
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Scalable Graph Neural Network training using
HPC and supercomputing facilities

Massimiliano (Max) Lupo Pasini

Jong Youl Choi

Pei Zhang

Oak Ridge National Laboratory

22 Open slide master to edit

Who we are

Massimiliano (Max)
Lupo Pasini

Data Scientist
lupopasinim@ornl.gov

Computational Sciences and
Engineering Division (CSED)

Oak Ridge National
Laboratory

Pei
Zhang

Computational Scientist
zhangp1@ornl.gov

Computational Sciences and
Engineering Division (CSED)

Oak Ridge National
Laboratory

Jong Youl
Choi

Computer Scientist
choij@ornl.gov

Computer Science and
Mathematics Division (CSMD)

Oak Ridge National
Laboratory

mailto:lupopasinim@ornl.gov
mailto:zhangp1@ornl.gov
mailto:choij@ornl.gov

33 Open slide master to edit

Outline

• Introduction

• Scalable GNN Training

• HydraGNN

• Hand-on Session

• Conclusion

Introduction

55 Open slide master to edit

Motivation – US DoE scientific applications
• Scientific computing calculations can be computationally expensive and take several wall-clock

hours on distributed computing HPC platforms

• Surrogate models can mitigate the computational cost of expensive large-scale scientific
computing applications while maintaining sufficient accuracy

• For several scientific computing problems, the structure of the physical system can be mapped
onto a graph

• Whenever the data can be expressed in the format of a graph, graph neural networks (GNNs)
have been identified as promising tools to extract relevant nodal and graph-level features that
describe the dynamics of the physical system

atomistic materials modeling finite element simulations urban sciences
(e.g., transportation and power grid)

Image from https://memgraph.com/blog/modeling-visualizing-
navigating-a-transportation-network-with-memgraph

https://memgraph.com/blog/modeling-visualizing-navigating-a-transportation-network-with-memgraph
https://memgraph.com/blog/modeling-visualizing-navigating-a-transportation-network-with-memgraph

66 Open slide master to edit

Graph Neural Networks (GNNs)
The architecture of a GNN is made of:

1. a graph embedding layer
2. hidden graph layers aim at capturing short range interactions between nodes in the

graph
3. pooling layers interleaved with graph layers synthetize information related to

adjacent nodes via aggregation
4. fully connected (FC) dense layers at the end of the architecture to capture effects

that global features of the graph have over the target properties of interest

Convolutional operations aggregate information from neighboring nodes

77 Open slide master to edit

Limitations of open-source GNN implementations
Popular open-source GNN implementations lack vital features, hindering their full-scale
application to computational chemistry.

In particular these libraries do not simultaneously support:

(1) multi-task learning (MTL), which is used to effectively stabilize the training by taking
advantage of implicit correlations between multiple target properties of interest;

(2) seamless replacement of MPNNs without drastically and disruptively re-implement a
significantly large portion of the original code;

(3) distributed data parallelism (DDP) effectively implemented to address scaling
challenges on large-scale supercomputing facilities;

(4) regular software maintenance to ensure appropriate updates of the software
packages required to run the code.

(5) portability across diverse hardware architectures

88 Open slide master to edit

HydraGNN: Distributed PyTorch
Implementation of Multi-Headed GNNs
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN

HydraGNN

Multi-task
learning (MTL)

Scalable
training

Compatibility with
required software
packages

Supports
different
MPNNs

Portability

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN

99 Open slide master to edit

<latexit sha1_base64="Ac3erUZxcWZv7CYHtf2u6X+Wb7M=">AAADGnicjVJNb9NAEF2brxI+msKRy4oIqQiIbKuiHKty4VikJK0UB2u9Hqerrnet3XHbyPLv4NK/woUDCHFDXPg3rNMg0gSJjrTS08ybN7NvNy2lsBgEvzz/xs1bt+9s3O3cu//g4WZ369HI6spwGHIttTlKmQUpFAxRoISj0gArUgmH6cnbtn54CsYKrQY4K2FSsKkSueAMXSrZ8oK4UpkjANZxwfA4zeuzpqljXYJhqI1iBdTMTAuhmobGcgQG6R/mrEnqGOEcTVG7sZng2LwMG7r9V+p5h7p4tdwS0ti0Mkn0IaIvrqUZXdWk66LRqmim0V5TffC/jQdL4km3F/SDedB1EC5AjyziIOn+iDPNqwIUcsmsHYdBiRPnKQouoenElYWS8RM2hbGDreF2Us+ftqHPXCajuTbuKKTz7HJHzQprZ0XqmO26drXWJv9VG1eYv5nUQpUVguKXg/JKUtS0/Sc0EwY4ypkDjBvhdqX8mBnG0X2WjjMhXL3yOhhF/fB1f+f9Tm9vf2HHBnlCnpJtEpJdskfekQMyJNz76H3yvnhf/Qv/s//N/35J9b1Fz2NyJfyfvwG1BP3u</latexit>

argmin
w

kypredict,1(w)� y1k22 + kypredict,2(w)� y2k22 + . . .+ kypredict,T (w)� yT k22

Quantities simultaneously predicted:

• Property y1

• Property y2
• …

• Property yT

Global Multi-Task Training Loss Function

Multi-Task Learning stabilizes predictions of multiple properties
Each property operates as a mutual regularizer to stabilize the prediction of other properties

<latexit sha1_base64="1XN/pv5IYoaxvsR3Oe/6YXqsFM4=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APbUjLpnTY0kxmSjFKG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybnHjwXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFq+1Sj4BIbhhuB7VghDX2BLX98k/mtR1SaR/LeTGLshXQoecAZNVZ66IbUjPwgfZr2yxW36s5AlomXkwrkqPfLX91BxJIQpWGCat3x3Nj0UqoMZwKnpW6iMaZsTIfYsVTSEHUvnSWekhOrDEgQKfukITP190ZKQ60noW8ns4R60cvE/7xOYoKrXsplnBiUbP5RkAhiIpKdTwZcITNiYgllitushI2ooszYkkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABhKe4RXeHO28OO/Ox3y04OQ7h/AHzucP/qKRJA==</latexit>w = parameters of the neural network to optimize during the training

HydraGNN: Multi-task learning (MTL) for stabilization by extracting
physics correlations between multiple target properties of interest

1010 Open slide master to edit

HydraGNN: Message passing layer treated as
hyperparameter

Object-oriented programming enables seamless switch between different
MPNN layers that can be treated as hyperparameters

1111 Open slide master to edit

HydraGNN: Scalable training with Distribute Data
Parallelism (DDP)

HydraGNN_replica_1 HydraGNN_replica_2 HydraGNN_replica_P…

Process_1 Process_2 Process_P

Training data batch 1 Training data batch 2 Training data batch P

Data exchange Data exchange Data exchange

1212 Open slide master to edit

Results: linear scaling of data reading + training
using up to 1,024 NVIDIA V100 GPUs on OLCF
Summit and 1,024 NVIDIA GPUs on NERSC
Perlmutter

Result:
Scaling of HydraGNN almost linear
using 512 AMD MI250X GPUs of
OLCF-Crusher

HydraGNN: Scalable training with Distribute Data
Parallelism (DDP)

1313 Open slide master to edit

HydraGNN: Compatibility with required software packages

Continuous integrations tests on the
GitHub repo ensure software sustainability

1414 Open slide master to edit

HydraGNN functionalities are regularly tested on a broad set of computing architectures:

• Personal laptops for small scale training

• ORNL Edge Computing DGX boxes using docker containers

• OLCF CADES clusters using conda environments: https://www.olcf.ornl.gov/tag/cades/

• OLCF supercomputer Summit (NVIDIA V100 GPUs): https://www.olcf.ornl.gov/summit/

• NERSC supercomputer Perlmutter (NVIDIA A100 GPUs): https://docs.nersc.gov/systems/perlmutter/

• OLCF Crusher (AMD Instinct 250X GPUs): https://www.olcf.ornl.gov/tag/crusher/

• OLCF supercomputer Frontier (AMD Instinct 250X GPUs): https://www.olcf.ornl.gov/frontier/

• University of Tsukuba supercomputer Pegasus (NVIDIA H100 GPUs):
https://www.ccs.tsukuba.ac.jp/wp-content/uploads/sites/14/Pegasus.pdf

• Groq technology: https://groq.com

HydraGNN: Portability across Diverse Computing Platforms

https://www.olcf.ornl.gov/tag/cades/
https://www.olcf.ornl.gov/summit/
https://docs.nersc.gov/systems/perlmutter/
https://www.olcf.ornl.gov/tag/crusher/
https://www.olcf.ornl.gov/frontier/
https://www.ccs.tsukuba.ac.jp/eng/
https://groq.com/

Scalable GNN training

1818 Open slide master to edit

Motivation
In scientific applications like atomistic materials modeling, the GCNN must be accurate and
robust in a high-dimensional parameter space to model very diverse configurations.

Chemical Space,
Naomi Johnson and Lee Cronin

Example - Atomistic materials modeling

(1) chemical composition, and

(2) arrangement of atoms of different
constituents

This requires training the GCNN model on large volumes of graph data, which makes the
training both computationally, memory, and I/O intensive.

Graph-level
Link-level

Node-level

1919 Open slide master to edit

GNN I/O Challenges

File per molecule NVME/Node-local SSD Sharding
• 10s of millions of files
• Large meta data
• Huge stress on filesystem
• Multiple requests to increase

space/node quotas

• Non-negligible setup time
• Total (N nodes x data size)

byte transfer

• Flexibility issue
• May limit the quality of

training

• GNN I/O characteristics
– Read-oriented
– Frequent access:

(e.g., 100 epochs per hour)
– Shuffled access to improve

generalization or to avoid
overfitting

Iterative training

Data
Loading Forward Backward Optimization

Step

GPU
Memory

File system

CPU
Memory

Gradient
Aggregation

Data Batch

Iterative GNN training: Data loading is one of the key steps for
performance

2020 Open slide master to edit

Parallelisms: Scalable GNN Training Strategies

P1 P2 P3 P4 P1 P2 P3 P4

Model

Workers

Data

Data Parallel Model Parallel

Partitioned

Sharded

And many more:
• Pipeline
• Hybrid
• Tensor
• Spatial
• Layer
• Sequence
• …

Supported in HydraGNN

2121 Open slide master to edit

Data Loading Strategy

Meta data

(b) Containerized File Format

Parallel
File System

Index lookup

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU CPU GPU CPU GPU CPU GPU

(a) Per-object File Format (c) Distributed Data Store

Compute Nodes

Preload

One-side RMA

Per-object File Format Containerized File Format Distributed Memory Store

HydraGNN
DDStore

2222 Open slide master to edit

DDStore Mileage

Large-scale data:
Data cannot fit in

a single node

Small data:
Data can fit in a

single node
memory or NVME

Sh
uf

fli
ng

N
o

sh
uf

fli
ng

Data Sharding

Node-local
data or data

caching

Node-local
data or data

caching

Distributed data
(DDStore)

HydraGNN

2828 Open slide master to edit

HydraGNN: enabling large-scale GNN
training on HPC
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN

HydraGNN

Multi-task
learning (MTL)

Scalable
training

Compatibility with
required software
packages

Supports
different
MPNNs

Portability

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN

2929 Open slide master to edit

Overview

• Multitasking heads for better
data efficiency

• Message passing layers treated
as hyperparameter

• Setting up HydraGNN via a
configuration json file

• Multiple data loaders/file format
to support scalability

• Data file formats

• DDStore (Scalable Distributed
Data Store)

(Zhang et al., TMS, 2022)

3030 Open slide master to edit

Multitasking for improved data efficiency
• Joint learning of multiple properties

– Input: Graph representation (node feature, edge feature, adjacent matrix)
– Output: Regression targets (node level, graph level)

• Inherently sharing features across learning tasks à Improved prediction accuracy
• Improved generalization/reduced overfitting
• Saved training time and improved training stability
• E.g., FePt (Lupo Pasini et al., 2022)

– mixing enthalpy (global), charge transfer and magnetic moment (atomic/node) in FePt

3131 Open slide master to edit

Multitasking for improved data efficiency
• Implementation

– User-controlled task weightsà prioritize tasks
– Graph-level module

• Shared multilayer perceptron (MLP) + MLP for
individual tasks

– Node-level module (how to handle variable
number of nodes?)
• Padding to the largest graph (inefficient)
• Graph convolutional layers
• A shared MLP between all the nodes, mapping

from extracted feature space to node-level
properties

𝐿 = #
!"#

$!%$"

𝛼!𝑙!

3232 Open slide master to edit

Message passing layer treated as hyperparameter

• Object-oriented modules for each message passing layers

• Easy for extension/to include other GNN layers

• Convenient for user to find the optimal model for their applications

• How can users contribute by introducing additional MPNN layers?
– Develop new class that inherits from “Base”
– Implement the “get_conv()” method that defines the message passing policy

3333 Open slide master to edit

User set up HydraGNN case via a configuration json file
1. Define verbosity level

2. Define graph objects
– Load data
– Specify input features and regression

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of training/validation/testing
results

Example can be found at
https://github.com/ORNL/HydraGNN/blob/LoG202
3_tutorial/examples/lsms/lsms.json

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json

3434 Open slide master to edit

‘level: 0’: nothing is printed on the screen

‘level: 1’: only the process with rank 0 prints output

at the end of each training epoch

‘level: 2’: only the process with rank 0 prints output

at each batched gradient update, showing the stage

of the training on each epoch using a progression bar

‘level: 3’: every process prints output at the end of

each training epoch

‘level: 4’: every process prints output at each

batched gradient update, showing the stage of

the training on each epoch using a progression bar

Verbosity is used to handle amount of context printed in output by multiple processes during
scalable HydraGNN training with distributed data parallelism

User set up HydraGNN case via a configuration json file

3535 Open slide master to edit

User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of
training/validation/testing results

Example can be found at
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json

3636 Open slide master to edit

User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of
training/validation/testing results

Example can be found at
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json

3737 Open slide master to edit

User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of
training/validation/testing results

Example can be found at
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json

3838 Open slide master to edit

User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of
training/validation/testing results

Example can be found at
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json

3939 Open slide master to edit

User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of
training/validation/testing results

Example can be found at
https://github.com/ORNL/HydraGNN/blob/LoG2023_t
utorial/examples/lsms/lsms.json

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json

4040 Open slide master to edit

User set up HydraGNN case via a configuration json file

2. Define graph objects
– Load data
– Specify input features and regression

targets

3. Design model architecture
– Message passing method
– Number of layers
– Task weights

4. Specify training parameters
– Loss function
– Batch size, epochs
– Optimizer, learning rate

5. Visualization of
training/validation/testing results

Example can be found at
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples
/lsms/lsms.json

https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json
https://github.com/ORNL/HydraGNN/blob/LoG2023_tutorial/examples/lsms/lsms.json

4141 Open slide master to edit

Data file formats

The raw data can be converted into two pre-standardized formats:

• Pickle (preferrable for small/intermediate volumes of data)

• ADIOS2 https://adios2.readthedocs.io/en/v2.9.2/ (preferred for large volumes of data)

The user can choose the “degree of packing” to aggregate multiple data samples and avoid stressing
the parallel file system of the HPC facility when HydraGNN is trained on large volumes of data.

Examples:

• If the data is “relatively” small in volume (i.e., < 50k data samples), storing one pickle file per data
sample is fine à per-object file format (PFF)

• If the number of data samples 50k, then it is recommended to pre-package multiple data samples
within the same file à containerized file format (CFF)

https://adios2.readthedocs.io/en/v2.9.2/

4242 Open slide master to edit

Traditional ways to read data from pickle and adios

Meta data

(b) Containerized File Format

Parallel
File System Index lookup

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU

Memory

CPU GPU CPU GPU CPU GPU CPU GPU

(a) Per-object File Format (c) Distributed Data Store

Compute Nodes

Preload

One-side RMA

Data file formats

4343 Open slide master to edit

Data file formats
Object-oriented programming framework for data imports:

• Classes to read data from raw files and convert them into pickle or ADIOS files
• Classes to read pre-standardized data and feed it to HydraGNN for training

4444 Open slide master to edit

DDStore: Scalable Distributed Data Store

• DDStore specifically addresses random,
read-oriented, global shuffle operations.

• Memory-to-memory distributed data
access

• In-memory, one-side remote memory
(RMA) access

• Minimize access to the file system during
the shuffling steps and make in-memory
data accessible to other nodes

• Utilize efficient, and portable
communication on HPC

Conventional approach DDStore

Data Loading

4545 Open slide master to edit

DDStore Procedures

1⃣ Preload
– Read data from file system
– Load in chunk

2⃣ Data registration
– Create local index
– Share globally

3⃣ Data loader
– Memory-to-memory data fetch
– Utilizing MPI RMA

CPU GPU CPU GPU CPU GPU

1. Preload

3. One-side RMA2. Data registration

Interconnected
Network

Deep Learning Application

Parallel Storage

Data Preloader

File Reader Plugin

Data Registry

Index Bookkeeping

Data Loader

One-sided RMA

4646 Open slide master to edit

MPI One-side Communication or RMA

P1 P2

MPI_Send

MPI_Receive

Two-sided communication

P1 P2

One-sided communication

MPI_Get

4747 Open slide master to edit

DDStore Using MPI One-side Communication (RMA)

MPI_Win_create
All gather index

MPI_Win_lock
MPI_Get

MPI_Win_unlock

MPI_Win_fence

MPI_Win_fence

Source Process Target Process

Time

MPI_Win_create

One-side RMA

MPI_Win_create

Target Process

MPI_Win_lock
MPI_Get

MPI_Win_unlock

One-side RMA

Ba
tc

h

MPI_Win_fence MPI_Win_fence

MPI_Win_fenceMPI_Win_fence

Item y

Item x

Hands-on session

5252 Open slide master to edit

Overview
• Prerequisites

– Setting up virtual environment
• Activate your virtual environment

– Downloading code (https://github.com/ORNL/HydraGNN)
• “git clone https://github.com/ORNL/HydraGNN”

• Three examples (https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial)

– QM9
• Single tasking for a graph-level property
• Multitasking regressions at both graph-level and node-level

– LSMS
• Customization of dataset/user dataset

– AISD HOMO-LUMO
• Scalability
• DDStore/video record of OLCF-Frontier (due to access limitation)

https://github.com/ORNL/HydraGNN
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial

5353 Open slide master to edit

QM9 dataset

5454 Open slide master to edit

QM9 (Ramakrishnan et al., 2014)
• torch_geometric.datasets.QM9

• 130k molecules

• 20 regression targets
– 19 original regression properties (graph-level)

• geometric, energetic, electronic, and thermodynamic properties
– Add Mulliken partial charge (node-level) from (Ramakrishnan et

al., 2014)

(PyTorch Geometric bult-in dataset)

5555 Open slide master to edit

Two examples

• https://github.com/ORNL/HydraGNN/tree
/LoG2023_tutorial/examples/qm9

• Single-tasking on free energy, G
– Files: qm9.py and qm9.json

• Multitasking on all 20 (=19+1) properties
– Files: qm9_custom20.py and qm9_all20.json

19 Partial Charge e

https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/qm9
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/qm9

5656 Open slide master to edit

Single-tasking on free energy, G

• Files: qm9.py and qm9.json

• “python examples/qm9/qm9.py”

5757 Open slide master to edit

Single-tasking on free energy, G

• Loading data
– torch_geometric.datasets.QM9
– pre_transform function

• Split dataset and create
dataloaders

5858 Open slide master to edit

Single-tasking on free energy, G

• Create model with config from
qm9.json

• Set up optimizer

• Train the model
– hydragnn.train.train_validate_test

5959 Open slide master to edit

Single-tasking on free energy, G

• Create model with config from
qm9.json

• Set up optimizer

• Train the model
– hydragnn.train.train_validate_test

6060 Open slide master to edit

Single-tasking on free energy, G

Results of test set

“python examples/qm9/qm9.py”

6161 Open slide master to edit

Multitasking on all 20 (=19+1) properties

• Files
– qm9_custom20.py and qm9_all20.json
– Pre-processed splits

• qm9_train_test_val_idx_lists.pkl

• “python examples/qm9/qm9_custom20.py”

6262 Open slide master to edit

Multitasking on all 20 (=19+1) properties

• Customized dataset
– QM9_custom(…)

• Download charge density
• get_charge(self, data)

– Pre-processed splits
• qm9_train_test_val_idx_lists.pkl

6363 Open slide master to edit

Multitasking on all 20 (=19+1) properties

• data.x for node feature
– 11-dimension vector
– atom type (i.e., "atomH", "atomC", "atomN", "atomO", "atomF"), atomic number,

aromatic [or not], hybridization types (i.e., sp, sp2, or sp3), Hprop (i.e., number of
hydrogen neighbors are used as features for each node)

• data.y for outputs/regression tasks
– 19 graph-level + 1 node-level (number of nodes, varying across samples)

6464 Open slide master to edit

Multitasking on all 20 (=19+1) properties

• Create dataloaders

• Create model
– Graph heads
– Node heads

• Set up optimizer

• Train the model
– task_weights

6565 Open slide master to edit

Multitasking

• Test HydraGNN in multitasking
with hybrid graph-level and
node-level properties

– 19 graph-level properties
– 1 node-level property

“python
examples/qm9/qm9_custom20.py”

6666 Open slide master to edit

FePt binary alloy with 32 atoms
LSMS-3 data

6767 Open slide master to edit

FePt binary alloy with 32 atoms - LSMS-3 data

Iron-Platinum (FePt) Open-Source Dataset binary alloy
https://doi.org/10.13139/OLCF/1762742

• 32 atoms arranged in a body-centered tetragonal (BCT) structure
• The entire composition range is spanned
 (from 0% Fe-100%Pt through 100% Fe-0%Pt)
• 32,000 configurations

For each configuration, DFT calculations are performed to compute
the total energy of the systems
DFT calculations are performed using the LSMS-3 code

BCT

https://doi.org/10.13139/OLCF/1762742

6868 Open slide master to edit

FePt binary alloy with 32 atoms - LSMS-3 data
Download dataset using Globus https://www.globus.org

• Create a Globus account and log-in
Specify the name
of the source and
destination
endpoints among
which the data
transfer must be
established

Specify the paths on
the source endpoint
where the data is
available and the
path on the
destination of
endpoint where the
data must be
transferred

https://www.globus.org/

6969 Open slide master to edit

FePt binary alloy with 32 atoms - LSMS-3 data
Download dataset using Globus https://www.globus.org

Choice of endpoints:

• One endpoint must be where you want the dataset to be downloaded

• One endpoint must be where the data is available: OLCF-DOI-DOWNLOADS

 Path: /~/OLCF/202102/10.13139_OLCF_1762742/

https://www.globus.org/

7070 Open slide master to edit

FePt binary alloy with 32 atoms - LSMS-3 data
Code for this example is available at the following GitHub fork:
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/lsms

Python scripts to run for this example are available inside HydraGNN/examples/lsms:

• compute_enthalpy.py à data pre-processing

• lsms.py à data pre-loading and training

• inference.py à post-processing and analysis of results

https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial/examples/lsms

7171 Open slide master to edit

FePt binary alloy with 32 atoms - LSMS-3 data
Code for this example is available at the following GitHub fork:
https://github.com/allaffa/HydraGNN/tree/LoG2023_tutorial_lsms_example

compute_enthalpy.py

1. Performs histogram cutoff to ensure that the atomic configurations are balanced across all chemical
compositions.

 We used 1,000 atomic configurations for thresholding

 From the original set of 32,017 configurations, only 28,058 configurations are retained

2. Computes mixing enthalpy by removing the linear mixing terms from the total energy of each DFT
calculation

https://github.com/allaffa/HydraGNN/tree/LoG2023_tutorial_lsms_example

7272 Open slide master to edit

lsms.py
1. Dataset reading and pre-loading

Create ‘dataset’ folder inside the ‘example directory
Move FePt_enthalpy into ‘dataset’

FePt binary alloy with 32 atoms - LSMS-3 data

AbstractBaseDataset

AbstractRawDataset

LSMSDataset

Intermediate layer in the
class inheritance that
implemented useful
methods that can be used
for data with diverse formats

Remark:

Your customized dataset does not need to inherit from
Abs’tractRawDataset.

It can directly inherit from AbstractBaseDataset.

Inheriting from AbstractBaseDataset ensures that you can
scale the data management using internal capabilities of
HydraGNN
[Jong will provide more details in this regard]

Class inheritance for dataset classes

7373 Open slide master to edit

lsms.py

2. Dataset conversion into pickle format
and storage in files

FePt binary alloy with 32 atoms
- LSMS-3 data

After every atomic structure is converted into a
‘torch.geometric.dataset’ object, which is ready to
feed into HydraGNN for training and inferencing,
the data samples are saved into individual pickle files

7474 Open slide master to edit

lsms.py

FePt binary alloy with 32 atoms
- LSMS-3 data

3. Data loading from pickle files
for training

7575 Open slide master to edit

lsms.py
Single-task training for predictions of mixing enthalpy

inference.py
Load pre-trained model and run inference on testing data

FePt binary alloy with 32 atoms - LSMS-3 data

Test MAE:

0.010 Rydberg

7676 Open slide master to edit

Multi-task learning (MTL) for predictions of
mixing enthalpy, atomic charge transfer, and
atomic magnetic moment

FePt binary alloy with 32 atoms - LSMS-3 data

Magnetic moment and mixing enthalpy are strongly
correlated, and MTL can use this correlation to stabilize
the training

7777 Open slide master to edit

lsms.py
Multi-task training for predictions of mixing
enthalpy, atomic charge density, and atomic
magnetic moment

inference.py
Load pre-trained model and run inference on
testing data

FePt binary alloy with 32 atoms - LSMS-3 data

Test MAE: 0.010 Rydberg Test MAE: 0.66 electron charges Test MAE: 0.98 magnetons

7878 Open slide master to edit

AIDS HOMO-LUMO dataset

7979 Open slide master to edit

AISD HOMO-LUMO data with DDP

• Code for this example is available at the following GitHub fork:
https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial

• Python scripts to run
for this example are available inside HydraGNN/examples/csce

• Demonstrating how to perform DDP with HydraGNN using DDStore
on Frontier, ORNL

• Main training steps
– Pre-processing of raw data for DDP and DDStore
– GNN training

• With DDP
• Training with DDStore

$ git clone -b LoG2023_tutorial
https://github.com/ORNL/HydraGNN.git

https://github.com/ORNL/HydraGNN/tree/LoG2023_tutorial

8080 Open slide master to edit

ORNL AISD HOMO-LUMO data

• Graph level prediction
– Predicting energy gap of

molecules given their 2D
molecular graphs

– Over 10.5 M molecules

W. Hu, et al., 2021

The HOMO and LUMO of a molecule (Wikipedia)

$ cd examples/csce
$ mkdir dataset && cd dataset
$ wget https://users.nccs.gov/~jyc/csce_gap_synth.csv

8181 Open slide master to edit

Frontier environment

• We have HydraGNN
development environment
on Frontier
– Python environment
– Custom build of PyTorch and

PyG to utilize GPUs
– DDStore
– mpi4py
– Adios

module purge
ml DefApps
ml gcc
module unload darshan-runtime

module use -a /gpfs/alpine/world-shared/lrn026/sw/modulefiles
ml anaconda3/2022.10
ml adios2/devel

8282 Open slide master to edit

DDStore Setup and Use
1. Read raw data
2. Convert to PyG graph object

(Chem.MolFromSmiles)
3. Create DDStore object (PyDDStore)
4. Register a list of graph objects

(PyDDStore.add)
5. (Optional) Save as Adios or Pickle

format
6. DDStore object is DataSet. Combine

with DataLoader and
DistributedSampler

7. Call PyDDStore.get to retrieve

Hydragnn/utils/smiles_utils.py

Hydragnn/utils/distdaset.py

Note 1: We provide various wrappers and functions

Note 2: We have examples

Hydragnn/preprocess/load_data.py

8383 Open slide master to edit

Data pre-processing
#!/bin/bash
#SBATCH -A LRN026
#SBATCH -J HydraGNN
#SBATCH -t 00:30:00
#SBATCH -p batch
#SBATCH -N 2

export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED=1
export MPICH_OFI_NIC_POLICY=GPU
export MIOPEN_DISABLE_CACHE=1
export NCCL_PROTO=Simple

export OMP_NUM_THREADS=7
export PYTHONPATH=$PWD:$PYTHONPATH

srun -n64 python -u examples/csce/train_gap.py --preonly

Configuration file

Train script

Raw data file

8484 Open slide master to edit

Training
#!/bin/bash
#SBATCH -A LRN026
#SBATCH -J HydraGNN
#SBATCH -t 00:30:00
#SBATCH -p batch
#SBATCH -N 32

export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED=1
export MPICH_OFI_NIC_POLICY=GPU
export MIOPEN_DISABLE_CACHE=1
export NCCL_PROTO=Simple

export OMP_NUM_THREADS=7
export PYTHONPATH=$PWD:$PYTHONPATH

srun –n256 -c7 --gpus-per-task=1 --gpu-bind=closest \
 python -u examples/csce/train_gap.py

Frontier node layout: 8 GPUs per node

8585 Open slide master to edit

Training with DDStore
#!/bin/bash
#SBATCH -A LRN026
#SBATCH -J HydraGNN
#SBATCH -t 00:30:00
#SBATCH -p batch
#SBATCH -N 32

export MPICH_ENV_DISPLAY=1
export MPICH_VERSION_DISPLAY=1
export MPICH_GPU_SUPPORT_ENABLED=1
export MPICH_GPU_MANAGED_MEMORY_SUPPORT_ENABLED=1
export MPICH_OFI_NIC_POLICY=GPU
export MIOPEN_DISABLE_CACHE=1
export NCCL_PROTO=Simple

export OMP_NUM_THREADS=7
export PYTHONPATH=$PWD:$PYTHONPATH

srun –n256 -c7 --gpus-per-task=1 --gpu-bind=closest \
 python -u examples/csce/train_gap.py --ddstore

No DDStore

With DDStore

5.7x

Conclusions

8787 Open slide master to edit

HydraGNN: enabling large-scale GNN
training on HPC
https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN

HydraGNN

Multi-task
learning (MTL)

Scalable
training

Compatibility with
required software
packages

Supports
different
MPNNs

Portability

https://www.osti.gov/doecode/biblio/65891
https://github.com/ORNL/HydraGNN

8888 Open slide master to edit

Past and present contributors
• Marko Burčul (master thesis at Politecnico di Milano, Italy)

• Samuel Temple Reeve (Oak Ridge National Laboratory)
reevest@ornl.gov

• Kshitij Mehta (Oak Ridge National Laboratory)
mehtakv@ornl.gov

• Justin Baker (University of Utah, Salt Lake City)
baker@math.utah.edu

• Jonghyun Bae (Lawrence Berkeley National Laboratory)
jbae2@lbl.gov

• Khaled Ibrahim (Lawrence Berkeley National Laboratory).
kzibrahim@lbl.gov

mailto:reevest@ornl.gov
mailto:mehtakv@ornl.gov
mailto:baker@math.utah.edu
mailto:jbae2@lbl.gov
mailto:kzibrahim@lbl.gov

8989 Open slide master to edit

Acknowledgments
This research is sponsored by the Artificial Intelligence Initiative as part of the Laboratory
Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-
00OR22725. This work was supported in part by the US-DOE Advanced Scientific Computing
Research (ASCR) under contract DE-SC0023490.

This research has been supported by the SciDAC Institute for Computer Science, Data, and
Artificial Intelligence (RAPIDS), Lawrence Berkeley National Laboratory, which is operated
by the University of California for the U.S. Department of Energy under contract DE-AC02-
05CH11231.

This research used resources of the Oak Ridge Leadership Computing Facility and of the
Edge Computing program at the Oak Ridge National Laboratory. An award of computer
time was provided by the OLCF Director's Discretion Project program using the OLCF
awards MAT250 and LRN026.

This research also used resources of the National Energy Research Scientific Computing
Center (NERSC), which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725 and No. DE-AC02-05CH11231 using NERSC
award ASCR-ERCAP0025216.

9090 Open slide master to edit

Thank you!

Questions?
Massimiliano (Max)

Lupo Pasini
Data Scientist

lupopasinim@ornl.gov

Computational Sciences and
Engineering Division (CSED)

Oak Ridge National
Laboratory

Pei
Zhang

Computational Scientist
zhangp1@ornl.gov

Computational Sciences and
Engineering Division (CSED)

Oak Ridge National
Laboratory

Jong Youl
Choi

Computer Scientist
choij@ornl.gov

Computer Science and
Mathematics Division (CSMD)

Oak Ridge National
Laboratory

mailto:lupopasinim@ornl.gov
mailto:zhangp1@ornl.gov
mailto:choij@ornl.gov

