
Algorithms in Games:

Any-Angle Pathfinding

in Open Spaces

1

2

3

4

5

6

7

8

s

t

9

s

t

2.6

2.0 1.7

1.4

1.2

0.8

1.3

1.3

0.6

1.4

1.2

10

s

t

2.6

2.0 1.7

1.4

1.2

0.8

1.3

1.3

0.6

1.4

1.2

11

s

t

2.6

2.0 1.7

1.4

1.2

0.8

1.3

1.3

0.6

1.4

1.2

12

13

Navigation Mesh Grids

14

Navigation Mesh Grids

15

16

17

18

How do you do

pathfinding in games?

19

20

Basic answer:

A* Algorithm

How do you do

pathfinding in games?

A* Algorithm

with

8-directional paths

21

and a quick refresher of A*,

(or dijkstra’s algorithm, if you don’t know what A* is)

What is A*?

22

What is A*?

23

Dijkstra + heuristic

= A* Algorithm

t

s

8-directional movement

24

t

s

25

8-directional movement

t

s

26

Which vertex to explore next?

t

s

27

Dijkstra’s Algorithm

t

s

28

Dijkstra’s Algorithm
1.4 1.4

1.4 1.4

1 1

1

1

t

s

29

Dijkstra’s Algorithm

t

s

30

Dijkstra’s Algorithm

t

s

31

A* Algorithm

A* Algorithm

t

s

32

1.4 1.4

1.4 1.4

1 1

1

1

A* Algorithm

t

s

33

1.4 1.4

1.4 1.4

1 1

1

1

A* Algorithm

t

s

34

7.1 5.9

4.2 5.9

6 4.6

4.6

6

t

s

A* Algorithm

35

t

s

A* Algorithm

36

Dijkstra vs A*

Demo

37

Dijkstra_Demo
Astar_Demo

It works,

but isn’t exactly ideal.

We’d prefer

Something like this.

Any-Angle Pathfinding

Algorithms

40

Theta*
Visibility

Graphs

Any-Angle Pathfinding

Algorithms

41

Theta*
Visibility

Graphs

Theta* Algorithm

Similar to A*,

but with one little change

42

s
43

t

Theta* Algorithm

s
44

t

Theta* Algorithm

s
45

t

Theta* Algorithm

46

t

Theta* Algorithm

s

s
47

t

Theta* Algorithm

s
48

t

Theta* Algorithm

PATH 2
PATH 1

s
49

t

Theta* Algorithm

PATH 1
PATH 2

s
50

t

Theta* Algorithm

s
51

t

Theta* Algorithm

s
52

t

Theta* Algorithm

s
53

t

Theta* Algorithm

Theta* Algorithm

Demo

54

ThetaStar_Demo
ThetaStar_Big

56

57

How do I check

Line-of-Sight?

58

v

u

59

Example: Has Line-of-Sight!

v

u

Example: No Line-of-Sight!

60

v u

61

Example: No Line-of-Sight!

Bresenham’s

Line-Drawing

Algorithm

62

Bresenham’s

Line-Drawing

Algorithm

63

v

u

Bressenham’s line-drawing algorithm

Check grid squares in this order:

64

v

u

Bressenham’s line-drawing algorithm

Check grid squares in this order:

65

v

u

Bressenham’s line-drawing algorithm

Check grid squares in this order:

66

v

u

Bressenham’s line-drawing algorithm

Check grid squares in this order:

67

v

u

Bressenham’s line-drawing algorithm

Check grid squares in this order:

68

v

u

Bressenham’s line-drawing algorithm

Check grid squares in this order:

69

v

u

There is Line of Sight if and only if none

of these squares are blocked.

70

Theta*

is not Optimal

Demo

74

ThetaStar_Hard

Theta* is not optimal!

75

Any-Angle Pathfinding

Algorithms

76

Theta*
Visibility

Graphs

Visibility Graph

Algorithm

Running A* on Visibility Graphs

77

Two Steps

1) Build Visibility Graph

2) Run A* on it

78

s

t

79

Visibility Graph

s

t

80

Visibility Graph

s

Outer Corners of Walls: YES

t

81

s

Start and End Vertex: YES

t

82

Sides of Walls: NO

s

t

83

Inner Corners of Walls: NO

s

t

84

Connect all pairs of nodes with

Line-of-Sight to each other.
s

t

85

The length of each line is its weight.

s

t

86

Visibility Graph

Algorithm

Demo

87

VGraph_Hard
VGraph_LT

Visibility Graphs are Optimal

88

Further Reading

89

Post-Smoothing:

Not a pathfinding algorithm, but an extra

post-processing step to “smoothen out”

jagged paths.

Lazy Theta*:

If you find Theta* too slow due to the many

Line-of-Sight checks,

Lazy Theta* runs faster, but gives slightly

longer path lengths.

Further Reading

90

Jump Point Search:

A very fast variation of A* for uniform grids. If

speed is top priority, use this with post-

smoothing.

Observations

91

92

93

94

Running Time (ms)

95

Path Lengths (ratio to optimal)

Running Time

Comparison

96

97

98

Observation: Visibility Graphs are Optimal,

But Extremely Slow

99

100

Observation: Visibility Graphs are Optimal,

But Extremely Slow

Path Length

Comparison

101

102

103

A*,

Dijkstra,

Jump Point Search

Theta*,

VisibilityGraphs

104

105

A* PS

Post-Smoothing Step

106

t

s

Path generated by A*

107

t

s

Start from the goal vertex

108

t

s

Line of Sight: YES

109

t

s

Line of Sight: YES

110

t

s

Line of Sight: YES

111

t

s

Line of Sight: YES

112

t

s

Line of Sight: NO

113

t

s

Line of Sight: YES

114

t

s

Line of Sight: YES

115

t

s

Line of Sight: YES

116

t

s

Post-Smoothing Complete

117

Observations

118

Post-smoothing takes

negligible time

119

Post-smoothing takes

negligible time

120

Post-smoothing takes

negligible time

Observations

121

Don’t do pathfinding

without a heuristic!

It makes a lot of difference

in running time!

122

A*

Search Tree

Dijkstra

Search Tree

A* with Octile Heuristic

Conclusion

125

Theta*:

Runs fast, not optimal
But very close to optimal

Visibility Graphs:

Optimal, but runs very
slowly on large maps

A* (8-directional):

With the right heuristic, can run very fast.
But paths are low-quality, even after smoothing

General tips for Pathfinding in Games

126

1) The algorithm is often some variant of A*,
specific to the game. First find out what is
important to your game.

2) Preallocate all memory.

3) Have a debugging view to observe how
your pathfinding algorithm works.

General tips for Pathfinding in Games

127

1) The algorithm is often some variant of A*,
specific to the game. First find out what is
important to your game.

2) Preallocate all memory.

3) Have a debugging view to observe how
your pathfinding algorithm works.

General tips for Pathfinding in Games

General tips for Pathfinding in Games

General tips for Pathfinding in Games

130

1) The algorithm is often some variant of A*,
specific to the game. First find out what is
important to your game.

2) Preallocate all memory.

3) Have a debugging view to observe how
your pathfinding algorithm works.

General tips for Pathfinding in Games

131

1) The algorithm is often some variant of A*,
specific to the game. First find out what is
important to your game.

2) Preallocate all memory.

3) Have a debugging view to observe how
your pathfinding algorithm works.

General tips for Pathfinding in Games

132

1) The algorithm is often some variant of A*,
specific to the game. First find out what is
important to your game.

2) Preallocate all memory.

3) Have a debugging view to observe how
your pathfinding algorithm works.

What I do:

133

Making a detailed comparison of the various algorithms
regarding their utility when making games

Developing a variant of Theta* which finds much better

paths than the original

Making animated visualisations for all the algorithms

And making games

134

Implementations on Github:
github.com/Ohohcakester/Any-Angle-Pathfinding

Advancements in

Any-Angle path planning

2005: Field D* (Ferguson, Stentz)

2007: Theta* (Daniel, Nash, Koenig)

2009: Accelerated A* (Sislak, Volf, Pechoucek)

2011: Block A* (Yap, Burch, Holte, Schaeffer)

2013: Anya (Daniel, Alban)

135

Acknowledgements

A significant number of the benchmark maps used for testing are taken from movingai.com.

Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. (2010). Theta*: Any-angle path planning on grids.
JAIR 39:533–579.

James, A. (2011). AI Navigation: It's Not a Solved Problem... Yet!. In GDC AI Summit 2011.

Daniel, H.; Alban, G. (2011). Online Graph Pruning for Pathfinding on Grid Maps. In AAAI.

Alex, J. (2013, July 16). Lazy Theta*: Faster Any-Angle Path Planning. Retrieved July 2, 2015,
from http://aigamedev.com/open/tutorial/lazy-theta-star/

Sturtevant, N. (n.d.). A* Tie Breaking. Retrieved July 2, 2015, from
http://movingai.com/astar.html

136

http://aigamedev.com/open/tutorial/lazy-theta-star/
http://aigamedev.com/open/tutorial/lazy-theta-star/
http://aigamedev.com/open/tutorial/lazy-theta-star/
http://aigamedev.com/open/tutorial/lazy-theta-star/
http://aigamedev.com/open/tutorial/lazy-theta-star/
http://movingai.com/astar.html
http://movingai.com/astar.html

Let’s end with a

little demo of

Theta* in action

137

Questions?

Questions?

Preallocating Memory?
Turning time?

Character size?
Weighted maps?

Avoiding other moving characters?
What algorithms do games use?

Navmeshes or Grids?
What are the factors I should consider?

Questions?

Other Demos:
Jump Point Search

Post-Smoothing
Lazy Theta*

