A niagara program with contexts can be seen as a graph, where each node is a pool, and edges between pools are operations. In this higher level representation, pools have context, which indicates where the money is coming from. Context can be seen as types, and asserting their coherence on the graph is akin to a typing problem.

This document proposes a formalization of contexts, define a typing systems, and proposes inference rules for the context of pools which are proven to give a correctly typed graph.

## **Mathematical preliminaries**

### **Definitions**

Let *X* be a set. We define a partial equivalence relation (P.E.R.)  $r$  on  $X$  as a binary relation that is symmetric and transitive. Partial reflexivity is not an axiom but a theorem stating that

$$
\forall x, y, x \sim y \implies (x \sim x)
$$

which stems from the fact that if there are such an x and *y*, by symmetry  $y \sim x$ and by transitivity  $x \sim y \sim x$ .

Like equivalence relation, P.E.R.s correspond directly to partial partitions of *X*. A partial partition of *X* is a set of mutually disjoint subsets of *X*. Going from a P.E.R.  $r_a$  to a partial partition  $C_a$  and back is done by considering the equivalence classes of the relation.

To a P.E.R.  $r_a$ , we can associate its perimeter  $p_a$ , that is the set on which the equivalence relation is total (the union of the equivalence classes).

## **Operations on P.E.R.**

Let  $r_a$  and  $r_b$  be two P.E.R.

#### **Conjunction**

The conjunction  $r_c = r_a \wedge r_b$  is defined by:  $x \sim_c y$  iff any of the following is true:

- $x, y \in (p_a \cap p_b)$  and  $x \sim_a y$  and  $x \sim_b y$
- $x, y \in p_a \setminus p_b$  and  $x \sim_a y$
- $x, y \in p_b \setminus p_a$  and  $x \sim_b y$

The equivalence classes  $C_c$  of  $r_c$  are given by:

$$
C_c = \{c_a \cap c_b, c_a \in C_a, c_b \in C_b\} \cup \{c_a \cap \overline{p_b}, c_a \in C_a\} \cup \{c_b \cap \overline{p_a}, c_b \in C_b\}
$$

Conjunction is both associative and commutative.

#### **Disjunction**

The disjunction  $r_c = r_a \vee r_b$  is defined by the transitive cloture of  $(x \sim y)$  iif  $x \sim_a y$  or  $x \sim_b y$ ).

#### **Projection**

Let *Y* be a subset of *X*. The projection  $r_c = r_a \downarrow Y$  of  $r_a$  on *Y* is defined by *x* ∼*<sup>c</sup> y* iff *x, y* ∈ *Y* and *x* ∼*<sup>a</sup> y*

The projection of the equivalence classes is  $\{c \cap Y, c \in C_a\}$ 

#### **Projection without loss**

A projection is without loss iff, for all  $x, y \in X$  such that  $x \sim_a y, x \in Y$  implies  $y \in Y$ .

In terms of equivalence classes: for all *c* in  $C_a$ ,  $c \subseteq Y$  or  $c \subseteq \overline{Y}$ .

### **Order**

We say that  $r_a \leq r_b$  (is partially finer) iff for all  $x, y \in X, x \sim_a y \Rightarrow x \sim_b y$ .

In terms of equivalence classes,  $\forall c_a \in C_a, \exists c_b \in C_b, c_a \subseteq c_b$ 

*Remark: disjunction is an upper bound for this order relation but conjunction is not a lower bound.*

## **Properties**

- $(r \downarrow P) \downarrow P = r \downarrow P$
- $r \downarrow P \leq r$
- $p_{r\perp P} \subseteq P$
- (*r<sup>a</sup>* ∧ *rb*) ↓ *P* = (*r<sup>a</sup>* ↓ *P*) ∧ (*r<sup>b</sup>* ↓ *P*)
- Let *c* be a class of  $(\bigwedge r_i)$ , then for all *i*, either  $c \subseteq \overline{p_{r_i}}$  or there exist a class *d* of  $r_i$  such that  $c \subseteq d$ .

## **Type system**

An operation has both an input and an input. It also has an associated projection on a set *P*. Our types are partial equivalence relations. The input and output have types  $r_i$  and  $r_o$ . We say that our operation is well typed if and only if:

- $r_i \downarrow P$  is without loss, and
- $r_i \downarrow P \leq r_o$

Our graph is well typed iff all its operations are well typed and for all variables *v*, with type *rv*, and corresponding children operations *C*:

$$
p_v \subseteq \bigcup_{c \in C} (p_{r_c} \cap P_c)
$$

Because each operation is well typed, this is equivalent to

$$
p_v \subseteq \bigcup_{c \in C} P_c
$$

Moreover it is tightly typed if it is correctly typed and for all variables  $v$ , with type *rv*, and corresponding parent operations *P*:

$$
p_v \subseteq \bigcup_{p \in P} (p_{r_p} \cap P_p)
$$

# **Inference**

## **Backward inference**

In backward inference we are gonna assign upper bound to each variables type with the guarantee that all correct typings are less than this upper bound and the bound itself is a correct typing.

The proof is done by induction.

The basis case is a graph with only entries that are also outputs (ie, a graph without any operation). The upper bounds for all variable is ⊤, the equivalence relation with only one class, *X* itself.

Let's consider a graph with bounds for each variable respecting the property above. We add "upstream" nodes to this graph playing the role of "inputs" and pouring in any of the node of the original graph. For each added node *i*, we consider the set of nodes it is pouring into  $O_i$ . We define:

$$
r_i = \left(\bigwedge_{o \in O_i} r_o \downarrow P_o\right) \downarrow \left(\bigcap_{o \in O_i} p_{r_o} \cup \overline{P_o}\right)
$$

Let's prove that this makes all added operations correctly typed.

Let's consider  $r_i$  and one of its outputs in particular  $\omega$ .

We must show that  $r_i \downarrow P_\omega$  is without loss and less than  $r_\omega$ 

#### **Without loss**

Let *a* be a class of  $r_i$ . There exist a class *b* of  $(\bigwedge_{o \in O_i} r_o \downarrow P_o)$  so that  $a =$  $b \cap (\bigcap_{o \in O_i} p_{r_o} \cup \overline{P_o})$ . The perimeter of  $(r_\omega \downarrow P_\omega)$  is  $(p_{r_\omega} \cap P_\omega)$ . By one of the properties of section 1:

- either  $b \subseteq \overline{p_{r_{\omega}} \cap P_{\omega}} = \overline{p_{r_{\omega}}} \cup \overline{P_{\omega}}$ , in which case  $a \subseteq (\overline{p_{r_{\omega}} \cup P_{\omega}}) \cap (p_{r_{\omega}} \cup \overline{P_{\omega}}) =$ *P<sup>ω</sup>*
- or there exist a class *c* of  $(r_\omega \downarrow P_\omega)$  so that  $b \subseteq c$ , in which case  $a \subseteq b \subseteq c$  $c \subseteq P_\omega$ .

So either  $a \subseteq P_\omega$  or  $a \subseteq \overline{P_\omega}$ . This being true for any *a*, the projection is without loss. QED.

$$
r_i \downarrow P_\omega \le r_\omega
$$

Let *d* be a class of  $r_i \downarrow P_\omega$ . There exist a class *a* of  $r_i$  so that  $d = a \cap P_\omega$ .

Taking the same *a* and *b* as above:

- either  $b \subseteq \overline{p_{r_\omega} \cap P_\omega}$ , in which case as above  $a \subseteq \overline{P_\omega}$ , and *a* is not part of  $r_i \downarrow P_\omega$  (here actually *d* is the empty set, which is ill defined, we should rework all definitions to exclude the empty set but that does not change much).
- or there exist the same *c* as above and *a* is a subset of a class of  $(r_\omega \downarrow$  $P_{\omega}$ )  $\leq r_{\omega}$ , so *d* is a subset of a class of  $r_{\omega}$ .

#### QED.

Let's show the correctness of the graph as a whole.

We must show that  $p_{r_i} \subseteq \bigcup_{o \in O_i} (p_{r_o} \cap P_o)$ , which is immediate from the definition of  $p_{r_i}$ 

$$
p_{r_i} = \left(\bigcup_{o \in O_i} p_{r_o} \cap P_o\right) \bigcap \left(\bigcap_{o \in O_i} p_{r_o} \cup \overline{P_o}\right)
$$

We have shown that our bounds are a correct typing of the graph as a whole. Let's show that they are indeed bounds.

From now on let's rename the bound  $b_i/b_o$  and consider a correct typing  $r_i/r_o$ of the graph as a whole. We are still doing our induction so  $r_o \leq b_o$ .

Let  $c_i$  be a class of  $r_i$ . Because the relations are well typed, we have that for each *o* in  $O_i$ : either  $c \subseteq \overline{P_o}$  or there exist a class  $c_o$  of  $r_o$  so that  $c_i \subseteq c_o$ . By induction, there exist a class  $c_{b_o}$  of  $b_o$  so that  $c_o \subseteq c_{b_o}$  and hence  $c_i \subseteq c_{b_o}$ .

Let's define  $x<sub>o</sub>$  to be:

- if  $c \subseteq P_o$ ,  $x_o = \overline{p_{b_o} \downarrow P_o} = P_o \cup \overline{p_{b_o}}$
- if  $c \subseteq P_o$ ,  $x_o = c_{b_o} \cap P_o$

In both cases,  $c \subseteq x_o$ . Moreover  $(\bigcap_{o \in O_i} x_o)$  is a class of  $\bigwedge_{o \in O_i} (b_o \downarrow P_o)$  and because for all *o*,  $x_o \subset (p_{b_o} \cup \overline{P_o})$ , we have that  $(\bigcap_{o \in O_i} x_o)$  is also a class of  $b_i = (\bigwedge_{o \in O_i} b_o \downarrow P_o) \downarrow (\bigcap_{o \in O_i} p_{b_o} \cup \overline{P_o})$ . Hence *c* is a subset of a class of  $b_i$ .

This being true for all *c*, we have that  $r_i \leq b_i$ . QED.

Hence we have shown that our upper bound is indeed an upper bound of all correct typing of the graph.

Finally, we have the property that for any correct typing of the graph, one can change the entries type for smaller ones and still have a correct typing. Meaning that for any user provided typing of the entries smaller than the bounds, we can correctly type the graph a a whole using the bounds for the other nodes.

### **Tightening**

Let's consider a correctly typed graph.

Let *x* be the first variable (in topological order) which is not tight, that is for which  $r_x \nsubseteq \bigcup_{i \in I} (r_i \downarrow P_i)$ . *I* is the set of input variable to *x* and *O* the set of outputs.

We define

$$
r = \bigvee_{i \in I} (r_i \downarrow P_i)
$$

Let's show that by setting *x*'s type to *r* the graph is still correctly typed and *x* is now tight.

For an input *i* of *x*:

 $r_i \downarrow P_i$  is still without loss and  $r_i \downarrow P_i \leq r$  by definition of *r*, so all operations from  $i$  to  $x$  remain well typed if  $x$  type is  $r$ .

Let  $\sim$  be the non transitive relation defined by  $a \sim b$  iff  $\exists i, x \sim_{r_i} y, x \in P_i, y \in P_i$ . Let be such *a*, *b* so that  $a \sim b$ , and *i* as above. Then because  $r_i \downarrow P_i \leq r_x$ , we have that  $a \sim_{r_x} b$ . Hence, because  $r_x$  is transitive, and  $r$  is the transitive cloture of ∼ we have that, *r* ≤ *rx*. Hence, for all *o* ∈ *O*, the operation going from *x* to *o* is still well typed if *x* as type *r*.

We have  $p_r \subseteq p_{r_x} \subseteq \bigcup_{o \in O} P_o$ . Because all operations are well typed this is enough to show that the graph remains well typed.

Finally  $p_r = \bigcup_{i \in I} (P_i \cap p_{r_i})$  so our node *x* is now tight.

By iterating this algorithm in topological order we can make every node tightly typed. (Because we do this in topological order we won't "detight" nodes that have already been processed.)