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Motivation – US DoE scientific applications
• Scientific computing calculations can be computationally expensive and take several wall-clock 

hours on distributed computing HPC platforms

• Surrogate models can mitigate the computational cost of expensive large-scale scientific 
computing applications while maintaining sufficient accuracy

• For several scientific computing problems, the structure of the physical system can be mapped 
onto a graph

• Whenever the data can be expressed in the format of a graph, graph neural networks (GNNs) 
have been identified as promising tools to extract relevant nodal and graph-level features that 
describe the dynamics of the physical system

atomistic materials modeling finite element simulations urban sciences 
(e.g., transportation and power grid)

Image from https://memgraph.com/blog/modeling-visualizing-
navigating-a-transportation-network-with-memgraph 

https://memgraph.com/blog/modeling-visualizing-navigating-a-transportation-network-with-memgraph
https://memgraph.com/blog/modeling-visualizing-navigating-a-transportation-network-with-memgraph
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Graph Neural Networks (GNNs)
The architecture of a GNN is made of:

1. a graph embedding layer
2. hidden graph layers aim at capturing short range interactions between nodes in the 

graph
3. pooling layers interleaved with graph layers synthetize information related to 

adjacent nodes via aggregation
4. fully connected (FC) dense layers at the end of the architecture to capture effects 

that global features of the graph have over the target properties of interest

Convolutional operations aggregate information from neighboring nodes
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Limitations of open-source GNN implementations
Popular open-source GNN implementations lack vital features, hindering their full-scale 
application to computational chemistry. 

In particular these libraries do not simultaneously support: 

(1) multi-task learning (MTL), which is used to effectively stabilize the training by taking 
advantage of implicit correlations between multiple target properties of interest; 

(2) seamless replacement of MPNNs without drastically and disruptively re-implement a 
significantly large portion of the original code; 

(3) distributed data parallelism (DDP) effectively implemented to address scaling 
challenges on large-scale supercomputing facilities; 

(4) regular software maintenance to ensure appropriate updates of the software 
packages required to run the code.

(5) portability across diverse hardware architectures
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HydraGNN: Distributed PyTorch 
Implementation of Multi-Headed GNNs
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN 

HydraGNN

Multi-task 
learning (MTL)

Scalable 
training

Compatibility with 
required software 
packages

Supports 
different 
MPNNs

Portability

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN
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<latexit sha1_base64="Ac3erUZxcWZv7CYHtf2u6X+Wb7M="></latexit>

argmin
w

kypredict,1(w)� y1k22 + kypredict,2(w)� y2k22 + . . .+ kypredict,T (w)� yT k22

Quantities simultaneously predicted:
 
• Property y1

• Property y2
• …

• Property yT

Global Multi-Task Training Loss Function

Multi-Task Learning stabilizes predictions of multiple properties 
Each property operates as a mutual regularizer to stabilize the prediction of other properties

<latexit sha1_base64="1XN/pv5IYoaxvsR3Oe/6YXqsFM4=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APbUjLpnTY0kxmSjFKG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybnHjwXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFq+1Sj4BIbhhuB7VghDX2BLX98k/mtR1SaR/LeTGLshXQoecAZNVZ66IbUjPwgfZr2yxW36s5AlomXkwrkqPfLX91BxJIQpWGCat3x3Nj0UqoMZwKnpW6iMaZsTIfYsVTSEHUvnSWekhOrDEgQKfukITP190ZKQ60noW8ns4R60cvE/7xOYoKrXsplnBiUbP5RkAhiIpKdTwZcITNiYgllitushI2ooszYkkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABhKe4RXeHO28OO/Ox3y04OQ7h/AHzucP/qKRJA==</latexit>w = parameters of the neural network to optimize during the training 

HydraGNN: Multi-task learning (MTL) for stabilization by extracting 
physics correlations between multiple target properties of interest
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HydraGNN: Message passing layer treated as 
hyperparameter

Object-oriented programming enables seamless switch between different 
MPNN layers that can be treated as hyperparameters
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HydraGNN: Scalable training with Distribute Data 
Parallelism (DDP) 

HydraGNN_replica_1 HydraGNN_replica_2 HydraGNN_replica_P…

Process_1 Process_2 Process_P

Training data batch 1 Training data batch 2 Training data batch P

Data exchange Data exchange Data exchange
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Results: linear scaling of data reading + training 
using up to 1,024 NVIDIA V100 GPUs on OLCF 
Summit and 1,024 NVIDIA GPUs on NERSC 
Perlmutter

Result:
Scaling of HydraGNN almost linear 
using 512 AMD MI250X GPUs of 
OLCF-Crusher

HydraGNN: Scalable training with Distribute Data 
Parallelism (DDP) 
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HydraGNN: Compatibility with required software packages

Continuous integrations tests on the 
GitHub repo ensure software sustainability
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HydraGNN functionalities are regularly tested on a broad set of computing architectures:

• Personal laptops for small scale training

• ORNL Edge Computing DGX boxes using docker containers

• OLCF CADES clusters using conda environments: https://www.olcf.ornl.gov/tag/cades/ 

• OLCF supercomputer Summit (NVIDIA V100 GPUs): https://www.olcf.ornl.gov/summit/ 

• NERSC supercomputer Perlmutter (NVIDIA A100 GPUs): https://docs.nersc.gov/systems/perlmutter/ 

• OLCF Crusher (AMD Instinct 250X GPUs): https://www.olcf.ornl.gov/tag/crusher/ 

• OLCF supercomputer Frontier (AMD Instinct 250X GPUs): https://www.olcf.ornl.gov/frontier/ 

• University of Tsukuba supercomputer Pegasus (NVIDIA H100 GPUs):
https://www.ccs.tsukuba.ac.jp/wp-content/uploads/sites/14/Pegasus.pdf

• Groq technology: https://groq.com

HydraGNN: Portability across Diverse Computing Platforms

https://www.olcf.ornl.gov/tag/cades/
https://www.olcf.ornl.gov/summit/
https://docs.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/tag/crusher/
https://www.olcf.ornl.gov/frontier/
https://www.ccs.tsukuba.ac.jp/eng/
https://groq.com/


Scalable GNN training
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Motivation
In scientific applications like atomistic materials modeling, the GCNN must be accurate and 
robust in a high-dimensional parameter space to model very diverse configurations. 

Chemical Space, 
Naomi Johnson and Lee Cronin

Example - Atomistic materials modeling 

(1) chemical composition, and 

(2) arrangement of atoms of different 
constituents

This requires training the GCNN model on large volumes of graph data, which makes the 
training both computationally, memory, and I/O intensive. 

Graph-level
Link-level

Node-level
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GNN I/O Challenges

File per molecule NVME/Node-local SSD Sharding
• 10s of millions of files
• Large meta data
• Huge stress on filesystem
• Multiple requests to increase 

space/node quotas

• Non-negligible setup time
• Total (N nodes x data size) 

byte transfer

• Flexibility issue
• May limit the quality of 

training

• GNN I/O characteristics
– Read-oriented
– Frequent access:  

(e.g., 100 epochs per hour)
– Shuffled access to improve 

generalization or to avoid 
overfitting

Iterative training

Data 
Loading Forward Backward Optimization 

Step

GPU 
Memory

File system

CPU 
Memory

Gradient 
Aggregation

Data Batch

Iterative GNN training: Data loading is one of the key steps for 
performance
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Parallelisms: Scalable GNN Training Strategies

P1 P2 P3 P4 P1 P2 P3 P4

Model

Workers

Data

Data Parallel Model Parallel

Partitioned

Sharded

And many more:
• Pipeline
• Hybrid
• Tensor
• Spatial
• Layer
• Sequence
• …

Supported in HydraGNN 
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Data Loading Strategy

Meta data

(b) Containerized File Format

Parallel  
File System

Index lookup

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU CPU GPU CPU GPU CPU GPU

(a) Per-object File Format (c) Distributed Data Store

Compute Nodes

Preload

One-side RMA

Per-object File Format Containerized File Format Distributed Memory Store

HydraGNN 
DDStore
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DDStore Mileage

Large-scale data:
Data cannot fit in 

a single node

Small data: 
Data can fit in a 

single node 
memory or NVME

Sh
uf

fli
ng

N
o 

sh
uf

fli
ng

Data Sharding

Node-local 
data or data 

caching

Node-local 
data or data 

caching

Distributed data
(DDStore)



HydraGNN
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HydraGNN: enabling large-scale GNN 
training on HPC 
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN 

HydraGNN

Multi-task 
learning (MTL)

Scalable 
training

Compatibility with 
required software 
packages

Supports 
different 
MPNNs

Portability

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN
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Overview

• Multitasking heads for better 
data efficiency

• Message passing layers treated 
as hyperparameter

• Setting up HydraGNN via a 
configuration json file

• Multiple data loaders/file format 
to support scalability

• Data file formats

• DDStore (Scalable Distributed 
Data Store)

(Zhang et al., TMS, 2022)
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Multitasking for improved data efficiency
• Joint learning of multiple properties 

– Input: Graph representation (node feature, edge feature,  adjacent matrix)
– Output: Regression targets (node level,  graph level)

• Inherently sharing features across learning tasks à Improved prediction accuracy
• Improved generalization/reduced overfitting
• Saved training time and improved training stability
• E.g., FePt (Lupo Pasini et al., 2022) 

– mixing enthalpy (global), charge transfer and magnetic moment (atomic/node) in FePt
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Multitasking for improved data efficiency
• Implementation

– User-controlled task weightsà prioritize tasks
– Graph-level module

• Shared multilayer perceptron (MLP) + MLP for 
individual tasks

– Node-level module (how to handle variable 
number of nodes?)
• Padding to the largest graph (inefficient)
• Graph convolutional layers 
• A shared MLP between all the nodes, mapping 

from extracted feature space to node-level 
properties

𝐿 = #
!"#

$!%$"

𝛼!𝑙!
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Message passing layer treated as hyperparameter

• Object-oriented modules for each message passing layers

• Easy for extension/to include other GNN layers

• Convenient for user to find the optimal model for their applications

• How can users contribute by introducing additional MPNN layers?
– Develop new class that inherits from “Base”
– Implement the “get_conv()” method that defines the message passing policy
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User set up HydraGNN case via a configuration json file
1. Define verbosity level

2. Define graph objects
– Load data
– Specify input features and regression 

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of training/validation/testing 
results 

Example can be found at 
https://github.com/ORNL/HydraGNN/blob/LoG202
3_tutorial/examples/lsms/lsms.json 

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json


3434 Open slide master to edit

‘level: 0’: nothing is printed on the screen

‘level: 1’: only the process with rank 0 prints output 

at the end of each training epoch

‘level: 2’: only the process with rank 0 prints output 

at each batched gradient update, showing the stage 

of the training on each epoch using a progression bar

‘level: 3’: every process prints output at the end of 

each training epoch

‘level: 4’: every process prints output at each 

batched gradient update, showing the stage of

the training on each epoch using a progression bar

Verbosity is used to handle amount of context printed in output by multiple processes during 
scalable HydraGNN training with distributed data parallelism 

User set up HydraGNN case via a configuration json file
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User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression 

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of 
training/validation/testing results 

Example can be found at 
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json 

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
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User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression 

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of 
training/validation/testing results 

Example can be found at 
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json 

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
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User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression 

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of 
training/validation/testing results 

Example can be found at 
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json 

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
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User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression 

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of 
training/validation/testing results 

Example can be found at 
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json 

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
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User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression 

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of 
training/validation/testing results 

Example can be found at 
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json 

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
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User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression 

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of 
training/validation/testing results 

Example can be found at 
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples
/lsms/lsms.json 

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
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Data file formats

The raw data can be converted into two pre-standardized formats:

• Pickle (preferrable for small/intermediate volumes of data)

• ADIOS2 https://adios2.readthedocs.io/en/v2.9.2/ (preferred for large volumes of data)

The user can choose the “degree of packing” to aggregate multiple data samples and avoid stressing 
the parallel file system of the HPC facility when HydraGNN is trained on large volumes of data. 

Examples: 

• If the data is “relatively” small in volume (i.e., < 50k data samples), storing one pickle file per data 
sample is fine à per-object file format (PFF) 

• If the number of data samples 50k, then it is recommended to pre-package multiple data samples 
within the same file à containerized file format (CFF)

https://adios2.readthedocs.io/en/v2.9.2/
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Traditional ways to read data from pickle and adios

Meta data

(b) Containerized File Format

Parallel  
File System Index lookup

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU CPU GPU CPU GPU CPU GPU

(a) Per-object File Format (c) Distributed Data Store

Compute Nodes

Preload

One-side RMA

Data file formats
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Data file formats
Object-oriented programming framework for data imports:

• Classes to read data from raw files and convert them into pickle or ADIOS files
• Classes to read pre-standardized data and feed it to HydraGNN for training
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DDStore: Scalable Distributed Data Store

• DDStore specifically addresses random, 
read-oriented, global shuffle operations. 

• Memory-to-memory distributed data 
access

• In-memory, one-side remote memory 
(RMA) access

• Minimize access to the file system during 
the shuffling steps and make in-memory 
data accessible to other nodes

• Utilize efficient, and portable 
communication on HPC

Conventional approach DDStore

Data Loading
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DDStore Procedures

1⃣ Preload
– Read data from file system
– Load in chunk

2⃣ Data registration
– Create local index
– Share globally

3⃣ Data loader
– Memory-to-memory data fetch
– Utilizing MPI RMA

CPU GPU CPU GPU CPU GPU

1. Preload

3. One-side RMA2. Data registration

Interconnected 
Network

Deep Learning Application

Parallel Storage

Data Preloader

File Reader Plugin

Data Registry

Index Bookkeeping

Data Loader

One-sided RMA
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MPI One-side Communication or RMA

P1 P2

MPI_Send

MPI_Receive

Two-sided communication

P1 P2

One-sided communication

MPI_Get



4747 Open slide master to edit

DDStore Using MPI One-side Communication (RMA)

MPI_Win_create
All gather index

MPI_Win_lock
MPI_Get

MPI_Win_unlock

MPI_Win_fence

MPI_Win_fence

Source Process Target Process

Time

MPI_Win_create

One-side RMA

MPI_Win_create

Target Process

MPI_Win_lock
MPI_Get

MPI_Win_unlock

One-side RMA

Ba
tc

h

MPI_Win_fence MPI_Win_fence

MPI_Win_fenceMPI_Win_fence

Item y

Item x



Hands-on session
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Overview
• Prerequisites

– Setting up virtual environment
• Activate your virtual environment

– Downloading code (https://github.com/ORNL/HydraGNN )
• “git clone https://github.com/ORNL/HydraGNN”

• Three examples (https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial )

– QM9 
• Single tasking for a graph-level property
• Multitasking regressions at both graph-level and node-level

– LSMS  
• Customization of dataset/user dataset

– AISD HOMO-LUMO
• Scalability
• DDStore/video record of OLCF-Frontier (due to access limitation)

https://github.com/ORNL/HydraGNN
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial
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QM9 dataset
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QM9 (Ramakrishnan et al., 2014 )
• torch_geometric.datasets.QM9

• 130k molecules 

• 20 regression targets
– 19 original regression properties (graph-level)

• geometric, energetic, electronic, and thermodynamic properties
– Add Mulliken partial charge (node-level) from (Ramakrishnan et 

al., 2014 )

(PyTorch Geometric bult-in dataset)
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Two examples

• https://github.com/ORNL/HydraGNN/tree
/LoG2023_tutorial/examples/qm9

• Single-tasking on free energy, G
– Files: qm9.py and qm9.json

• Multitasking on all 20 (=19+1) properties
– Files: qm9_custom20.py and qm9_all20.json

19                     Partial Charge                       e

https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/qm9
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/qm9
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Single-tasking on free energy, G

• Files: qm9.py and qm9.json

• “python examples/qm9/qm9.py”
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Single-tasking on free energy, G

• Loading data
– torch_geometric.datasets.QM9
– pre_transform function

• Split dataset and create 
dataloaders
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Single-tasking on free energy, G

• Create model with config from 
qm9.json 

• Set up optimizer

• Train the model
– hydragnn.train.train_validate_test
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Single-tasking on free energy, G

• Create model with config from 
qm9.json 

• Set up optimizer

• Train the model
– hydragnn.train.train_validate_test
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Single-tasking on free energy, G

Results of test set

“python examples/qm9/qm9.py”



6161 Open slide master to edit

Multitasking on all 20 (=19+1) properties

• Files
– qm9_custom20.py and qm9_all20.json
– Pre-processed splits 

• qm9_train_test_val_idx_lists.pkl

• “python examples/qm9/qm9_custom20.py”
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Multitasking on all 20 (=19+1) properties

• Customized dataset
– QM9_custom(…)

• Download charge density
• get_charge(self, data) 

– Pre-processed splits 
• qm9_train_test_val_idx_lists.pkl
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Multitasking on all 20 (=19+1) properties

• data.x for node feature
– 11-dimension vector
– atom type (i.e., "atomH", "atomC", "atomN", "atomO", "atomF"), atomic number, 

aromatic [or not], hybridization types (i.e., sp, sp2, or sp3), Hprop (i.e., number of 
hydrogen neighbors are used as features for each node)

• data.y for outputs/regression tasks
– 19 graph-level + 1 node-level (number of nodes, varying across samples)
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Multitasking on all 20 (=19+1) properties

• Create dataloaders

• Create model
– Graph heads
– Node heads

• Set up optimizer

• Train the model
– task_weights
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Multitasking

• Test HydraGNN in multitasking 
with hybrid graph-level and 
node-level properties 

– 19 graph-level properties
– 1 node-level property

“python 
examples/qm9/qm9_custom20.py”
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FePt binary alloy with 32 atoms 
LSMS-3 data
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FePt binary alloy with 32 atoms - LSMS-3 data

Iron-Platinum (FePt) Open-Source Dataset binary alloy
https://doi.org/10.13139/OLCF/1762742

• 32 atoms arranged in a body-centered tetragonal (BCT) structure
• The entire composition range is spanned 
 (from 0% Fe-100%Pt through 100% Fe-0%Pt )
• 32,000 configurations

For each configuration, DFT calculations are performed to compute 
the total energy of the systems
DFT calculations are performed using the LSMS-3 code

BCT

https://doi.org/10.13139/OLCF/1762742
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FePt binary alloy with 32 atoms - LSMS-3 data
Download dataset using Globus https://www.globus.org 

• Create a Globus account and log-in
Specify the name 
of the source and 
destination 
endpoints among 
which the data 
transfer must be 
established

Specify the paths on 
the source endpoint 
where the data is 
available and the 
path on the 
destination of 
endpoint where the 
data must be 
transferred

https://www.globus.org/
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FePt binary alloy with 32 atoms - LSMS-3 data
Download dataset using Globus https://www.globus.org

Choice of endpoints:

• One endpoint must be where you want the dataset to be downloaded

• One endpoint must be where the data is available: OLCF-DOI-DOWNLOADS

    Path: /~/OLCF/202102/10.13139_OLCF_1762742/

https://www.globus.org/
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FePt binary alloy with 32 atoms - LSMS-3 data
Code for this example is available at the following GitHub fork:
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/lsms 

Python scripts to run for this example are available inside HydraGNN/examples/lsms:

• compute_enthalpy.py  à  data pre-processing 

• lsms.py   à data pre-loading and training

• inference.py à post-processing and analysis of results

https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/lsms
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FePt binary alloy with 32 atoms - LSMS-3 data
Code for this example is available at the following GitHub fork:
https://github.com/allaffa/HydraGNN/tree/LoG2023_tutorial_lsms_example

compute_enthalpy.py

1. Performs histogram cutoff to ensure that the atomic configurations are balanced across all chemical 
compositions. 

     We used 1,000 atomic configurations for thresholding

     From the original set of 32,017 configurations, only 28,058 configurations are retained 

2. Computes mixing enthalpy by removing the linear mixing terms from the total energy of each DFT 
calculation

https://github.com/allaffa/HydraGNN/tree/LoG2023_tutorial_lsms_example
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lsms.py
1. Dataset reading and pre-loading

Create ‘dataset’ folder inside the ‘example directory
Move FePt_enthalpy into ‘dataset’

FePt binary alloy with 32 atoms - LSMS-3 data

AbstractBaseDataset

AbstractRawDataset

LSMSDataset

Intermediate layer in the 
class inheritance that 
implemented useful 
methods that can be used 
for data with diverse formats

Remark:

Your customized dataset does not need to inherit from 
Abs’tractRawDataset. 

It can directly inherit from AbstractBaseDataset. 

Inheriting from AbstractBaseDataset ensures that you can 
scale the data management using internal capabilities of 
HydraGNN
[Jong will provide more details in this regard]

Class inheritance for dataset classes
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lsms.py

2. Dataset conversion into pickle format 
and storage in files

FePt binary alloy with 32 atoms 
- LSMS-3 data

After every atomic structure is converted into a 
‘torch.geometric.dataset’ object, which is ready to 
feed into HydraGNN for training and inferencing,
the data samples are saved into individual pickle files
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lsms.py

FePt binary alloy with 32 atoms 
- LSMS-3 data

3. Data loading from pickle files 
for training
 



7575 Open slide master to edit

lsms.py
Single-task training for predictions of mixing enthalpy

inference.py
Load pre-trained model and run inference on testing data

FePt binary alloy with 32 atoms - LSMS-3 data

Test MAE:

0.010 Rydberg
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Multi-task learning (MTL) for predictions of 
mixing enthalpy, atomic charge transfer, and 
atomic magnetic moment

FePt binary alloy with 32 atoms - LSMS-3 data

Magnetic moment and mixing enthalpy are strongly 
correlated, and MTL can use this correlation to stabilize 
the training 
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lsms.py
Multi-task training for predictions of mixing 
enthalpy, atomic charge density, and atomic 
magnetic moment

inference.py
Load pre-trained model and run inference on 
testing data

FePt binary alloy with 32 atoms - LSMS-3 data

Test MAE: 0.010 Rydberg Test MAE: 0.66 electron charges Test MAE: 0.98 magnetons
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AIDS HOMO-LUMO dataset
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AISD HOMO-LUMO data with DDP

• Code for this example is available at the following GitHub fork:
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial

• Python scripts to run 
for this example are available inside HydraGNN/examples/csce

• Demonstrating how to perform DDP with HydraGNN  using DDStore 
on Frontier, ORNL

• Main training steps
– Pre-processing of raw data for DDP and DDStore
– GNN training

• With DDP
• Training with DDStore

$ git clone -b LoG2023_tutorial 
https://github.com/ORNL/HydraGNN.git

https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial
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ORNL AISD HOMO-LUMO data

• Graph level prediction
– Predicting energy gap of 

molecules given their 2D 
molecular graphs

– Over 10.5 M molecules

W. Hu, et al., 2021

The HOMO and LUMO of a molecule (Wikipedia)

$ cd examples/csce
$ mkdir dataset && cd dataset
$ wget https://users.nccs.gov/~jyc/csce_gap_synth.csv
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Frontier environment

• We have HydraGNN 
development environment 
on Frontier
– Python environment
– Custom build of PyTorch and 

PyG to utilize GPUs
– DDStore
– mpi4py
– Adios

module purge
ml DefApps
ml gcc
module unload darshan-runtime

module use -a /gpfs/alpine/world-shared/lrn026/sw/modulefiles
ml anaconda3/2022.10
ml adios2/devel
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DDStore Setup and Use
1. Read raw data
2. Convert to PyG graph object 

(Chem.MolFromSmiles)
3. Create DDStore object (PyDDStore)
4. Register a list of graph objects 

(PyDDStore.add)
5. (Optional) Save as Adios or Pickle 

format
6. DDStore object is DataSet. Combine 

with DataLoader and 
DistributedSampler

7. Call PyDDStore.get to retrieve

Hydragnn/utils/smiles_utils.py

Hydragnn/utils/distdaset.py

Note 1: We provide various wrappers and functions

Note 2: We have examples

Hydragnn/preprocess/load_data.py
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Data pre-processing
#!/bin/bash
#SBATCH -A LRN026
#SBATCH -J HydraGNN
#SBATCH -t 00:30:00
#SBATCH -p batch
#SBATCH -N 2

export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED=1
export MPICH_OFI_NIC_POLICY=GPU
export MIOPEN_DISABLE_CACHE=1
export NCCL_PROTO=Simple

export OMP_NUM_THREADS=7
export PYTHONPATH=$PWD:$PYTHONPATH

srun -n64 python -u examples/csce/train_gap.py --preonly

Configuration file

Train script

Raw data file
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Training
#!/bin/bash
#SBATCH -A LRN026
#SBATCH -J HydraGNN
#SBATCH -t 00:30:00
#SBATCH -p batch
#SBATCH -N 32

export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED=1
export MPICH_OFI_NIC_POLICY=GPU
export MIOPEN_DISABLE_CACHE=1
export NCCL_PROTO=Simple

export OMP_NUM_THREADS=7
export PYTHONPATH=$PWD:$PYTHONPATH

srun –n256 -c7 --gpus-per-task=1 --gpu-bind=closest \
    python -u examples/csce/train_gap.py

Frontier node layout: 8 GPUs per node
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Training with DDStore
#!/bin/bash
#SBATCH -A LRN026
#SBATCH -J HydraGNN
#SBATCH -t 00:30:00
#SBATCH -p batch
#SBATCH -N 32

export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED=1
export MPICH_OFI_NIC_POLICY=GPU
export MIOPEN_DISABLE_CACHE=1
export NCCL_PROTO=Simple

export OMP_NUM_THREADS=7
export PYTHONPATH=$PWD:$PYTHONPATH

srun –n256 -c7 --gpus-per-task=1 --gpu-bind=closest \
    python -u examples/csce/train_gap.py --ddstore

No DDStore

With DDStore

5.7x



Conclusions



8787 Open slide master to edit

HydraGNN: enabling large-scale GNN 
training on HPC 
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN 

HydraGNN

Multi-task 
learning (MTL)

Scalable 
training

Compatibility with 
required software 
packages

Supports 
different 
MPNNs

Portability

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN
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Thank you!
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