Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
434 lines (357 sloc)
12.3 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Convex Polygon Collision Detection | |
"Don't you dare try concave ones..." - javidx9 | |
License (OLC-3) | |
~~~~~~~~~~~~~~~ | |
Copyright 2018-2019 OneLoneCoder.com | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions | |
are met: | |
1. Redistributions or derivations of source code must retain the above | |
copyright notice, this list of conditions and the following disclaimer. | |
2. Redistributions or derivative works in binary form must reproduce | |
the above copyright notice. This list of conditions and the following | |
disclaimer must be reproduced in the documentation and/or other | |
materials provided with the distribution. | |
3. Neither the name of the copyright holder nor the names of its | |
contributors may be used to endorse or promote products derived | |
from this software without specific prior written permission. | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
Instructions: | |
~~~~~~~~~~~~~ | |
Use arrow keys to control pentagon | |
Use WASD to control triangle | |
F1..F4 selects algorithm | |
Relevant Video: https://youtu.be/7Ik2vowGcU0 | |
Links | |
~~~~~ | |
YouTube: https://www.youtube.com/javidx9 | |
https://www.youtube.com/javidx9extra | |
Discord: https://discord.gg/WhwHUMV | |
Twitter: https://www.twitter.com/javidx9 | |
Twitch: https://www.twitch.tv/javidx9 | |
GitHub: https://www.github.com/onelonecoder | |
Patreon: https://www.patreon.com/javidx9 | |
Homepage: https://www.onelonecoder.com | |
Author | |
~~~~~~ | |
David Barr, aka javidx9, ©OneLoneCoder 2019 | |
*/ | |
#define OLC_PGE_APPLICATION | |
#include "olcPixelGameEngine.h" | |
#include <vector> | |
#include <algorithm> | |
// Override base class with your custom functionality | |
class PolygonCollisions : public olc::PixelGameEngine | |
{ | |
public: | |
PolygonCollisions() | |
{ | |
sAppName = "Polygon Collisions"; | |
} | |
struct vec2d | |
{ | |
float x; | |
float y; | |
}; | |
struct polygon | |
{ | |
std::vector<vec2d> p; // Transformed Points | |
vec2d pos; // Position of shape | |
float angle; // Direction of shape | |
std::vector<vec2d> o; // "Model" of shape | |
bool overlap = false; // Flag to indicate if overlap has occurred | |
}; | |
std::vector<polygon> vecShapes; | |
int nMode = 0; | |
public: | |
bool OnUserCreate() override | |
{ | |
// Create Pentagon | |
polygon s1; | |
float fTheta = 3.14159f * 2.0f / 5.0f; | |
s1.pos = { 100, 100 }; | |
s1.angle = 0.0f; | |
for (int i = 0; i < 5; i++) | |
{ | |
s1.o.push_back({ 30.0f * cosf(fTheta * i), 30.0f * sinf(fTheta * i) }); | |
s1.p.push_back({ 30.0f * cosf(fTheta * i), 30.0f * sinf(fTheta * i) }); | |
} | |
// Create Triangle | |
polygon s2; | |
fTheta = 3.14159f * 2.0f / 3.0f; | |
s2.pos = { 200, 150 }; | |
s2.angle = 0.0f; | |
for (int i = 0; i < 3; i++) | |
{ | |
s2.o.push_back({ 20.0f * cosf(fTheta * i), 20.0f * sinf(fTheta * i) }); | |
s2.p.push_back({ 20.0f * cosf(fTheta * i), 20.0f * sinf(fTheta * i) }); | |
} | |
// Create Quad | |
polygon s3; | |
s3.pos = { 50, 200 }; | |
s3.angle = 0.0f; | |
s3.o.push_back({ -30, -30 }); | |
s3.o.push_back({ -30, +30 }); | |
s3.o.push_back({ +30, +30 }); | |
s3.o.push_back({ +30, -30 }); | |
s3.p.resize(4); | |
vecShapes.push_back(s1); | |
vecShapes.push_back(s2); | |
vecShapes.push_back(s3); | |
return true; | |
} | |
bool ShapeOverlap_SAT(polygon &r1, polygon &r2) | |
{ | |
polygon *poly1 = &r1; | |
polygon *poly2 = &r2; | |
for (int shape = 0; shape < 2; shape++) | |
{ | |
if (shape == 1) | |
{ | |
poly1 = &r2; | |
poly2 = &r1; | |
} | |
for (int a = 0; a < poly1->p.size(); a++) | |
{ | |
int b = (a + 1) % poly1->p.size(); | |
vec2d axisProj = { -(poly1->p[b].y - poly1->p[a].y), poly1->p[b].x - poly1->p[a].x }; | |
float d = sqrtf(axisProj.x * axisProj.x + axisProj.y * axisProj.y); | |
axisProj = { axisProj.x / d, axisProj.y / d }; | |
// Work out min and max 1D points for r1 | |
float min_r1 = INFINITY, max_r1 = -INFINITY; | |
for (int p = 0; p < poly1->p.size(); p++) | |
{ | |
float q = (poly1->p[p].x * axisProj.x + poly1->p[p].y * axisProj.y); | |
min_r1 = std::min(min_r1, q); | |
max_r1 = std::max(max_r1, q); | |
} | |
// Work out min and max 1D points for r2 | |
float min_r2 = INFINITY, max_r2 = -INFINITY; | |
for (int p = 0; p < poly2->p.size(); p++) | |
{ | |
float q = (poly2->p[p].x * axisProj.x + poly2->p[p].y * axisProj.y); | |
min_r2 = std::min(min_r2, q); | |
max_r2 = std::max(max_r2, q); | |
} | |
if (!(max_r2 >= min_r1 && max_r1 >= min_r2)) | |
return false; | |
} | |
} | |
return true; | |
} | |
bool ShapeOverlap_SAT_STATIC(polygon &r1, polygon &r2) | |
{ | |
polygon *poly1 = &r1; | |
polygon *poly2 = &r2; | |
float overlap = INFINITY; | |
for (int shape = 0; shape < 2; shape++) | |
{ | |
if (shape == 1) | |
{ | |
poly1 = &r2; | |
poly2 = &r1; | |
} | |
for (int a = 0; a < poly1->p.size(); a++) | |
{ | |
int b = (a + 1) % poly1->p.size(); | |
vec2d axisProj = { -(poly1->p[b].y - poly1->p[a].y), poly1->p[b].x - poly1->p[a].x }; | |
// Optional normalisation of projection axis enhances stability slightly | |
//float d = sqrtf(axisProj.x * axisProj.x + axisProj.y * axisProj.y); | |
//axisProj = { axisProj.x / d, axisProj.y / d }; | |
// Work out min and max 1D points for r1 | |
float min_r1 = INFINITY, max_r1 = -INFINITY; | |
for (int p = 0; p < poly1->p.size(); p++) | |
{ | |
float q = (poly1->p[p].x * axisProj.x + poly1->p[p].y * axisProj.y); | |
min_r1 = std::min(min_r1, q); | |
max_r1 = std::max(max_r1, q); | |
} | |
// Work out min and max 1D points for r2 | |
float min_r2 = INFINITY, max_r2 = -INFINITY; | |
for (int p = 0; p < poly2->p.size(); p++) | |
{ | |
float q = (poly2->p[p].x * axisProj.x + poly2->p[p].y * axisProj.y); | |
min_r2 = std::min(min_r2, q); | |
max_r2 = std::max(max_r2, q); | |
} | |
// Calculate actual overlap along projected axis, and store the minimum | |
overlap = std::min(std::min(max_r1, max_r2) - std::max(min_r1, min_r2), overlap); | |
if (!(max_r2 >= min_r1 && max_r1 >= min_r2)) | |
return false; | |
} | |
} | |
// If we got here, the objects have collided, we will displace r1 | |
// by overlap along the vector between the two object centers | |
vec2d d = { r2.pos.x - r1.pos.x, r2.pos.y - r1.pos.y }; | |
float s = sqrtf(d.x*d.x + d.y*d.y); | |
r1.pos.x -= overlap * d.x / s; | |
r1.pos.y -= overlap * d.y / s; | |
return false; | |
} | |
// Use edge/diagonal intersections. | |
bool ShapeOverlap_DIAGS(polygon &r1, polygon &r2) | |
{ | |
polygon *poly1 = &r1; | |
polygon *poly2 = &r2; | |
for (int shape = 0; shape < 2; shape++) | |
{ | |
if (shape == 1) | |
{ | |
poly1 = &r2; | |
poly2 = &r1; | |
} | |
// Check diagonals of polygon... | |
for (int p = 0; p < poly1->p.size(); p++) | |
{ | |
vec2d line_r1s = poly1->pos; | |
vec2d line_r1e = poly1->p[p]; | |
// ...against edges of the other | |
for (int q = 0; q < poly2->p.size(); q++) | |
{ | |
vec2d line_r2s = poly2->p[q]; | |
vec2d line_r2e = poly2->p[(q + 1) % poly2->p.size()]; | |
// Standard "off the shelf" line segment intersection | |
float h = (line_r2e.x - line_r2s.x) * (line_r1s.y - line_r1e.y) - (line_r1s.x - line_r1e.x) * (line_r2e.y - line_r2s.y); | |
float t1 = ((line_r2s.y - line_r2e.y) * (line_r1s.x - line_r2s.x) + (line_r2e.x - line_r2s.x) * (line_r1s.y - line_r2s.y)) / h; | |
float t2 = ((line_r1s.y - line_r1e.y) * (line_r1s.x - line_r2s.x) + (line_r1e.x - line_r1s.x) * (line_r1s.y - line_r2s.y)) / h; | |
if (t1 >= 0.0f && t1 < 1.0f && t2 >= 0.0f && t2 < 1.0f) | |
{ | |
return true; | |
} | |
} | |
} | |
} | |
return false; | |
} | |
// Use edge/diagonal intersections. | |
bool ShapeOverlap_DIAGS_STATIC(polygon &r1, polygon &r2) | |
{ | |
polygon *poly1 = &r1; | |
polygon *poly2 = &r2; | |
for (int shape = 0; shape < 2; shape++) | |
{ | |
if (shape == 1) | |
{ | |
poly1 = &r2; | |
poly2 = &r1; | |
} | |
// Check diagonals of this polygon... | |
for (int p = 0; p < poly1->p.size(); p++) | |
{ | |
vec2d line_r1s = poly1->pos; | |
vec2d line_r1e = poly1->p[p]; | |
vec2d displacement = { 0,0 }; | |
// ...against edges of this polygon | |
for (int q = 0; q < poly2->p.size(); q++) | |
{ | |
vec2d line_r2s = poly2->p[q]; | |
vec2d line_r2e = poly2->p[(q + 1) % poly2->p.size()]; | |
// Standard "off the shelf" line segment intersection | |
float h = (line_r2e.x - line_r2s.x) * (line_r1s.y - line_r1e.y) - (line_r1s.x - line_r1e.x) * (line_r2e.y - line_r2s.y); | |
float t1 = ((line_r2s.y - line_r2e.y) * (line_r1s.x - line_r2s.x) + (line_r2e.x - line_r2s.x) * (line_r1s.y - line_r2s.y)) / h; | |
float t2 = ((line_r1s.y - line_r1e.y) * (line_r1s.x - line_r2s.x) + (line_r1e.x - line_r1s.x) * (line_r1s.y - line_r2s.y)) / h; | |
if (t1 >= 0.0f && t1 < 1.0f && t2 >= 0.0f && t2 < 1.0f) | |
{ | |
displacement.x += (1.0f - t1) * (line_r1e.x - line_r1s.x); | |
displacement.y += (1.0f - t1) * (line_r1e.y - line_r1s.y); | |
} | |
} | |
r1.pos.x += displacement.x * (shape == 0 ? -1 : +1); | |
r1.pos.y += displacement.y * (shape == 0 ? -1 : +1); | |
} | |
} | |
// Cant overlap if static collision is resolved | |
return false; | |
} | |
bool OnUserUpdate(float fElapsedTime) override | |
{ | |
if (GetKey(olc::Key::F1).bReleased) nMode = 0; | |
if (GetKey(olc::Key::F2).bReleased) nMode = 1; | |
if (GetKey(olc::Key::F3).bReleased) nMode = 2; | |
if (GetKey(olc::Key::F4).bReleased) nMode = 3; | |
// Shape 1 | |
if (GetKey(olc::Key::LEFT).bHeld) vecShapes[0].angle -= 2.0f * fElapsedTime; | |
if (GetKey(olc::Key::RIGHT).bHeld) vecShapes[0].angle += 2.0f * fElapsedTime; | |
if (GetKey(olc::Key::UP).bHeld) | |
{ | |
vecShapes[0].pos.x += cosf(vecShapes[0].angle) * 60.0f * fElapsedTime; | |
vecShapes[0].pos.y += sinf(vecShapes[0].angle) * 60.0f * fElapsedTime; | |
} | |
if (GetKey(olc::Key::DOWN).bHeld) | |
{ | |
vecShapes[0].pos.x -= cosf(vecShapes[0].angle) * 60.0f * fElapsedTime; | |
vecShapes[0].pos.y -= sinf(vecShapes[0].angle) * 60.0f * fElapsedTime; | |
} | |
// Shape 2 | |
if (GetKey(olc::Key::A).bHeld) vecShapes[1].angle -= 2.0f * fElapsedTime; | |
if (GetKey(olc::Key::D).bHeld) vecShapes[1].angle += 2.0f * fElapsedTime; | |
if (GetKey(olc::Key::W).bHeld) | |
{ | |
vecShapes[1].pos.x += cosf(vecShapes[1].angle) * 60.0f * fElapsedTime; | |
vecShapes[1].pos.y += sinf(vecShapes[1].angle) * 60.0f * fElapsedTime; | |
} | |
if (GetKey(olc::Key::S).bHeld) | |
{ | |
vecShapes[1].pos.x -= cosf(vecShapes[1].angle) * 60.0f * fElapsedTime; | |
vecShapes[1].pos.y -= sinf(vecShapes[1].angle) * 60.0f * fElapsedTime; | |
} | |
// Update Shapes and reset flags | |
for (auto &r : vecShapes) | |
{ | |
for (int i = 0; i < r.o.size(); i++) | |
r.p[i] = | |
{ // 2D Rotation Transform + 2D Translation | |
(r.o[i].x * cosf(r.angle)) - (r.o[i].y * sinf(r.angle)) + r.pos.x, | |
(r.o[i].x * sinf(r.angle)) + (r.o[i].y * cosf(r.angle)) + r.pos.y, | |
}; | |
r.overlap = false; | |
} | |
// Check for overlap | |
for (int m = 0; m < vecShapes.size(); m++) | |
for (int n = m + 1; n < vecShapes.size(); n++) | |
{ | |
switch (nMode) | |
{ | |
case 0: vecShapes[m].overlap |= ShapeOverlap_SAT(vecShapes[m], vecShapes[n]); break; | |
case 1: vecShapes[m].overlap |= ShapeOverlap_SAT_STATIC(vecShapes[m], vecShapes[n]); break; | |
case 2: vecShapes[m].overlap |= ShapeOverlap_DIAGS(vecShapes[m], vecShapes[n]); break; | |
case 3: vecShapes[m].overlap |= ShapeOverlap_DIAGS_STATIC(vecShapes[m], vecShapes[n]); break; | |
} | |
} | |
// === Render Display === | |
Clear(olc::BLUE); | |
// Draw Shapes | |
for (auto &r : vecShapes) | |
{ | |
// Draw Boundary | |
for (int i = 0; i < r.p.size(); i++) | |
DrawLine(r.p[i].x, r.p[i].y, r.p[(i + 1) % r.p.size()].x, r.p[(i + 1) % r.p.size()].y, (r.overlap ? olc::RED : olc::WHITE)); | |
// Draw Direction | |
DrawLine(r.p[0].x, r.p[0].y, r.pos.x, r.pos.y, (r.overlap ? olc::RED : olc::WHITE)); | |
} | |
// Draw HUD | |
DrawString(8, 10, "F1: SAT", (nMode == 0 ? olc::RED : olc::YELLOW)); | |
DrawString(8, 20, "F2: SAT/STATIC", (nMode == 1 ? olc::RED : olc::YELLOW)); | |
DrawString(8, 30, "F3: DIAG", (nMode == 2 ? olc::RED : olc::YELLOW)); | |
DrawString(8, 40, "F4: DIAG/STATIC", (nMode == 3 ? olc::RED : olc::YELLOW)); | |
return true; | |
} | |
}; | |
int main() | |
{ | |
PolygonCollisions demo; | |
if (demo.Construct(256, 240, 4, 4)) | |
demo.Start(); | |
return 0; | |
} |