
App. Specific Business ?

9

Impacts
Threat

Agents
Attack

Vectors
Security

Weakness

Example Attack Scenarios
Scenario #1: Credential stuffing, the use of lists of known 
passwords, is a common attack. If an application does not 
implement automated threat or credential stuffing protections, the 
application can be used as a password oracle to determine if the 
credentials are valid.

Scenario #2: Most authentication attacks occur due to the 
continued use of passwords as a sole factor. Once considered 
best practices, password rotation and complexity requirements 
are viewed as encouraging users to use, and reuse, weak 
passwords. Organizations are recommended to stop these 
practices per NIST 800-63 and use multi-factor authentication.

Scenario #3: Application session timeouts aren’t set properly. A 
user uses a public computer to access an application. Instead of 
selecting “logout” the user simply closes the browser tab and 
walks away. An attacker uses the same browser an hour later, 
and the user is still authenticated.

Is the Application Vulnerable?
Confirmation of the user's identity, authentication, and session 
management are critical to protect against authentication-related 
attacks.

There may be authentication weaknesses if your application:

• Permits automated attacks such as credential stuffing, where 
the attacker has a list of valid usernames and passwords.

• Permits brute force or other automated attacks.

• Permits default, weak or well-known passwords, such as 
"Password1" or "admin/admin“.

• Uses weak or ineffectual credential recovery and forgot 
password processes, such as "knowledge-based answers", 
which cannot be made safe.

• Uses plain text, encrypted, or weakly hashed passwords (see 
A3:2017-Sensitive Data Exposure).

• Has missing or ineffective multi-factor authentication.

• Exposes Session IDs in the URL (e.g., URL rewriting),

• Does not rotate Session IDs after successful login.

• Does not properly invalidate Session IDs. User sessions or 
authentication tokens (particularly single sign-on (SSO) tokens) 
aren’t properly invalidated during logout or a period of inactivity.

References
OWASP
• OWASP Proactive Controls: Implement Identity and 

Authentication Controls

• OWASP ASVS: V2 Authentication, V3 Session Management

• OWASP Testing Guide: Identity, Authentication

• OWASP Cheat Sheet: Authentication

• OWASP Cheat Sheet: Credential Stuffing

• OWASP Cheat Sheet: Forgot Password

• OWASP Cheat Sheet: Session Management

• OWASP Automated Threats Handbook

External
• NIST 800-63b: 5.1.1 Memorized Secrets – for thorough, 

modern, evidence based advice on authentication. 

• CWE-287: Improper Authentication

• CWE-384: Session Fixation

How To Prevent
• Where possible, implement multi-factor authentication to 

prevent automated, credential stuffing, brute force, and stolen 
credential re-use attacks. 

• Do not ship or deploy with any default credentials, particularly 
for admin users

• Implement weak password checks, such as testing new or 
changed passwords against a list of the top 10000 worst 
passwords.

• Align password length, complexity and rotation policies with 
NIST 800-63 B's guidelines in section 5.1.1 for Memorized 
Secrets or other modern, evidence based password policies.

• Ensure registration, credential recovery, and API pathways are 
hardened against account enumeration attacks by using the 
same messages for all outcomes.

• Limit or increasingly delay failed login attempts. Log all failures 
and alert administrators when credential stuffing, brute force, 
other attacks are detected.

• Use a server-side, secure, built-in session manager that 
generates a new random session ID with high entropy after 
login. Session IDs should not be in the URL, be securely stored 
and invalidated after logout, idle, and absolute timeouts.

A2
:2017

Broken Authentication

Exploitability Prevalence Detectability Technical

Attackers have access to hundreds of 
millions of valid username and 
password combinations for credential 
stuffing, default administrative 
account lists, automated brute force 
and dictionary attack tools.

The prevalence of broken authentication is 
widespread due to the design and implementation of 
most identity and access controls.
Attackers can detect broken authentication using 
manual means and exploit them using automated 
tools with password lists and dictionary attacks.

Attackers only have to gain access to 

a few accounts, or just one admin 

account to compromise the system. 

Depending on the domain of the 

application, this may allow money 

laundering social security fraud and 

identity theft; or disclose legally 

protected highly sensitive information.

https://www.owasp.org/index.php/Credential_stuffing
https://github.com/danielmiessler/SecLists
https://www.owasp.org/index.php/Credential_stuffing
https://www.owasp.org/index.php/OWASP_Proactive_Controls#5:_Implement_Identity_and_Authentication_Controls
http:// Authentication
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_Identity_Management
https://www.owasp.org/index.php/Testing_for_authentication
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/384.html
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret

