Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
13 contributors

Users who have contributed to this file

@rouault @klokan @bje- @schwehr @hobu @symonsoft @kevinmehall @EvertEt @mwtoews @julienr @jrahkonen @jomue @alexbruy
executable file 2949 lines (2409 sloc) 119 KB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ******************************************************************************
# $Id$
#
# Project: Google Summer of Code 2007, 2008 (http://code.google.com/soc/)
# Support: BRGM (http://www.brgm.fr)
# Purpose: Convert a raster into TMS (Tile Map Service) tiles in a directory.
# - generate Google Earth metadata (KML SuperOverlay)
# - generate simple HTML viewer based on Google Maps and OpenLayers
# - support of global tiles (Spherical Mercator) for compatibility
# with interactive web maps a la Google Maps
# Author: Klokan Petr Pridal, klokan at klokan dot cz
# Web: http://www.klokan.cz/projects/gdal2tiles/
# GUI: http://www.maptiler.org/
#
###############################################################################
# Copyright (c) 2008, Klokan Petr Pridal
# Copyright (c) 2010-2013, Even Rouault <even dot rouault at spatialys.com>
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
# ******************************************************************************
from __future__ import print_function, division
import math
from multiprocessing import Pool
from functools import partial
import os
import tempfile
import threading
import shutil
import sys
from uuid import uuid4
from xml.etree import ElementTree
from osgeo import gdal
from osgeo import osr
try:
from PIL import Image
import numpy
import osgeo.gdal_array as gdalarray
numpy_available = True
except ImportError:
# 'antialias' resampling is not available
numpy_available = False
__version__ = "$Id$"
resampling_list = (
'average', 'near', 'bilinear', 'cubic', 'cubicspline', 'lanczos',
'antialias', 'mode', 'max', 'min', 'med', 'q1', 'q3')
profile_list = ('mercator', 'geodetic', 'raster')
webviewer_list = ('all', 'google', 'openlayers', 'leaflet', 'none')
threadLocal = threading.local()
# =============================================================================
# =============================================================================
# =============================================================================
__doc__globalmaptiles = """
globalmaptiles.py
Global Map Tiles as defined in Tile Map Service (TMS) Profiles
==============================================================
Functions necessary for generation of global tiles used on the web.
It contains classes implementing coordinate conversions for:
- GlobalMercator (based on EPSG:3857)
for Google Maps, Yahoo Maps, Bing Maps compatible tiles
- GlobalGeodetic (based on EPSG:4326)
for OpenLayers Base Map and Google Earth compatible tiles
More info at:
http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation
http://msdn.microsoft.com/en-us/library/bb259689.aspx
http://code.google.com/apis/maps/documentation/overlays.html#Google_Maps_Coordinates
Created by Klokan Petr Pridal on 2008-07-03.
Google Summer of Code 2008, project GDAL2Tiles for OSGEO.
In case you use this class in your product, translate it to another language
or find it useful for your project please let me know.
My email: klokan at klokan dot cz.
I would like to know where it was used.
Class is available under the open-source GDAL license (www.gdal.org).
"""
MAXZOOMLEVEL = 32
class GlobalMercator(object):
r"""
TMS Global Mercator Profile
---------------------------
Functions necessary for generation of tiles in Spherical Mercator projection,
EPSG:3857.
Such tiles are compatible with Google Maps, Bing Maps, Yahoo Maps,
UK Ordnance Survey OpenSpace API, ...
and you can overlay them on top of base maps of those web mapping applications.
Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left).
What coordinate conversions do we need for TMS Global Mercator tiles::
LatLon <-> Meters <-> Pixels <-> Tile
WGS84 coordinates Spherical Mercator Pixels in pyramid Tiles in pyramid
lat/lon XY in meters XY pixels Z zoom XYZ from TMS
EPSG:4326 EPSG:387
.----. --------- -- TMS
/ \ <-> | | <-> /----/ <-> Google
\ / | | /--------/ QuadTree
----- --------- /------------/
KML, public WebMapService Web Clients TileMapService
What is the coordinate extent of Earth in EPSG:3857?
[-20037508.342789244, -20037508.342789244, 20037508.342789244, 20037508.342789244]
Constant 20037508.342789244 comes from the circumference of the Earth in meters,
which is 40 thousand kilometers, the coordinate origin is in the middle of extent.
In fact you can calculate the constant as: 2 * math.pi * 6378137 / 2.0
$ echo 180 85 | gdaltransform -s_srs EPSG:4326 -t_srs EPSG:3857
Polar areas with abs(latitude) bigger then 85.05112878 are clipped off.
What are zoom level constants (pixels/meter) for pyramid with EPSG:3857?
whole region is on top of pyramid (zoom=0) covered by 256x256 pixels tile,
every lower zoom level resolution is always divided by two
initialResolution = 20037508.342789244 * 2 / 256 = 156543.03392804062
What is the difference between TMS and Google Maps/QuadTree tile name convention?
The tile raster itself is the same (equal extent, projection, pixel size),
there is just different identification of the same raster tile.
Tiles in TMS are counted from [0,0] in the bottom-left corner, id is XYZ.
Google placed the origin [0,0] to the top-left corner, reference is XYZ.
Microsoft is referencing tiles by a QuadTree name, defined on the website:
http://msdn2.microsoft.com/en-us/library/bb259689.aspx
The lat/lon coordinates are using WGS84 datum, yes?
Yes, all lat/lon we are mentioning should use WGS84 Geodetic Datum.
Well, the web clients like Google Maps are projecting those coordinates by
Spherical Mercator, so in fact lat/lon coordinates on sphere are treated as if
the were on the WGS84 ellipsoid.
From MSDN documentation:
To simplify the calculations, we use the spherical form of projection, not
the ellipsoidal form. Since the projection is used only for map display,
and not for displaying numeric coordinates, we don't need the extra precision
of an ellipsoidal projection. The spherical projection causes approximately
0.33 percent scale distortion in the Y direction, which is not visually
noticeable.
How do I create a raster in EPSG:3857 and convert coordinates with PROJ.4?
You can use standard GIS tools like gdalwarp, cs2cs or gdaltransform.
All of the tools supports -t_srs 'epsg:3857'.
For other GIS programs check the exact definition of the projection:
More info at http://spatialreference.org/ref/user/google-projection/
The same projection is designated as EPSG:3857. WKT definition is in the
official EPSG database.
Proj4 Text:
+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0
+k=1.0 +units=m +nadgrids=@null +no_defs
Human readable WKT format of EPSG:3857:
PROJCS["Google Maps Global Mercator",
GEOGCS["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]],
PROJECTION["Mercator_1SP"],
PARAMETER["central_meridian",0],
PARAMETER["scale_factor",1],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["metre",1,
AUTHORITY["EPSG","9001"]]]
"""
def __init__(self, tile_size=256):
"Initialize the TMS Global Mercator pyramid"
self.tile_size = tile_size
self.initialResolution = 2 * math.pi * 6378137 / self.tile_size
# 156543.03392804062 for tile_size 256 pixels
self.originShift = 2 * math.pi * 6378137 / 2.0
# 20037508.342789244
def LatLonToMeters(self, lat, lon):
"Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:3857"
mx = lon * self.originShift / 180.0
my = math.log(math.tan((90 + lat) * math.pi / 360.0)) / (math.pi / 180.0)
my = my * self.originShift / 180.0
return mx, my
def MetersToLatLon(self, mx, my):
"Converts XY point from Spherical Mercator EPSG:3857 to lat/lon in WGS84 Datum"
lon = (mx / self.originShift) * 180.0
lat = (my / self.originShift) * 180.0
lat = 180 / math.pi * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0)
return lat, lon
def PixelsToMeters(self, px, py, zoom):
"Converts pixel coordinates in given zoom level of pyramid to EPSG:3857"
res = self.Resolution(zoom)
mx = px * res - self.originShift
my = py * res - self.originShift
return mx, my
def MetersToPixels(self, mx, my, zoom):
"Converts EPSG:3857 to pyramid pixel coordinates in given zoom level"
res = self.Resolution(zoom)
px = (mx + self.originShift) / res
py = (my + self.originShift) / res
return px, py
def PixelsToTile(self, px, py):
"Returns a tile covering region in given pixel coordinates"
tx = int(math.ceil(px / float(self.tile_size)) - 1)
ty = int(math.ceil(py / float(self.tile_size)) - 1)
return tx, ty
def PixelsToRaster(self, px, py, zoom):
"Move the origin of pixel coordinates to top-left corner"
mapSize = self.tile_size << zoom
return px, mapSize - py
def MetersToTile(self, mx, my, zoom):
"Returns tile for given mercator coordinates"
px, py = self.MetersToPixels(mx, my, zoom)
return self.PixelsToTile(px, py)
def TileBounds(self, tx, ty, zoom):
"Returns bounds of the given tile in EPSG:3857 coordinates"
minx, miny = self.PixelsToMeters(tx * self.tile_size, ty * self.tile_size, zoom)
maxx, maxy = self.PixelsToMeters((tx + 1) * self.tile_size, (ty + 1) * self.tile_size, zoom)
return (minx, miny, maxx, maxy)
def TileLatLonBounds(self, tx, ty, zoom):
"Returns bounds of the given tile in latitude/longitude using WGS84 datum"
bounds = self.TileBounds(tx, ty, zoom)
minLat, minLon = self.MetersToLatLon(bounds[0], bounds[1])
maxLat, maxLon = self.MetersToLatLon(bounds[2], bounds[3])
return (minLat, minLon, maxLat, maxLon)
def Resolution(self, zoom):
"Resolution (meters/pixel) for given zoom level (measured at Equator)"
# return (2 * math.pi * 6378137) / (self.tile_size * 2**zoom)
return self.initialResolution / (2**zoom)
def ZoomForPixelSize(self, pixelSize):
"Maximal scaledown zoom of the pyramid closest to the pixelSize."
for i in range(MAXZOOMLEVEL):
if pixelSize > self.Resolution(i):
return max(0, i - 1) # We don't want to scale up
return MAXZOOMLEVEL - 1
def GoogleTile(self, tx, ty, zoom):
"Converts TMS tile coordinates to Google Tile coordinates"
# coordinate origin is moved from bottom-left to top-left corner of the extent
return tx, (2**zoom - 1) - ty
def QuadTree(self, tx, ty, zoom):
"Converts TMS tile coordinates to Microsoft QuadTree"
quadKey = ""
ty = (2**zoom - 1) - ty
for i in range(zoom, 0, -1):
digit = 0
mask = 1 << (i - 1)
if (tx & mask) != 0:
digit += 1
if (ty & mask) != 0:
digit += 2
quadKey += str(digit)
return quadKey
class GlobalGeodetic(object):
r"""
TMS Global Geodetic Profile
---------------------------
Functions necessary for generation of global tiles in Plate Carre projection,
EPSG:4326, "unprojected profile".
Such tiles are compatible with Google Earth (as any other EPSG:4326 rasters)
and you can overlay the tiles on top of OpenLayers base map.
Pixel and tile coordinates are in TMS notation (origin [0,0] in bottom-left).
What coordinate conversions do we need for TMS Global Geodetic tiles?
Global Geodetic tiles are using geodetic coordinates (latitude,longitude)
directly as planar coordinates XY (it is also called Unprojected or Plate
Carre). We need only scaling to pixel pyramid and cutting to tiles.
Pyramid has on top level two tiles, so it is not square but rectangle.
Area [-180,-90,180,90] is scaled to 512x256 pixels.
TMS has coordinate origin (for pixels and tiles) in bottom-left corner.
Rasters are in EPSG:4326 and therefore are compatible with Google Earth.
LatLon <-> Pixels <-> Tiles
WGS84 coordinates Pixels in pyramid Tiles in pyramid
lat/lon XY pixels Z zoom XYZ from TMS
EPSG:4326
.----. ----
/ \ <-> /--------/ <-> TMS
\ / /--------------/
----- /--------------------/
WMS, KML Web Clients, Google Earth TileMapService
"""
def __init__(self, tmscompatible, tile_size=256):
self.tile_size = tile_size
if tmscompatible is not None:
# Defaults the resolution factor to 0.703125 (2 tiles @ level 0)
# Adhers to OSGeo TMS spec
# http://wiki.osgeo.org/wiki/Tile_Map_Service_Specification#global-geodetic
self.resFact = 180.0 / self.tile_size
else:
# Defaults the resolution factor to 1.40625 (1 tile @ level 0)
# Adheres OpenLayers, MapProxy, etc default resolution for WMTS
self.resFact = 360.0 / self.tile_size
def LonLatToPixels(self, lon, lat, zoom):
"Converts lon/lat to pixel coordinates in given zoom of the EPSG:4326 pyramid"
res = self.resFact / 2**zoom
px = (180 + lon) / res
py = (90 + lat) / res
return px, py
def PixelsToTile(self, px, py):
"Returns coordinates of the tile covering region in pixel coordinates"
tx = int(math.ceil(px / float(self.tile_size)) - 1)
ty = int(math.ceil(py / float(self.tile_size)) - 1)
return tx, ty
def LonLatToTile(self, lon, lat, zoom):
"Returns the tile for zoom which covers given lon/lat coordinates"
px, py = self.LonLatToPixels(lon, lat, zoom)
return self.PixelsToTile(px, py)
def Resolution(self, zoom):
"Resolution (arc/pixel) for given zoom level (measured at Equator)"
return self.resFact / 2**zoom
def ZoomForPixelSize(self, pixelSize):
"Maximal scaledown zoom of the pyramid closest to the pixelSize."
for i in range(MAXZOOMLEVEL):
if pixelSize > self.Resolution(i):
return max(0, i - 1) # We don't want to scale up
return MAXZOOMLEVEL - 1
def TileBounds(self, tx, ty, zoom):
"Returns bounds of the given tile"
res = self.resFact / 2**zoom
return (
tx * self.tile_size * res - 180,
ty * self.tile_size * res - 90,
(tx + 1) * self.tile_size * res - 180,
(ty + 1) * self.tile_size * res - 90
)
def TileLatLonBounds(self, tx, ty, zoom):
"Returns bounds of the given tile in the SWNE form"
b = self.TileBounds(tx, ty, zoom)
return (b[1], b[0], b[3], b[2])
class Zoomify(object):
"""
Tiles compatible with the Zoomify viewer
----------------------------------------
"""
def __init__(self, width, height, tile_size=256, tileformat='jpg'):
"""Initialization of the Zoomify tile tree"""
self.tile_size = tile_size
self.tileformat = tileformat
imagesize = (width, height)
tiles = (math.ceil(width / tile_size), math.ceil(height / tile_size))
# Size (in tiles) for each tier of pyramid.
self.tierSizeInTiles = []
self.tierSizeInTiles.append(tiles)
# Image size in pixels for each pyramid tierself
self.tierImageSize = []
self.tierImageSize.append(imagesize)
while (imagesize[0] > tile_size or imagesize[1] > tile_size):
imagesize = (math.floor(imagesize[0] / 2), math.floor(imagesize[1] / 2))
tiles = (math.ceil(imagesize[0] / tile_size), math.ceil(imagesize[1] / tile_size))
self.tierSizeInTiles.append(tiles)
self.tierImageSize.append(imagesize)
self.tierSizeInTiles.reverse()
self.tierImageSize.reverse()
# Depth of the Zoomify pyramid, number of tiers (zoom levels)
self.numberOfTiers = len(self.tierSizeInTiles)
# Number of tiles up to the given tier of pyramid.
self.tileCountUpToTier = []
self.tileCountUpToTier[0] = 0
for i in range(1, self.numberOfTiers + 1):
self.tileCountUpToTier.append(
self.tierSizeInTiles[i - 1][0] * self.tierSizeInTiles[i - 1][1] +
self.tileCountUpToTier[i - 1]
)
def tilefilename(self, x, y, z):
"""Returns filename for tile with given coordinates"""
tileIndex = x + y * self.tierSizeInTiles[z][0] + self.tileCountUpToTier[z]
return os.path.join("TileGroup%.0f" % math.floor(tileIndex / 256),
"%s-%s-%s.%s" % (z, x, y, self.tileformat))
class GDALError(Exception):
pass
def exit_with_error(message, details=""):
# Message printing and exit code kept from the way it worked using the OptionParser (in case
# someone parses the error output)
sys.stderr.write("Usage: gdal2tiles.py [options] input_file [output]\n\n")
sys.stderr.write("gdal2tiles.py: error: %s\n" % message)
if details:
sys.stderr.write("\n\n%s\n" % details)
sys.exit(2)
def set_cache_max(cache_in_bytes):
# We set the maximum using `SetCacheMax` and `GDAL_CACHEMAX` to support both fork and spawn as multiprocessing start methods.
# https://github.com/OSGeo/gdal/pull/2112
os.environ['GDAL_CACHEMAX'] = '%d' % int(cache_in_bytes / 1024 / 1024)
gdal.SetCacheMax(cache_in_bytes)
def generate_kml(tx, ty, tz, tileext, tile_size, tileswne, options, children=None, **args):
"""
Template for the KML. Returns filled string.
"""
if not children:
children = []
args['tx'], args['ty'], args['tz'] = tx, ty, tz
args['tileformat'] = tileext
if 'tile_size' not in args:
args['tile_size'] = tile_size
if 'minlodpixels' not in args:
args['minlodpixels'] = int(args['tile_size'] / 2)
if 'maxlodpixels' not in args:
args['maxlodpixels'] = int(args['tile_size'] * 8)
if children == []:
args['maxlodpixels'] = -1
if tx is None:
tilekml = False
args['title'] = options.title
else:
tilekml = True
args['title'] = "%d/%d/%d.kml" % (tz, tx, ty)
args['south'], args['west'], args['north'], args['east'] = tileswne(tx, ty, tz)
if tx == 0:
args['drawOrder'] = 2 * tz + 1
elif tx is not None:
args['drawOrder'] = 2 * tz
else:
args['drawOrder'] = 0
url = options.url
if not url:
if tilekml:
url = "../../"
else:
url = ""
s = """<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>%(title)s</name>
<description></description>
<Style>
<ListStyle id="hideChildren">
<listItemType>checkHideChildren</listItemType>
</ListStyle>
</Style>""" % args
if tilekml:
s += """
<Region>
<LatLonAltBox>
<north>%(north).14f</north>
<south>%(south).14f</south>
<east>%(east).14f</east>
<west>%(west).14f</west>
</LatLonAltBox>
<Lod>
<minLodPixels>%(minlodpixels)d</minLodPixels>
<maxLodPixels>%(maxlodpixels)d</maxLodPixels>
</Lod>
</Region>
<GroundOverlay>
<drawOrder>%(drawOrder)d</drawOrder>
<Icon>
<href>%(ty)d.%(tileformat)s</href>
</Icon>
<LatLonBox>
<north>%(north).14f</north>
<south>%(south).14f</south>
<east>%(east).14f</east>
<west>%(west).14f</west>
</LatLonBox>
</GroundOverlay>
""" % args
for cx, cy, cz in children:
csouth, cwest, cnorth, ceast = tileswne(cx, cy, cz)
s += """
<NetworkLink>
<name>%d/%d/%d.%s</name>
<Region>
<LatLonAltBox>
<north>%.14f</north>
<south>%.14f</south>
<east>%.14f</east>
<west>%.14f</west>
</LatLonAltBox>
<Lod>
<minLodPixels>%d</minLodPixels>
<maxLodPixels>-1</maxLodPixels>
</Lod>
</Region>
<Link>
<href>%s%d/%d/%d.kml</href>
<viewRefreshMode>onRegion</viewRefreshMode>
<viewFormat/>
</Link>
</NetworkLink>
""" % (cz, cx, cy, args['tileformat'], cnorth, csouth, ceast, cwest,
args['minlodpixels'], url, cz, cx, cy)
s += """ </Document>
</kml>
"""
return s
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''):
"""Scales down query dataset to the tile dataset"""
querysize = dsquery.RasterXSize
tile_size = dstile.RasterXSize
tilebands = dstile.RasterCount
if options.resampling == 'average':
# Function: gdal.RegenerateOverview()
for i in range(1, tilebands + 1):
# Black border around NODATA
res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i),
'average')
if res != 0:
exit_with_error("RegenerateOverview() failed on %s, error %d" % (
tilefilename, res))
elif options.resampling == 'antialias' and numpy_available:
# Scaling by PIL (Python Imaging Library) - improved Lanczos
array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
for i in range(tilebands):
array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i + 1),
0, 0, querysize, querysize)
im = Image.fromarray(array, 'RGBA') # Always four bands
im1 = im.resize((tile_size, tile_size), Image.ANTIALIAS)
if os.path.exists(tilefilename):
im0 = Image.open(tilefilename)
im1 = Image.composite(im1, im0, im1)
im1.save(tilefilename, tiledriver)
else:
if options.resampling == 'near':
gdal_resampling = gdal.GRA_NearestNeighbour
elif options.resampling == 'bilinear':
gdal_resampling = gdal.GRA_Bilinear
elif options.resampling == 'cubic':
gdal_resampling = gdal.GRA_Cubic
elif options.resampling == 'cubicspline':
gdal_resampling = gdal.GRA_CubicSpline
elif options.resampling == 'lanczos':
gdal_resampling = gdal.GRA_Lanczos
elif options.resampling == 'mode':
gdal_resampling = gdal.GRA_Mode
elif options.resampling == 'max':
gdal_resampling = gdal.GRA_Max
elif options.resampling == 'min':
gdal_resampling = gdal.GRA_Min
elif options.resampling == 'med':
gdal_resampling = gdal.GRA_Med
elif options.resampling == 'q1':
gdal_resampling = gdal.GRA_Q1
elif options.resampling == 'q3':
gdal_resampling = gdal.GRA_Q3
# Other algorithms are implemented by gdal.ReprojectImage().
dsquery.SetGeoTransform((0.0, tile_size / float(querysize), 0.0, 0.0, 0.0,
tile_size / float(querysize)))
dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0))
res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling)
if res != 0:
exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res))
def setup_no_data_values(input_dataset, options):
"""
Extract the NODATA values from the dataset or use the passed arguments as override if any
"""
in_nodata = []
if options.srcnodata:
nds = list(map(float, options.srcnodata.split(',')))
if len(nds) < input_dataset.RasterCount:
in_nodata = (nds * input_dataset.RasterCount)[:input_dataset.RasterCount]
else:
in_nodata = nds
else:
for i in range(1, input_dataset.RasterCount + 1):
raster_no_data = input_dataset.GetRasterBand(i).GetNoDataValue()
if raster_no_data is not None:
in_nodata.append(raster_no_data)
if options.verbose:
print("NODATA: %s" % in_nodata)
return in_nodata
def setup_input_srs(input_dataset, options):
"""
Determines and returns the Input Spatial Reference System (SRS) as an osr object and as a
WKT representation
Uses in priority the one passed in the command line arguments. If None, tries to extract them
from the input dataset
"""
input_srs = None
input_srs_wkt = None
if options.s_srs:
input_srs = osr.SpatialReference()
input_srs.SetFromUserInput(options.s_srs)
input_srs_wkt = input_srs.ExportToWkt()
else:
input_srs_wkt = input_dataset.GetProjection()
if not input_srs_wkt and input_dataset.GetGCPCount() != 0:
input_srs_wkt = input_dataset.GetGCPProjection()
if input_srs_wkt:
input_srs = osr.SpatialReference()
input_srs.ImportFromWkt(input_srs_wkt)
input_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)
return input_srs, input_srs_wkt
def setup_output_srs(input_srs, options):
"""
Setup the desired SRS (based on options)
"""
output_srs = osr.SpatialReference()
output_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)
if options.profile == 'mercator':
output_srs.ImportFromEPSG(3857)
elif options.profile == 'geodetic':
output_srs.ImportFromEPSG(4326)
else:
output_srs = input_srs
return output_srs
def has_georeference(dataset):
return (dataset.GetGeoTransform() != (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) or
dataset.GetGCPCount() != 0)
def reproject_dataset(from_dataset, from_srs, to_srs, options=None):
"""
Returns the input dataset in the expected "destination" SRS.
If the dataset is already in the correct SRS, returns it unmodified
"""
if not from_srs or not to_srs:
raise GDALError("from and to SRS must be defined to reproject the dataset")
if (from_srs.ExportToProj4() != to_srs.ExportToProj4()) or (from_dataset.GetGCPCount() != 0):
to_dataset = gdal.AutoCreateWarpedVRT(from_dataset,
from_srs.ExportToWkt(), to_srs.ExportToWkt())
if options and options.verbose:
print("Warping of the raster by AutoCreateWarpedVRT (result saved into 'tiles.vrt')")
to_dataset.GetDriver().CreateCopy("tiles.vrt", to_dataset)
return to_dataset
else:
return from_dataset
def add_gdal_warp_options_to_string(vrt_string, warp_options):
if not warp_options:
return vrt_string
vrt_root = ElementTree.fromstring(vrt_string)
options = vrt_root.find("GDALWarpOptions")
if options is None:
return vrt_string
for key, value in warp_options.items():
tb = ElementTree.TreeBuilder()
tb.start("Option", {"name": key})
tb.data(value)
tb.end("Option")
elem = tb.close()
options.insert(0, elem)
return ElementTree.tostring(vrt_root).decode()
def update_no_data_values(warped_vrt_dataset, nodata_values, options=None):
"""
Takes an array of NODATA values and forces them on the WarpedVRT file dataset passed
"""
# TODO: gbataille - Seems that I forgot tests there
assert nodata_values != []
vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0]
vrt_string = add_gdal_warp_options_to_string(
vrt_string, {"INIT_DEST": "NO_DATA", "UNIFIED_SRC_NODATA": "YES"})
# TODO: gbataille - check the need for this replacement. Seems to work without
# # replace BandMapping tag for NODATA bands....
# for i in range(len(nodata_values)):
# s = s.replace(
# '<BandMapping src="%i" dst="%i"/>' % ((i+1), (i+1)),
# """
# <BandMapping src="%i" dst="%i">
# <SrcNoDataReal>%i</SrcNoDataReal>
# <SrcNoDataImag>0</SrcNoDataImag>
# <DstNoDataReal>%i</DstNoDataReal>
# <DstNoDataImag>0</DstNoDataImag>
# </BandMapping>
# """ % ((i+1), (i+1), nodata_values[i], nodata_values[i]))
corrected_dataset = gdal.Open(vrt_string)
# set NODATA_VALUE metadata
corrected_dataset.SetMetadataItem(
'NODATA_VALUES', ' '.join([str(i) for i in nodata_values]))
if options and options.verbose:
print("Modified warping result saved into 'tiles1.vrt'")
with open("tiles1.vrt", "w") as f:
f.write(corrected_dataset.GetMetadata("xml:VRT")[0])
return corrected_dataset
def add_alpha_band_to_string_vrt(vrt_string):
# TODO: gbataille - Old code speak of this being equivalent to gdalwarp -dstalpha
# To be checked
vrt_root = ElementTree.fromstring(vrt_string)
index = 0
nb_bands = 0
for subelem in list(vrt_root):
if subelem.tag == "VRTRasterBand":
nb_bands += 1
color_node = subelem.find("./ColorInterp")
if color_node is not None and color_node.text == "Alpha":
raise Exception("Alpha band already present")
else:
if nb_bands:
# This means that we are one element after the Band definitions
break
index += 1
tb = ElementTree.TreeBuilder()
tb.start("VRTRasterBand",
{'dataType': "Byte", "band": str(nb_bands + 1), "subClass": "VRTWarpedRasterBand"})
tb.start("ColorInterp", {})
tb.data("Alpha")
tb.end("ColorInterp")
tb.end("VRTRasterBand")
elem = tb.close()
vrt_root.insert(index, elem)
warp_options = vrt_root.find(".//GDALWarpOptions")
tb = ElementTree.TreeBuilder()
tb.start("DstAlphaBand", {})
tb.data(str(nb_bands + 1))
tb.end("DstAlphaBand")
elem = tb.close()
warp_options.append(elem)
# TODO: gbataille - this is a GDALWarpOptions. Why put it in a specific place?
tb = ElementTree.TreeBuilder()
tb.start("Option", {"name": "INIT_DEST"})
tb.data("0")
tb.end("Option")
elem = tb.close()
warp_options.append(elem)
return ElementTree.tostring(vrt_root).decode()
def update_alpha_value_for_non_alpha_inputs(warped_vrt_dataset, options=None):
"""
Handles dataset with 1 or 3 bands, i.e. without alpha channel, in the case the nodata value has
not been forced by options
"""
if warped_vrt_dataset.RasterCount in [1, 3]:
vrt_string = warped_vrt_dataset.GetMetadata("xml:VRT")[0]
vrt_string = add_alpha_band_to_string_vrt(vrt_string)
warped_vrt_dataset = gdal.Open(vrt_string)
if options and options.verbose:
print("Modified -dstalpha warping result saved into 'tiles1.vrt'")
with open("tiles1.vrt", "w") as f:
f.write(warped_vrt_dataset.GetMetadata("xml:VRT")[0])
return warped_vrt_dataset
def nb_data_bands(dataset):
"""
Return the number of data (non-alpha) bands of a gdal dataset
"""
alphaband = dataset.GetRasterBand(1).GetMaskBand()
if ((alphaband.GetMaskFlags() & gdal.GMF_ALPHA) or
dataset.RasterCount == 4 or
dataset.RasterCount == 2):
return dataset.RasterCount - 1
return dataset.RasterCount
def create_base_tile(tile_job_info, tile_detail):
dataBandsCount = tile_job_info.nb_data_bands
output = tile_job_info.output_file_path
tileext = tile_job_info.tile_extension
tile_size = tile_job_info.tile_size
options = tile_job_info.options
tilebands = dataBandsCount + 1
cached_ds = getattr(threadLocal, 'cached_ds', None)
if cached_ds and cached_ds.GetDescription() == tile_job_info.src_file:
ds = cached_ds
else:
ds = gdal.Open(tile_job_info.src_file, gdal.GA_ReadOnly)
threadLocal.cached_ds = ds
mem_drv = gdal.GetDriverByName('MEM')
out_drv = gdal.GetDriverByName(tile_job_info.tile_driver)
alphaband = ds.GetRasterBand(1).GetMaskBand()
tx = tile_detail.tx
ty = tile_detail.ty
tz = tile_detail.tz
rx = tile_detail.rx
ry = tile_detail.ry
rxsize = tile_detail.rxsize
rysize = tile_detail.rysize
wx = tile_detail.wx
wy = tile_detail.wy
wxsize = tile_detail.wxsize
wysize = tile_detail.wysize
querysize = tile_detail.querysize
# Tile dataset in memory
tilefilename = os.path.join(
output, str(tz), str(tx), "%s.%s" % (ty, tileext))
dstile = mem_drv.Create('', tile_size, tile_size, tilebands)
data = alpha = None
if options.verbose:
print("\tReadRaster Extent: ",
(rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize))
# Query is in 'nearest neighbour' but can be bigger in then the tile_size
# We scale down the query to the tile_size by supplied algorithm.
if rxsize != 0 and rysize != 0 and wxsize != 0 and wysize != 0:
alpha = alphaband.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize)
# Detect totally transparent tile and skip its creation
if tile_job_info.exclude_transparent and len(alpha) == alpha.count('\x00'.encode('ascii')):
return
data = ds.ReadRaster(rx, ry, rxsize, rysize, wxsize, wysize,
band_list=list(range(1, dataBandsCount + 1)))
# The tile in memory is a transparent file by default. Write pixel values into it if
# any
if data:
if tile_size == querysize:
# Use the ReadRaster result directly in tiles ('nearest neighbour' query)
dstile.WriteRaster(wx, wy, wxsize, wysize, data,
band_list=list(range(1, dataBandsCount + 1)))
dstile.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])
# Note: For source drivers based on WaveLet compression (JPEG2000, ECW,
# MrSID) the ReadRaster function returns high-quality raster (not ugly
# nearest neighbour)
# TODO: Use directly 'near' for WaveLet files
else:
# Big ReadRaster query in memory scaled to the tile_size - all but 'near'
# algo
dsquery = mem_drv.Create('', querysize, querysize, tilebands)
# TODO: fill the null value in case a tile without alpha is produced (now
# only png tiles are supported)
dsquery.WriteRaster(wx, wy, wxsize, wysize, data,
band_list=list(range(1, dataBandsCount + 1)))
dsquery.WriteRaster(wx, wy, wxsize, wysize, alpha, band_list=[tilebands])
scale_query_to_tile(dsquery, dstile, tile_job_info.tile_driver, options,
tilefilename=tilefilename)
del dsquery
del data
if options.resampling != 'antialias':
# Write a copy of tile to png/jpg
out_drv.CreateCopy(tilefilename, dstile, strict=0)
del dstile
# Create a KML file for this tile.
if tile_job_info.kml:
kmlfilename = os.path.join(output, str(tz), str(tx), '%d.kml' % ty)
if not options.resume or not os.path.exists(kmlfilename):
with open(kmlfilename, 'wb') as f:
f.write(generate_kml(
tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size,
get_tile_swne(tile_job_info, options), tile_job_info.options
).encode('utf-8'))
def create_overview_tiles(tile_job_info, output_folder, options):
"""Generation of the overview tiles (higher in the pyramid) based on existing tiles"""
mem_driver = gdal.GetDriverByName('MEM')
tile_driver = tile_job_info.tile_driver
out_driver = gdal.GetDriverByName(tile_driver)
tilebands = tile_job_info.nb_data_bands + 1
# Usage of existing tiles: from 4 underlying tiles generate one as overview.
tcount = 0
for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1):
tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz]
tcount += (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy))
ti = 0
if tcount == 0:
return
if not options.quiet:
print("Generating Overview Tiles:")
progress_bar = ProgressBar(tcount)
progress_bar.start()
for tz in range(tile_job_info.tmaxz - 1, tile_job_info.tminz - 1, -1):
tminx, tminy, tmaxx, tmaxy = tile_job_info.tminmax[tz]
for ty in range(tmaxy, tminy - 1, -1):
for tx in range(tminx, tmaxx + 1):
ti += 1
tilefilename = os.path.join(output_folder,
str(tz),
str(tx),
"%s.%s" % (ty, tile_job_info.tile_extension))
if options.verbose:
print(ti, '/', tcount, tilefilename)
if options.resume and os.path.exists(tilefilename):
if options.verbose:
print("Tile generation skipped because of --resume")
else:
progress_bar.log_progress()
continue
# Create directories for the tile
if not os.path.exists(os.path.dirname(tilefilename)):
os.makedirs(os.path.dirname(tilefilename))
dsquery = mem_driver.Create('', 2 * tile_job_info.tile_size,
2 * tile_job_info.tile_size, tilebands)
# TODO: fill the null value
dstile = mem_driver.Create('', tile_job_info.tile_size, tile_job_info.tile_size,
tilebands)
# TODO: Implement more clever walking on the tiles with cache functionality
# probably walk should start with reading of four tiles from top left corner
# Hilbert curve
children = []
# Read the tiles and write them to query window
for y in range(2 * ty, 2 * ty + 2):
for x in range(2 * tx, 2 * tx + 2):
minx, miny, maxx, maxy = tile_job_info.tminmax[tz + 1]
if x >= minx and x <= maxx and y >= miny and y <= maxy:
base_tile_path = os.path.join(output_folder, str(tz + 1), str(x),
"%s.%s" % (y, tile_job_info.tile_extension))
if not os.path.isfile(base_tile_path):
continue
dsquerytile = gdal.Open(
base_tile_path,
gdal.GA_ReadOnly)
if (ty == 0 and y == 1) or (ty != 0 and (y % (2 * ty)) != 0):
tileposy = 0
else:
tileposy = tile_job_info.tile_size
if tx:
tileposx = x % (2 * tx) * tile_job_info.tile_size
elif tx == 0 and x == 1:
tileposx = tile_job_info.tile_size
else:
tileposx = 0
dsquery.WriteRaster(
tileposx, tileposy, tile_job_info.tile_size,
tile_job_info.tile_size,
dsquerytile.ReadRaster(0, 0,
tile_job_info.tile_size,
tile_job_info.tile_size),
band_list=list(range(1, tilebands + 1)))
children.append([x, y, tz + 1])
if children:
scale_query_to_tile(dsquery, dstile, tile_driver, options,
tilefilename=tilefilename)
# Write a copy of tile to png/jpg
if options.resampling != 'antialias':
# Write a copy of tile to png/jpg
out_driver.CreateCopy(tilefilename, dstile, strict=0)
if options.verbose:
print("\tbuild from zoom", tz + 1,
" tiles:", (2 * tx, 2 * ty), (2 * tx + 1, 2 * ty),
(2 * tx, 2 * ty + 1), (2 * tx + 1, 2 * ty + 1))
# Create a KML file for this tile.
if tile_job_info.kml:
with open(os.path.join(
output_folder,
'%d/%d/%d.kml' % (tz, tx, ty)
), 'wb') as f:
f.write(generate_kml(
tx, ty, tz, tile_job_info.tile_extension, tile_job_info.tile_size,
get_tile_swne(tile_job_info, options), options, children
).encode('utf-8'))
if not options.verbose and not options.quiet:
progress_bar.log_progress()
def optparse_init():
"""Prepare the option parser for input (argv)"""
from optparse import OptionParser, OptionGroup
usage = "Usage: %prog [options] input_file [output]"
p = OptionParser(usage, version="%prog " + __version__)
p.add_option("-p", "--profile", dest='profile',
type='choice', choices=profile_list,
help=("Tile cutting profile (%s) - default 'mercator' "
"(Google Maps compatible)" % ",".join(profile_list)))
p.add_option("-r", "--resampling", dest="resampling",
type='choice', choices=resampling_list,
help="Resampling method (%s) - default 'average'" % ",".join(resampling_list))
p.add_option('-s', '--s_srs', dest="s_srs", metavar="SRS",
help="The spatial reference system used for the source input data")
p.add_option('-z', '--zoom', dest="zoom",
help="Zoom levels to render (format:'2-5' or '10').")
p.add_option('-e', '--resume', dest="resume", action="store_true",
help="Resume mode. Generate only missing files.")
p.add_option('-a', '--srcnodata', dest="srcnodata", metavar="NODATA",
help="NODATA transparency value to assign to the input data")
p.add_option('-d', '--tmscompatible', dest="tmscompatible", action="store_true",
help=("When using the geodetic profile, specifies the base resolution "
"as 0.703125 or 2 tiles at zoom level 0."))
p.add_option("-v", "--verbose",
action="store_true", dest="verbose",
help="Print status messages to stdout")
p.add_option("-x", "--exclude",
action="store_true", dest="exclude_transparent",
help="Exclude transparent tiles from result tileset")
p.add_option("-q", "--quiet",
action="store_true", dest="quiet",
help="Disable messages and status to stdout")
p.add_option("--processes",
dest="nb_processes",
type='int',
help="Number of processes to use for tiling")
# KML options
g = OptionGroup(p, "KML (Google Earth) options",
"Options for generated Google Earth SuperOverlay metadata")
g.add_option("-k", "--force-kml", dest='kml', action="store_true",
help=("Generate KML for Google Earth - default for 'geodetic' profile and "
"'raster' in EPSG:4326. For a dataset with different projection use "
"with caution!"))
g.add_option("-n", "--no-kml", dest='kml', action="store_false",
help="Avoid automatic generation of KML files for EPSG:4326")
g.add_option("-u", "--url", dest='url',
help="URL address where the generated tiles are going to be published")
p.add_option_group(g)
# HTML options
g = OptionGroup(p, "Web viewer options",
"Options for generated HTML viewers a la Google Maps")
g.add_option("-w", "--webviewer", dest='webviewer', type='choice', choices=webviewer_list,
help="Web viewer to generate (%s) - default 'all'" % ",".join(webviewer_list))
g.add_option("-t", "--title", dest='title',
help="Title of the map")
g.add_option("-c", "--copyright", dest='copyright',
help="Copyright for the map")
g.add_option("-g", "--googlekey", dest='googlekey',
help="Google Maps API key from http://code.google.com/apis/maps/signup.html")
g.add_option("-b", "--bingkey", dest='bingkey',
help="Bing Maps API key from https://www.bingmapsportal.com/")
p.add_option_group(g)
p.set_defaults(verbose=False, profile="mercator", kml=False, url='',
webviewer='all', copyright='', resampling='average', resume=False,
googlekey='INSERT_YOUR_KEY_HERE', bingkey='INSERT_YOUR_KEY_HERE',
processes=1)
return p
def process_args(argv):
parser = optparse_init()
options, args = parser.parse_args(args=argv)
# Args should be either an input file OR an input file and an output folder
if not args:
exit_with_error("You need to specify at least an input file as argument to the script")
if len(args) > 2:
exit_with_error("Processing of several input files is not supported.",
"Please first use a tool like gdal_vrtmerge.py or gdal_merge.py on the "
"files: gdal_vrtmerge.py -o merged.vrt %s" % " ".join(args))
input_file = args[0]
if not os.path.isfile(input_file):
exit_with_error("The provided input file %s does not exist or is not a file" % input_file)
if len(args) == 2:
output_folder = args[1]
else:
# Directory with input filename without extension in actual directory
output_folder = os.path.splitext(os.path.basename(input_file))[0]
options = options_post_processing(options, input_file, output_folder)
return input_file, output_folder, options
def options_post_processing(options, input_file, output_folder):
if not options.title:
options.title = os.path.basename(input_file)
if options.url and not options.url.endswith('/'):
options.url += '/'
if options.url:
out_path = output_folder
if out_path.endswith("/"):
out_path = out_path[:-1]
options.url += os.path.basename(out_path) + '/'
# Supported options
if options.resampling == 'antialias' and not numpy_available:
exit_with_error("'antialias' resampling algorithm is not available.",
"Install PIL (Python Imaging Library) and numpy.")
try:
os.path.basename(input_file).encode('ascii')
except UnicodeEncodeError:
full_ascii = False
else:
full_ascii = True
# LC_CTYPE check
if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""):
if not options.quiet:
print("\nWARNING: "
"You are running gdal2tiles.py with a LC_CTYPE environment variable that is "
"not UTF-8 compatible, and your input file contains non-ascii characters. "
"The generated sample googlemaps, openlayers or "
"leaflet files might contain some invalid characters as a result\n")
# Output the results
if options.verbose:
print("Options:", options)
print("Input:", input_file)
print("Output:", output_folder)
print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024))
print('')
return options
class TileDetail(object):
tx = 0
ty = 0
tz = 0
rx = 0
ry = 0
rxsize = 0
rysize = 0
wx = 0
wy = 0
wxsize = 0
wysize = 0
querysize = 0
def __init__(self, **kwargs):
for key in kwargs:
if hasattr(self, key):
setattr(self, key, kwargs[key])
def __unicode__(self):
return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz)
def __str__(self):
return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz)
def __repr__(self):
return "TileDetail %s\n%s\n%s\n" % (self.tx, self.ty, self.tz)
class TileJobInfo(object):
"""
Plain object to hold tile job configuration for a dataset
"""
src_file = ""
nb_data_bands = 0
output_file_path = ""
tile_extension = ""
tile_size = 0
tile_driver = None
kml = False
tminmax = []
tminz = 0
tmaxz = 0
in_srs_wkt = 0
out_geo_trans = []
ominy = 0
is_epsg_4326 = False
options = None
exclude_transparent = False
def __init__(self, **kwargs):
for key in kwargs:
if hasattr(self, key):
setattr(self, key, kwargs[key])
def __unicode__(self):
return "TileJobInfo %s\n" % (self.src_file)
def __str__(self):
return "TileJobInfo %s\n" % (self.src_file)
def __repr__(self):
return "TileJobInfo %s\n" % (self.src_file)
class Gdal2TilesError(Exception):
pass
class GDAL2Tiles(object):
def __init__(self, input_file, output_folder, options):
"""Constructor function - initialization"""
self.out_drv = None
self.mem_drv = None
self.warped_input_dataset = None
self.out_srs = None
self.nativezoom = None
self.tminmax = None
self.tsize = None
self.mercator = None
self.geodetic = None
self.alphaband = None
self.dataBandsCount = None
self.out_gt = None
self.tileswne = None
self.swne = None
self.ominx = None
self.omaxx = None
self.omaxy = None
self.ominy = None
self.input_file = None
self.output_folder = None
self.isepsg4326 = None
self.in_srs_wkt = None
# Tile format
self.tile_size = 256
self.tiledriver = 'PNG'
self.tileext = 'png'
self.tmp_dir = tempfile.mkdtemp()
self.tmp_vrt_filename = os.path.join(self.tmp_dir, str(uuid4()) + '.vrt')
# Should we read bigger window of the input raster and scale it down?
# Note: Modified later by open_input()
# Not for 'near' resampling
# Not for Wavelet based drivers (JPEG2000, ECW, MrSID)
# Not for 'raster' profile
self.scaledquery = True
# How big should be query window be for scaling down
# Later on reset according the chosen resampling algorightm
self.querysize = 4 * self.tile_size
# Should we use Read on the input file for generating overview tiles?
# Note: Modified later by open_input()
# Otherwise the overview tiles are generated from existing underlying tiles
self.overviewquery = False
self.input_file = input_file
self.output_folder = output_folder
self.options = options
if self.options.resampling == 'near':
self.querysize = self.tile_size
elif self.options.resampling == 'bilinear':
self.querysize = self.tile_size * 2
# User specified zoom levels
self.tminz = None
self.tmaxz = None
if self.options.zoom:
minmax = self.options.zoom.split('-', 1)
minmax.extend([''])
zoom_min, zoom_max = minmax[:2]
self.tminz = int(zoom_min)
if zoom_max:
if int(zoom_max) < self.tminz:
raise Exception('max zoom (%d) less than min zoom (%d)' %
(int(zoom_max), self.tminz))
self.tmaxz = int(zoom_max)
else:
self.tmaxz = int(zoom_min)
# KML generation
self.kml = self.options.kml
# -------------------------------------------------------------------------
def open_input(self):
"""Initialization of the input raster, reprojection if necessary"""
gdal.AllRegister()
self.out_drv = gdal.GetDriverByName(self.tiledriver)
self.mem_drv = gdal.GetDriverByName('MEM')
if not self.out_drv:
raise Exception("The '%s' driver was not found, is it available in this GDAL build?" %
self.tiledriver)
if not self.mem_drv:
raise Exception("The 'MEM' driver was not found, is it available in this GDAL build?")
# Open the input file
if self.input_file:
input_dataset = gdal.Open(self.input_file, gdal.GA_ReadOnly)
else:
raise Exception("No input file was specified")
if self.options.verbose:
print("Input file:",
"( %sP x %sL - %s bands)" % (input_dataset.RasterXSize,
input_dataset.RasterYSize,
input_dataset.RasterCount))
if not input_dataset:
# Note: GDAL prints the ERROR message too
exit_with_error("It is not possible to open the input file '%s'." % self.input_file)
# Read metadata from the input file
if input_dataset.RasterCount == 0:
exit_with_error("Input file '%s' has no raster band" % self.input_file)
if input_dataset.GetRasterBand(1).GetRasterColorTable():
exit_with_error(
"Please convert this file to RGB/RGBA and run gdal2tiles on the result.",
"From paletted file you can create RGBA file (temp.vrt) by:\n"
"gdal_translate -of vrt -expand rgba %s temp.vrt\n"
"then run:\n"
"gdal2tiles temp.vrt" % self.input_file
)
if input_dataset.GetRasterBand(1).DataType != gdal.GDT_Byte:
exit_with_error(
"Please convert this file to 8-bit and run gdal2tiles on the result.",
"To scale pixel values you can use:\n"
"gdal_translate -of VRT -ot Byte -scale %s temp.vrt\n"
"then run:\n"
"gdal2tiles temp.vrt" % self.input_file
)
in_nodata = setup_no_data_values(input_dataset, self.options)
if self.options.verbose:
print("Preprocessed file:",
"( %sP x %sL - %s bands)" % (input_dataset.RasterXSize,
input_dataset.RasterYSize,
input_dataset.RasterCount))
in_srs, self.in_srs_wkt = setup_input_srs(input_dataset, self.options)
self.out_srs = setup_output_srs(in_srs, self.options)
# If input and output reference systems are different, we reproject the input dataset into
# the output reference system for easier manipulation
self.warped_input_dataset = None
if self.options.profile in ('mercator', 'geodetic'):
if not in_srs:
exit_with_error(
"Input file has unknown SRS.",
"Use --s_srs EPSG:xyz (or similar) to provide source reference system.")
if not has_georeference(input_dataset):
exit_with_error(
"There is no georeference - neither affine transformation (worldfile) "
"nor GCPs. You can generate only 'raster' profile tiles.",
"Either gdal2tiles with parameter -p 'raster' or use another GIS "
"software for georeference e.g. gdal_transform -gcp / -a_ullr / -a_srs"
)
if ((in_srs.ExportToProj4() != self.out_srs.ExportToProj4()) or
(input_dataset.GetGCPCount() != 0)):
self.warped_input_dataset = reproject_dataset(
input_dataset, in_srs, self.out_srs)
if in_nodata:
self.warped_input_dataset = update_no_data_values(
self.warped_input_dataset, in_nodata, options=self.options)
else:
self.warped_input_dataset = update_alpha_value_for_non_alpha_inputs(
self.warped_input_dataset, options=self.options)
if self.warped_input_dataset and self.options.verbose:
print("Projected file:", "tiles.vrt", "( %sP x %sL - %s bands)" % (
self.warped_input_dataset.RasterXSize,
self.warped_input_dataset.RasterYSize,
self.warped_input_dataset.RasterCount))
if not self.warped_input_dataset:
self.warped_input_dataset = input_dataset
gdal.GetDriverByName('VRT').CreateCopy(self.tmp_vrt_filename,
self.warped_input_dataset)
# Get alpha band (either directly or from NODATA value)
self.alphaband = self.warped_input_dataset.GetRasterBand(1).GetMaskBand()
self.dataBandsCount = nb_data_bands(self.warped_input_dataset)
# KML test
self.isepsg4326 = False
srs4326 = osr.SpatialReference()
srs4326.ImportFromEPSG(4326)
srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)
if self.out_srs and srs4326.ExportToProj4() == self.out_srs.ExportToProj4():
self.kml = True
self.isepsg4326 = True
if self.options.verbose:
print("KML autotest OK!")
# Read the georeference
self.out_gt = self.warped_input_dataset.GetGeoTransform()
# Test the size of the pixel
# Report error in case rotation/skew is in geotransform (possible only in 'raster' profile)
if (self.out_gt[2], self.out_gt[4]) != (0, 0):
exit_with_error("Georeference of the raster contains rotation or skew. "
"Such raster is not supported. Please use gdalwarp first.")
# Here we expect: pixel is square, no rotation on the raster
# Output Bounds - coordinates in the output SRS
self.ominx = self.out_gt[0]
self.omaxx = self.out_gt[0] + self.warped_input_dataset.RasterXSize * self.out_gt[1]
self.omaxy = self.out_gt[3]
self.ominy = self.out_gt[3] - self.warped_input_dataset.RasterYSize * self.out_gt[1]
# Note: maybe round(x, 14) to avoid the gdal_translate behaviour, when 0 becomes -1e-15
if self.options.verbose:
print("Bounds (output srs):", round(self.ominx, 13), self.ominy, self.omaxx, self.omaxy)
# Calculating ranges for tiles in different zoom levels
if self.options.profile == 'mercator':
self.mercator = GlobalMercator()
# Function which generates SWNE in LatLong for given tile
self.tileswne = self.mercator.TileLatLonBounds
# Generate table with min max tile coordinates for all zoomlevels
self.tminmax = list(range(0, 32))
for tz in range(0, 32):
tminx, tminy = self.mercator.MetersToTile(self.ominx, self.ominy, tz)
tmaxx, tmaxy = self.mercator.MetersToTile(self.omaxx, self.omaxy, tz)
# crop tiles extending world limits (+-180,+-90)
tminx, tminy = max(0, tminx), max(0, tminy)
tmaxx, tmaxy = min(2**tz - 1, tmaxx), min(2**tz - 1, tmaxy)
self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)
# TODO: Maps crossing 180E (Alaska?)
# Get the minimal zoom level (map covers area equivalent to one tile)
if self.tminz is None:
self.tminz = self.mercator.ZoomForPixelSize(
self.out_gt[1] *
max(self.warped_input_dataset.RasterXSize,
self.warped_input_dataset.RasterYSize) /
float(self.tile_size))
# Get the maximal zoom level
# (closest possible zoom level up on the resolution of raster)
if self.tmaxz is None:
self.tmaxz = self.mercator.ZoomForPixelSize(self.out_gt[1])
if self.options.verbose:
print("Bounds (latlong):",
self.mercator.MetersToLatLon(self.ominx, self.ominy),
self.mercator.MetersToLatLon(self.omaxx, self.omaxy))
print('MinZoomLevel:', self.tminz)
print("MaxZoomLevel:",
self.tmaxz,
"(",
self.mercator.Resolution(self.tmaxz),
")")
if self.options.profile == 'geodetic':
self.geodetic = GlobalGeodetic(self.options.tmscompatible)
# Function which generates SWNE in LatLong for given tile
self.tileswne = self.geodetic.TileLatLonBounds
# Generate table with min max tile coordinates for all zoomlevels
self.tminmax = list(range(0, 32))
for tz in range(0, 32):
tminx, tminy = self.geodetic.LonLatToTile(self.ominx, self.ominy, tz)
tmaxx, tmaxy = self.geodetic.LonLatToTile(self.omaxx, self.omaxy, tz)
# crop tiles extending world limits (+-180,+-90)
tminx, tminy = max(0, tminx), max(0, tminy)
tmaxx, tmaxy = min(2**(tz + 1) - 1, tmaxx), min(2**tz - 1, tmaxy)
self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)
# TODO: Maps crossing 180E (Alaska?)
# Get the maximal zoom level
# (closest possible zoom level up on the resolution of raster)
if self.tminz is None:
self.tminz = self.geodetic.ZoomForPixelSize(
self.out_gt[1] *
max(self.warped_input_dataset.RasterXSize,
self.warped_input_dataset.RasterYSize) /
float(self.tile_size))
# Get the maximal zoom level
# (closest possible zoom level up on the resolution of raster)
if self.tmaxz is None:
self.tmaxz = self.geodetic.ZoomForPixelSize(self.out_gt[1])
if self.options.verbose:
print("Bounds (latlong):", self.ominx, self.ominy, self.omaxx, self.omaxy)
if self.options.profile == 'raster':
def log2(x):
return math.log10(x) / math.log10(2)
self.nativezoom = int(
max(math.ceil(log2(self.warped_input_dataset.RasterXSize / float(self.tile_size))),
math.ceil(log2(self.warped_input_dataset.RasterYSize / float(self.tile_size)))))
if self.options.verbose:
print("Native zoom of the raster:", self.nativezoom)
# Get the minimal zoom level (whole raster in one tile)
if self.tminz is None:
self.tminz = 0
# Get the maximal zoom level (native resolution of the raster)
if self.tmaxz is None:
self.tmaxz = self.nativezoom
# Generate table with min max tile coordinates for all zoomlevels
self.tminmax = list(range(0, self.tmaxz + 1))
self.tsize = list(range(0, self.tmaxz + 1))
for tz in range(0, self.tmaxz + 1):
tsize = 2.0**(self.nativezoom - tz) * self.tile_size
tminx, tminy = 0, 0
tmaxx = int(math.ceil(self.warped_input_dataset.RasterXSize / tsize)) - 1
tmaxy = int(math.ceil(self.warped_input_dataset.RasterYSize / tsize)) - 1
self.tsize[tz] = math.ceil(tsize)
self.tminmax[tz] = (tminx, tminy, tmaxx, tmaxy)
# Function which generates SWNE in LatLong for given tile
if self.kml and self.in_srs_wkt:
ct = osr.CoordinateTransformation(in_srs, srs4326)
def rastertileswne(x, y, z):
pixelsizex = (2**(self.tmaxz - z) * self.out_gt[1]) # X-pixel size in level
west = self.out_gt[0] + x * self.tile_size * pixelsizex
east = west + self.tile_size * pixelsizex
south = self.ominy + y * self.tile_size * pixelsizex
north = south + self.tile_size * pixelsizex
if not self.isepsg4326:
# Transformation to EPSG:4326 (WGS84 datum)
west, south = ct.TransformPoint(west, south)[:2]
east, north = ct.TransformPoint(east, north)[:2]
return south, west, north, east
self.tileswne = rastertileswne
else:
self.tileswne = lambda x, y, z: (0, 0, 0, 0) # noqa
def generate_metadata(self):
"""
Generation of main metadata files and HTML viewers (metadata related to particular
tiles are generated during the tile processing).
"""
if not os.path.exists(self.output_folder):
os.makedirs(self.output_folder)
if self.options.profile == 'mercator':
south, west = self.mercator.MetersToLatLon(self.ominx, self.ominy)
north, east = self.mercator.MetersToLatLon(self.omaxx, self.omaxy)
south, west = max(-85.05112878, south), max(-180.0, west)
north, east = min(85.05112878, north), min(180.0, east)
self.swne = (south, west, north, east)
# Generate googlemaps.html
if self.options.webviewer in ('all', 'google') and self.options.profile == 'mercator':
if (not self.options.resume or not
os.path.exists(os.path.join(self.output_folder, 'googlemaps.html'))):
with open(os.path.join(self.output_folder, 'googlemaps.html'), 'wb') as f:
f.write(self.generate_googlemaps().encode('utf-8'))
# Generate openlayers.html
if self.options.webviewer in ('all', 'openlayers'):
if (not self.options.resume or not
os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))):
with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f:
f.write(self.generate_openlayers().encode('utf-8'))
# Generate leaflet.html
if self.options.webviewer in ('all', 'leaflet'):
if (not self.options.resume or not
os.path.exists(os.path.join(self.output_folder, 'leaflet.html'))):
with open(os.path.join(self.output_folder, 'leaflet.html'), 'wb') as f:
f.write(self.generate_leaflet().encode('utf-8'))
elif self.options.profile == 'geodetic':
west, south = self.ominx, self.ominy
east, north = self.omaxx, self.omaxy
south, west = max(-90.0, south), max(-180.0, west)
north, east = min(90.0, north), min(180.0, east)
self.swne = (south, west, north, east)
# Generate openlayers.html
if self.options.webviewer in ('all', 'openlayers'):
if (not self.options.resume or not
os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))):
with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f:
f.write(self.generate_openlayers().encode('utf-8'))
elif self.options.profile == 'raster':
west, south = self.ominx, self.ominy
east, north = self.omaxx, self.omaxy
self.swne = (south, west, north, east)
# Generate openlayers.html
if self.options.webviewer in ('all', 'openlayers'):
if (not self.options.resume or not
os.path.exists(os.path.join(self.output_folder, 'openlayers.html'))):
with open(os.path.join(self.output_folder, 'openlayers.html'), 'wb') as f:
f.write(self.generate_openlayers().encode('utf-8'))
# Generate tilemapresource.xml.
if not self.options.resume or not os.path.exists(os.path.join(self.output_folder, 'tilemapresource.xml')):
with open(os.path.join(self.output_folder, 'tilemapresource.xml'), 'wb') as f:
f.write(self.generate_tilemapresource().encode('utf-8'))
if self.kml:
# TODO: Maybe problem for not automatically generated tminz
# The root KML should contain links to all tiles in the tminz level
children = []
xmin, ymin, xmax, ymax = self.tminmax[self.tminz]
for x in range(xmin, xmax + 1):
for y in range(ymin, ymax + 1):
children.append([x, y, self.tminz])
# Generate Root KML
if self.kml:
if (not self.options.resume or not
os.path.exists(os.path.join(self.output_folder, 'doc.kml'))):
with open(os.path.join(self.output_folder, 'doc.kml'), 'wb') as f:
f.write(generate_kml(
None, None, None, self.tileext, self.tile_size, self.tileswne,
self.options, children
).encode('utf-8'))
def generate_base_tiles(self):
"""
Generation of the base tiles (the lowest in the pyramid) directly from the input raster
"""
if not self.options.quiet:
print("Generating Base Tiles:")
if self.options.verbose:
print('')
print("Tiles generated from the max zoom level:")
print("----------------------------------------")
print('')
# Set the bounds
tminx, tminy, tmaxx, tmaxy = self.tminmax[self.tmaxz]
ds = self.warped_input_dataset
tilebands = self.dataBandsCount + 1
querysize = self.querysize
if self.options.verbose:
print("dataBandsCount: ", self.dataBandsCount)
print("tilebands: ", tilebands)
tcount = (1 + abs(tmaxx - tminx)) * (1 + abs(tmaxy - tminy))
ti = 0
tile_details = []
tz = self.tmaxz
for ty in range(tmaxy, tminy - 1, -1):
for tx in range(tminx, tmaxx + 1):
ti += 1
tilefilename = os.path.join(
self.output_folder, str(tz), str(tx), "%s.%s" % (ty, self.tileext))
if self.options.verbose:
print(ti, '/', tcount, tilefilename)
if self.options.resume and os.path.exists(tilefilename):
if self.options.verbose:
print("Tile generation skipped because of --resume")
continue
# Create directories for the tile
if not os.path.exists(os.path.dirname(tilefilename)):
os.makedirs(os.path.dirname(tilefilename))
if self.options.profile == 'mercator':
# Tile bounds in EPSG:3857
b = self.mercator.TileBounds(tx, ty, tz)
elif self.options.profile == 'geodetic':
b = self.geodetic.TileBounds(tx, ty, tz)
# Don't scale up by nearest neighbour, better change the querysize
# to the native resolution (and return smaller query tile) for scaling
if self.options.profile in ('mercator', 'geodetic'):
rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1])
# Pixel size in the raster covering query geo extent
nativesize = wb[0] + wb[2]
if self.options.verbose:
print("\tNative Extent (querysize", nativesize, "): ", rb, wb)
# Tile bounds in raster coordinates for ReadRaster query
rb, wb = self.geo_query(ds, b[0], b[3], b[2], b[1], querysize=querysize)
rx, ry, rxsize, rysize = rb
wx, wy, wxsize, wysize = wb
else: # 'raster' profile:
tsize = int(self.tsize[tz]) # tile_size in raster coordinates for actual zoom
xsize = self.warped_input_dataset.RasterXSize # size of the raster in pixels
ysize = self.warped_input_dataset.RasterYSize
if tz >= self.nativezoom:
querysize = self.tile_size
rx = (tx) * tsize
rxsize = 0
if tx == tmaxx:
rxsize = xsize % tsize
if rxsize == 0:
rxsize = tsize
rysize = 0
if ty == tmaxy:
rysize = ysize % tsize
if rysize == 0:
rysize = tsize
ry = ysize - (ty * tsize) - rysize
wx, wy = 0, 0
wxsize = int(rxsize / float(tsize) * self.tile_size)
wysize = int(rysize / float(tsize) * self.tile_size)
if wysize != self.tile_size:
wy = self.tile_size - wysize
# Read the source raster if anything is going inside the tile as per the computed
# geo_query
tile_details.append(
TileDetail(
tx=tx, ty=ty, tz=tz, rx=rx, ry=ry, rxsize=rxsize, rysize=rysize, wx=wx,
wy=wy, wxsize=wxsize, wysize=wysize, querysize=querysize,
)
)
conf = TileJobInfo(
src_file=self.tmp_vrt_filename,
nb_data_bands=self.dataBandsCount,
output_file_path=self.output_folder,
tile_extension=self.tileext,
tile_driver=self.tiledriver,
tile_size=self.tile_size,
kml=self.kml,
tminmax=self.tminmax,
tminz=self.tminz,
tmaxz=self.tmaxz,
in_srs_wkt=self.in_srs_wkt,
out_geo_trans=self.out_gt,
ominy=self.ominy,
is_epsg_4326=self.isepsg4326,
options=self.options,
exclude_transparent=self.options.exclude_transparent,
)
return conf, tile_details
def geo_query(self, ds, ulx, uly, lrx, lry, querysize=0):
"""
For given dataset and query in cartographic coordinates returns parameters for ReadRaster()
in raster coordinates and x/y shifts (for border tiles). If the querysize is not given, the
extent is returned in the native resolution of dataset ds.
raises Gdal2TilesError if the dataset does not contain anything inside this geo_query
"""
geotran = ds.GetGeoTransform()
rx = int((ulx - geotran[0]) / geotran[1] + 0.001)
ry = int((uly - geotran[3]) / geotran[5] + 0.001)
rxsize = int((lrx - ulx) / geotran[1] + 0.5)
rysize = int((lry - uly) / geotran[5] + 0.5)
if not querysize:
wxsize, wysize = rxsize, rysize
else:
wxsize, wysize = querysize, querysize
# Coordinates should not go out of the bounds of the raster
wx = 0
if rx < 0:
rxshift = abs(rx)
wx = int(wxsize * (float(rxshift) / rxsize))
wxsize = wxsize - wx
rxsize = rxsize - int(rxsize * (float(rxshift) / rxsize))
rx = 0
if rx + rxsize > ds.RasterXSize:
wxsize = int(wxsize * (float(ds.RasterXSize - rx) / rxsize))
rxsize = ds.RasterXSize - rx
wy = 0
if ry < 0:
ryshift = abs(ry)
wy = int(wysize * (float(ryshift) / rysize))
wysize = wysize - wy
rysize = rysize - int(rysize * (float(ryshift) / rysize))
ry = 0
if ry + rysize > ds.RasterYSize:
wysize = int(wysize * (float(ds.RasterYSize - ry) / rysize))
rysize = ds.RasterYSize - ry
return (rx, ry, rxsize, rysize), (wx, wy, wxsize, wysize)
def generate_tilemapresource(self):
"""
Template for tilemapresource.xml. Returns filled string. Expected variables:
title, north, south, east, west, isepsg4326, projection, publishurl,
zoompixels, tile_size, tileformat, profile
"""
args = {}
args['title'] = self.options.title
args['south'], args['west'], args['north'], args['east'] = self.swne
args['tile_size'] = self.tile_size
args['tileformat'] = self.tileext
args['publishurl'] = self.options.url
args['profile'] = self.options.profile
if self.options.profile == 'mercator':
args['srs'] = "EPSG:3857"
elif self.options.profile == 'geodetic':
args['srs'] = "EPSG:4326"
elif self.options.s_srs:
args['srs'] = self.options.s_srs
elif self.out_srs:
args['srs'] = self.out_srs.ExportToWkt()
else:
args['srs'] = ""
s = """<?xml version="1.0" encoding="utf-8"?>
<TileMap version="1.0.0" tilemapservice="http://tms.osgeo.org/1.0.0">
<Title>%(title)s</Title>
<Abstract></Abstract>
<SRS>%(srs)s</SRS>
<BoundingBox minx="%(west).14f" miny="%(south).14f" maxx="%(east).14f" maxy="%(north).14f"/>
<Origin x="%(west).14f" y="%(south).14f"/>
<TileFormat width="%(tile_size)d" height="%(tile_size)d" mime-type="image/%(tileformat)s" extension="%(tileformat)s"/>
<TileSets profile="%(profile)s">
""" % args # noqa
for z in range(self.tminz, self.tmaxz + 1):
if self.options.profile == 'raster':
s += """ <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" % (
args['publishurl'], z, (2**(self.nativezoom - z) * self.out_gt[1]), z)
elif self.options.profile == 'mercator':
s += """ <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" % (
args['publishurl'], z, 156543.0339 / 2**z, z)
elif self.options.profile == 'geodetic':
s += """ <TileSet href="%s%d" units-per-pixel="%.14f" order="%d"/>\n""" % (
args['publishurl'], z, 0.703125 / 2**z, z)
s += """ </TileSets>
</TileMap>
"""
return s
def generate_googlemaps(self):
"""
Template for googlemaps.html implementing Overlay of tiles for 'mercator' profile.
It returns filled string. Expected variables:
title, googlemapskey, north, south, east, west, minzoom, maxzoom, tile_size, tileformat,
publishurl
"""
args = {}
args['title'] = self.options.title
args['googlemapskey'] = self.options.googlekey
args['south'], args['west'], args['north'], args['east'] = self.swne
args['minzoom'] = self.tminz
args['maxzoom'] = self.tmaxz
args['tile_size'] = self.tile_size
args['tileformat'] = self.tileext
args['publishurl'] = self.options.url
args['copyright'] = self.options.copyright
s = r"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml">
<head>
<title>%(title)s</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<meta http-equiv='imagetoolbar' content='no'/>
<style type="text/css"> v\:* {behavior:url(#default#VML);}
html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; }
body { margin: 10px; background: #fff; }
h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; }
#header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; }
#subheader { height: 12px; text-align: right; font-size: 10px; color: #555;}
#map { height: 95%%; border: 1px solid #888; }
</style>
<script src='http://maps.google.com/maps?file=api&amp;v=2&amp;key=%(googlemapskey)s'></script>
<script>
//<![CDATA[
/*
* Constants for given map
* TODO: read it from tilemapresource.xml
*/
var mapBounds = new GLatLngBounds(new GLatLng(%(south)s, %(west)s), new GLatLng(%(north)s, %(east)s));
var mapMinZoom = %(minzoom)s;
var mapMaxZoom = %(maxzoom)s;
var opacity = 0.75;
var map;
var hybridOverlay;
/*
* Create a Custom Opacity GControl
* http://www.maptiler.org/google-maps-overlay-opacity-control/
*/
var CTransparencyLENGTH = 58;
// maximum width that the knob can move (slide width minus knob width)
function CTransparencyControl( overlay ) {
this.overlay = overlay;
this.opacity = overlay.getTileLayer().getOpacity();
}
CTransparencyControl.prototype = new GControl();
// This function positions the slider to match the specified opacity
CTransparencyControl.prototype.setSlider = function(pos) {
var left = Math.round((CTransparencyLENGTH*pos));
this.slide.left = left;
this.knob.style.left = left+"px";
this.knob.style.top = "0px";
}
// This function reads the slider and sets the overlay opacity level
CTransparencyControl.prototype.setOpacity = function() {
// set the global variable
opacity = this.slide.left/CTransparencyLENGTH;
this.map.clearOverlays();
this.map.addOverlay(this.overlay, { zPriority: 0 });
if (this.map.getCurrentMapType() == G_HYBRID_MAP) {
this.map.addOverlay(hybridOverlay);
}
}
// This gets called by the API when addControl(new CTransparencyControl())
CTransparencyControl.prototype.initialize = function(map) {
var that=this;
this.map = map;
// Is this MSIE, if so we need to use AlphaImageLoader
var agent = navigator.userAgent.toLowerCase();
if ((agent.indexOf("msie") > -1) && (agent.indexOf("opera") < 1)){this.ie = true} else {this.ie = false}
// create the background graphic as a <div> containing an image
var container = document.createElement("div");
container.style.width="70px";
container.style.height="21px";
// Handle transparent PNG files in MSIE
if (this.ie) {
var loader = "filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');";
container.innerHTML = '<div style="height:21px; width:70px; ' +loader+ '" ></div>';
} else {
container.innerHTML = '<div style="height:21px; width:70px; background-image: url(http://www.maptiler.org/img/opacity-slider.png)" ></div>';
}
// create the knob as a GDraggableObject
// Handle transparent PNG files in MSIE
if (this.ie) {
var loader = "progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://www.maptiler.org/img/opacity-slider.png', sizingMethod='crop');";
this.knob = document.createElement("div");
this.knob.style.height="21px";
this.knob.style.width="13px";
this.knob.style.overflow="hidden";
this.knob_img = document.createElement("div");
this.knob_img.style.height="21px";
this.knob_img.style.width="83px";
this.knob_img.style.filter=loader;
this.knob_img.style.position="relative";
this.knob_img.style.left="-70px";
this.knob.appendChild(this.knob_img);
} else {
this.knob = document.createElement("div");
this.knob.style.height="21px";
this.knob.style.width="13px";
this.knob.style.backgroundImage="url(http://www.maptiler.org/img/opacity-slider.png)";
this.knob.style.backgroundPosition="-70px 0px";
}
container.appendChild(this.knob);
this.slide=new GDraggableObject(this.knob, {container:container});
this.slide.setDraggableCursor('pointer');
this.slide.setDraggingCursor('pointer');
this.container = container;
// attach the control to the map
map.getContainer().appendChild(container);
// init slider
this.setSlider(this.opacity);
// Listen for the slider being moved and set the opacity
GEvent.addListener(this.slide, "dragend", function() {that.setOpacity()});
//GEvent.addListener(this.container, "click", function( x, y ) { alert(x, y) });
return container;
}
// Set the default position for the control
CTransparencyControl.prototype.getDefaultPosition = function() {
return new GControlPosition(G_ANCHOR_TOP_RIGHT, new GSize(7, 47));
}
/*
* Full-screen Window Resize
*/
function getWindowHeight() {
if (self.innerHeight) return self.innerHeight;
if (document.documentElement && document.documentElement.clientHeight)
return document.documentElement.clientHeight;
if (document.body) return document.body.clientHeight;
return 0;
}
function getWindowWidth() {
if (self.innerWidth) return self.innerWidth;
if (document.documentElement && document.documentElement.clientWidth)
return document.documentElement.clientWidth;
if (document.body) return document.body.clientWidth;
return 0;
}
function resize() {
var map = document.getElementById("map");
var header = document.getElementById("header");
var subheader = document.getElementById("subheader");
map.style.height = (getWindowHeight()-80) + "px";
map.style.width = (getWindowWidth()-20) + "px";
header.style.width = (getWindowWidth()-20) + "px";
subheader.style.width = (getWindowWidth()-20) + "px";
// map.checkResize();
}
/*
* Main load function:
*/
function load() {
if (GBrowserIsCompatible()) {
// Bug in the Google Maps: Copyright for Overlay is not correctly displayed
var gcr = GMapType.prototype.getCopyrights;
GMapType.prototype.getCopyrights = function(bounds,zoom) {
return ["%(copyright)s"].concat(gcr.call(this,bounds,zoom));
}
map = new GMap2( document.getElementById("map"), { backgroundColor: '#fff' } );
map.addMapType(G_PHYSICAL_MAP);
map.setMapType(G_PHYSICAL_MAP);
map.setCenter( mapBounds.getCenter(), map.getBoundsZoomLevel( mapBounds ));
hybridOverlay = new GTileLayerOverlay( G_HYBRID_MAP.getTileLayers()[1] );
GEvent.addListener(map, "maptypechanged", function() {
if (map.getCurrentMapType() == G_HYBRID_MAP) {
map.addOverlay(hybridOverlay);
} else {
map.removeOverlay(hybridOverlay);
}
} );
var tilelayer = new GTileLayer(GCopyrightCollection(''), mapMinZoom, mapMaxZoom);
var mercator = new GMercatorProjection(mapMaxZoom+1);
tilelayer.getTileUrl = function(tile,zoom) {
if ((zoom < mapMinZoom) || (zoom > mapMaxZoom)) {
return "http://www.maptiler.org/img/none.png";
}
var ymax = 1 << zoom;
var y = ymax - tile.y -1;
var tileBounds = new GLatLngBounds(
mercator.fromPixelToLatLng( new GPoint( (tile.x)*256, (tile.y+1)*256 ) , zoom ),
mercator.fromPixelToLatLng( new GPoint( (tile.x+1)*256, (tile.y)*256 ) , zoom )
);
if (mapBounds.intersects(tileBounds)) {
return zoom+"/"+tile.x+"/"+y+".png";
} else {
return "http://www.maptiler.org/img/none.png";
}
}
// IE 7-: support for PNG alpha channel
// Unfortunately, the opacity for whole overlay is then not changeable, either or...
tilelayer.isPng = function() { return true;};
tilelayer.getOpacity = function() { return opacity; }
overlay = new GTileLayerOverlay( tilelayer );
map.addOverlay(overlay);
map.addControl(new GLargeMapControl());
map.addControl(new GHierarchicalMapTypeControl());
map.addControl(new CTransparencyControl( overlay ));
""" % args # noqa
if self.kml:
s += """
map.addMapType(G_SATELLITE_3D_MAP);
map.getEarthInstance(getEarthInstanceCB);
"""
s += """
map.enableContinuousZoom();
map.enableScrollWheelZoom();
map.setMapType(G_HYBRID_MAP);
}
resize();
}
"""
if self.kml:
s += """
function getEarthInstanceCB(object) {
var ge = object;
if (ge) {
var url = document.location.toString();
url = url.substr(0,url.lastIndexOf('/'))+'/doc.kml';
var link = ge.createLink("");
if ("%(publishurl)s") { link.setHref("%(publishurl)s/doc.kml") }
else { link.setHref(url) };
var networkLink = ge.createNetworkLink("");
networkLink.setName("TMS Map Overlay");
networkLink.setFlyToView(true);
networkLink.setLink(link);
ge.getFeatures().appendChild(networkLink);
} else {
// alert("You should open a KML in Google Earth");
// add div with the link to generated KML... - maybe JavaScript redirect to the URL of KML?
}
}
""" % args # noqa
s += """
onresize=function(){ resize(); };
//]]>
</script>
</head>
<body onload="load()">
<div id="header"><h1>%(title)s</h1></div>
<div id="subheader">Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>
<!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU -->
</div>
<div id="map"></div>
</body>
</html>
""" % args # noqa
return s
def generate_leaflet(self):
"""
Template for leaflet.html implementing overlay of tiles for 'mercator' profile.
It returns filled string. Expected variables:
title, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl
"""
args = {}
args['title'] = self.options.title.replace('"', '\\"')
args['htmltitle'] = self.options.title
args['south'], args['west'], args['north'], args['east'] = self.swne
args['centerlon'] = (args['north'] + args['south']) / 2.
args['centerlat'] = (args['west'] + args['east']) / 2.
args['minzoom'] = self.tminz
args['maxzoom'] = self.tmaxz
args['beginzoom'] = self.tmaxz
args['tile_size'] = self.tile_size # not used
args['tileformat'] = self.tileext
args['publishurl'] = self.options.url # not used
args['copyright'] = self.options.copyright.replace('"', '\\"')
s = """<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name='viewport' content='width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no' />
<title>%(htmltitle)s</title>
<!-- Leaflet -->
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-0.7.5/leaflet.css" />
<script src="http://cdn.leafletjs.com/leaflet-0.7.5/leaflet.js"></script>
<style>
body { margin:0; padding:0; }
body, table, tr, td, th, div, h1, h2, input { font-family: "Calibri", "Trebuchet MS", "Ubuntu", Serif; font-size: 11pt; }
#map { position:absolute; top:0; bottom:0; width:100%%; } /* full size */
.ctl {
padding: 2px 10px 2px 10px;
background: white;
background: rgba(255,255,255,0.9);
box-shadow: 0 0 15px rgba(0,0,0,0.2);
border-radius: 5px;
text-align: right;
}
.title {
font-size: 18pt;
font-weight: bold;
}
.src {
font-size: 10pt;
}
</style>
</head>
<body>
<div id="map"></div>
<script>
/* **** Leaflet **** */
// Base layers
// .. OpenStreetMap
var osm = L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png', {attribution: '&copy; <a href="http://osm.org/copyright">OpenStreetMap</a> contributors', minZoom: %(minzoom)s, maxZoom: %(maxzoom)s});
// .. CartoDB Positron
var cartodb = L.tileLayer('http://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}.png', {attribution: '&copy; <a href="http://www.openstreetmap.org/copyright">OpenStreetMap</a> contributors, &copy; <a href="http://cartodb.com/attributions">CartoDB</a>', minZoom: %(minzoom)s, maxZoom: %(maxzoom)s});
// .. OSM Toner
var toner = L.tileLayer('http://{s}.tile.stamen.com/toner/{z}/{x}/{y}.png', {attribution: 'Map tiles by <a href="http://stamen.com">Stamen Design</a>, under <a href="http://creativecommons.org/licenses/by/3.0">CC BY 3.0</a>. Data by <a href="http://openstreetmap.org">OpenStreetMap</a>, under <a href="http://www.openstreetmap.org/copyright">ODbL</a>.', minZoom: %(minzoom)s, maxZoom: %(maxzoom)s});
// .. White background
var white = L.tileLayer("", {minZoom: %(minzoom)s, maxZoom: %(maxzoom)s});
// Overlay layers (TMS)
var lyr = L.tileLayer('./{z}/{x}/{y}.%(tileformat)s', {tms: true, opacity: 0.7, attribution: "%(copyright)s", minZoom: %(minzoom)s, maxZoom: %(maxzoom)s});
// Map
var map = L.map('map', {
center: [%(centerlon)s, %(centerlat)s],
zoom: %(beginzoom)s,
minZoom: %(minzoom)s,
maxZoom: %(maxzoom)s,
layers: [osm]
});
var basemaps = {"OpenStreetMap": osm, "CartoDB Positron": cartodb, "Stamen Toner": toner, "Without background": white}
var overlaymaps = {"Layer": lyr}
// Title
var title = L.control();
title.onAdd = function(map) {
this._div = L.DomUtil.create('div', 'ctl title');
this.update();
return this._div;
};
title.update = function(props) {
this._div.innerHTML = "%(title)s";
};
title.addTo(map);
// Note
var src = 'Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>';
var title = L.control({position: 'bottomleft'});
title.onAdd = function(map) {
this._div = L.DomUtil.create('div', 'ctl src');
this.update();
return this._div;
};
title.update = function(props) {
this._div.innerHTML = src;
};
title.addTo(map);
// Add base layers
L.control.layers(basemaps, overlaymaps, {collapsed: false}).addTo(map);
// Fit to overlay bounds (SW and NE points with (lat, lon))
map.fitBounds([[%(south)s, %(east)s], [%(north)s, %(west)s]]);
</script>
</body>
</html>
""" % args # noqa
return s
def generate_openlayers(self):
"""
Template for openlayers.html implementing overlay of available Spherical Mercator layers.
It returns filled string. Expected variables:
title, bingkey, north, south, east, west, minzoom, maxzoom, tile_size, tileformat, publishurl
"""
args = {}
args['title'] = self.options.title
args['bingkey'] = self.options.bingkey
args['south'], args['west'], args['north'], args['east'] = self.swne
args['minzoom'] = self.tminz
args['maxzoom'] = self.tmaxz
args['tile_size'] = self.tile_size
args['tileformat'] = self.tileext
args['publishurl'] = self.options.url
args['copyright'] = self.options.copyright
if self.options.tmscompatible:
args['tmsoffset'] = "-1"
else:
args['tmsoffset'] = ""
if self.options.profile == 'raster':
args['rasterzoomlevels'] = self.tmaxz + 1
args['rastermaxresolution'] = 2**(self.nativezoom) * self.out_gt[1]
s = r"""<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
<head>
<title>%(title)s</title>
<meta http-equiv='imagetoolbar' content='no'/>
<style type="text/css"> v\:* {behavior:url(#default#VML);}
html, body { overflow: hidden; padding: 0; height: 100%%; width: 100%%; font-family: 'Lucida Grande',Geneva,Arial,Verdana,sans-serif; }
body { margin: 10px; background: #fff; }
h1 { margin: 0; padding: 6px; border:0; font-size: 20pt; }
#header { height: 43px; padding: 0; background-color: #eee; border: 1px solid #888; }
#subheader { height: 12px; text-align: right; font-size: 10px; color: #555;}
#map { height: 95%%; border: 1px solid #888; }
.olImageLoadError { display: none; }
.olControlLayerSwitcher .layersDiv { border-radius: 10px 0 0 10px; }
</style>""" % args # noqa
if self.options.profile == 'mercator':
s += """
<script src='http://maps.google.com/maps/api/js?sensor=false&v=3.7'></script>
""" % args
s += """
<script src="http://www.openlayers.org/api/2.12/OpenLayers.js"></script>
<script>
var map;
var mapBounds = new OpenLayers.Bounds( %(west)s, %(south)s, %(east)s, %(north)s);
var mapMinZoom = %(minzoom)s;
var mapMaxZoom = %(maxzoom)s;
var emptyTileURL = "http://www.maptiler.org/img/none.png";
OpenLayers.IMAGE_RELOAD_ATTEMPTS = 3;
function init(){""" % args
if self.options.profile == 'mercator':
s += """
var options = {
div: "map",
controls: [],
projection: "EPSG:3857",
displayProjection: new OpenLayers.Projection("EPSG:4326"),
numZoomLevels: 20
};
map = new OpenLayers.Map(options);
// Create Google Mercator layers
var gmap = new OpenLayers.Layer.Google("Google Streets",
{
type: google.maps.MapTypeId.ROADMAP,
sphericalMercator: true
});
var gsat = new OpenLayers.Layer.Google("Google Satellite",
{
type: google.maps.MapTypeId.SATELLITE,
sphericalMercator: true
});
var ghyb = new OpenLayers.Layer.Google("Google Hybrid",
{
type: google.maps.MapTypeId.HYBRID,
sphericalMercator: true
});
var gter = new OpenLayers.Layer.Google("Google Terrain",
{
type: google.maps.MapTypeId.TERRAIN,
sphericalMercator: true
});
// Create Bing layers
var broad = new OpenLayers.Layer.Bing({
name: "Bing Roads",
key: "%(bingkey)s",
type: "Road",
sphericalMercator: true
});
var baer = new OpenLayers.Layer.Bing({
name: "Bing Aerial",
key: "%(bingkey)s",
type: "Aerial",
sphericalMercator: true
});
var bhyb = new OpenLayers.Layer.Bing({
name: "Bing Hybrid",
key: "%(bingkey)s",
type: "AerialWithLabels",
sphericalMercator: true
});
// Create OSM layer
var osm = new OpenLayers.Layer.OSM("OpenStreetMap");
// create TMS Overlay layer
var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "",
{
serviceVersion: '.',
layername: '.',
alpha: true,
type: '%(tileformat)s',
isBaseLayer: false,
getURL: getURL
});
if (OpenLayers.Util.alphaHack() == false) {
tmsoverlay.setOpacity(0.7);
}
map.addLayers([gmap, gsat, ghyb, gter,
broad, baer, bhyb,
osm, tmsoverlay]);
var switcherControl = new OpenLayers.Control.LayerSwitcher();
map.addControl(switcherControl);
switcherControl.maximizeControl();
map.zoomToExtent(mapBounds.transform(map.displayProjection, map.projection));
""" % args # noqa
elif self.options.profile == 'geodetic':
s += """
var options = {
div: "map",
controls: [],
projection: "EPSG:4326"
};
map = new OpenLayers.Map(options);
var wms = new OpenLayers.Layer.WMS("VMap0",
"http://tilecache.osgeo.org/wms-c/Basic.py?",
{
layers: 'basic',
format: 'image/png'
}
);
var tmsoverlay = new OpenLayers.Layer.TMS("TMS Overlay", "",
{
serviceVersion: '.',
layername: '.',
alpha: true,
type: '%(tileformat)s',
isBaseLayer: false,
getURL: getURL
});
if (OpenLayers.Util.alphaHack() == false) {
tmsoverlay.setOpacity(0.7);
}
map.addLayers([wms,tmsoverlay]);
var switcherControl = new OpenLayers.Control.LayerSwitcher();
map.addControl(switcherControl);
switcherControl.maximizeControl();
map.zoomToExtent(mapBounds);
""" % args # noqa
elif self.options.profile == 'raster':
s += """
var options = {
div: "map",
controls: [],
maxExtent: new OpenLayers.Bounds(%(west)s, %(south)s, %(east)s, %(north)s),
maxResolution: %(rastermaxresolution)f,
numZoomLevels: %(rasterzoomlevels)d
};
map = new OpenLayers.Map(options);
var layer = new OpenLayers.Layer.TMS("TMS Layer", "",
{
serviceVersion: '.',
layername: '.',
alpha: true,
type: '%(tileformat)s',
getURL: getURL
});
map.addLayer(layer);
map.zoomToExtent(mapBounds);
""" % args # noqa
s += """
map.addControls([new OpenLayers.Control.PanZoomBar(),
new OpenLayers.Control.Navigation(),
new OpenLayers.Control.MousePosition(),
new OpenLayers.Control.ArgParser(),
new OpenLayers.Control.Attribution()]);
}
""" % args
if self.options.profile == 'mercator':
s += """
function getURL(bounds) {
bounds = this.adjustBounds(bounds);
var res = this.getServerResolution();
var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
var z = this.getServerZoom();
if (this.map.baseLayer.CLASS_NAME === 'OpenLayers.Layer.Bing') {
z+=1;
}
var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type;
var url = this.url;
if (OpenLayers.Util.isArray(url)) {
url = this.selectUrl(path, url);
}
if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
return url + path;
} else {
return emptyTileURL;
}
}
""" % args # noqa
elif self.options.profile == 'geodetic':
s += """
function getURL(bounds) {
bounds = this.adjustBounds(bounds);
var res = this.getServerResolution();
var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
var z = this.getServerZoom()%(tmsoffset)s;
var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type;
var url = this.url;
if (OpenLayers.Util.isArray(url)) {
url = this.selectUrl(path, url);
}
if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
return url + path;
} else {
return emptyTileURL;
}
}
""" % args # noqa
elif self.options.profile == 'raster':
s += """
function getURL(bounds) {
bounds = this.adjustBounds(bounds);
var res = this.getServerResolution();
var x = Math.round((bounds.left - this.tileOrigin.lon) / (res * this.tileSize.w));
var y = Math.round((bounds.bottom - this.tileOrigin.lat) / (res * this.tileSize.h));
var z = this.getServerZoom();
var path = this.serviceVersion + "/" + this.layername + "/" + z + "/" + x + "/" + y + "." + this.type;
var url = this.url;
if (OpenLayers.Util.isArray(url)) {
url = this.selectUrl(path, url);
}
if (mapBounds.intersectsBounds(bounds) && (z >= mapMinZoom) && (z <= mapMaxZoom)) {
return url + path;
} else {
return emptyTileURL;
}
}
""" % args # noqa
s += """
function getWindowHeight() {
if (self.innerHeight) return self.innerHeight;
if (document.documentElement && document.documentElement.clientHeight)
return document.documentElement.clientHeight;
if (document.body) return document.body.clientHeight;
return 0;
}
function getWindowWidth() {
if (self.innerWidth) return self.innerWidth;
if (document.documentElement && document.documentElement.clientWidth)
return document.documentElement.clientWidth;
if (document.body) return document.body.clientWidth;
return 0;
}
function resize() {
var map = document.getElementById("map");
var header = document.getElementById("header");
var subheader = document.getElementById("subheader");
map.style.height = (getWindowHeight()-80) + "px";
map.style.width = (getWindowWidth()-20) + "px";
header.style.width = (getWindowWidth()-20) + "px";
subheader.style.width = (getWindowWidth()-20) + "px";
if (map.updateSize) { map.updateSize(); };
}
onresize=function(){ resize(); };
</script>
</head>
<body onload="init()">
<div id="header"><h1>%(title)s</h1></div>
<div id="subheader">Generated by <a href="http://www.klokan.cz/projects/gdal2tiles/">GDAL2Tiles</a>, Copyright &copy; 2008 <a href="http://www.klokan.cz/">Klokan Petr Pridal</a>, <a href="http://www.gdal.org/">GDAL</a> &amp; <a href="http://www.osgeo.org/">OSGeo</a> <a href="http://code.google.com/soc/">GSoC</a>
<!-- PLEASE, LET THIS NOTE ABOUT AUTHOR AND PROJECT SOMEWHERE ON YOUR WEBSITE, OR AT LEAST IN THE COMMENT IN HTML. THANK YOU -->
</div>
<div id="map"></div>
<script type="text/javascript" >resize()</script>
</body>
</html>""" % args # noqa
return s
def worker_tile_details(input_file, output_folder, options):
gdal2tiles = GDAL2Tiles(input_file, output_folder, options)
gdal2tiles.open_input()
gdal2tiles.generate_metadata()
tile_job_info, tile_details = gdal2tiles.generate_base_tiles()
return tile_job_info, tile_details
class ProgressBar(object):
def __init__(self, total_items):
self.total_items = total_items
self.nb_items_done = 0
self.current_progress = 0
self.STEP = 2.5
def start(self):
sys.stdout.write("0")
def log_progress(self, nb_items=1):
self.nb_items_done += nb_items
progress = float(self.nb_items_done) / self.total_items * 100
if progress >= self.current_progress + self.STEP:
done = False
while not done:
if self.current_progress + self.STEP <= progress:
self.current_progress += self.STEP
if self.current_progress % 10 == 0:
sys.stdout.write(str(int(self.current_progress)))
if self.current_progress == 100:
sys.stdout.write("\n")
else:
sys.stdout.write(".")
else:
done = True
sys.stdout.flush()
def get_tile_swne(tile_job_info, options):
if options.profile == 'mercator':
mercator = GlobalMercator()
tile_swne = mercator.TileLatLonBounds
elif options.profile == 'geodetic':
geodetic = GlobalGeodetic(options.tmscompatible)
tile_swne = geodetic.TileLatLonBounds
elif options.profile == 'raster':
srs4326 = osr.SpatialReference()
srs4326.ImportFromEPSG(4326)
srs4326.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)
if tile_job_info.kml and tile_job_info.in_srs_wkt:
in_srs = osr.SpatialReference()
in_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER)
in_srs.ImportFromWkt(tile_job_info.in_srs_wkt)
ct = osr.CoordinateTransformation(in_srs, srs4326)
def rastertileswne(x, y, z):
pixelsizex = (2 ** (tile_job_info.tmaxz - z) * tile_job_info.out_geo_trans[1])
west = tile_job_info.out_geo_trans[0] + x * tile_job_info.tile_size * pixelsizex
east = west + tile_job_info.tile_size * pixelsizex
south = tile_job_info.ominy + y * tile_job_info.tile_size * pixelsizex
north = south + tile_job_info.tile_size * pixelsizex
if not tile_job_info.is_epsg_4326:
# Transformation to EPSG:4326 (WGS84 datum)
west, south = ct.TransformPoint(west, south)[:2]
east, north = ct.TransformPoint(east, north)[:2]
return south, west, north, east
tile_swne = rastertileswne
else:
tile_swne = lambda x, y, z: (0, 0, 0, 0) # noqa
else:
tile_swne = lambda x, y, z: (0, 0, 0, 0) # noqa
return tile_swne
def single_threaded_tiling(input_file, output_folder, options):
"""
Keep a single threaded version that stays clear of multiprocessing, for platforms that would not
support it
"""
if options.verbose:
print("Begin tiles details calc")
conf, tile_details = worker_tile_details(input_file, output_folder, options)
if options.verbose:
print("Tiles details calc complete.")
if not options.verbose and not options.quiet:
progress_bar = ProgressBar(len(tile_details))
progress_bar.start()
for tile_detail in tile_details:
create_base_tile(conf, tile_detail)
if not options.verbose and not options.quiet:
progress_bar.log_progress()
if getattr(threadLocal, 'cached_ds', None):
del threadLocal.cached_ds
create_overview_tiles(conf, output_folder, options)
shutil.rmtree(os.path.dirname(conf.src_file))
def multi_threaded_tiling(input_file, output_folder, options):
nb_processes = options.nb_processes or 1
# Make sure that all processes do not consume more than `gdal.GetCacheMax()`
gdal_cache_max = gdal.GetCacheMax()
gdal_cache_max_per_process = max(1024 * 1024, math.floor(gdal_cache_max / nb_processes))
set_cache_max(gdal_cache_max_per_process)
pool = Pool(processes=nb_processes)
if options.verbose:
print("Begin tiles details calc")
conf, tile_details = pool.apply(worker_tile_details, [input_file, output_folder, options])
if options.verbose:
print("Tiles details calc complete.")
if not options.verbose and not options.quiet:
progress_bar = ProgressBar(len(tile_details))
progress_bar.start()
# TODO: gbataille - check the confs for which each element is an array... one useless level?
# TODO: gbataille - assign an ID to each job for print in verbose mode "ReadRaster Extent ..."
for _ in pool.imap_unordered(partial(create_base_tile, conf), tile_details, chunksize=128):
if not options.verbose and not options.quiet:
progress_bar.log_progress()
pool.close()
pool.join() # Jobs finished
# Set the maximum cache back to the original value
set_cache_max(gdal_cache_max)
create_overview_tiles(conf, output_folder, options)
shutil.rmtree(os.path.dirname(conf.src_file))
def main():
# TODO: gbataille - use mkdtemp to work in a temp directory
# TODO: gbataille - debug intermediate tiles.vrt not produced anymore?
# TODO: gbataille - Refactor generate overview tiles to not depend on self variables
argv = gdal.GeneralCmdLineProcessor(sys.argv)
input_file, output_folder, options = process_args(argv[1:])
nb_processes = options.nb_processes or 1
if nb_processes == 1:
single_threaded_tiling(input_file, output_folder, options)
else:
multi_threaded_tiling(input_file, output_folder, options)
if __name__ == '__main__':
main()
# vim: set tabstop=4 shiftwidth=4 expandtab:
You can’t perform that action at this time.