Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1045 lines (851 sloc)
66.6 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
OneLoneCoder.com - 3D Graphics Part #4 - Texturing & Depth Buffers | |
"Tredimensjonal Grafikk" - @Javidx9 | |
License | |
~~~~~~~ | |
One Lone Coder Console Game Engine Copyright (C) 2018 Javidx9 | |
This program comes with ABSOLUTELY NO WARRANTY. | |
This is free software, and you are welcome to redistribute it | |
under certain conditions; See license for details. | |
Original works located at: | |
https://www.github.com/onelonecoder | |
https://www.onelonecoder.com | |
https://www.youtube.com/javidx9 | |
GNU GPLv3 | |
https://github.com/OneLoneCoder/videos/blob/master/LICENSE | |
From Javidx9 :) | |
~~~~~~~~~~~~~~~ | |
Hello! Ultimately I don't care what you use this for. It's intended to be | |
educational, and perhaps to the oddly minded - a little bit of fun. | |
Please hack this, change it and use it in any way you see fit. You acknowledge | |
that I am not responsible for anything bad that happens as a result of | |
your actions. However this code is protected by GNU GPLv3, see the license in the | |
github repo. This means you must attribute me if you use it. You can view this | |
license here: https://github.com/OneLoneCoder/videos/blob/master/LICENSE | |
Cheers! | |
Background | |
~~~~~~~~~~ | |
3D Graphics is an interesting, visually pleasing suite of algorithms. This is the | |
first video in a series that will demonstrate the fundamentals required to | |
build your own software based 3D graphics systems. | |
Video | |
~~~~~ | |
https://youtu.be/ih20l3pJoeU | |
https://youtu.be/XgMWc6LumG4 | |
https://youtu.be/HXSuNxpCzdM | |
https://youtu.be/nBzCS-Y0FcY | |
Author | |
~~~~~~ | |
Twitter: @javidx9 | |
Blog: http://www.onelonecoder.com | |
Discord: https://discord.gg/WhwHUMV | |
Last Updated: 01/09/2018 | |
*/ | |
// PLEASE NOTE! The video shows the Spyro The Dragon Level - I can't redistribute that | |
// so this file is configured to show the textured Jario cube. Please ensure you have | |
// downloaded the "Jario.spr" file from | |
#include "olcConsoleGameEngine.h" | |
#include <fstream> | |
#include <strstream> | |
#include <algorithm> | |
#include <string> | |
using namespace std; | |
// Created a 2D structure to hold texture coordinates | |
struct vec2d | |
{ | |
float u = 0; | |
float v = 0; | |
float w = 1; | |
}; | |
struct vec3d | |
{ | |
float x = 0; | |
float y = 0; | |
float z = 0; | |
float w = 1; // Need a 4th term to perform sensible matrix vector multiplication | |
}; | |
struct triangle | |
{ | |
vec3d p[3]; | |
vec2d t[3]; // added a texture coord per vertex | |
wchar_t sym; | |
short col; | |
}; | |
struct mesh | |
{ | |
vector<triangle> tris; | |
bool LoadFromObjectFile(string sFilename, bool bHasTexture = false) | |
{ | |
ifstream f(sFilename); | |
if (!f.is_open()) | |
return false; | |
// Local cache of verts | |
vector<vec3d> verts; | |
vector<vec2d> texs; | |
while (!f.eof()) | |
{ | |
char line[128]; | |
f.getline(line, 128); | |
strstream s; | |
s << line; | |
char junk; | |
if (line[0] == 'v') | |
{ | |
if (line[1] == 't') | |
{ | |
vec2d v; | |
s >> junk >> junk >> v.u >> v.v; | |
// A little hack for the spyro texture | |
//v.u = 1.0f - v.u; | |
//v.v = 1.0f - v.v; | |
texs.push_back(v); | |
} | |
else | |
{ | |
vec3d v; | |
s >> junk >> v.x >> v.y >> v.z; | |
verts.push_back(v); | |
} | |
} | |
if (!bHasTexture) | |
{ | |
if (line[0] == 'f') | |
{ | |
int f[3]; | |
s >> junk >> f[0] >> f[1] >> f[2]; | |
tris.push_back({ verts[f[0] - 1], verts[f[1] - 1], verts[f[2] - 1] }); | |
} | |
} | |
else | |
{ | |
if (line[0] == 'f') | |
{ | |
s >> junk; | |
string tokens[6]; | |
int nTokenCount = -1; | |
while (!s.eof()) | |
{ | |
char c = s.get(); | |
if (c == ' ' || c == '/') | |
nTokenCount++; | |
else | |
tokens[nTokenCount].append(1, c); | |
} | |
tokens[nTokenCount].pop_back(); | |
tris.push_back({ verts[stoi(tokens[0]) - 1], verts[stoi(tokens[2]) - 1], verts[stoi(tokens[4]) - 1], | |
texs[stoi(tokens[1]) - 1], texs[stoi(tokens[3]) - 1], texs[stoi(tokens[5]) - 1] }); | |
} | |
} | |
} | |
return true; | |
} | |
}; | |
struct mat4x4 | |
{ | |
float m[4][4] = { 0 }; | |
}; | |
class olcEngine3D : public olcConsoleGameEngine | |
{ | |
public: | |
olcEngine3D() | |
{ | |
m_sAppName = L"3D Demo"; | |
} | |
private: | |
mesh meshCube; | |
mat4x4 matProj; // Matrix that converts from view space to screen space | |
vec3d vCamera; // Location of camera in world space | |
vec3d vLookDir; // Direction vector along the direction camera points | |
float fYaw; // FPS Camera rotation in XZ plane | |
float fTheta; // Spins World transform | |
olcSprite *sprTex1; | |
vec3d Matrix_MultiplyVector(mat4x4 &m, vec3d &i) | |
{ | |
vec3d v; | |
v.x = i.x * m.m[0][0] + i.y * m.m[1][0] + i.z * m.m[2][0] + i.w * m.m[3][0]; | |
v.y = i.x * m.m[0][1] + i.y * m.m[1][1] + i.z * m.m[2][1] + i.w * m.m[3][1]; | |
v.z = i.x * m.m[0][2] + i.y * m.m[1][2] + i.z * m.m[2][2] + i.w * m.m[3][2]; | |
v.w = i.x * m.m[0][3] + i.y * m.m[1][3] + i.z * m.m[2][3] + i.w * m.m[3][3]; | |
return v; | |
} | |
mat4x4 Matrix_MakeIdentity() | |
{ | |
mat4x4 matrix; | |
matrix.m[0][0] = 1.0f; | |
matrix.m[1][1] = 1.0f; | |
matrix.m[2][2] = 1.0f; | |
matrix.m[3][3] = 1.0f; | |
return matrix; | |
} | |
mat4x4 Matrix_MakeRotationX(float fAngleRad) | |
{ | |
mat4x4 matrix; | |
matrix.m[0][0] = 1.0f; | |
matrix.m[1][1] = cosf(fAngleRad); | |
matrix.m[1][2] = sinf(fAngleRad); | |
matrix.m[2][1] = -sinf(fAngleRad); | |
matrix.m[2][2] = cosf(fAngleRad); | |
matrix.m[3][3] = 1.0f; | |
return matrix; | |
} | |
mat4x4 Matrix_MakeRotationY(float fAngleRad) | |
{ | |
mat4x4 matrix; | |
matrix.m[0][0] = cosf(fAngleRad); | |
matrix.m[0][2] = sinf(fAngleRad); | |
matrix.m[2][0] = -sinf(fAngleRad); | |
matrix.m[1][1] = 1.0f; | |
matrix.m[2][2] = cosf(fAngleRad); | |
matrix.m[3][3] = 1.0f; | |
return matrix; | |
} | |
mat4x4 Matrix_MakeRotationZ(float fAngleRad) | |
{ | |
mat4x4 matrix; | |
matrix.m[0][0] = cosf(fAngleRad); | |
matrix.m[0][1] = sinf(fAngleRad); | |
matrix.m[1][0] = -sinf(fAngleRad); | |
matrix.m[1][1] = cosf(fAngleRad); | |
matrix.m[2][2] = 1.0f; | |
matrix.m[3][3] = 1.0f; | |
return matrix; | |
} | |
mat4x4 Matrix_MakeTranslation(float x, float y, float z) | |
{ | |
mat4x4 matrix; | |
matrix.m[0][0] = 1.0f; | |
matrix.m[1][1] = 1.0f; | |
matrix.m[2][2] = 1.0f; | |
matrix.m[3][3] = 1.0f; | |
matrix.m[3][0] = x; | |
matrix.m[3][1] = y; | |
matrix.m[3][2] = z; | |
return matrix; | |
} | |
mat4x4 Matrix_MakeProjection(float fFovDegrees, float fAspectRatio, float fNear, float fFar) | |
{ | |
float fFovRad = 1.0f / tanf(fFovDegrees * 0.5f / 180.0f * 3.14159f); | |
mat4x4 matrix; | |
matrix.m[0][0] = fAspectRatio * fFovRad; | |
matrix.m[1][1] = fFovRad; | |
matrix.m[2][2] = fFar / (fFar - fNear); | |
matrix.m[3][2] = (-fFar * fNear) / (fFar - fNear); | |
matrix.m[2][3] = 1.0f; | |
matrix.m[3][3] = 0.0f; | |
return matrix; | |
} | |
mat4x4 Matrix_MultiplyMatrix(mat4x4 &m1, mat4x4 &m2) | |
{ | |
mat4x4 matrix; | |
for (int c = 0; c < 4; c++) | |
for (int r = 0; r < 4; r++) | |
matrix.m[r][c] = m1.m[r][0] * m2.m[0][c] + m1.m[r][1] * m2.m[1][c] + m1.m[r][2] * m2.m[2][c] + m1.m[r][3] * m2.m[3][c]; | |
return matrix; | |
} | |
mat4x4 Matrix_PointAt(vec3d &pos, vec3d &target, vec3d &up) | |
{ | |
// Calculate new forward direction | |
vec3d newForward = Vector_Sub(target, pos); | |
newForward = Vector_Normalise(newForward); | |
// Calculate new Up direction | |
vec3d a = Vector_Mul(newForward, Vector_DotProduct(up, newForward)); | |
vec3d newUp = Vector_Sub(up, a); | |
newUp = Vector_Normalise(newUp); | |
// New Right direction is easy, its just cross product | |
vec3d newRight = Vector_CrossProduct(newUp, newForward); | |
// Construct Dimensioning and Translation Matrix | |
mat4x4 matrix; | |
matrix.m[0][0] = newRight.x; matrix.m[0][1] = newRight.y; matrix.m[0][2] = newRight.z; matrix.m[0][3] = 0.0f; | |
matrix.m[1][0] = newUp.x; matrix.m[1][1] = newUp.y; matrix.m[1][2] = newUp.z; matrix.m[1][3] = 0.0f; | |
matrix.m[2][0] = newForward.x; matrix.m[2][1] = newForward.y; matrix.m[2][2] = newForward.z; matrix.m[2][3] = 0.0f; | |
matrix.m[3][0] = pos.x; matrix.m[3][1] = pos.y; matrix.m[3][2] = pos.z; matrix.m[3][3] = 1.0f; | |
return matrix; | |
} | |
mat4x4 Matrix_QuickInverse(mat4x4 &m) // Only for Rotation/Translation Matrices | |
{ | |
mat4x4 matrix; | |
matrix.m[0][0] = m.m[0][0]; matrix.m[0][1] = m.m[1][0]; matrix.m[0][2] = m.m[2][0]; matrix.m[0][3] = 0.0f; | |
matrix.m[1][0] = m.m[0][1]; matrix.m[1][1] = m.m[1][1]; matrix.m[1][2] = m.m[2][1]; matrix.m[1][3] = 0.0f; | |
matrix.m[2][0] = m.m[0][2]; matrix.m[2][1] = m.m[1][2]; matrix.m[2][2] = m.m[2][2]; matrix.m[2][3] = 0.0f; | |
matrix.m[3][0] = -(m.m[3][0] * matrix.m[0][0] + m.m[3][1] * matrix.m[1][0] + m.m[3][2] * matrix.m[2][0]); | |
matrix.m[3][1] = -(m.m[3][0] * matrix.m[0][1] + m.m[3][1] * matrix.m[1][1] + m.m[3][2] * matrix.m[2][1]); | |
matrix.m[3][2] = -(m.m[3][0] * matrix.m[0][2] + m.m[3][1] * matrix.m[1][2] + m.m[3][2] * matrix.m[2][2]); | |
matrix.m[3][3] = 1.0f; | |
return matrix; | |
} | |
vec3d Vector_Add(vec3d &v1, vec3d &v2) | |
{ | |
return { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; | |
} | |
vec3d Vector_Sub(vec3d &v1, vec3d &v2) | |
{ | |
return { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; | |
} | |
vec3d Vector_Mul(vec3d &v1, float k) | |
{ | |
return { v1.x * k, v1.y * k, v1.z * k }; | |
} | |
vec3d Vector_Div(vec3d &v1, float k) | |
{ | |
return { v1.x / k, v1.y / k, v1.z / k }; | |
} | |
float Vector_DotProduct(vec3d &v1, vec3d &v2) | |
{ | |
return v1.x*v2.x + v1.y*v2.y + v1.z * v2.z; | |
} | |
float Vector_Length(vec3d &v) | |
{ | |
return sqrtf(Vector_DotProduct(v, v)); | |
} | |
vec3d Vector_Normalise(vec3d &v) | |
{ | |
float l = Vector_Length(v); | |
return { v.x / l, v.y / l, v.z / l }; | |
} | |
vec3d Vector_CrossProduct(vec3d &v1, vec3d &v2) | |
{ | |
vec3d v; | |
v.x = v1.y * v2.z - v1.z * v2.y; | |
v.y = v1.z * v2.x - v1.x * v2.z; | |
v.z = v1.x * v2.y - v1.y * v2.x; | |
return v; | |
} | |
vec3d Vector_IntersectPlane(vec3d &plane_p, vec3d &plane_n, vec3d &lineStart, vec3d &lineEnd, float &t) | |
{ | |
plane_n = Vector_Normalise(plane_n); | |
float plane_d = -Vector_DotProduct(plane_n, plane_p); | |
float ad = Vector_DotProduct(lineStart, plane_n); | |
float bd = Vector_DotProduct(lineEnd, plane_n); | |
t = (-plane_d - ad) / (bd - ad); | |
vec3d lineStartToEnd = Vector_Sub(lineEnd, lineStart); | |
vec3d lineToIntersect = Vector_Mul(lineStartToEnd, t); | |
return Vector_Add(lineStart, lineToIntersect); | |
} | |
int Triangle_ClipAgainstPlane(vec3d plane_p, vec3d plane_n, triangle &in_tri, triangle &out_tri1, triangle &out_tri2) | |
{ | |
// Make sure plane normal is indeed normal | |
plane_n = Vector_Normalise(plane_n); | |
// Return signed shortest distance from point to plane, plane normal must be normalised | |
auto dist = [&](vec3d &p) | |
{ | |
vec3d n = Vector_Normalise(p); | |
return (plane_n.x * p.x + plane_n.y * p.y + plane_n.z * p.z - Vector_DotProduct(plane_n, plane_p)); | |
}; | |
// Create two temporary storage arrays to classify points either side of plane | |
// If distance sign is positive, point lies on "inside" of plane | |
vec3d* inside_points[3]; int nInsidePointCount = 0; | |
vec3d* outside_points[3]; int nOutsidePointCount = 0; | |
vec2d* inside_tex[3]; int nInsideTexCount = 0; | |
vec2d* outside_tex[3]; int nOutsideTexCount = 0; | |
// Get signed distance of each point in triangle to plane | |
float d0 = dist(in_tri.p[0]); | |
float d1 = dist(in_tri.p[1]); | |
float d2 = dist(in_tri.p[2]); | |
if (d0 >= 0) { inside_points[nInsidePointCount++] = &in_tri.p[0]; inside_tex[nInsideTexCount++] = &in_tri.t[0]; } | |
else { | |
outside_points[nOutsidePointCount++] = &in_tri.p[0]; outside_tex[nOutsideTexCount++] = &in_tri.t[0]; | |
} | |
if (d1 >= 0) { | |
inside_points[nInsidePointCount++] = &in_tri.p[1]; inside_tex[nInsideTexCount++] = &in_tri.t[1]; | |
} | |
else { | |
outside_points[nOutsidePointCount++] = &in_tri.p[1]; outside_tex[nOutsideTexCount++] = &in_tri.t[1]; | |
} | |
if (d2 >= 0) { | |
inside_points[nInsidePointCount++] = &in_tri.p[2]; inside_tex[nInsideTexCount++] = &in_tri.t[2]; | |
} | |
else { | |
outside_points[nOutsidePointCount++] = &in_tri.p[2]; outside_tex[nOutsideTexCount++] = &in_tri.t[2]; | |
} | |
// Now classify triangle points, and break the input triangle into | |
// smaller output triangles if required. There are four possible | |
// outcomes... | |
if (nInsidePointCount == 0) | |
{ | |
// All points lie on the outside of plane, so clip whole triangle | |
// It ceases to exist | |
return 0; // No returned triangles are valid | |
} | |
if (nInsidePointCount == 3) | |
{ | |
// All points lie on the inside of plane, so do nothing | |
// and allow the triangle to simply pass through | |
out_tri1 = in_tri; | |
return 1; // Just the one returned original triangle is valid | |
} | |
if (nInsidePointCount == 1 && nOutsidePointCount == 2) | |
{ | |
// Triangle should be clipped. As two points lie outside | |
// the plane, the triangle simply becomes a smaller triangle | |
// Copy appearance info to new triangle | |
out_tri1.col = in_tri.col; | |
out_tri1.sym = in_tri.sym; | |
// The inside point is valid, so keep that... | |
out_tri1.p[0] = *inside_points[0]; | |
out_tri1.t[0] = *inside_tex[0]; | |
// but the two new points are at the locations where the | |
// original sides of the triangle (lines) intersect with the plane | |
float t; | |
out_tri1.p[1] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0], t); | |
out_tri1.t[1].u = t * (outside_tex[0]->u - inside_tex[0]->u) + inside_tex[0]->u; | |
out_tri1.t[1].v = t * (outside_tex[0]->v - inside_tex[0]->v) + inside_tex[0]->v; | |
out_tri1.t[1].w = t * (outside_tex[0]->w - inside_tex[0]->w) + inside_tex[0]->w; | |
out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[1], t); | |
out_tri1.t[2].u = t * (outside_tex[1]->u - inside_tex[0]->u) + inside_tex[0]->u; | |
out_tri1.t[2].v = t * (outside_tex[1]->v - inside_tex[0]->v) + inside_tex[0]->v; | |
out_tri1.t[2].w = t * (outside_tex[1]->w - inside_tex[0]->w) + inside_tex[0]->w; | |
return 1; // Return the newly formed single triangle | |
} | |
if (nInsidePointCount == 2 && nOutsidePointCount == 1) | |
{ | |
// Triangle should be clipped. As two points lie inside the plane, | |
// the clipped triangle becomes a "quad". Fortunately, we can | |
// represent a quad with two new triangles | |
// Copy appearance info to new triangles | |
out_tri1.col = in_tri.col; | |
out_tri1.sym = in_tri.sym; | |
out_tri2.col = in_tri.col; | |
out_tri2.sym = in_tri.sym; | |
// The first triangle consists of the two inside points and a new | |
// point determined by the location where one side of the triangle | |
// intersects with the plane | |
out_tri1.p[0] = *inside_points[0]; | |
out_tri1.p[1] = *inside_points[1]; | |
out_tri1.t[0] = *inside_tex[0]; | |
out_tri1.t[1] = *inside_tex[1]; | |
float t; | |
out_tri1.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[0], *outside_points[0], t); | |
out_tri1.t[2].u = t * (outside_tex[0]->u - inside_tex[0]->u) + inside_tex[0]->u; | |
out_tri1.t[2].v = t * (outside_tex[0]->v - inside_tex[0]->v) + inside_tex[0]->v; | |
out_tri1.t[2].w = t * (outside_tex[0]->w - inside_tex[0]->w) + inside_tex[0]->w; | |
// The second triangle is composed of one of he inside points, a | |
// new point determined by the intersection of the other side of the | |
// triangle and the plane, and the newly created point above | |
out_tri2.p[0] = *inside_points[1]; | |
out_tri2.t[0] = *inside_tex[1]; | |
out_tri2.p[1] = out_tri1.p[2]; | |
out_tri2.t[1] = out_tri1.t[2]; | |
out_tri2.p[2] = Vector_IntersectPlane(plane_p, plane_n, *inside_points[1], *outside_points[0], t); | |
out_tri2.t[2].u = t * (outside_tex[0]->u - inside_tex[1]->u) + inside_tex[1]->u; | |
out_tri2.t[2].v = t * (outside_tex[0]->v - inside_tex[1]->v) + inside_tex[1]->v; | |
out_tri2.t[2].w = t * (outside_tex[0]->w - inside_tex[1]->w) + inside_tex[1]->w; | |
return 2; // Return two newly formed triangles which form a quad | |
} | |
} | |
// Taken From Command Line Webcam Video | |
CHAR_INFO GetColour(float lum) | |
{ | |
short bg_col, fg_col; | |
wchar_t sym; | |
int pixel_bw = (int)(13.0f*lum); | |
switch (pixel_bw) | |
{ | |
case 0: bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; break; | |
case 1: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_QUARTER; break; | |
case 2: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_HALF; break; | |
case 3: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_THREEQUARTERS; break; | |
case 4: bg_col = BG_BLACK; fg_col = FG_DARK_GREY; sym = PIXEL_SOLID; break; | |
case 5: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_QUARTER; break; | |
case 6: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_HALF; break; | |
case 7: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_THREEQUARTERS; break; | |
case 8: bg_col = BG_DARK_GREY; fg_col = FG_GREY; sym = PIXEL_SOLID; break; | |
case 9: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_QUARTER; break; | |
case 10: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_HALF; break; | |
case 11: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_THREEQUARTERS; break; | |
case 12: bg_col = BG_GREY; fg_col = FG_WHITE; sym = PIXEL_SOLID; break; | |
default: | |
bg_col = BG_BLACK; fg_col = FG_BLACK; sym = PIXEL_SOLID; | |
} | |
CHAR_INFO c; | |
c.Attributes = bg_col | fg_col; | |
c.Char.UnicodeChar = sym; | |
return c; | |
} | |
float *pDepthBuffer = nullptr; | |
public: | |
bool OnUserCreate() override | |
{ | |
pDepthBuffer = new float[ScreenWidth() * ScreenHeight()]; | |
// Load object file | |
//meshCube.LoadFromObjectFile("mountains.obj"); | |
meshCube.tris = { | |
// SOUTH | |
{ 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,}, | |
{ 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f,}, | |
// EAST | |
{ 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,}, | |
{ 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f,}, | |
// NORTH | |
{ 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,}, | |
{ 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f,}, | |
// WEST | |
{ 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,}, | |
{ 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f,}, | |
// TOP | |
{ 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,}, | |
{ 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f,}, | |
// BOTTOM | |
{ 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,}, | |
{ 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f,}, | |
}; | |
sprTex1 = new olcSprite(L"Jario.spr"); | |
// Projection Matrix | |
matProj = Matrix_MakeProjection(90.0f, (float)ScreenHeight() / (float)ScreenWidth(), 0.1f, 1000.0f); | |
return true; | |
} | |
bool OnUserUpdate(float fElapsedTime) override | |
{ | |
if (GetKey(VK_UP).bHeld) | |
vCamera.y += 8.0f * fElapsedTime; // Travel Upwards | |
if (GetKey(VK_DOWN).bHeld) | |
vCamera.y -= 8.0f * fElapsedTime; // Travel Downwards | |
// Dont use these two in FPS mode, it is confusing :P | |
if (GetKey(VK_LEFT).bHeld) | |
vCamera.x -= 8.0f * fElapsedTime; // Travel Along X-Axis | |
if (GetKey(VK_RIGHT).bHeld) | |
vCamera.x += 8.0f * fElapsedTime; // Travel Along X-Axis | |
/////// | |
vec3d vForward = Vector_Mul(vLookDir, 8.0f * fElapsedTime); | |
// Standard FPS Control scheme, but turn instead of strafe | |
if (GetKey(L'W').bHeld) | |
vCamera = Vector_Add(vCamera, vForward); | |
if (GetKey(L'S').bHeld) | |
vCamera = Vector_Sub(vCamera, vForward); | |
if (GetKey(L'A').bHeld) | |
fYaw -= 2.0f * fElapsedTime; | |
if (GetKey(L'D').bHeld) | |
fYaw += 2.0f * fElapsedTime; | |
// Set up "World Tranmsform" though not updating theta | |
// makes this a bit redundant | |
mat4x4 matRotZ, matRotX; | |
fTheta += 1.0f * fElapsedTime; // Uncomment to spin me right round baby right round | |
matRotZ = Matrix_MakeRotationZ(fTheta * 0.5f); | |
matRotX = Matrix_MakeRotationX(fTheta); | |
mat4x4 matTrans; | |
matTrans = Matrix_MakeTranslation(0.0f, 0.0f, 5.0f); | |
mat4x4 matWorld; | |
matWorld = Matrix_MakeIdentity(); // Form World Matrix | |
matWorld = Matrix_MultiplyMatrix(matRotZ, matRotX); // Transform by rotation | |
matWorld = Matrix_MultiplyMatrix(matWorld, matTrans); // Transform by translation | |
// Create "Point At" Matrix for camera | |
vec3d vUp = { 0,1,0 }; | |
vec3d vTarget = { 0,0,1 }; | |
mat4x4 matCameraRot = Matrix_MakeRotationY(fYaw); | |
vLookDir = Matrix_MultiplyVector(matCameraRot, vTarget); | |
vTarget = Vector_Add(vCamera, vLookDir); | |
mat4x4 matCamera = Matrix_PointAt(vCamera, vTarget, vUp); | |
// Make view matrix from camera | |
mat4x4 matView = Matrix_QuickInverse(matCamera); | |
// Store triagles for rastering later | |
vector<triangle> vecTrianglesToRaster; | |
// Draw Triangles | |
for (auto tri : meshCube.tris) | |
{ | |
triangle triProjected, triTransformed, triViewed; | |
// World Matrix Transform | |
triTransformed.p[0] = Matrix_MultiplyVector(matWorld, tri.p[0]); | |
triTransformed.p[1] = Matrix_MultiplyVector(matWorld, tri.p[1]); | |
triTransformed.p[2] = Matrix_MultiplyVector(matWorld, tri.p[2]); | |
triTransformed.t[0] = tri.t[0]; | |
triTransformed.t[1] = tri.t[1]; | |
triTransformed.t[2] = tri.t[2]; | |
// Calculate triangle Normal | |
vec3d normal, line1, line2; | |
// Get lines either side of triangle | |
line1 = Vector_Sub(triTransformed.p[1], triTransformed.p[0]); | |
line2 = Vector_Sub(triTransformed.p[2], triTransformed.p[0]); | |
// Take cross product of lines to get normal to triangle surface | |
normal = Vector_CrossProduct(line1, line2); | |
// You normally need to normalise a normal! | |
normal = Vector_Normalise(normal); | |
// Get Ray from triangle to camera | |
vec3d vCameraRay = Vector_Sub(triTransformed.p[0], vCamera); | |
// If ray is aligned with normal, then triangle is visible | |
if (Vector_DotProduct(normal, vCameraRay) < 0.0f) | |
{ | |
// Illumination | |
vec3d light_direction = { 0.0f, 1.0f, -1.0f }; | |
light_direction = Vector_Normalise(light_direction); | |
// How "aligned" are light direction and triangle surface normal? | |
float dp = max(0.1f, Vector_DotProduct(light_direction, normal)); | |
// Choose console colours as required (much easier with RGB) | |
CHAR_INFO c = GetColour(dp); | |
triTransformed.col = c.Attributes; | |
triTransformed.sym = c.Char.UnicodeChar; | |
// Convert World Space --> View Space | |
triViewed.p[0] = Matrix_MultiplyVector(matView, triTransformed.p[0]); | |
triViewed.p[1] = Matrix_MultiplyVector(matView, triTransformed.p[1]); | |
triViewed.p[2] = Matrix_MultiplyVector(matView, triTransformed.p[2]); | |
triViewed.sym = triTransformed.sym; | |
triViewed.col = triTransformed.col; | |
triViewed.t[0] = triTransformed.t[0]; | |
triViewed.t[1] = triTransformed.t[1]; | |
triViewed.t[2] = triTransformed.t[2]; | |
// Clip Viewed Triangle against near plane, this could form two additional | |
// additional triangles. | |
int nClippedTriangles = 0; | |
triangle clipped[2]; | |
nClippedTriangles = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.1f }, { 0.0f, 0.0f, 1.0f }, triViewed, clipped[0], clipped[1]); | |
// We may end up with multiple triangles form the clip, so project as | |
// required | |
for (int n = 0; n < nClippedTriangles; n++) | |
{ | |
// Project triangles from 3D --> 2D | |
triProjected.p[0] = Matrix_MultiplyVector(matProj, clipped[n].p[0]); | |
triProjected.p[1] = Matrix_MultiplyVector(matProj, clipped[n].p[1]); | |
triProjected.p[2] = Matrix_MultiplyVector(matProj, clipped[n].p[2]); | |
triProjected.col = clipped[n].col; | |
triProjected.sym = clipped[n].sym; | |
triProjected.t[0] = clipped[n].t[0]; | |
triProjected.t[1] = clipped[n].t[1]; | |
triProjected.t[2] = clipped[n].t[2]; | |
triProjected.t[0].u = triProjected.t[0].u / triProjected.p[0].w; | |
triProjected.t[1].u = triProjected.t[1].u / triProjected.p[1].w; | |
triProjected.t[2].u = triProjected.t[2].u / triProjected.p[2].w; | |
triProjected.t[0].v = triProjected.t[0].v / triProjected.p[0].w; | |
triProjected.t[1].v = triProjected.t[1].v / triProjected.p[1].w; | |
triProjected.t[2].v = triProjected.t[2].v / triProjected.p[2].w; | |
triProjected.t[0].w = 1.0f / triProjected.p[0].w; | |
triProjected.t[1].w = 1.0f / triProjected.p[1].w; | |
triProjected.t[2].w = 1.0f / triProjected.p[2].w; | |
// Scale into view, we moved the normalising into cartesian space | |
// out of the matrix.vector function from the previous videos, so | |
// do this manually | |
triProjected.p[0] = Vector_Div(triProjected.p[0], triProjected.p[0].w); | |
triProjected.p[1] = Vector_Div(triProjected.p[1], triProjected.p[1].w); | |
triProjected.p[2] = Vector_Div(triProjected.p[2], triProjected.p[2].w); | |
// X/Y are inverted so put them back | |
triProjected.p[0].x *= -1.0f; | |
triProjected.p[1].x *= -1.0f; | |
triProjected.p[2].x *= -1.0f; | |
triProjected.p[0].y *= -1.0f; | |
triProjected.p[1].y *= -1.0f; | |
triProjected.p[2].y *= -1.0f; | |
// Offset verts into visible normalised space | |
vec3d vOffsetView = { 1,1,0 }; | |
triProjected.p[0] = Vector_Add(triProjected.p[0], vOffsetView); | |
triProjected.p[1] = Vector_Add(triProjected.p[1], vOffsetView); | |
triProjected.p[2] = Vector_Add(triProjected.p[2], vOffsetView); | |
triProjected.p[0].x *= 0.5f * (float)ScreenWidth(); | |
triProjected.p[0].y *= 0.5f * (float)ScreenHeight(); | |
triProjected.p[1].x *= 0.5f * (float)ScreenWidth(); | |
triProjected.p[1].y *= 0.5f * (float)ScreenHeight(); | |
triProjected.p[2].x *= 0.5f * (float)ScreenWidth(); | |
triProjected.p[2].y *= 0.5f * (float)ScreenHeight(); | |
// Store triangle for sorting | |
vecTrianglesToRaster.push_back(triProjected); | |
} | |
} | |
} | |
// Sort triangles from back to front | |
/*sort(vecTrianglesToRaster.begin(), vecTrianglesToRaster.end(), [](triangle &t1, triangle &t2) | |
{ | |
float z1 = (t1.p[0].z + t1.p[1].z + t1.p[2].z) / 3.0f; | |
float z2 = (t2.p[0].z + t2.p[1].z + t2.p[2].z) / 3.0f; | |
return z1 > z2; | |
});*/ | |
// Clear Screen | |
Fill(0, 0, ScreenWidth(), ScreenHeight(), PIXEL_SOLID, FG_CYAN); | |
// Clear Depth Buffer | |
for (int i = 0; i < ScreenWidth()*ScreenHeight(); i++) | |
pDepthBuffer[i] = 0.0f; | |
// Loop through all transformed, viewed, projected, and sorted triangles | |
for (auto &triToRaster : vecTrianglesToRaster) | |
{ | |
// Clip triangles against all four screen edges, this could yield | |
// a bunch of triangles, so create a queue that we traverse to | |
// ensure we only test new triangles generated against planes | |
triangle clipped[2]; | |
list<triangle> listTriangles; | |
// Add initial triangle | |
listTriangles.push_back(triToRaster); | |
int nNewTriangles = 1; | |
for (int p = 0; p < 4; p++) | |
{ | |
int nTrisToAdd = 0; | |
while (nNewTriangles > 0) | |
{ | |
// Take triangle from front of queue | |
triangle test = listTriangles.front(); | |
listTriangles.pop_front(); | |
nNewTriangles--; | |
// Clip it against a plane. We only need to test each | |
// subsequent plane, against subsequent new triangles | |
// as all triangles after a plane clip are guaranteed | |
// to lie on the inside of the plane. I like how this | |
// comment is almost completely and utterly justified | |
switch (p) | |
{ | |
case 0: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, test, clipped[0], clipped[1]); break; | |
case 1: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, (float)ScreenHeight() - 1, 0.0f }, { 0.0f, -1.0f, 0.0f }, test, clipped[0], clipped[1]); break; | |
case 2: nTrisToAdd = Triangle_ClipAgainstPlane({ 0.0f, 0.0f, 0.0f }, { 1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break; | |
case 3: nTrisToAdd = Triangle_ClipAgainstPlane({ (float)ScreenWidth() - 1, 0.0f, 0.0f }, { -1.0f, 0.0f, 0.0f }, test, clipped[0], clipped[1]); break; | |
} | |
// Clipping may yield a variable number of triangles, so | |
// add these new ones to the back of the queue for subsequent | |
// clipping against next planes | |
for (int w = 0; w < nTrisToAdd; w++) | |
listTriangles.push_back(clipped[w]); | |
} | |
nNewTriangles = listTriangles.size(); | |
} | |
// Draw the transformed, viewed, clipped, projected, sorted, clipped triangles | |
for (auto &t : listTriangles) | |
{ | |
TexturedTriangle(t.p[0].x, t.p[0].y, t.t[0].u, t.t[0].v, t.t[0].w, | |
t.p[1].x, t.p[1].y, t.t[1].u, t.t[1].v, t.t[1].w, | |
t.p[2].x, t.p[2].y, t.t[2].u, t.t[2].v, t.t[2].w, sprTex1); | |
//FillTriangle(t.p[0].x, t.p[0].y, t.p[1].x, t.p[1].y, t.p[2].x, t.p[2].y, t.sym, t.col); | |
DrawTriangle(t.p[0].x, t.p[0].y, t.p[1].x, t.p[1].y, t.p[2].x, t.p[2].y, PIXEL_SOLID, FG_WHITE); | |
} | |
} | |
return true; | |
} | |
void TexturedTriangle( int x1, int y1, float u1, float v1, float w1, | |
int x2, int y2, float u2, float v2, float w2, | |
int x3, int y3, float u3, float v3, float w3, | |
olcSprite *tex) | |
{ | |
if (y2 < y1) | |
{ | |
swap(y1, y2); | |
swap(x1, x2); | |
swap(u1, u2); | |
swap(v1, v2); | |
swap(w1, w2); | |
} | |
if (y3 < y1) | |
{ | |
swap(y1, y3); | |
swap(x1, x3); | |
swap(u1, u3); | |
swap(v1, v3); | |
swap(w1, w3); | |
} | |
if (y3 < y2) | |
{ | |
swap(y2, y3); | |
swap(x2, x3); | |
swap(u2, u3); | |
swap(v2, v3); | |
swap(w2, w3); | |
} | |
int dy1 = y2 - y1; | |
int dx1 = x2 - x1; | |
float dv1 = v2 - v1; | |
float du1 = u2 - u1; | |
float dw1 = w2 - w1; | |
int dy2 = y3 - y1; | |
int dx2 = x3 - x1; | |
float dv2 = v3 - v1; | |
float du2 = u3 - u1; | |
float dw2 = w3 - w1; | |
float tex_u, tex_v, tex_w; | |
float dax_step = 0, dbx_step = 0, | |
du1_step = 0, dv1_step = 0, | |
du2_step = 0, dv2_step = 0, | |
dw1_step=0, dw2_step=0; | |
if (dy1) dax_step = dx1 / (float)abs(dy1); | |
if (dy2) dbx_step = dx2 / (float)abs(dy2); | |
if (dy1) du1_step = du1 / (float)abs(dy1); | |
if (dy1) dv1_step = dv1 / (float)abs(dy1); | |
if (dy1) dw1_step = dw1 / (float)abs(dy1); | |
if (dy2) du2_step = du2 / (float)abs(dy2); | |
if (dy2) dv2_step = dv2 / (float)abs(dy2); | |
if (dy2) dw2_step = dw2 / (float)abs(dy2); | |
if (dy1) | |
{ | |
for (int i = y1; i <= y2; i++) | |
{ | |
int ax = x1 + (float)(i - y1) * dax_step; | |
int bx = x1 + (float)(i - y1) * dbx_step; | |
float tex_su = u1 + (float)(i - y1) * du1_step; | |
float tex_sv = v1 + (float)(i - y1) * dv1_step; | |
float tex_sw = w1 + (float)(i - y1) * dw1_step; | |
float tex_eu = u1 + (float)(i - y1) * du2_step; | |
float tex_ev = v1 + (float)(i - y1) * dv2_step; | |
float tex_ew = w1 + (float)(i - y1) * dw2_step; | |
if (ax > bx) | |
{ | |
swap(ax, bx); | |
swap(tex_su, tex_eu); | |
swap(tex_sv, tex_ev); | |
swap(tex_sw, tex_ew); | |
} | |
tex_u = tex_su; | |
tex_v = tex_sv; | |
tex_w = tex_sw; | |
float tstep = 1.0f / ((float)(bx - ax)); | |
float t = 0.0f; | |
for (int j = ax; j < bx; j++) | |
{ | |
tex_u = (1.0f - t) * tex_su + t * tex_eu; | |
tex_v = (1.0f - t) * tex_sv + t * tex_ev; | |
tex_w = (1.0f - t) * tex_sw + t * tex_ew; | |
if (tex_w > pDepthBuffer[i*ScreenWidth() + j]) | |
{ | |
Draw(j, i, tex->SampleGlyph(tex_u / tex_w, tex_v / tex_w), tex->SampleColour(tex_u / tex_w, tex_v / tex_w)); | |
pDepthBuffer[i*ScreenWidth() + j] = tex_w; | |
} | |
t += tstep; | |
} | |
} | |
} | |
dy1 = y3 - y2; | |
dx1 = x3 - x2; | |
dv1 = v3 - v2; | |
du1 = u3 - u2; | |
dw1 = w3 - w2; | |
if (dy1) dax_step = dx1 / (float)abs(dy1); | |
if (dy2) dbx_step = dx2 / (float)abs(dy2); | |
du1_step = 0, dv1_step = 0; | |
if (dy1) du1_step = du1 / (float)abs(dy1); | |
if (dy1) dv1_step = dv1 / (float)abs(dy1); | |
if (dy1) dw1_step = dw1 / (float)abs(dy1); | |
if (dy1) | |
{ | |
for (int i = y2; i <= y3; i++) | |
{ | |
int ax = x2 + (float)(i - y2) * dax_step; | |
int bx = x1 + (float)(i - y1) * dbx_step; | |
float tex_su = u2 + (float)(i - y2) * du1_step; | |
float tex_sv = v2 + (float)(i - y2) * dv1_step; | |
float tex_sw = w2 + (float)(i - y2) * dw1_step; | |
float tex_eu = u1 + (float)(i - y1) * du2_step; | |
float tex_ev = v1 + (float)(i - y1) * dv2_step; | |
float tex_ew = w1 + (float)(i - y1) * dw2_step; | |
if (ax > bx) | |
{ | |
swap(ax, bx); | |
swap(tex_su, tex_eu); | |
swap(tex_sv, tex_ev); | |
swap(tex_sw, tex_ew); | |
} | |
tex_u = tex_su; | |
tex_v = tex_sv; | |
tex_w = tex_sw; | |
float tstep = 1.0f / ((float)(bx - ax)); | |
float t = 0.0f; | |
for (int j = ax; j < bx; j++) | |
{ | |
tex_u = (1.0f - t) * tex_su + t * tex_eu; | |
tex_v = (1.0f - t) * tex_sv + t * tex_ev; | |
tex_w = (1.0f - t) * tex_sw + t * tex_ew; | |
if (tex_w > pDepthBuffer[i*ScreenWidth() + j]) | |
{ | |
Draw(j, i, tex->SampleGlyph(tex_u / tex_w, tex_v / tex_w), tex->SampleColour(tex_u / tex_w, tex_v / tex_w)); | |
pDepthBuffer[i*ScreenWidth() + j] = tex_w; | |
} | |
t += tstep; | |
} | |
} | |
} | |
} | |
}; | |
int main() | |
{ | |
olcEngine3D demo; | |
if (demo.ConstructConsole(256, 240, 4, 4)) | |
demo.Start(); | |
return 0; | |
} | |