upstream” nodes to this graph playing the role of “inputs” and
pouring in any of the node of the original graph. For each added node i, we
consider the set of nodes it is pouring into Oi. We define:

ri =
(∧

o∈Oi

ro ↓ Po

)y
(⋂

o∈Oi

pro ∪ Po

)

Let’s prove that this makes all added operations correctly typed.

Let’s consider ri and one of its outputs in particular ω.

We must show that ri ↓ Pω is without loss and less than rω

3

Without loss

Let a be a class of ri. There exist a class b of
(∧

o∈Oi
ro ↓ Po

)
so that a =

b ∩
(⋂

o∈Oi
pro

∪ Po

)
. The perimeter of (rω ↓ Pω) is (prω

∩ Pω). By one of the
properties of section 1:

• either b ⊆ prω
∩ Pω = prω

∪Pω, in which case a ⊆ (prω
∪Pω)∩ (prω

∪Pω) =
Pω

• or there exist a class c of (rω ↓ Pω) so that b ⊆ c, in which case a ⊆ b ⊆
c ⊆ Pω.

So either a ⊆ Pω or a ⊆ Pω. This being true for any a, the projection is without
loss. QED.

ri ↓ Pω ≤ rω

Let d be a class of ri ↓ Pω. There exist a class a of ri so that d = a ∩ Pω.

Taking the same a and b as above:

• either b ⊆ prω
∩ Pω, in which case as above a ⊆ Pω, and a is not part of

ri ↓ Pω (here actually d is the empty set, which is ill defined, we should
rework all definitions to exclude the empty set but that does not change
much).

• or there exist the same c as above and a is a subset of a class of (rω ↓
Pω) ≤ rω, so d is a subset of a class of rω.

QED.

Let’s show the correctness of the graph as a whole.

We must show that pri
⊆
⋃

o∈Oi
(pro

∩Po), which is immediate from the definition
of pri

pri
=
(⋃

o∈Oi

pro
∩ Po

)⋂(⋂
o∈Oi

pro
∪ Po

)

We have shown that our bounds are a correct typing of the graph as a whole.
Let’s show that they are indeed bounds.

From now on let’s rename the bound bi/bo and consider a correct typing ri/ro

of the graph as a whole. We are still doing our induction so ro ≤ bo.

Let ci be a class of ri. Because the relations are well typed, we have that for
each o in Oi: either c ⊆ Po or there exist a class co of ro so that ci ⊆ co. By
induction, there exist a class cbo

of bo so that co ⊆ cbo
and hence ci ⊆ cbo

.

Let’s define xo to be:

• if c ⊆ Po, xo = pbo↓Po
= Po ∪ pbo

• if c ⊆ Po, xo = cbo ∩ Po

4

In both cases, c ⊆ xo. Moreover (
⋂

o∈Oi
xo) is a class of

∧
o∈Oi

(bo ↓ Po) and
because for all o, xo ⊂ (pbo

∪ Po), we have that (
⋂

o∈Oi
xo) is also a class of

bi =
(∧

o∈Oi
bo ↓ Po

)y(⋂
o∈Oi

pbo
∪ Po

)
. Hence c is a subset of a class of bi.

This being true for all c, we have that ri ≤ bi. QED.

Hence we have shown that our upper bound is indeed an upper bound of all
correct typing of the graph.

Finally, we have the property that for any correct typing of the graph, one can
change the entries type for smaller ones and still have a correct typing. Meaning
that for any user provided typing of the entries smaller than the bounds, we can
correctly type the graph a a whole using the bounds for the other nodes.

Tightening
Let’s consider a correctly typed graph.

Let x be the first variable (in topological order) which is not tight, that is for
which rx ̸⊆ ∪i∈I(ri ↓ Pi). I is the set of input variable to x and O the set of
outputs.

We define

r =
∨
i∈I

(ri ↓ Pi)

Let’s show that by setting x’s type to r the graph is still correctly typed and x
is now tight.

For an input i of x:

ri ↓ Pi is still without loss and ri ↓ Pi ≤ r by definition of r, so all operations
from i to x remain well typed if x type is r.

Let ∼ be the non transitive relation defined by a ∼ b iff ∃i, x ∼ri
y, x ∈ Pi, y ∈ Pi.

Let be such a, b so that a ∼ b, and i as above. Then because ri ↓ Pi ≤ rx, we
have that a ∼rx b. Hence, because rx is transitive, and r is the transitive cloture
of ∼ we have that, r ≤ rx. Hence, for all o ∈ O, the operation going from x to o
is still well typed if x as type r.

We have pr ⊆ prx
⊆
⋃

o∈O Po. Because all operations are well typed this is
enough to show that the graph remains well typed.

Finally pr =
⋃

i∈I(Pi ∩ pri) so our node x is now tight.

By iterating this algorithm in topological order we can make every node tightly
typed. (Because we do this in topological order we won’t “detight” nodes that
have already been processed.)

5

	Mathematical preliminaries
	Definitions
	Operations on P.E.R.
	Conjunction
	Disjunction
	Projection
	Projection without loss
	Order

	Properties

	Type system
	Inference
	Backward inference
	Without loss
	r_i \downarrow P_\omega \leq r_\omega

	Tightening

