
LLM Security Verification Standard
0.0.1

Bleeding Edge Version

2024

LLM Security Verification Standard 0.0.1 2024

Contents

Frontispiece 3
About the Standard . 3
Copyright and License . 3
Project Leads . 3
Other Contributors and Reviewers . 3
Major Supporters and Sponsors . 4

Snyk . 4
Lakera . 4

Preface 5

Utilizing the LLMSVS 6
Security Verification Layers . 6
Assumptions . 6

Assessment and Certification 8
OWASP’s Stance on LLMSVS Certifications and Trust Marks 8
Guidance for Certifying Organizations . 8

V1. Secure Configuration and Maintenance 9
Control Objective . 9

V2. Model Lifecycle 10
Control Objective . 10

V3. Real Time Learning 12
Control Objective . 12

V4. Model Memory and Storage 13
Control Objective . 13

V5. Secure LLM Integration 14
Control Objective . 14

V6. Agents and Plugins 17
Control Objective . 17

V7. Dependency and Component 19
Control Objective . 19

V.8 Monitoring and Anomaly Detection 20
Control Objective . 20

1

LLM Security Verification Standard 0.0.1 2024

Appendix A: Glossary 21

2

LLM Security Verification Standard 0.0.1 2024

Frontispiece

About the Standard

The Large Language Model Security Verification Standard is a list of specific AI and LLM security
requirements or tests that can be used by architects, developers, testers, security professionals, tool
vendors, and consumers to define, build, test and verify secure LLM driven applications.

Copyright and License

Version 0.0.1 (Bleeding Edge version), 2024

Figure 1: license

Copyright © 2008‑2024 The OWASP Foundation. This document is released under the Creative Com‑
monsAttribution‑ShareAlike 4.0 International License. For any reuse or distribution, youmustmake
clear to others the license terms of this work.

Project Leads

Vandana Sehgal Elliot Ward

Other Contributors and Reviewers

Eric Allen
(Lakera)

Frawa Vetterli
(Lakera)

Rory McNamara
(Snyk)

Raul
Onitza‑Klugman
(Snyk)

Moshe
Ben‑Nehemia
(Snyk)

SamWatts
(Lakera)

If a credit is missing from the 0.0.1 credit list above, please log a ticket at GitHub to be recognized in
future 0.x updates.

TheLargeLanguageModel SecurityVerification Standard is built upon the initial researchperformed
into LLM security by the Snyk Security labs team in 2023. Much of the concept, structure, boilerplate
and tooling for the LLMSVS has been adapted from the OWASP ASVS project. Thank you to all those
previously involved in the OWASP ASVS.

3

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

LLM Security Verification Standard 0.0.1 2024

Major Supporters and Sponsors

This initiative would not have been possible without the support of our sponsors and the resources
they have provided. We would like to express our gratitude to the following for their support.

Snyk

The LLMSVS project was founded as a way to share knowledge gained from research into AI and
LLM projects within the Snyk Security Labs team. We thank Snyk for the effort into eliciting the
initial requirements and founding the project.

Lakera

Lakera, a security company that empowers developers to confidently build secure Generative AI ap‑
plications, reviewed and proofread an early draft of this standard, providing guidance based on their
expertise with model lifecycle security and secure LLM integration.

4

LLM Security Verification Standard 0.0.1 2024

Preface

Welcome to thefirst alpha release of theOWASPLargeLanguageModel SecurityVerification Standard
(LLMSVS), which provides a framework for evaluating the security of applications and systems that
integrate Large Language Models (LLMs).

The LLMSVS aims to offer clear and practical guidelines that apply universally and assist developers,
architects, security professionals, vendors, and researchers in securing LLM‑powered systems.

The LLMSVS is the result of a collaborative effort drawing on the expertise of professionals across
various sectors. It addresses the unique security challenges presented by LLMs, focusing on func‑
tional and non‑functional security aspects. This alpha release lays the foundation for an adapting set
of guidelines shaped by ongoing feedback and the changing dynamics of LLMs, emerging Artificial
Intelligence (AI) technologies, and advances in cybersecurity.

This release creates a starting point for discussing and improving the verification standard. This
standard is not final and will evolve based on contributions from the community and advancements
in the field. We recognize that there is no one‑size‑fits‑all security solution, especially in a field as
emergent as AI, and we anticipate the need for regular updates and refinements.

This alpha release invites the broader community to participate in developing and enhancing the
LLMSVS.We value the diverse perspectives and expertise each participant brings to this project. Your
feedback and contributions are crucial to ensuring the standard remains relevant and practical.

We’d like to thank the contributors for their valuable input and look forward to your continued sup‑
port and involvement in developing the LLMSVS.

5

LLM Security Verification Standard 0.0.1 2024

Utilizing the LLMSVS

The OWASP LLMSVS serves several key purposes:

• Assisting Development Teams: guide teams in developing and maintaining secure LLM‑
powered applications.

• Framework for SecurityTeams: assist security teams in setting requirements, guiding security
audits, and conducting penetration tests against LLM‑powered systems.

• Aligning Security Benchmarks: establish a common ground for security service providers,
vendors, and clients regarding security expectations.

Security Verification Layers

The LLMSVS categorizes security verification into three distinct levels, each tailored to different lev‑
els of security assurance:

1. LLMSVS Level 1 ‑ Basic Security: This level is aimed at applications with lower security risk
and focuses on fundamental security controls for any LLM‑powered system.

2. LLMSVS Level 2 ‑ Moderate Security: This level is ideal for applications handling sensitive
data, offering a balanced approach to security thatmeets the needs ofmost applications. These
applications may range from personal assistants, APIs processing customer data, or systems
processing internal company data.

3. LLMSVS Level 3 ‑ High Assurance Security: This level provides the most extensive security
measures for the most critical applications involving sensitive data or high‑value transactions.
These applicationsmay range frombusiness critical applications that are essential for business
operation, systems which handle financial transactions, or systems which fall under specific
industry regulations such as those which process patient or healthcare data.

Each level of the LLMSVS provides a set of specific security requirements, mapping these to essen‑
tial security features and practices necessary for building and operating robust LLM‑powered appli‑
cations. This approach equips developers, architects, and security professionals with practical and
actionable guidelines. Whether building, enhancing, or evaluating the security of these applications,
the LLMSVS provides a clear roadmap for all stakeholders involved in the life cycle of LLM‑powered
systems.

Assumptions

When utilizing the LLMSVS, it’s important to keep in mind the following assumptions:

• The LLMSVS is not a replacement for adhering to secure development best practices, such as
secure coding or a Secure Software Development Life Cycle (SSDLC). These practices should be

6

LLM Security Verification Standard 0.0.1 2024

integrally adopted throughout your development efforts, with the LLMSVS serving to augment
them specifically for LLM‑powered applications.

• The LLMSVS is not intended to substitute for comprehensive risk assessments or in‑depth se‑
curity reviews. Rather, it serves as a guide to address potential security vulnerabilities specific
to LLM‑powered applications. Employing the LLMSVS should complement, not replace, these
crucial security practices to ensure a more thorough evaluation and mitigation of risks.

While the LLMSVS offers a comprehensive framework for enhancing the security of LLM‑powered
applications, it cannot ensure complete security. It should be viewed as a foundational set of security
requirements, with additional protectivemeasures takenasneeded tomitigate specificLLMrisks and
threats.

7

LLM Security Verification Standard 0.0.1 2024

Assessment and Certification

OWASP’s Stance on LLMSVS Certifications and Trust Marks

OWASP, as a vendor‑neutral not‑for‑profit organization, does not currently certify any vendors, veri‑
fiers or software.

All such assurance assertions, trust marks, or certifications are not officially vetted, registered, or
certified by OWASP, so an organization relying upon such a view needs to be cautious of the trust
placed in any third party or trust mark claiming (LLM)SVS certification.

This should not inhibit organizations from offering such assurance services, as long as they do not
claim official OWASP certification.

Guidance for Certifying Organizations

For Large Language Model Security Verification Standard (LLMSVS) compliance, an “open book”re‑
view is recommend, granting assessors access to essential resources such as system architects, de‑
velopers, project documentation, source code, and authenticated interfaces, including access to at
least one account for each user role.

It is important to note that the LLMSVS only covers the security requirements pertaining to LLM
usage and integration. It does not cover general application security controls (e.g web services)
which are not specific to an LLM‑powered system. Any additional systems and non‑LLM properties
should be verified against appropriate standards, such as the OWASP ASVS.

Certification reports should clearly define the verification scope, particularly noting any exclusions,
and summarize findings with details on both passed and failed tests, including guidance for address‑
ing failures. Industry‑standard practice requires detailed documentation of the verification process,
including work papers, screenshots, scripts for issue replication, and electronic testing records such
as proxy logs. Automated tool results alone are insufficient; documentationmust provide conclusive
evidence of thorough and rigorous testing of all controls. In case of disputes, sufficient evidence
should be present to verify that each verified control has indeed been tested.

8

https://owasp.org/www-project-application-security-verification-standard/

LLM Security Verification Standard 0.0.1 2024

V1. Secure Configuration and Maintenance

Control Objective

Ensure that LLMs, hosted by amodel provider or self‑hosted, are configured andmaintained securely
to prevent unauthorized access and leakage of sensitive information.

Requirement L1 L2 L3

1.1 Identify any components that store secrets, like API
keys, for third‑party systems, like hosted LLMs and
vector databases, and ensure the secure handling of
these credentials according to section V2.10 “Service
Authentication”of the OWASP ASVS.

✓ ✓

1.2 For self‑hosted LLMs, ensure they are appropriately
segregated within the network to prevent direct
exposure to end‑users unless such access is
required.

✓ ✓

1.3 Maintain an up‑to‑date inventory of all LLM
instances and apply regular updates and patches to
self‑hosted models.

✓

1.4 Perform and document regular configuration
reviews for configuration settings associated with
the LLM‑powered system.

✓

9

LLM Security Verification Standard 0.0.1 2024

V2. Model Lifecycle

Control Objective

Ensure that the Machine Learning (ML) lifecycle for models used within LLM‑powered systems con‑
siders the various security threats from dataset curation, model training, and validation.

Requirement L1 L2 L3

2.1 Ensure that the lifecycle of machine learning models
is integrated into the existing Secure Software
Development Lifecycle (SSDLC). Defined processes
should exist and be available for each stage of the
lifecycle of ML models.

✓ ✓

2.2 Document user stories defining the requirements
and use cases for any newMLmodel being
produced.

✓ ✓

2.3 Ensure that model training resources and datasets
are acquired from trustworthy sources and validated
for correctness or free frommalicious data.

✓ ✓ ✓

2.4 Ensure that model training resources and datasets
are properly secured from unauthorized
modification once acquired.

✓ ✓

2.5 Ensure that the source of any training resources and
datasets is documented.

✓

2.6 Ensure that any data cleaning or other modifications
to the original training resources are tracked and
auditable to reduce the risk of data poisoning from
an insider threat.

✓

2.7 Ensure that the intellectual property rights of model
training resources and datasets are checked to avoid
potential license or copyright infringement issues.
Ensure this process is documented and auditable.

✓ ✓ ✓

2.8 Ensure that model training resources are audited for
sensitive data (such as PII, internal company data,
etc.) and cleaned before training to mitigate
sensitive data exposure in model responses.

✓ ✓

2.9 Ensure secure acquisition and storage of
foundational or pre‑trained models.

✓ ✓ ✓

10

LLM Security Verification Standard 0.0.1 2024

Requirement L1 L2 L3

2.10 Where possible, prefer secure model formats such
as SafeTensors over formats that use unsafe
serialization, like PyTorch’s Pickle format.

✓ ✓ ✓

2.11 Ensure that foundational models are fine‑tuned to
limit irrelevant data points which may lead to poor
model performance.

✓ ✓

2.12 Check regulatory obligations to ensure compliance
when handling and processing model training data.

✓ ✓

2.13 Ensure that a ML Bill‑of‑Materials (BOM) is
produced for each model.

✓

2.14 Consider watermarking techniques for model
responses when model theft is a concern, or the
output of the model needs to be identifiable.

✓

2.15 Ensure tooling to detect biases and ensure fairness
are integrated into the ML models lifecycle.

✓ ✓

2.16 Ensure security tooling to detect LLM vulnerabilities
such as injection attacks, jailbreak attempts and
other abuse are integrated into the ML models
lifecycle.

✓ ✓

2.17 Before a model is finalized for deployment, conduct
a thorough risk assessment to understand potential
security, ethical, and operational risks. This
assessment should guide the decision‑making
process regarding the deployment of the model.

✓

2.18 Ensure there is a clear plan for decommissioning
models that are no longer in use. This includes
securely erasing data, model parameters, and any
sensitive information associated with the model to
prevent unauthorized access or misuse.

✓

11

LLM Security Verification Standard 0.0.1 2024

V3. Real Time Learning

Control Objective

Establish controls to reduce the risks associated with real time learning within LLM systems, where
the models are continuously fine‑tuned based on user interactions in real time.

Requirement L1 L2 L3

3.1 Define clear terms of use and guidelines for
interacting with the model and make users aware of
acceptable and unacceptable behaviors.

✓ ✓ ✓

3.2 Ensure continuous monitoring of the model’s
performance and interactions. This includes logging
all inputs and outputs (where appropriate, with
consideration to the potential sensitivity of the data)
in real time to quickly identify and address any
inappropriate or unexpected behavior.

✓ ✓

3.3 Create clear protocols for immediate intervention in
case the model starts displaying undesirable
behavior. This should include the ability to quickly
take the system offline if necessary.

✓

3.4 Regularly analyze user interactions to identify and
mitigate attempts to manipulate the model into
inappropriate behavior.

✓

3.5 Consider using an incremental learning approach
where the model can be updated in increments with
human approval.

✓

12

LLM Security Verification Standard 0.0.1 2024

V4. Model Memory and Storage

Control Objective

Ensure that mechanisms which allow for “memory”or additional knowledge that was not included
in the training phase is safely handled.

Requirement L1 L2 L3

4.1 Ensure that mechanisms that implement
“Conversational memory”do not mistakenly mix up
prior prompts for other users.

✓ ✓ ✓

4.2 Ensure that mechanisms which support “long‑term”
storage appropriately segregate user data to ensure
it is not possible to retrieve data pertaining to other
users, or inject false records for other users.

✓ ✓ ✓

4.3 Ensure that controls exist to detect leakage of
sensitive data from internal knowledge bases
provided as additional context to the LLM. It should
not be possible to coerce the LLM into leaking the
contents of the knowledge base.

✓ ✓

4.4 Ensure that external storage components such as
vector databases and caches require authentication
for consumers.

✓ ✓ ✓

4.5 Enforce the principle of least privilege for accessing
production storage components, such as vector
databases and caches.

✓ ✓

4.6 When updating embeddings within a knowledge
base, ensure that an adversary is not able to inject
arbitrary documents or otherwise insert false
information into the knowledge base.

✓ ✓ ✓

13

LLM Security Verification Standard 0.0.1 2024

V5. Secure LLM Integration

Control Objective

Establish controls that enable safe interactions and operations between application components and
LLMs.

Requirement L1 L2 L3

5.1 Ensure that prompts to LLMs are issued from a
trusted server‑side component.

✓ ✓ ✓

5.2 Ensure that prompts to LLMs are constructed
server‑side, rather than accepting the complete
prompt directly from the client.

✓ ✓ ✓

5.3 Consider the use of redundant LLM accounts and
providers to avoid single points of failure and ensure
application availability.

✓

5.4 Ensure that credentials for LLM providers are
securely handled according to section V2.10 “Service
Authentication”of the OWASP ASVS.

✓ ✓

5.5 Ensure that the output format and properties of the
data returned from the LLMmatch the expected
structure and properties. Specifically, when a
response is expected in JSON, the result should not
only be in valid JSON format, but also undergo
schema validation to ensure it contains all the
expected JSON fields and does not include any
unnecessary or extraneous properties.

✓ ✓ ✓

5.6 Ensure that the output language of the LLM
response matches the expected language.

✓ ✓

5.7 Consider using canary tokens in LLM prompts and
check whether LLM completions contain the canary
word to detect prompt leakage attacks.

✓

5.8 Check the entropy of LLM responses to detect
encoded data which aims to circumvent additional
checks, such as bypassing canary tokens.

✓

14

LLM Security Verification Standard 0.0.1 2024

Requirement L1 L2 L3

5.9 Perform length checks on LLM completions to verify
that the response length is within an expected range.
For example, a response that is significantly longer
than the normal output length might indicate the
completion is including additional, unexpected data.

✓

5.10 Ensure that the application properly suppresses any
exceptions and error messages when interacting
with the LLM. LLM errors may inadvertently leak
the prompt and should not be visible to the client.

✓ ✓ ✓

5.11 Ensure that appropriate LLM guards are used to
scan prompts and compilations to help detect
potential prompt injection attacks.

✓ ✓

5.12 Ensure that all prompts are considered to be
untrusted and subjected to any deployed security
controls. Reflecting stored data, data from
third‑party APIs, or the response from previous
prompt compilations may lead to indirect prompt
injections and must be subjected to the same
controls as prompts containing direct user input.

✓ ✓

5.13 Ensure that the output of LLM completions is
considered to be untrusted by any subsequent
system. For example, if using the LLM response
within a SQL query, the query should not be
constructed by concatenating parts of the LLM
response but should follow section V5.3.4 of the
OWASP ASVS and use parmeterized queries.

✓ ✓ ✓

5.14 Ensure that systems that result in LLM calls have
appropriate API rate limiting to avoid excessive calls
to LLMs, which may result in unexpected and
excessive LLM costs.

✓ ✓

5.15 Ensure that cost alerts are active within LLM
provider configurations to be alerted when costs
exceed expectations.

✓ ✓ ✓

5.16 Define baselines for normal LLM interactions and
monitor and alert when abnormal LLM interactions
are detected.

✓

15

LLM Security Verification Standard 0.0.1 2024

Requirement L1 L2 L3

5.17 Ensure any functionality that allows anonymous
users to preview features is properly restricted to
allow only the necessary features.

✓ ✓

16

LLM Security Verification Standard 0.0.1 2024

V6. Agents and Plugins

Control Objective

The autonomous nature of agent‑based systems presents new risks and can increase the impact of
attacks such as prompt injection. These controls aim to reduce the risk associated with autonomous
LLM components to an acceptable level.

Requirement L1 L2 L3

6.1 Ensure that agent based solutions only expose
access to the agent tools and plugins required for the
current task. When multiple agent supported tasks
exist, it should not be possible for a given task to
leverage tools or plugins used by another task.

✓ ✓ ✓

6.2 Ensure that custom plugins and agent tools follow
existing SSDLC processes.

✓ ✓

6.3 Ensure third‑party plugins and toolkits are properly
vetted according to existing Third‑party risk
management processes.

✓ ✓

6.4 Ensure that the parameters for agent tools and
plugins are validated prior to execution. Typical
checks should include type checks at minimum, in
addition to any more specific validation.

✓ ✓

6.5 Ensure that credentials for third‑party services
consumed by agent tools and plugins are securely
handled according to section V2.10 “Service
Authentication”of the OWASP ASVS.

✓ ✓

6.6 Ensure that agent and plugin frameworks contain
hooks that allow the raw prompts and completions
to be intercepted, enabling LLM guards to operate,
and enabling proper monitoring, troubleshooting,
and auditing.

✓ ✓

6.7 Ensure that custom built plugins consider the scope
of the currently authenticated principle. Plugins
should not be able to access more than what the
current principle is authorized to access.

✓ ✓

17

LLM Security Verification Standard 0.0.1 2024

Requirement L1 L2 L3

6.8 Ensure that the host that executes agent tools and
plugins is appropriately segregated from other
internal components. Certain internal services
might need to be queried, but firewall rules should
enforce that unrelated services are not reachable.

✓

6.9 Ensure that the host that executes agent tools and
plugins is appropriately restricted frommaking
arbitrary egress network requests. Only traffic for
required APIs and services should be allowed to help
increase the difficulty of data exfiltration from
autonomous agents.

✓

6.10 Ensure that API tokens for third‑party services are
scoped to the minimum required by the agent or
plugin. For example, an agent designed to read
messages from a specific Slack channel should not
be able to read messages from other channels or
post messages.

✓ ✓

6.11 Consider manual approval, sometimes referred to as
“human in the loop,”for sensitive operations before
autonomous agents can continue execution.

✓

6.12 Ensure that agents are executed in a sand‑boxed
ephemeral environment to reduce the risk of agent
prompts which result in code execution due to
software defects.

✓

18

LLM Security Verification Standard 0.0.1 2024

V7. Dependency and Component

Control Objective

Ensure that third‑party components and dependencies are safely handled to reduce supply chain
risk.

Requirement L1 L2 L3

7.1 Utilize Software Composition Analysis (SCA) tools to
identify and remediate known vulnerabilities within
third‑party components used in LLM‑powered
applications.

✓ ✓

7.2 Ensure that all third‑party LLM components are
acquired from a trusted source.

✓ ✓ ✓

7.3 Ensure a defined vulnerability and patch
management process exists for third‑party
components.

✓ ✓

7.4 Ensure that a Software Bill of Materials (SBOM)
exists cataloging third‑party components, licenses,
and versions.

✓ ✓

7.5 Where unsafe PyTorch models are required, ensure
the model is scanned for potentially dangerous
Python imports.

✓ ✓

7.6 When hosting LLM components within private
package registries, ensure the setup is not
susceptible to Dependency Confusion attacks.

✓ ✓

19

LLM Security Verification Standard 0.0.1 2024

V.8 Monitoring and Anomaly Detection

Control Objective

Continuouslymonitor the use of LLM‑powered applications to detect anomalous behavior or outputs
that could indicate security incidents or systemmisuse.

Requirement L1 L2 L3

8.1 Continuously monitor the usage patterns of LLM
applications for anomalies that could indicate
security incidents, such as unexpected spikes in
usage or deviations from typical output patterns.

✓ ✓

8.2 Establish logging and alerting mechanisms for
events that could suggest prompt leaks, such as the
appearance of canary tokens (see 5.7) in logs or
unexpected language patterns.

✓ ✓

20

LLM Security Verification Standard 0.0.1 2024

Appendix A: Glossary

• Large Language Model (LLM) –A type of artificial intelligence model designed to understand,
generate, and interact with human language, based on vast amounts of text data. LLMs can
perform a variety of language tasks like translation, summarization, and question answering.

• Prompt Injection –A technique where an attacker intentionally crafts inputs (or “prompts”) to
manipulate or exploit the behavior of an LLM. This can involve inserting misleading, biased,
or malicious information in a prompt to influence the model’s output.

• LLM Agent –A software entity or bot that utilizes a Large Language Model to perform tasks,
answer queries, or interact in conversations, often designed to automate certain functions or
provide user assistance.

• Model Poisoning –A malicious attempt to influence or corrupt a machine learning model’s
training data, causing it to learn incorrect, biased, or harmful behaviors.

• Natural Language Processing (NLP) –The field of computer science and artificial intelligence
focused on enabling computers to understand, interpret, and generate human language.

• Transformer Architecture –A neural network architecture used in many modern LLMs. It is
known for its ability to handle sequential data and its effectiveness in tasks involving natural
language.

• Tokenization –The process of converting text into smaller units (tokens), such as words, char‑
acters, or subwords, which can be used as input for language models.

• Fine‑Tuning –The process of taking a pre‑trained model and further training it on a specific
dataset to specialize it for particular tasks or domains.

• Data Privacy –Concerns related to the handling, processing, and storage of sensitive or per‑
sonal information by language models, especially when dealing with user inputs.

• Bias in AI –The phenomenon where AI models, including LLMs, exhibit biased behavior, often
as a result of biased training data or algorithms.

• Adversarial Attack –A strategy where attackers create inputs to deceive AImodels intomaking
errors. This is particularly concerning in security‑sensitive applications of LLMs.

• Principle of Least Privilege –A security concept that involves granting users or systems the
minimal level of access or permissions necessary to perform their tasks. This principle helps
minimize potential damage from accidents or malicious attacks by limiting access rights for
users to the bare minimum necessary to complete their duties.

21

	Frontispiece
	About the Standard
	Copyright and License
	Project Leads
	Other Contributors and Reviewers
	Major Supporters and Sponsors
	Snyk
	Lakera

	Preface
	Utilizing the LLMSVS
	Security Verification Layers
	Assumptions

	Assessment and Certification
	OWASP’s Stance on LLMSVS Certifications and Trust Marks
	Guidance for Certifying Organizations

	V1. Secure Configuration and Maintenance
	Control Objective

	V2. Model Lifecycle
	Control Objective

	V3. Real Time Learning
	Control Objective

	V4. Model Memory and Storage
	Control Objective

	V5. Secure LLM Integration
	Control Objective

	V6. Agents and Plugins
	Control Objective

	V7. Dependency and Component
	Control Objective

	V.8 Monitoring and Anomaly Detection
	Control Objective

	Appendix A: Glossary

