

Strict Theta* Shorter Motion Planning Using Taut Paths

Shunhao Oh ohoh@u.nus.edu

Hon Wai Leong leonghw@comp.nus.edu.sg

Department of Computer Science National University of Singapore

8-Directional Path

Any-Angle Path

Basic Theta* (Daniel, Nash, Koenig, Felner, 2007)

8-directional A*

Theta*

Non-Taut Path

Taut Path

Taut Path

Taut Path

Strict Theta* Shorter Motion Planning Using Taut Paths

Strict Theta* Easy to implement Much shorter paths Low runtime overhead

Idea:

Restrict the search to Taut Paths

Idea:

"Restrict" the search to Taut Paths

Penalise non-taut paths

Is Taut

Is Taut

Not Taut

Not Taut

Add Penalties

Tautness checks

Tautness Checks We need only check one tile.

Tautness Checks We need only check one tile.

Tautness Checks We need only check one tile.

The Advantage of Taut Path Restriction

Basic Theta*

Basic Theta*

Basic Theta*

Basic Theta*

Basic Theta*

Basic Theta* Strict Theta*

Basic Theta* Strict Theta* Recursive Strict Theta*

Path Length (As a ratio to the optimal)

Running Time (Averaged, in milliseconds)

Results Using large randomly generated maps of sizes:

500x500 1000x1000 2000x2000 3000x3000 4000x4000 5000x5000

Percentage Optimal / Taut (Note: Optimal Paths are Always Taut)

Strict Theta* Easy to implement Much shorter paths Low runtime overhead

github.com/Ohohcakester/Any-Angle-Pathfinding

Implementation github.com/Ohohcakester/Any-Angle-Pathfinding **Google for "Any Angle Pathfinding"**

Strict Theta* Shorter Motion Planning Using Taut Paths

Shunhao Oh ohoh@u.nus.edu Hon Wai Leong leonghw@comp.nus.edu.sg

Department of Computer Science National University of Singapore

Implementation:

github.com/Ohohcakester/Any-Angle-Pathfinding

Path Length vs Penalty Value

% **Optimal/Taut vs Penalty Value**

Path Length vs Penalty Value

% **Optimal/Taut vs Penalty Value**

Strict Theta*

Strict Theta*

ACKNOWLEDGEMENT

This presentation benefitted from **PowerPointLabs**

a PowerPoint plugin for creating better presentations with less effort.

PowerPointLabs is available for free at http://PowerPointLabs.info