
Algorithms in Games: 

Any-Angle Pathfinding 

in Open Spaces 
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Navigation Mesh Grids 
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Navigation Mesh Grids 
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How do you do 

pathfinding in games? 
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Basic answer: 

A* Algorithm 

How do you do 

pathfinding in games? 



A* Algorithm 

with 

8-directional paths 
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and a quick refresher of A*, 

(or dijkstra’s algorithm, if you don’t know what A* is) 



What is A*? 
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What is A*? 

23 

Dijkstra + heuristic 

= A* Algorithm 



t 

s 

8-directional movement 
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8-directional movement 
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Which vertex to explore next? 
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Dijkstra’s Algorithm 
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A* Algorithm 
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A* Algorithm 
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A* Algorithm 
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Dijkstra vs A* 

Demo 
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Dijkstra_Demo 
Astar_Demo 



It works, 

but isn’t exactly ideal. 



We’d prefer 

Something like this. 



Any-Angle Pathfinding 

Algorithms 
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Theta* 
Visibility 

Graphs 



Any-Angle Pathfinding 

Algorithms 
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Theta* 
Visibility 

Graphs 



Theta* Algorithm 

Similar to A*, 

but with one little change 
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PATH 1 
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Theta* Algorithm 



Theta* Algorithm 

Demo 
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ThetaStar_Demo 
ThetaStar_Big 
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How do I check 

Line-of-Sight? 
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Example: Has Line-of-Sight! 
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Example: No Line-of-Sight! 
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Example: No Line-of-Sight! 



Bresenham’s 

Line-Drawing 

Algorithm 
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Bresenham’s 

Line-Drawing 

Algorithm 
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Bressenham’s line-drawing algorithm 

Check grid squares in this order: 
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Bressenham’s line-drawing algorithm 

Check grid squares in this order: 
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Bressenham’s line-drawing algorithm 

Check grid squares in this order: 
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Bressenham’s line-drawing algorithm 

Check grid squares in this order: 
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Bressenham’s line-drawing algorithm 

Check grid squares in this order: 
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Bressenham’s line-drawing algorithm 

Check grid squares in this order: 
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There is Line of Sight if and only if none 

of these squares are blocked. 
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Theta* 

is not Optimal 

Demo 
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ThetaStar_Hard 



Theta* is not optimal! 
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Algorithms 
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Theta* 
Visibility 

Graphs 



Visibility Graph 

Algorithm 

Running A* on Visibility Graphs 

77 



Two Steps 

1) Build Visibility Graph 

2) Run A* on it 
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Visibility Graph 
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Outer Corners of Walls: YES 
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Sides of Walls: NO 
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Inner Corners of Walls: NO 

s 

t 

84 



Connect all pairs of nodes with 

Line-of-Sight to each other. 
s 
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The length of each line is its weight. 
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Visibility Graph 

Algorithm 

Demo 
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VGraph_Hard 
VGraph_LT 



Visibility Graphs are Optimal 
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Further Reading 
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Post-Smoothing:  

Not a pathfinding algorithm, but an extra 

post-processing step to “smoothen out” 

jagged paths. 

 

Lazy Theta*: 

If you find Theta* too slow due to the many 

Line-of-Sight checks, 

Lazy Theta* runs faster, but gives slightly 

longer path lengths. 



Further Reading 
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Jump Point Search:  

A very fast variation of A* for uniform grids. If 

speed is top priority, use this with post-

smoothing. 



Observations 
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Running Time (ms) 



95 

Path Lengths (ratio to optimal) 



Running Time 

Comparison 
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Observation: Visibility Graphs are Optimal, 

But Extremely Slow 
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Observation: Visibility Graphs are Optimal, 

But Extremely Slow 



Path Length 

Comparison 
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A*, 

Dijkstra, 

Jump Point Search 

Theta*, 

VisibilityGraphs 
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A* PS 

Post-Smoothing Step 
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Path generated by A* 
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Start from the goal vertex 
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Line of Sight: YES 
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Line of Sight: YES 

110 



t 

s 
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Line of Sight: YES 
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Line of Sight: NO 

113 



t 

s 
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Line of Sight: YES 
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Post-Smoothing Complete 
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Observations 
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Post-smoothing takes 

negligible time 
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Post-smoothing takes 

negligible time 
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Post-smoothing takes 

negligible time 



Observations 
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Don’t do pathfinding 

without a heuristic! 

It makes a lot of difference 

in running time! 
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A* 

Search Tree 

Dijkstra 

Search Tree 



A* with Octile Heuristic 



Conclusion 
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Theta*:  

Runs fast, not optimal 
But very close to optimal 

Visibility Graphs: 

Optimal, but runs very 
slowly on large maps 

A* (8-directional):  

With the right heuristic, can run very fast. 
But paths are low-quality, even after smoothing 



General tips for Pathfinding in Games 

126 

1) The algorithm is often some variant of A*, 
specific to the game. First find out what is 
important to your game. 

2) Preallocate all memory. 

3) Have a debugging view to observe how 
your pathfinding algorithm works. 
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General tips for Pathfinding in Games 
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1) The algorithm is often some variant of A*, 
specific to the game. First find out what is 
important to your game. 

2) Preallocate all memory. 

3) Have a debugging view to observe how 
your pathfinding algorithm works. 



What I do: 
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Making a detailed comparison of the various algorithms 
regarding their utility when making games 

 
Developing a variant of Theta* which finds much better 

paths than the original 
 

Making animated visualisations for all the algorithms 
 

And making games  
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Implementations on Github: 
github.com/Ohohcakester/Any-Angle-Pathfinding 



Advancements in 

Any-Angle path planning 

2005: Field D* (Ferguson, Stentz) 

2007: Theta* (Daniel, Nash, Koenig) 

2009: Accelerated A* (Sislak, Volf, Pechoucek) 

2011: Block A* (Yap, Burch, Holte, Schaeffer) 

2013: Anya (Daniel, Alban) 
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Let’s end with a 

little demo of 

Theta* in action 
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Questions? 



Questions? 

Preallocating Memory? 
Turning time? 

Character size? 
Weighted maps? 

Avoiding other moving characters? 
What algorithms do games use? 

Navmeshes or Grids? 
What are the factors I should consider? 



Questions? 

Other Demos: 
Jump Point Search 

Post-Smoothing 
Lazy Theta* 


