diff --git a/_freeze/content/tutorials/r_python_interfaces_comparison/quick_comparison_r_vs_python_grass_interfaces/execute-results/html.json b/_freeze/content/tutorials/r_python_interfaces_comparison/quick_comparison_r_vs_python_grass_interfaces/execute-results/html.json new file mode 100644 index 0000000..ee88b58 --- /dev/null +++ b/_freeze/content/tutorials/r_python_interfaces_comparison/quick_comparison_r_vs_python_grass_interfaces/execute-results/html.json @@ -0,0 +1,16 @@ +{ + "hash": "b2f5b1384f95aeb0e0a837650dceb10c", + "result": { + "markdown": "---\ntitle: \"Quick comparison: R and Python GRASS interfaces\"\nauthor: \"Veronica Andreo\"\ndate: 2024-04-01\ndate-modified: today\nformat:\n html:\n toc: true\n code-tools: true\n code-copy: true\n code-fold: false\ncategories: [Python, R, intermediate]\nengine: knitr\nexecute:\n eval: false\n---\n\n\n![](images/R_Python_compare.png){.preview-image width=50%}\n\nIn this short tutorial we will highlight the similarities of R and Python GRASS interfaces\nin order to streamline the use of GRASS GIS within R and Python communities.\nAs you may know, there's\nan R package called [rgrass](https://github.com/rsbivand/rgrass/) that provides\nbasic functionality to read and write data from and into GRASS database as well\nas to execute GRASS tools in either existing or temporary GRASS projects.\nThe [GRASS Python API](https://grass.osgeo.org/grass-stable/manuals/libpython/index.html),\non the other hand, is composed of various packages that provide classes and\nfunctions for low and high level tasks, including those that can be executed\nwith rgrass.\n\n\n\nThere are some parallelisms between the\n**rgrass** and **grass.script**/**grass.jupyter** packages, i.e.,\nR and Python interfaces to GRASS GIS.\nLet's review them and go through some examples.\n\n\n| Task | rgrass function | GRASS Python API function |\n|------------------------------------------------------------|--------------------------------|---------------------------------------------------------|\n| Load library | library(rgrass) | import grass.script as gs
import grass.jupyter as gj |\n| Start GRASS and set all needed
environmental variables | initGRASS() | gs.setup.init() for scripts,
gj.init() for notebooks |\n| Execute GRASS commands | execGRASS() | gs.run_command(),
gs.read_command(),
gs.parse_command() |\n| Read raster and vector data
from GRASS | read_RAST(),
read_VECT() | gs.array.array(),
n/a |\n| Write raster and vector data
into GRASS | write_RAST(),
write_VECT() | gs.array.write(),
n/a |\n| Get raster and vector info | n/a,
vInfo() | gs.raster_info(),
gs.vector_info() |\n| Close GRASS session | unlink_.gislock() | gs.setup.finish(),
gj.finish() |\n\n: R and Python GRASS interfaces compared {.striped .hover}\n\n## Comparison examples\n\nLet's see how usage examples would look like.\n\n1. **Load the library**: We need to\nload the libraries that allow us to interface with GRASS GIS\nfunctionality and (optionally) data. For the Python case, we first need to add\nthe GRASS python package path to our system's path.\n\n::: {.panel-tabset}\n\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(rgrass)\n```\n:::\n\n\n## Python\n\n\n::: {.cell python.reticulate='false'}\n\n```{.python .cell-code}\nimport sys\nimport subprocess\n\nsys.path.append(\n subprocess.check_output([\"grass\", \"--config\", \"python_path\"], text=True).strip()\n)\n\nimport grass.script as gs\nimport grass.jupyter as gj\n```\n:::\n\n\n:::\n\n2. **Start a GRASS session**: Once we loaded or imported the packages, we\nstart a GRASS session. We need to pass the path to a\ntemporary or existing GRASS project.\nIn the case of R, `initGRASS` will automatically look for GRASS binaries, alternatively we can\nspecify the path to the binaries ourselves.\nIn the case of Python, it is worth noting that while grass.script and grass.jupyter init functions\ntake the same arguments, `gj.init` also sets other environmental variables to\nstreamline work within Jupyter Notebooks, e.g., overwrite is set to true so cells\ncan be executed multiple times.\n\n::: {.panel-tabset}\n\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsession <- initGRASS(gisBase = \"/usr/lib/grass84\", # where grass binaries live, `grass --config path`\n gisDbase = \"/home/user/grassdata\", # path to grass database or folder where your project lives\n location = \"nc_basic_spm_grass7\", # existing project name\n mapset = \"PERMANENT\" # mapset name\n )\n```\n:::\n\n\n## Python\n\n\n::: {.cell python.reticulate='false'}\n\n```{.python .cell-code}\n# With grass.script for scripts\nsession = gs.setup.init(path=\"/home/user/grassdata\",\n location=\"nc_basic_spm_grass7\",\n mapset=\"PERMANENT\")\n# Optionally, the path to a mapset\nsession = gs.setup.init(\"/home/user/grassdata/nc_basic_spm_grass7/PERMANENT\")\n\n# With grass.jupyter for notebooks\nsession = gj.init(path=\"/home/user/grassdata\",\n location=\"nc_basic_spm_grass7\",\n mapset=\"PERMANENT\")\n# Optionally, the path to a mapset\nsession = gj.init(\"~/grassdata/nc_basic_spm_grass7/PERMANENT\")\n```\n:::\n\n\n:::\n\n3. **Execute GRASS commands**: Both interfaces work pretty similarly, the\nfirst argument is always the GRASS tool name and then we pass the parameters\nand flags. While in R we basically use `execGRASS()` for all GRASS commands, in\nthe Python API, we have different wrappers to execute GRASS commands depending\non the nature of their output.\n\n::: {.panel-tabset}\n\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Map output\nexecGRASS(\"r.slope.aspect\",\n elevation = \"elevation\",\n slope = \"slope\",\n aspect = \"aspect\")\n\n# Text output\nexecGRASS(\"g.region\",\n raster = \"elevation\",\n flags = \"p\")\n```\n:::\n\n\n## Python\n\n\n::: {.cell python.reticulate='false'}\n\n```{.python .cell-code}\n# Map output\ngs.run_command(\"r.slope.aspect\",\n elevation=\"elevation\",\n slope=\"slope\",\n aspect=\"aspect\")\n# Text output\nprint(gs.read_command(\"g.region\",\n raster=\"elevation\",\n flags=\"p\"))\n# Text output - dictionary\nregion = gs.parse_command(\"g.region\",\n raster=\"elevation\",\n flags=\"g\")\nregion\n```\n:::\n\n\n:::\n\n4. **Read raster and vector data into other R or Python formats**:\n*rgrass* functions `read_RAST()` and `read_VECT()` convert GRASS raster and\nvector maps into terra's SpatRaster and SpatVector objects within R.\nIn the case of Python, GRASS\nraster maps that can be converted into numpy arrays through\n`gs.array.array()`. Vector attribute data can be converted into\nPandas data frames in various ways.\n\n::: {.panel-tabset}\n\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Raster\nelevr <- read_RAST(\"elevation\")\n\n# Vector\nschoolsr <- read_VECT(\"schools\")\n```\n:::\n\n\n## Python\n\n\n::: {.cell python.reticulate='false'}\n\n```{.python .cell-code}\n# Raster into numpy array\nelev = gs.array.array(\"elevation\")\n\n# Vector attributes\nimport pandas as pd\nschools = gs.parse_command(\"v.db.select\", map=\"schools\", format=\"json\")\npd.DataFrame(schools[\"records\"])\n\n# Vector geometry and attributes to GeoJSON\ngs.run_command(\"v.out.ogr\", input=\"schools\", output=\"schools.geojson\", format=\"GeoJSON\")\n```\n:::\n\n\n:::\n\n\n5. **Write R or Python objects into GRASS raster and vector maps**: R terra's\nSpatRaster and SpatVector objects can be written (back) into GRASS format with\n`write_RAST()` and `write_VECT()` functions. Within the Python environment,\nnumpy arrays can also be written (back) into GRASS raster maps with the\n`write()` method.\n\n::: {.panel-tabset}\n\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Raster\nwrite_RAST(elevr, \"elevation_r\")\n\n# Vector\nwrite_VECT(schoolsr, \"schools_r\")\n```\n:::\n\n\n## Python\n\n\n::: {.cell python.reticulate='false'}\n\n```{.python .cell-code}\n# Raster\nelev.write(mapname=\"elev_np\", overwrite=True)\n\n# GeoJSON into GRASS vector\ngs.run_command(\"v.in.ogr\", input=\"schools.geojson\", output=\"schools2\")\n```\n:::\n\n\n:::\n\n\n6. **Close GRASS GIS session**: In general, just closing R or Rstudio, as well\nas shutting down Jupyter notebook, will clean up and close the GRASS session\nproperly. Sometimes, however, especially if the user changed mapset within the\nworkflow, it is better to clean up explicitly before closing.\n\n::: {.panel-tabset}\n\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nunlink_.gislock()\n```\n:::\n\n\n## Python\n\n\n::: {.cell python.reticulate='false'}\n\n```{.python .cell-code}\nsession.finish()\n```\n:::\n\n\n:::\n\n## Final remarks\n\nThe examples and comparisons presented here are intended to facilitate the\ncombination of tools and languages as well as the exchange of data and format\nconversions. We hope that's useful as a starting point for the implementation\nof different use cases and workflows that suit the needs of users.\nSee R and Python tutorials for more examples:\n\n* [GRASS and Python tutorial for beginners](../get_started/fast_track_grass_and_python.qmd)\n* [GRASS and R tutorial for beginners](../get_started/fast_track_grass_and_R.qmd)\n\n## References\n\n* [GRASS Python API docs](https://grass.osgeo.org/grass-stable/manuals/libpython/index.html)\n* [rgrass docs](https://rsbivand.github.io/rgrass/)\n\n\n***\n\n:::{.smaller}\nThe development of this tutorial was funded by the US\n[National Science Foundation (NSF)](https://www.nsf.gov/),\naward [2303651](https://www.nsf.gov/awardsearch/showAward?AWD_ID=2303651).\n:::\n", + "supporting": [ + "quick_comparison_r_vs_python_grass_interfaces_files" + ], + "filters": [ + "rmarkdown/pagebreak.lua" + ], + "includes": {}, + "engineDependencies": {}, + "preserve": {}, + "postProcess": true + } +} \ No newline at end of file diff --git a/content/tutorials/r_python_interfaces_comparison/images/R_Python_compare.png b/content/tutorials/r_python_interfaces_comparison/images/R_Python_compare.png new file mode 100644 index 0000000..438104c Binary files /dev/null and b/content/tutorials/r_python_interfaces_comparison/images/R_Python_compare.png differ diff --git a/content/tutorials/r_python_interfaces_comparison/quick_comparison_r_vs_python_grass_interfaces.qmd b/content/tutorials/r_python_interfaces_comparison/quick_comparison_r_vs_python_grass_interfaces.qmd new file mode 100644 index 0000000..81b40d2 --- /dev/null +++ b/content/tutorials/r_python_interfaces_comparison/quick_comparison_r_vs_python_grass_interfaces.qmd @@ -0,0 +1,289 @@ +--- +title: "Quick comparison: R and Python GRASS interfaces" +author: "Veronica Andreo" +date: 2024-04-01 +date-modified: today +format: + html: + toc: true + code-tools: true + code-copy: true + code-fold: false +categories: [Python, R, intermediate] +engine: knitr +execute: + eval: false +--- + +![](images/R_Python_compare.png){.preview-image width=50%} + +In this short tutorial we will highlight the similarities of R and Python GRASS interfaces +in order to streamline the use of GRASS GIS within R and Python communities. +As you may know, there's +an R package called [rgrass](https://github.com/rsbivand/rgrass/) that provides +basic functionality to read and write data from and into GRASS database as well +as to execute GRASS tools in either existing or temporary GRASS projects. +The [GRASS Python API](https://grass.osgeo.org/grass-stable/manuals/libpython/index.html), +on the other hand, is composed of various packages that provide classes and +functions for low and high level tasks, including those that can be executed +with rgrass. + + + +There are some parallelisms between the +**rgrass** and **grass.script**/**grass.jupyter** packages, i.e., +R and Python interfaces to GRASS GIS. +Let's review them and go through some examples. + + +| Task | rgrass function | GRASS Python API function | +|------------------------------------------------------------|--------------------------------|---------------------------------------------------------| +| Load library | library(rgrass) | import grass.script as gs
import grass.jupyter as gj | +| Start GRASS and set all needed
environmental variables | initGRASS() | gs.setup.init() for scripts,
gj.init() for notebooks | +| Execute GRASS commands | execGRASS() | gs.run_command(),
gs.read_command(),
gs.parse_command() | +| Read raster and vector data
from GRASS | read_RAST(),
read_VECT() | gs.array.array(),
n/a | +| Write raster and vector data
into GRASS | write_RAST(),
write_VECT() | gs.array.write(),
n/a | +| Get raster and vector info | n/a,
vInfo() | gs.raster_info(),
gs.vector_info() | +| Close GRASS session | unlink_.gislock() | gs.setup.finish(),
gj.finish() | + +: R and Python GRASS interfaces compared {.striped .hover} + +## Comparison examples + +Let's see how usage examples would look like. + +1. **Load the library**: We need to +load the libraries that allow us to interface with GRASS GIS +functionality and (optionally) data. For the Python case, we first need to add +the GRASS python package path to our system's path. + +::: {.panel-tabset} + +## R + +```{r} +library(rgrass) +``` + +## Python + +```{python} +#| python.reticulate: FALSE +import sys +import subprocess + +sys.path.append( + subprocess.check_output(["grass", "--config", "python_path"], text=True).strip() +) + +import grass.script as gs +import grass.jupyter as gj +``` + +::: + +2. **Start a GRASS session**: Once we loaded or imported the packages, we +start a GRASS session. We need to pass the path to a +temporary or existing GRASS project. +In the case of R, `initGRASS` will automatically look for GRASS binaries, alternatively we can +specify the path to the binaries ourselves. +In the case of Python, it is worth noting that while grass.script and grass.jupyter init functions +take the same arguments, `gj.init` also sets other environmental variables to +streamline work within Jupyter Notebooks, e.g., overwrite is set to true so cells +can be executed multiple times. + +::: {.panel-tabset} + +## R + +```{r} +session <- initGRASS(gisBase = "/usr/lib/grass84", # where grass binaries live, `grass --config path` + gisDbase = "/home/user/grassdata", # path to grass database or folder where your project lives + location = "nc_basic_spm_grass7", # existing project name + mapset = "PERMANENT" # mapset name + ) +``` + +## Python + +```{python} +#| python.reticulate: FALSE +# With grass.script for scripts +session = gs.setup.init(path="/home/user/grassdata", + location="nc_basic_spm_grass7", + mapset="PERMANENT") +# Optionally, the path to a mapset +session = gs.setup.init("/home/user/grassdata/nc_basic_spm_grass7/PERMANENT") + +# With grass.jupyter for notebooks +session = gj.init(path="/home/user/grassdata", + location="nc_basic_spm_grass7", + mapset="PERMANENT") +# Optionally, the path to a mapset +session = gj.init("~/grassdata/nc_basic_spm_grass7/PERMANENT") +``` + +::: + +3. **Execute GRASS commands**: Both interfaces work pretty similarly, the +first argument is always the GRASS tool name and then we pass the parameters +and flags. While in R we basically use `execGRASS()` for all GRASS commands, in +the Python API, we have different wrappers to execute GRASS commands depending +on the nature of their output. + +::: {.panel-tabset} + +## R + +```{r} +# Map output +execGRASS("r.slope.aspect", + elevation = "elevation", + slope = "slope", + aspect = "aspect") + +# Text output +execGRASS("g.region", + raster = "elevation", + flags = "p") +``` + +## Python + +```{python} +#| python.reticulate: FALSE +# Map output +gs.run_command("r.slope.aspect", + elevation="elevation", + slope="slope", + aspect="aspect") +# Text output +print(gs.read_command("g.region", + raster="elevation", + flags="p")) +# Text output - dictionary +region = gs.parse_command("g.region", + raster="elevation", + flags="g") +region +``` + +::: + +4. **Read raster and vector data into other R or Python formats**: +*rgrass* functions `read_RAST()` and `read_VECT()` convert GRASS raster and +vector maps into terra's SpatRaster and SpatVector objects within R. +In the case of Python, GRASS +raster maps that can be converted into numpy arrays through +`gs.array.array()`. Vector attribute data can be converted into +Pandas data frames in various ways. + +::: {.panel-tabset} + +## R + +```{r} +# Raster +elevr <- read_RAST("elevation") + +# Vector +schoolsr <- read_VECT("schools") +``` + +## Python + +```{python} +#| python.reticulate: FALSE +# Raster into numpy array +elev = gs.array.array("elevation") + +# Vector attributes +import pandas as pd +schools = gs.parse_command("v.db.select", map="schools", format="json") +pd.DataFrame(schools["records"]) + +# Vector geometry and attributes to GeoJSON +gs.run_command("v.out.ogr", input="schools", output="schools.geojson", format="GeoJSON") +``` + +::: + + +5. **Write R or Python objects into GRASS raster and vector maps**: R terra's +SpatRaster and SpatVector objects can be written (back) into GRASS format with +`write_RAST()` and `write_VECT()` functions. Within the Python environment, +numpy arrays can also be written (back) into GRASS raster maps with the +`write()` method. + +::: {.panel-tabset} + +## R + +```{r} +# Raster +write_RAST(elevr, "elevation_r") + +# Vector +write_VECT(schoolsr, "schools_r") +``` + +## Python + +```{python} +#| python.reticulate: FALSE +# Raster +elev.write(mapname="elev_np", overwrite=True) + +# GeoJSON into GRASS vector +gs.run_command("v.in.ogr", input="schools.geojson", output="schools2") +``` + +::: + + +6. **Close GRASS GIS session**: In general, just closing R or Rstudio, as well +as shutting down Jupyter notebook, will clean up and close the GRASS session +properly. Sometimes, however, especially if the user changed mapset within the +workflow, it is better to clean up explicitly before closing. + +::: {.panel-tabset} + +## R + +```{r} +unlink_.gislock() +``` + +## Python + +```{python} +#| python.reticulate: FALSE +session.finish() +``` + +::: + +## Final remarks + +The examples and comparisons presented here are intended to facilitate the +combination of tools and languages as well as the exchange of data and format +conversions. We hope that's useful as a starting point for the implementation +of different use cases and workflows that suit the needs of users. +See R and Python tutorials for more examples: + +* [GRASS and Python tutorial for beginners](../get_started/fast_track_grass_and_python.qmd) +* [GRASS and R tutorial for beginners](../get_started/fast_track_grass_and_R.qmd) + +## References + +* [GRASS Python API docs](https://grass.osgeo.org/grass-stable/manuals/libpython/index.html) +* [rgrass docs](https://rsbivand.github.io/rgrass/) + + +*** + +:::{.smaller} +The development of this tutorial was funded by the US +[National Science Foundation (NSF)](https://www.nsf.gov/), +award [2303651](https://www.nsf.gov/awardsearch/showAward?AWD_ID=2303651). +:::