
Specification v1.0-beta
Revision 2023-05-02

Overview
Cyphal is an open technology for real-time intravehicular
distributed computing and communication based
on modern networking standards (Ethernet, CAN
FD, etc.). It was created to address the challenge of
on-board deterministic computing and data distribution
in next-generation intelligent vehicles: manned and
unmanned aircraft, spacecraft, robots, and cars.

Features:

• Democratic network – no bus master, no single point of
failure.

• Publish/subscribe and request/response (RPC1)
communication semantics.

• Efficient exchange of large data structures with
automatic decomposition and reassembly.

• Lightweight, deterministic, easy to implement, and easy
to validate.

• Suitable for deeply embedded, resource constrained,
hard real-time systems.

• Supports dual and triply modular redundant transports.
• Supports high-precision network-wide time synchroni-

zation.
• Provides rich data type and interface abstractions –

an interface description language is a core part of the
technology which allows deeply embedded sub-systems
to interface with higher-level systems directly and in a
maintainable manner while enabling simulation and
functional testing.

• The specification and high quality reference implemen-
tations in popular programming languages are free, open
source, and available for commercial use under the per-
missive MIT license.

1Remote procedure call.

License
Cyphal is a standard open to everyone, and it will always
remain this way. No authorization or approval of any kind
is necessary for its implementation, distribution, or use.

This work is licensed under the Creative Commons
Attribution 4.0 International License. To view a copy of
this license, visit creativecommons.org/licenses/by/4.0
or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

Disclaimer of warranty
Note well: this Specification is provided on an “as is” ba-
sis, without warranties or conditions of any kind, express
or implied, including, without limitation, any warranties
or conditions of title, non-infringement, merchantability,
or fitness for a particular purpose.

Limitation of liability
In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless
required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any author
of this Specification be liable for damages, including any
direct, indirect, special, incidental, or consequential
damages of any character arising from, out of, or in
connection with the Specification or the implementation,
deployment, or other use of the Specification (including
but not limited to damages for loss of goodwill, work
stoppage, equipment failure or malfunction, injuries to
persons, death, or any and all other commercial damages
or losses), even if such author has been made aware of the
possibility of such damages.

© 2015–2023 OpenCyphal Development Team Support & feedback: opencyphal.org

http://creativecommons.org/licenses/by/4.0/
http://opencyphal.org
http://opencyphal.org

Specification v1.0-beta 2023-05-02

Table of contents
1 Introduction 1

1.1 Overview 1
1.2 Document conventions 1
1.3 Design principles 2
1.4 Capabilities 2
1.5 Management policy 3
1.6 Referenced sources 3
1.7 Revision history 4

1.7.1 v1.0 – work in progress 4
1.7.2 v1.0-beta – Sep 2020 4
1.7.3 v1.0-alpha – Jan 2020 4

2 Basic concepts 5
2.1 Main principles. 5

2.1.1 Communication 5
2.1.2 Data types 5
2.1.3 High-level functions 7

2.2 Message publication 7
2.2.1 Anonymous message publication . . . 7

2.3 Service invocation 7
3 Data structure description language 9

3.1 Architecture 9
3.1.1 General principles 9
3.1.2 Data types and namespaces 9
3.1.3 File hierarchy 10
3.1.4 Elements of data type definition. . . . 11
3.1.5 Serialization 11

3.2 Grammar 12
3.2.1 Notation 12
3.2.2 Definition. 12
3.2.3 Expressions 14
3.2.4 Literals 15
3.2.5 Reserved identifiers 16
3.2.6 Reserved comment forms 17

3.3 Expression types 17
3.3.1 Rational number 18
3.3.2 Unicode string 18
3.3.3 Set. 19
3.3.4 Serializable metatype 19

3.4 Serializable types 19
3.4.1 General principles 19
3.4.2 Void types. 20
3.4.3 Primitive types 20
3.4.4 Array types 21
3.4.5 Composite types 22

3.5 Attributes. 28
3.5.1 Composite type attributes 28
3.5.2 Local attributes 29
3.5.3 Intrinsic attributes 30

3.6 Directives. 30
3.6.1 Tagged union marker. 30
3.6.2 Extent specifier 31
3.6.3 Sealing marker 31
3.6.4 Deprecation marker 31
3.6.5 Assertion check 32
3.6.6 Print 32

3.7 Data serialization 32
3.7.1 General principles 32
3.7.2 Void types. 34
3.7.3 Primitive types 35
3.7.4 Array types 36
3.7.5 Composite types 37

3.8 Compatibility and versioning 41
3.8.1 Rationale 41
3.8.2 Semantic compatibility 41
3.8.3 Versioning 42

3.9 Conventions and recommendations . . 46
3.9.1 Naming recommendations 46

3.9.2 Comments 46
3.9.3 Optional value representation 46
3.9.4 Bit flag representation 47

4 Transport layer 48
4.1 Abstract concepts 49

4.1.1 Transport model 49
4.1.2 Redundant transports 54
4.1.3 Transfer transmission 54
4.1.4 Transfer reception 55

4.2 Cyphal/CAN. 58
4.2.1 CAN ID field 58
4.2.2 CAN data field 60
4.2.3 Examples 61
4.2.4 Software design considerations 62

4.3 Cyphal/UDP. 65
4.3.1 Overview 65
4.3.2 UDP/IP endpoints and routing 65
4.3.3 UDP datagram payload format 67
4.3.4 Transfer payload 68
4.3.5 Maximum transmission unit. 68

5 Application layer 69
5.1 Application-level requirements 70

5.1.1 Port identifier distribution 70
5.1.2 Port compatibility 70
5.1.3 Standard namespace 70

5.2 Application-level conventions 72
5.2.1 Node identifier distribution 72
5.2.2 Service latency 72
5.2.3 Coordinate frames 72
5.2.4 Rotation representation 73
5.2.5 Matrix representation 73
5.2.6 Physical quantity representation . . . 74

5.3 Application-level functions. 75
5.3.1 Node initialization 75
5.3.2 Node heartbeat 75
5.3.3 Generic node information 75
5.3.4 Bus data flow monitoring 75
5.3.5 Network-wide time synchronization . . 75
5.3.6 Primitive types and physical quantities . . 76
5.3.7 Remote file system interface 77
5.3.8 Generic node commands 77
5.3.9 Node software update 77
5.3.10 Register interface 77
5.3.11 Diagnostics and event logging 78
5.3.12 Plug-and-play nodes 78
5.3.13 Internet/LAN forwarding interface . . . 78
5.3.14 Meta-transport 79

6 List of standard data types 80
A CRC algorithm implementations 82

A.1 CRC-16/CCITT-FALSE 82
A.1.1 C++, bitwise 82
A.1.2 Python, bytewise 83

A.2 CRC-32C 84
A.2.1 C++, bitwise 84
A.2.2 Python, bytewise 85

ii Support & feedback: opencyphal.org © 2015–2023 OpenCyphal Development Team

http://opencyphal.org
http://opencyphal.org

2023-05-02 Specification v1.0-beta

List of tables

2.1 Data type taxonomy . 6
2.2 Published message properties . 7
2.3 Service request/response properties . 8

3.1 Notation used in the formal grammar definition. 12
3.2 Unary operators . 15
3.3 Binary operators . 15
3.4 String literal escape sequences. 16
3.5 Reserved identifier patterns (POSIX ERE notation, ASCII character set, case-insensitive) 17
3.6 Operators defined on instances of rational numbers . 18
3.7 Operators defined on instances of Unicode strings . 18
3.8 Attributes defined on instances of sets . 19
3.9 Operators defined on instances of sets . 19
3.10 Properties of integer types . 20
3.11 Properties of floating point types . 21
3.12 Lossy assignment rules per cast mode . 21
3.13 Operators defined on instances of type boolean . 21
3.14 Permitted constant attribute value initialization patterns. 29
3.15 Local attribute representation . 29

4.1 Cyphal/CAN transport capabilities . 58
4.2 CAN ID bit fields for message transfers . 58
4.3 CAN ID bit fields for service transfers . 59
4.4 Tail byte structure . 60
4.5 Cyphal/UDP transport capabilities . 65
4.6 IP multicast group address bit fields . 65
4.7 Recommended DSCP class selector values . 66

5.1 Port identifier distribution . 70

© 2015–2023 OpenCyphal Development Team Support & feedback: opencyphal.org iii

http://opencyphal.org
http://opencyphal.org

Specification v1.0-beta 2023-05-02

List of figures

2.1 Cyphal architectural diagram . 7

3.1 Data type name structure . 10
3.2 Data type definition file name structure . 10
3.3 DSDL directory structure example . 11
3.4 Reference to an external composite data type definition 22
3.5 Reference to an external composite data type definition located in the same namespace 22
3.6 Serialized representation and extent . 24
3.7 Bit and byte ordering . 33
3.8 Non-extensibility of sealed types . 40
3.9 Extensibility of delimited types with the help of the delimiter header 40

4.1 Cyphal transport layer model . 49
4.2 Transfer payload truncation . 50
4.3 CAN ID bit layout . 58
4.4 IP multicast group address structure. 65

5.1 Coordinate frame conventions. 72

iv Support & feedback: opencyphal.org © 2015–2023 OpenCyphal Development Team

http://opencyphal.org
http://opencyphal.org

2023-05-02 Specification v1.0-beta

1 Introduction
This is a non-normative chapter covering the basic concepts that govern development and maintenance of
the specification.

1.1 Overview
Cyphal is a lightweight protocol designed to provide a highly reliable communication method supporting
publish-subscribe and remote procedure call semantics for aerospace and robotic applications via robust ve-
hicle bus networks. It is created to address the challenge of deterministic on-board data exchange between
systems and components of next-generation intelligent vehicles: manned and unmanned aircraft, spacecraft,
robots, and cars.

Cyphal can be approximated as a highly deterministic decentralized object request broker with a specialized
interface description language and a highly efficient data serialization format suitable for use in real-time
safety-critical systems with optional modular redundancy.

“Cyphal” is an invented word; a portmanteau of “cyber” and “hyphal”. The former references cyber-physical
systems, which is a generalization of the type of system this new protocol is optimized for. The latter describes
hypha — branching structures found in the fungal symbionts of mycorrhizal networks2. That circuitous route
creates a name meaning a cyber-physical, low-level, and tightly integrated network.

Cyphal is a standard open to everyone, and it will always remain this way. No authorization or approval of any
kind is necessary for its implementation, distribution, or use.

The development and maintenance of the Cyphal specification is governed through the public discussion
forum, software repositories, and other resources available via the official website at opencyphal.org.

Engineers seeking to leverage Cyphal should also consult with the Cyphal Guide – a separate textbook available
via the official website.

1.2 Document conventions
Non-normative text, examples, recommendations, and elaborations that do not directly participate in the def-
inition of the protocol are contained in footnotes3 or highlighted sections as shown below.

Non-normative sections such as examples are enclosed in shaded boxes like this.

Code listings are formatted as shown below. All such code is distributed under the same license as this speci-
fication, unless specifically stated otherwise.

1 // This is a source code listing.
2 fn main() {
3 println!("Hello World!");
4 }

A byte is a group of eight (8) bits.

Textual patterns are specified using the standard POSIX Extended Regular Expression (ERE) syntax; the char-
acter set is ASCII and patterns are case sensitive, unless explicitly specified otherwise.

Type parameterization expressions use subscript notation, where the parameter is specified in the subscript
enclosed in angle brackets: type<parameter>.

Numbers are represented in base-10 by default. If a different base is used, it is specified after the number in
the subscript4.

DSDL definition examples provided in the document are illustrative and may be incomplete or invalid. This is
to ensure that the examples are not cluttered by irrelevant details. For example, @extent or @sealed directives
may be omitted if not relevant.

2A mycorrhizal network is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining
with plant roots. This network connects individual plants together and transfers water, carbon, nitrogen, and other nutrients and minerals between
participants. — Mycorrhizal network. (2023, April 13). In Wikipedia. https://en.wikipedia.org/wiki/Mycorrhizal_network

3This is a footnote.
4E.g., BADC0FFEE16 = 50159747054, 101012 = 21.

1. Introduction 1/85

http://opencyphal.org
https://en.wikipedia.org/wiki/Mycorrhizal_network

Specification v1.0-beta 2023-05-02

1.3 Design principles
Democratic network — There will be no master node. All nodes in the network will have the same commu-
nication rights; there should be no single point of failure.

Facilitation of functional safety — A system designer relying on Cyphal will have the necessary guarantees
and tools at their disposal to analyze the system and ensure its correct behavior.

High-level communication abstractions — The protocol will support publish/subscribe and remote proce-
dure call communication semantics with statically defined and statically verified data types (schema). The
data types used for communication will be defined in a clear, platform-agnostic way that can be easily under-
stood by machines, including humans.

Facilitation of cross-vendor interoperability — Cyphal will be a common foundation that different vendors
can build upon to maximize interoperability of their equipment. Cyphal will provide a generic set of standard
application-agnostic communication data types.

Well-defined generic high-level functions — Cyphal will define standard services and messages for common
high-level functions, such as network discovery, node configuration, node software update, node status mon-
itoring, network-wide time synchronization, plug-and-play node support, etc.

Atomic data abstractions — Nodes shall be provided with a simple way of exchanging large data structures
that exceed the capacity of a single transport frame5. Cyphal should perform automatic data decomposition
and reassembly at the protocol level, hiding the related complexity from the application.

High throughput, low latency, determinism — Cyphal will add a very low overhead to the underlying trans-
port protocol, which will ensure high throughput and low latency, rendering the protocol well-suited for hard
real-time applications.

Support for redundant interfaces and redundant nodes — Cyphal shall be suitable for use in applications
that require modular redundancy.

Simple logic, low computational requirements — Cyphal targets a wide variety of embedded systems, from
high-performance on-board computers to extremely resource-constrained microcontrollers. It will be inex-
pensive to support in terms of computing power and engineering hours, and advanced features can be imple-
mented incrementally as needed.

Rich data type and interface abstractions — An interface description language will be a core part of the tech-
nology which will allow deeply embedded sub-systems to interface with higher-level systems directly and in a
maintainable manner while enabling simulation and functional testing.

Support for various transport protocols — Cyphal will be usable with different transports. The standard
shall be capable of accommodating other transport protocols in the future.

API-agnostic standard — Unlike some other networking standards, Cyphal will not attempt to describe the
application program interface (API). Any details that do not affect the behavior of an implementation observ-
able by other participants of the network will be outside of the scope of this specification.

Open specification and reference implementations — The Cyphal specification will always be open and free
to use for everyone; the reference implementations will be distributed under the terms of the permissive MIT
License or released into the public domain.

1.4 Capabilities
The maximum number of nodes per logical network is dependent on the transport protocol in use, but it is
guaranteed to be not less than 128.

Cyphal supports an unlimited number of composite data types, which can be defined by the specification
(such definitions are called standard data types) or by others for private use or for public release (in which case
they are said to be application-specific or vendor-specific; these terms are equivalent). There can be up to 256
major versions of a data type, and up to 256 minor versions per major version.

Cyphal supports 8192 message subject identifiers for publish/subscribe exchanges and 512 service identifiers
for remote procedure call exchanges. A small subset of these identifiers is reserved for the core standard and
for publicly released vendor-specific types (chapter 5).

5A transport frame is an atomic transmission unit defined by the underlying transport protocol. For example, a CAN frame.

2/85 1. Introduction

2023-05-02 Specification v1.0-beta

Depending on the transport protocol, Cyphal supports at least eight distinct communication priority levels
(section 4.1.1.3).

The list of transport protocols supported by Cyphal is provided in chapter 4. Non-redundant, doubly-
redundant and triply-redundant transports are supported. Additional transport layers may be added in future
revisions of the protocol.

Application-level capabilities of the protocol (such as time synchronization, file transfer, node software up-
date, diagnostics, schemaless named registers, diagnostics, plug-and-play node insertion, etc.) are listed in
section 5.3.

The core specification does not define nor explicitly limit any physical layers for a given transport; however,
properties required by Cyphal may imply or impose constraints and/or minimum performance requirements
on physical networks. Because of this, the core standard does not control compatibility below a supported
transport layer between compliant nodes on a physical network (i.e. there are no, anticipated, compatibil-
ity concerns between compliant nodes connected to a virtual network where hardware constraints are not
enforced nor emulated). Additional standards specifying physical-layer requirements, including connectors,
may be required to utilize this standard in a vehicle system.

The capabilities of the protocol will never be reduced within a major version of the specification but may be
expanded.

1.5 Management policy
The Cyphal maintainers are tasked with maintaining and advancing this specification and the set of public
regulated data types6 based on their research and the input from adopters. The maintainers will be committed
to ensuring long-term stability and backward compatibility of existing and new deployments. The maintainers
will publish relevant announcements and solicit inputs from adopters via the discussion forum whenever a
decision that may potentially affect existing deployments is being made.

The set of standard data types is a subset of public regulated data types and is an integral part of the speci-
fication; however, there is only a very small subset of required standard data types needed to implement the
protocol. A larger set of optional data types are defined to create a standardized data exchange environment
supporting the interoperability of COTS7 equipment manufactured by different vendors. Adopters are invited
to take part in the advancement and maintenance of the public regulated data types under the management
and coordination of the Cyphal maintainers.

1.6 Referenced sources
The Cyphal specification contains references to the following sources:

• CiA 103 — Intrinsically safe capable physical layer.
• CiA 801 — Application note — Automatic bit rate detection.
• IEEE 754 — Standard for binary floating-point arithmetic.
• IEEE Std 1003.1 — IEEE Standard for Information Technology – Portable Operating System Interface (POSIX)

Base Specifications.
• IETF RFC 768 — User Datagram Protocol.
• IETF RFC 791 — Internet Protocol.
• IETF RFC 1112 — Host extensions for IP multicasting.
• IETF RFC 2119 — Key words for use in RFCs to Indicate Requirement Levels.
• IETF RFC 2365 — Administratively Scoped IP Multicast.
• IETF RFC 2474 — Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
• ISO 11898-1 — Controller area network (CAN) — Part 1: Data link layer and physical signaling.
• ISO 11898-2 — Controller area network (CAN) — Part 2: High-speed medium access unit.
• ISO/IEC 10646 — Universal Coded Character Set (UCS).
• ISO/IEC 14882 — Programming Language C++.
• semver.org — Semantic versioning specification.
• “A Passive Solution to the Sensor Synchronization Problem”, Edwin Olson.
• “Implementing a Distributed High-Resolution Real-Time Clock using the CAN-Bus”, M. Gergeleit and H.

Streich.
• “In Search of an Understandable Consensus Algorithm (Extended Version)”, Diego Ongaro and John Ouster-

hout.

6The related technical aspects are covered in chapters 2 and 3.
7Commercial off-the-shelf equipment.

1. Introduction 3/85

http://semver.org

Specification v1.0-beta 2023-05-02

1.7 Revision history

1.7.1 v1.0 – work in progress

• The maximum data type name length has been increased from 50 to 255 characters.
• The default extent function has been removed (section 3.4.5.5). The extent now has to be specified explicitly

always unless the data type is sealed.
• The constraint on DSDL namespaces being defined in a single folder was removed. Namespaces can be

hosted across multiple repositories and code can be generated from a union of said folders.
• Cyphal/UDP transport specification has been introduced.

1.7.2 v1.0-beta – Sep 2020

Compared to v1.0-alpha, the differences are as follows (the motivation is provided on the forum):

• The physical layer specification has been removed. It is now up to the domain-specific Cyphal-based stan-
dards to define the physical layer.

• The subject-ID range reduced from [0,32767] down to [0,8191]. This change may be reverted in a future
edition of the standard, if found practical.

• Added support for delimited serialization; introduced related concepts of extent and sealing (section
3.4.5.5). This change enables one to easily evolve networked services in a backward-compatible way.

• Enabled the automatic runtime adjustment of the transfer-ID timeout on a per-subject basis as a function
of the transfer reception rate (section 4.1.4).

1.7.3 v1.0-alpha – Jan 2020

This is the initial version of the document. The discussions that shaped the initial version are available on the
public Cyphal discussion forum.

4/85 1. Introduction

2023-05-02 Specification v1.0-beta

2 Basic concepts
2.1 Main principles

2.1.1 Communication

2.1.1.1 Architecture

A Cyphal network is a decentralized peer network, where each peer (node) has a unique numeric identifier8 —
node-ID — ranging from 0 up to a transport-specific upper boundary which is guaranteed to be not less than
127. Nodes of a Cyphal network can communicate using the following communication methods:

Message publication — The primary method of data exchange with one-to-many publish/subscribe seman-
tics.

Service invocation — The communication method for one-to-one request/response interactions9.

For each type of communication, a predefined set of data types is used, where each data type has a unique
name. Additionally, every data type definition has a pair of major and minor version numbers, which enable
data type definitions to evolve in arbitrary ways while ensuring a well-defined migration path if backward-
incompatible changes are introduced. Some data types are standard and defined by the protocol specification
(of which only a small subset are required); others may be specific to a particular application or vendor.

2.1.1.2 Subjects and services

Message exchanges between nodes are grouped into subjects by the semantic meaning of the message. Mes-
sage exchanges belonging to the same subject pertain to the same function or process within the system.

Request/response exchanges between nodes are grouped into services by the semantic meaning of the request
and response, like messages are grouped into subjects. Requests and their corresponding responses that be-
long to the same service pertain to the same function or process within the system.

Each message subject is identified by a unique natural number – a subject-ID; likewise, each service is identi-
fied by a unique service-ID. An umbrella term port-ID is used to refer either to a subject-ID or to a service-ID
(port identifiers have no direct manifestation in the construction of the protocol, but they are convenient for
discussion). The sets of subject-ID and service-ID are orthogonal.

Port identifiers are assigned to various functions, processes, or data streams within the network at the system
definition time. Generally, a port identifier can be selected arbitrarily by a system integrator by changing
relevant configuration parameters of connected nodes, in which case such port identifiers are called non-fixed
port identifiers. It is also possible to permanently associate any data type definition with a particular port
identifier at a data type definition time, in which case such port identifiers are called fixed port identifiers;
their usage is governed by rules and regulations described in later sections.

A port-ID used in a given Cyphal network shall not be shared between functions, processes, or data streams
that have different semantic meaning.

A data type of a given major version can be used simultaneously with an arbitrary number of non-fixed differ-
ent port identifiers, but not more than one fixed port identifier.

2.1.2 Data types

2.1.2.1 Data type definitions

Message and service types are defined using the data structure description language (DSDL) (chapter 3). A
DSDL definition specifies the name, major version, minor version, attributes, and an optional fixed port-ID
of the data type among other less important properties. Service types define two inner data types: one for
request, and the other for response.

2.1.2.2 Regulation

Data type definitions can be created by the Cyphal specification maintainers or by its users, such as equip-
ment vendors or application designers. Irrespective of the origin, data types can be included into the set of

8Here and elsewhere in this specification, ID and identifier are used interchangeably unless specifically indicated otherwise.
9Like remote procedure call (RPC).

2. Basic concepts 5/85

Specification v1.0-beta 2023-05-02

data type definitions maintained and distributed by the Cyphal specification maintainers; definitions belong-
ing to this set are termed regulated data type definitions. The specification maintainers undertake to keep
regulated definitions well-maintained and may occasionally amend them and release new versions, if such
actions are believed to benefit the protocol. User-created (i.e., vendor-specific or application-specific) data
type definitions that are not included into the aforementioned set are called unregulated data type definitions.

Unregulated definitions that are made available for reuse by others are called unregulated public data type
definitions; those that are kept closed-source for private use by their authors are called (unregulated) private
data type definitions10.

Data type definitions authored by the specification maintainers for the purpose of supporting and advancing
this specification are called standard data type definitions. All standard data type definitions are regulated.

Fixed port identifiers can be used only with regulated data type definitions or with private definitions. Fixed
port identifiers shall not be used with public unregulated data types, since that is likely to cause unresolvable
port identifier collisions11. This restriction shall be followed at all times by all compliant implementations and
systems12.

Regulated Unregulated

Public Standard and contributed (e.g., vendor-
specific) definitions.
Fixed port identifiers are allowed; they are
called regulated port-ID.

Definitions distributed separately from the
Cyphal specification.
Fixed port identifiers are not allowed.

Private Nonexistent category. Definitions that are not available to anyone ex-
cept their authors.
Fixed port identifiers are permitted (although
not recommended); they are called unregu-
lated fixed port-ID.

Table 2.1: Data type taxonomy

DSDL processing tools shall prohibit unregulated fixed port identifiers by default, unless they are explicitly
configured otherwise.

Each of the two sets of port identifiers (which are subject identifiers and service identifiers) are segregated into
three categories:

• Application-specific port identifiers. These can be assigned by changing relevant configuration parameters
of the connected nodes (in which case they are called non-fixed), or at the data type definition time (in which
case they are called fixed unregulated, and they generally should be avoided due to the risks of collisions as
explained earlier).

• Regulated non-standard fixed port identifiers. These are assigned by the specification maintainers for non-
standard contributed vendor-specific public data types.

• Standard fixed port identifiers. These are assigned by the specification maintainers for standard regulated
public data types.

Data type authors that want to release regulated data type definitions or contribute to the standard data type
set should contact the Cyphal maintainers for coordination. The maintainers will choose unoccupied fixed
port identifiers for use with the new definitions, if necessary. Since the set of regulated definitions is main-
tained in a highly centralized manner, it can be statically ensured that no identifier collisions will take place
within it; also, since the identifier ranges used with regulated definitions are segregated, regulated port-IDs
will not conflict with any other compliant Cyphal node or system13.

2.1.2.3 Serialization

A DSDL description can be used to automatically generate the serialization and deserialization code for every
defined data type in a particular programming language. Alternatively, a DSDL description can be used to

10The word “unregulated” is redundant because private data types cannot be regulated, by definition. Likewise, all regulated definitions are public, so
the word “public” can be omitted.

11Any system that relies on data type definitions with fixed port identifiers provided by an external party (i.e., data types and the system in question are
designed by different parties) runs the risk of encountering port identifier conflicts that cannot be resolved without resorting to help from said external
party since the designers of the system do not have control over their fixed port identifiers. Because of this, the specification strongly discourages the
use of fixed unregulated private port identifiers. If a data type definition is ever disclosed to any other party (i.e., a party that did not author it) or to the
public at large it is important that the data type not include a fixed port-identifier.

12In general, private unregulated fixed port identifiers are collision-prone by their nature, so they should be avoided unless there are very strong
reasons for their usage and the authors fully understand the risks.

13The motivation for the prohibition of fixed port identifiers in unregulated public data types is derived directly from the above: since there is no
central repository of unregulated definitions, collisions would be likely.

6/85 2. Basic concepts

2023-05-02 Specification v1.0-beta

construct appropriate serialization code manually by a human. DSDL ensures that the memory footprint and
computational complexity per data type are constant and easily predictable.

Serialized message and service objects14 are exchanged by means of the transport layer (chapter 4), which
implements automatic decomposition of long transfers into several transport frames15 and reassembly from
these transport frames back into a single atomic data block, allowing nodes to exchange serialized objects of
arbitrary size (DSDL guarantees, however, that the minimum and maximum size of the serialized representa-
tion of any object of any data type is always known statically).

2.1.3 High-level functions

On top of the standard data types, Cyphal defines a set of standard high-level functions including: node health
monitoring, node discovery, time synchronization, firmware update, plug-and-play node support, and more
(section 5.3).

Applications

Required functions Standard functions Custom functions

Required data types Standard data types Custom data types

Serialization

Transport

Figure 2.1: Cyphal architectural diagram

2.2 Message publication
Message publication refers to the transmission of a serialized message object over the network to other nodes.
This is the primary data exchange mechanism used in Cyphal; it is functionally similar to raw data exchange
with minimal overhead, additional communication integrity guarantees, and automatic decomposition and
reassembly of long payloads across multiple transport frames. Typical use cases may include transfer of the
following kinds of data (either cyclically or on an ad-hoc basis): sensor measurements, actuator commands,
equipment status information, and more.

Information contained in a published message is summarized in table 2.2.

Property Description

Payload The serialized message object.

Subject-ID Numerical identifier that indicates how the payload should be interpreted.

Source node-ID The node-ID of the transmitting node (excepting anonymous messages).

Transfer-ID An integer value that is used for message sequence monitoring, multi-frame transfer
reassembly, deduplication, automatic management of redundant transports, and other
purposes (section 4.1.1.7).

Table 2.2: Published message properties

2.2.1 Anonymous message publication

Nodes that don’t have a unique node-ID can publish only anonymous messages. An anonymous message is
different from a regular message in that it doesn’t contain a source node-ID.

Cyphal nodes will not have an identifier initially until they are assigned one, either statically (which is gener-
ally the preferred option for applications where a high degree of determinism and high safety assurances are
required) or automatically (i.e., plug-and-play). Anonymous messages are used to facilitate the plug-and-play
function (section 5.3.12).

2.3 Service invocation
Service invocation is a two-step data exchange operation between exactly two nodes: a client and a server. The
steps are16:

1. The client sends a service request to the server.
2. The server takes appropriate actions and sends a response to the client.

Typical use cases for this type of communication include: node configuration parameter update, firmware

14An object means a value that is an instance of a well-defined type.
15A transport frame means a block of data that can be atomically exchanged over the transport layer network, e.g., a CAN frame.
16The request/response semantic is facilitated by means of hardware (if available) or software acceptance filtering and higher-layer logic. No additional

support or non-standard transport layer features are required.

2. Basic concepts 7/85

Specification v1.0-beta 2023-05-02

update, an ad-hoc action request, file transfer, and other functions of similar nature.

Information contained in service requests and responses is summarized in table 2.3. Both the request and the
response contain same values for all listed fields except payload, where the content is application-defined.

Property Description

Payload The serialized request/response object.

Service-ID Numerical identifier that indicates how the service should be handled.

Client node-ID Source node-ID during request transfer, destination node-ID during response transfer.

Server node-ID Destination node-ID during request transfer, source node-ID during response transfer.

Transfer-ID An integer value that is used for request/response matching, multi-frame transfer re-
assembly, deduplication, automatic management of redundant transports, and other
purposes (section 4.1.1.7).

Table 2.3: Service request/response properties

8/85 2. Basic concepts

2023-05-02 Specification v1.0-beta

3 Data structure description language
The data structure description language, or DSDL, is a simple domain-specific language designed for defining
composite data types. The defined data types are used for exchanging data between Cyphal nodes via one of
the standard Cyphal transport protocols17.

3.1 Architecture

3.1.1 General principles

In accordance with the Cyphal architecture, DSDL allows users to define data types of two kinds: message types
and service types. Message types are used to exchange data over publish-subscribe one-to-many message
links identified by subject-ID, and service types are used to perform request-response one-to-one exchanges
(like RPC) identified by service-ID. A service type is composed of exactly two inner data types: one of them
is the request type (its instances are transferred from client to server), and the other is the response type (its
instances are transferred from the server back to the client).

Following the deterministic nature of Cyphal, the size of a serialized representation of any message or service
object is bounded within statically known limits. Variable-size entities always have a fixed size limit defined
by the data type designer.

DSDL definitions are strongly statically typed.

DSDL provides a well-defined means of data type versioning, which enables data type maintainers to intro-
duce changes to released data types while ensuring backward compatibility with fielded systems.

DSDL is designed to support extensive static analysis. Important properties of data type definitions such as
backward binary compatibility and data field layouts can be checked and validated by automatic software
tools before the systems utilizing them are fielded.

DSDL definitions can be used to automatically generate serialization (and deserialization) source code for any
data type in a target programming language. A tool that is capable of generating serialization code based on a
DSDL definition is called a DSDL compiler. More generically, a software tool designed for working with DSDL
definitions is called a DSDL processing tool.

3.1.2 Data types and namespaces

Every data type is located inside a namespace. Namespaces may be included into higher-level namespaces,
forming a tree hierarchy.

A namespace that is at the root of the tree hierarchy (i.e., not nested within another one) is called a root names-
pace. A namespace that is located inside another namespace is called a nested namespace.

A data type is uniquely identified by its namespaces and its short name. The short name of a data type is the
name of the type itself excluding the containing namespaces.

A full name of a data type consists of its short name and all of its namespace names. The short name and the
namespace names included in a full name are called name components. Name components are ordered: the
root namespace is always the first component of the name, followed by the nested namespaces, if there are
any, in the order of their nesting; the short name is always the last component of the full name. The full name
is formed by joining its name components via the ASCII dot character “.” (ASCII code 46).

A full namespace name is the full name without the short name and its component separator.

A sub-root namespace is a nested namespace that is located immediately under its root namespace. Data types
that reside directly under their root namespace do not have a sub-root namespace.

The name structure is illustrated in figure 3.1.

17The standard transport protocols are documented in chapter 4. Cyphal doesn’t prohibit users from defining their own application-specific transports
as well, although users doing that are likely to encounter compatibility issues and possibly a suboptimal performance of the protocol.

3. Data structure description language 9/85

Specification v1.0-beta 2023-05-02

full name︷ ︸︸ ︷
uavcan︸ ︷︷ ︸

root
namespace

.node︸ ︷︷ ︸
nested, also

sub-root
namespace

.port︸ ︷︷ ︸
nested

namespace︸ ︷︷ ︸
full namespace

.GetInfo︸ ︷︷ ︸
short name

Figure 3.1: Data type name structure

A set of full namespace names and a set of full data type names shall not intersect18.

Data type names and namespace names are case-sensitive. However, names that differ only in letter case are
not permitted19. In other words, a pair of names which differ only in letter case is considered to constitute a
name collision.

A name component consists of alphanumeric ASCII characters (which are: A-Z, a-z, and 0-9) and underscore
(“_”, ASCII code 95). An empty string is not a valid name component. The first character of a name component
shall not be a digit. A name component shall not match any of the reserved word patterns, which are listed in
table 3.2.5.

The length of a full data type name shall not exceed 255 characters20.

Every data type definition is assigned a major and minor version number pair. In order to uniquely identify a
data type definition, its version numbers shall be specified. In the following text, the term version without a
majority qualifier refers to a pair of major and minor version numbers.

Valid data type version numbers range from 0 to 255, inclusively. A data type version where both major and
minor components are zero is not allowed.

3.1.3 File hierarchy

DSDL data type definitions are contained in UTF-8 encoded text files with a file name extension .dsdl.

One file defines exactly one version of a data type, meaning that each combination of major and minor ver-
sion numbers shall be unique per data type name. There may be an arbitrary number of versions of the same
data type defined alongside each other, provided that each version is defined at most once. Version num-
ber sequences can be non-contiguous, meaning that it is allowed to skip version numbers or remove existing
definitions that are neither oldest nor newest.

A data type definition may have an optional fixed port-ID21 value specified.

The name of a data type definition file is constructed from the following entities joined via the ASCII dot char-
acter “.” (ASCII code 46), in the specified order:

• Fixed port-ID in decimal notation, unless a fixed port-ID is not provided for this definition.
• Short name of the data type (mandatory, always non-empty).
• Major version number in decimal notation (mandatory).
• Minor version number in decimal notation (mandatory).
• File name extension “dsdl” (mandatory).

optional︷ ︸︸ ︷
432︸ ︷︷ ︸

fixed
port-ID

.
mandatory︷ ︸︸ ︷

GetInfo︸ ︷︷ ︸
short name

.1.0︸ ︷︷ ︸
version

numbers

.dsdl︸ ︷︷ ︸
file extension

Figure 3.2: Data type definition file name structure

DSDL namespaces are represented as directories, where one directory defines exactly one namespace22, pos-

18For example, a namespace “vendor.example” and a data type “vendor.example.1.0” are mutually exclusive. Note the data type name shown in
this example violates the naming conventions which are reviewed in a separate section.

19Because that may cause problems with case-insensitive file systems.
20This includes the name component separators, but not the version.
21Chapter 2.
22While a single directory can define only one namespace, the inverse is not prohibited; namespaces can be defined as the union of the contents of

multiple directories that share the same name and folder hierarchy (up to the root namespace folder). The rules for how distributed definitions such as
these are resolved are specific to any tools that manage them. This specification applies only to the resulting union assuming it is equivalent to a single
file tree.

10/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

sibly nested. The name of the directory defines the name of its data type name component. One directory
cannot define more than one level of nesting23.

Directory tree Entry description

vendor_x/ Root namespace vendor_x.

foo/ Nested namespace (also sub-root) vendor_x.foo.

100.Run.1.0.dsdl Data type definition v1.0 with fixed service-ID 100.

100.Status.1.0.dsdl Data type definition v1.0 with fixed subject-ID 100.

ID.1.0.dsdl Data type definition v1.0 without fixed port-ID.

ID.1.1.dsdl Data type definition v1.1 without fixed port-ID.

bar_42/ Nested namespace vendor_x.foo.bar_42.

101.List.1.0.dsdl Data type definition v1.0 with fixed service-ID 101.

102.List.2.0.dsdl Data type definition v2.0 with fixed service-ID 102.

ID.1.0.dsdl Data type definition v1.0 without fixed port-ID.

Figure 3.3: DSDL directory structure example

3.1.4 Elements of data type definition

A data type definition file contains an exhaustive description of a particular version of the said data type in the
data structure description language (DSDL).

A data type definition contains an ordered, possibly empty collection of field attributes and/or unordered,
possibly empty collection of constant attributes.

A data type may describe either a structure object or a tagged union object. The value of a structure object is
a function of the values of all of its field attributes. A tagged union object is formed from at least two field
attributes, but it is capable of holding exactly one field attribute value at any given time. The value of a tagged
union object is a function of which field attribute value it is holding at the moment and the value of said field
attribute.

A field attribute represents a named dynamically assigned value of a statically defined type that can be ex-
changed over the network as a member of its containing object. A padding field attribute is a special kind of
field attribute which is used for data alignment purposes; such field attributes are not named.

A constant attribute represents a named statically defined value of a statically defined type. Constants are
never exchanged over the network, since they are assumed to be known to all involved nodes by virtue of them
sharing compatible definitions of the data type.

Constant values are defined via DSDL expressions, which are evaluated at the time of DSDL definition pro-
cessing. There is a special category of types called expression types, instances of which are used only during
expression evaluation and cannot be exchanged over the network.

Data type definitions can also contain various auxiliary elements reviewed later, such as deprecation mark-
ers (notifying its users that the data type is no longer recommended for new designs) or assertions (special
statements introduced by data type designers which are statically validated by DSDL processing tools).

Service type definitions are a special case: they cannot be instantiated or serialized, they do not contain at-
tributes, and they are composed of exactly two inner data type definitions24. These inner types are the service
request type and the service response type, separated by the service response marker. They are otherwise ordi-
nary data types except that they are unutterable25 and they derive some of their properties26 from their parent
service type.

3.1.5 Serialization

Every object that can be exchanged between Cyphal nodes has a well-defined serialized representation. The
value and meaning of an object can be unambiguously recovered from its serialized representation, provided
that the type of the object is known. Such recovery process is called deserialization.

A serialized representation is a sequence of binary digits (bits); the number of bits in a serialized representation
is called its bit length. A bit length set of a data type refers to the set of bit length values of all possible serialized

23For example, “foo.bar” is not a valid directory name. The valid representation would be “bar” nested in “foo”.
24A service type can be thought of as a specialized namespace that contains two types and has some of the properties of a type, such as name and

version.
25Cannot be referred to. Another commonly used term is “Voldemort type”.
26Like version numbers or deprecation status.

3. Data structure description language 11/85

Specification v1.0-beta 2023-05-02

representations of objects that are instances of the data type.

A data type whose bit length set contains more than one element is said to be variable length. The opposite
case is referred to as fixed length.

The data type of a serialized message or service object exchanged over the network is recovered from its
subject-ID or service-ID, respectively, which is attached to the serialized object, along with other metadata,
in a manner dictated by the applicable transport layer specification (chapter 4). For more information on port
identifiers and data type mapping refer to section 2.1.1.2.

The bit length set is not defined on service types (only on their request and response types) because they
cannot be instantiated.

3.2 Grammar
This section contains the formal definition of the DSDL grammar. Its notation is introduced beforehand. The
meaning of each element of the grammar and their semantics will be explained in the following sections.

3.2.1 Notation

The following definition relies on the PEG27 notation described in table 3.2.128. The text of the formal defini-
tion contains comments which begin with an octothorp and last until the end of the line.

Pattern Description

"text" Denotes a terminal string of ASCII characters. The string is case-sensitive.

(space) Concatenation. E.g., korovan paukan excavator matches a sequence where the
specified tokens appear in the defined order.

abc / ijk / xyz Alternatives. The leftmost matching alternative is accepted.

abc? Optional greedy match.

abc* Zero or more expressions, greedy match.

abc+ One or more expressions, greedy match.

~r"regex" An IEEE POSIX Extended Regular Expression pattern defined between the double
quotes. The expression operates on the ASCII character set and is always case-
sensitive. ASCII escape sequences “\r”, “\n”, and “\t” are used to denote ASCII car-
riage return (code 13), line feed (code 10), and tabulation (code 9) characters, respec-
tively.

~r’regex’ As above, with single quotes instead of double quotes.

(abc xyz) Parentheses are used for grouping.

Table 3.1: Notation used in the formal grammar definition

3.2.2 Definition

At the top level, a DSDL definition file is an ordered collection of statements; the order is determined by the
relative placement of statements inside the DSDL source file: statements located closer the beginning of the
file precede those that are located closer to the end of the file.

From the top level down to the expression rule, the grammar is a valid regular grammar, meaning that it can
be parsed using standard regular expressions.

The grammar definition provided here assumes lexerless parsing; that is, it applies directly to the unprocessed
source text of the definition.

All characters used in the definition belong to the ASCII character set.

27Parsing expression grammar.
28Inspired by Parsimonious – an MIT-licensed software product authored by Erik Rose; its sources are available at https://github.com/erikrose/

parsimonious.

12/85 3. Data structure description language

https://github.com/erikrose/parsimonious
https://github.com/erikrose/parsimonious

2023-05-02 Specification v1.0-beta

1 definition = line (end_of_line line)* # An empty file is a valid definition. Trailing end-of-line is optional.
2 line = statement? _? comment? # An empty line is a valid line.
3 comment = ~r"#[^\r\n]*"
4 end_of_line = ~r"\r?\n" # Unix/Windows
5 _ = ~r"[\t]+" # Whitespace

6 identifier = ~r"[a-zA-Z_][a-zA-Z0-9_]*"

7 # == Statements ==

8 statement = statement_directive
9 / statement_service_response_marker
10 / statement_attribute

11 statement_attribute = statement_constant
12 / statement_field
13 / statement_padding_field

14 statement_constant = type _ identifier _? "=" _? expression
15 statement_field = type _ identifier
16 statement_padding_field = type_void "" # The trailing empty symbol is to prevent the node from being optimized away.

17 statement_service_response_marker = ~r"---+" # Separates request/response, specifies that the definition is a service.

18 statement_directive = statement_directive_with_expression
19 / statement_directive_without_expression
20 statement_directive_with_expression = "@" identifier _ expression # The expression type shall match the directive.
21 statement_directive_without_expression = "@" identifier

22 # == Data types ==

23 type = type_array
24 / type_scalar

25 type_array = type_array_variable_inclusive
26 / type_array_variable_exclusive
27 / type_array_fixed

28 type_array_variable_inclusive = type_scalar _? "[" _? "<=" _? expression _? "]" # Expression shall yield integer.
29 type_array_variable_exclusive = type_scalar _? "[" _? "<" _? expression _? "]"
30 type_array_fixed = type_scalar _? "[" _? expression _? "]"

31 type_scalar = type_versioned
32 / type_primitive
33 / type_void

34 type_versioned = identifier ("." identifier)* "." type_version_specifier
35 type_version_specifier = literal_integer_decimal "." literal_integer_decimal

36 type_primitive = type_primitive_truncated
37 / type_primitive_saturated

38 type_primitive_truncated = "truncated" _ type_primitive_name
39 type_primitive_saturated = ("saturated" _)? type_primitive_name # Defaults to this.

40 type_primitive_name = type_primitive_name_boolean
41 / type_primitive_name_unsigned_integer
42 / type_primitive_name_signed_integer
43 / type_primitive_name_floating_point

44 type_primitive_name_boolean = "bool"
45 type_primitive_name_unsigned_integer = "uint" type_bit_length_suffix
46 type_primitive_name_signed_integer = "int" type_bit_length_suffix
47 type_primitive_name_floating_point = "float" type_bit_length_suffix

48 type_void = "void" type_bit_length_suffix

49 type_bit_length_suffix = ~r"[1-9]\d*"

50 # == Expressions ==

51 expression = ex_logical # Aliased for clarity.

52 expression_list = (expression (_? "," _? expression)*)? # May be empty.

53 expression_parenthesized = "(" _? expression _? ")" # Used for managing precedence.

54 expression_atom = expression_parenthesized # Ordering matters.
55 / type
56 / literal
57 / identifier

58 # Operators. The precedence relations are expressed in the rules; the order here is from lower to higher.
59 # Operators that share common prefix (e.g. < and <=) are arranged so that the longest form is specified first.
60 ex_logical = ex_logical_not (_? op2_log _? ex_logical_not)*
61 ex_logical_not = op1_form_log_not / ex_comparison
62 ex_comparison = ex_bitwise (_? op2_cmp _? ex_bitwise)*
63 ex_bitwise = ex_additive (_? op2_bit _? ex_additive)*
64 ex_additive = ex_multiplicative (_? op2_add _? ex_multiplicative)*
65 ex_multiplicative = ex_inversion (_? op2_mul _? ex_inversion)*
66 ex_inversion = op1_form_inv_pos / op1_form_inv_neg / ex_exponential

3. Data structure description language 13/85

Specification v1.0-beta 2023-05-02

67 ex_exponential = ex_attribute (_? op2_exp _? ex_inversion)? # Right recursion
68 ex_attribute = expression_atom (_? op2_attrib _? identifier)*

69 # Unary operator forms are moved into separate rules for ease of parsing.
70 op1_form_log_not = "!" _? ex_logical_not # Right recursion
71 op1_form_inv_pos = "+" _? ex_exponential
72 op1_form_inv_neg = "-" _? ex_exponential

73 # Logical operators; defined for booleans.
74 op2_log = op2_log_or / op2_log_and
75 op2_log_or = "||"
76 op2_log_and = "&&"

77 # Comparison operators.
78 op2_cmp = op2_cmp_equ / op2_cmp_geq / op2_cmp_leq / op2_cmp_neq / op2_cmp_lss / op2_cmp_grt # Ordering is important.
79 op2_cmp_equ = "=="
80 op2_cmp_neq = "!="
81 op2_cmp_leq = "<="
82 op2_cmp_geq = ">="
83 op2_cmp_lss = "<"
84 op2_cmp_grt = ">"

85 # Bitwise integer manipulation operators.
86 op2_bit = op2_bit_or / op2_bit_xor / op2_bit_and
87 op2_bit_or = "|"
88 op2_bit_xor = "^"
89 op2_bit_and = "&"

90 # Additive operators.
91 op2_add = op2_add_add / op2_add_sub
92 op2_add_add = "+"
93 op2_add_sub = "-"

94 # Multiplicative operators.
95 op2_mul = op2_mul_mul / op2_mul_div / op2_mul_mod # Ordering is important.
96 op2_mul_mul = "*"
97 op2_mul_div = "/"
98 op2_mul_mod = "%"

99 # Exponential operators.
100 op2_exp = op2_exp_pow
101 op2_exp_pow = "**"

102 # The most tightly bound binary operator - attribute reference.
103 op2_attrib = "."

104 # === Literals ===

105 literal = literal_set # Ordering is important to avoid ambiguities.
106 / literal_real
107 / literal_integer
108 / literal_string
109 / literal_boolean

110 # Set.
111 literal_set = "{" _? expression_list _? "}"

112 # Integer.
113 literal_integer = literal_integer_binary
114 / literal_integer_octal
115 / literal_integer_hexadecimal
116 / literal_integer_decimal
117 literal_integer_binary = ~r"0[bB](_?(0|1))+"
118 literal_integer_octal = ~r"0[oO](_?[0-7])+"
119 literal_integer_hexadecimal = ~r"0[xX](_?[0-9a-fA-F])+"
120 literal_integer_decimal = ~r"(0(_?0)*)+|([1-9](_?[0-9])*)"

121 # Real. Exponent notation is defined first to avoid ambiguities.
122 literal_real = literal_real_exponent_notation
123 / literal_real_point_notation
124 literal_real_exponent_notation = (literal_real_point_notation / literal_real_digits) literal_real_exponent
125 literal_real_point_notation = (literal_real_digits? literal_real_fraction) / (literal_real_digits ".")
126 literal_real_fraction = "." literal_real_digits
127 literal_real_exponent = ~r"[eE][+-]?" literal_real_digits
128 literal_real_digits = ~r"[0-9](_?[0-9])*"

129 # String.
130 literal_string = literal_string_single_quoted
131 / literal_string_double_quoted
132 literal_string_single_quoted = ~r"'[^'\\]*(\\[^\r\n][^'\\]*)*'"
133 literal_string_double_quoted = ~r'"[^"\\]*(\\[^\r\n][^"\\]*)*"'

134 # Boolean.
135 literal_boolean = literal_boolean_true
136 / literal_boolean_false
137 literal_boolean_true = "true"
138 literal_boolean_false = "false"

3.2.3 Expressions

Symbols representing operators belong to the ASCII (basic Latin) character set.

14/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

Operators of the same precedence level are evaluated from left to right.

The attribute reference operator is a special case: it is defined for an instance of any type on its left side and
an attribute identifier on its right side. The concept of “attribute identifier” is not otherwise manifested in
the type system. The attribute reference operator is not explicitly documented for any data type; instead, the
documentation specifies the set of available attributes for instances of said type, if there are any.

Symbol Precedence Description

+ 3 Unary plus

- (hyphen-minus) 3 Unary minus

! 8 Logical not

Table 3.2: Unary operators

Symbol Precedence Description

. (full stop) 1 Attribute reference (parent object on the left side, attribute identi-
fier on the right side)

** 2 Exponentiation (base on the left side, power on the right side)

* 4 Multiplication

/ 4 Division

% 4 Modulo

+ 5 Addition

- (hyphen-minus) 5 Subtraction

| (vertical line) 6 Bitwise or

^ (circumflex accent) 6 Bitwise xor

& 6 Bitwise and

== (dual equals sign) 7 Equality

!= 7 Inequality

<= 7 Less or equal

>= 7 Greater or equal

< 7 Less

> 7 Greater

|| (dual vertical line) 9 Logical or

&& 9 Logical and

Table 3.3: Binary operators

3.2.4 Literals

Upon its evaluation, a literal yields an object of a particular type depending on the syntax of the literal, as
specified in this section.

3.2.4.1 Boolean literals

A boolean literal is denoted by the keyword “true” or “false” represented by an instance of primitive type
“bool” (section 3.4.3) with an appropriate value.

3.2.4.2 Numeric literals

Integer and real literals are represented as instances of type “rational” (section 3.3.1).

The digit separator character “_” (underscore) does not affect the interpretation of numeric literals.

The significand of a real literal is formed by the integer part, the optional decimal point, and the optional
fraction part; either the integer part or the fraction part (not both) can be omitted. The exponent is optionally
specified after the letter “e” or “E”; it indicates the power of 10 by which the significand is to be scaled. Either
the decimal point or the letter “e”/“E” with the following exponent (not both) can be omitted from a real literal.

An integer literal 0x123 is represented internally as 291
1 .

A real literal .3141592653589793e+1 is represented internally as 3141592653589793
1000000000000000 .

3.2.4.3 String literals

String literals are represented as instances of type “string” (section 3.3.2).

3. Data structure description language 15/85

Specification v1.0-beta 2023-05-02

A string literal is allowed to contain an arbitrary sequence of Unicode characters, excepting escape sequences
defined in table 3.2.4.3 which shall follow one of the specified therein forms. An escape sequence begins with
the ASCII backslash character “\”.

Sequence Interpretation

\\ Backslash, ASCII code 92. Same as the escape character.

\r Carriage return, ASCII code 13.

\n Line feed, ASCII code 10.

\t Horizontal tabulation, ASCII code 9.

\' Apostrophe (single quote), ASCII code 39. Regardless of the type of quotes around the lit-
eral.

\" Quotation mark (double quote), ASCII code 34. Regardless of the type of quotes around the
literal.

\u???? Unicode symbol with the code point specified by a four-digit hexadecimal number. The
placeholder “?” represents a hexadecimal character [0-9a-fA-F].

\U???????? Like above, the code point is specified by an eight-digit hexadecimal number.

Table 3.4: String literal escape sequences

1 @assert "oh,\u0020hi\U0000000aMark" == 'oh, hi\nMark'

3.2.4.4 Set literals

Set literals are represented as instances of type “set” (section 3.3.3) parameterized by the type of the contained
elements which is determined automatically.

A set literal declaration shall specify at least one element, which is used to determine the element type of the
set.

The elements of a set literal are defined as DSDL expressions which are evaluated before a set is constructed
from the corresponding literal.

1 @assert {"cells", 'interlinked'} == {"inter" + "linked", 'cells'}

3.2.5 Reserved identifiers

DSDL identifiers and data type name components that match any of the case-insensitive patterns specified in
table 3.2.5 cannot be used to name new entities. The semantics of such identifiers is predefined by the DSDL
specification, and as such, they cannot be used for other purposes. Some of the reserved identifiers do not
have any functions associated with them in this version of the DSDL specification, but this may change in the
future.

16/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

POSIX ERE ASCII pattern Example Special meaning

truncated Cast mode specifier

saturated Cast mode specifier

true Boolean literal

false Boolean literal

bool Primitive type category

u?int\d* uint8 Primitive type category

float\d* float Primitive type category

u?q\d+_\d+ q16_8 Primitive type category (future)

void\d* void Void type category

optional Reserved for future use

aligned Reserved for future use

const Reserved for future use

struct Reserved for future use

super Reserved for future use

template Reserved for future use

enum Reserved for future use

self Reserved for future use

and Reserved for future use

or Reserved for future use

not Reserved for future use

auto Reserved for future use

type Reserved for future use

con Compatibility with Microsoft Windows

prn Compatibility with Microsoft Windows

aux Compatibility with Microsoft Windows

nul Compatibility with Microsoft Windows

com\d com1 Compatibility with Microsoft Windows

lpt\d lpt9 Compatibility with Microsoft Windows

.* _offset_ Special-purpose intrinsic entities

Table 3.5: Reserved identifier patterns (POSIX ERE notation, ASCII character set, case-insensitive)

3.2.6 Reserved comment forms

Line comments that match the following regular expression are reserved for vendor-specific language exten-
sions: ^\s*#\[.+\]\s*$

1 # The following line matches the reserved form:
2 #[canadensis(enum)]
3 # After the newline this comment is now a regular DSDL comment.
4 #[canadensis(enum)] This is not reserved because it contains extra text after the bracket

3.3 Expression types
Expression types are a special category of data types whose instances can only exist and be operated upon at
the time of DSDL definition processing. As such, expression types cannot be used to define attributes, and
their instances cannot be exchanged between nodes.

Expression types are used to represent values of constant expressions which are evaluated when a DSDL def-
inition is processed. Results of such expressions can be used to define various constant properties, such as
array length boundaries or values of constant attributes.

Expression types are specified in this section. Each expression type has a formal DSDL name for completeness;
even if such types can’t be used to define attributes, a well-defined formal name allows DSDL processing tools
to emit well-formed and understandable diagnostic messages.

3. Data structure description language 17/85

Specification v1.0-beta 2023-05-02

3.3.1 Rational number

At the time of DSDL definition processing, integer and real numbers are represented internally as rational
numbers where the range of numerator and denominator is unlimited29. DSDL processing tools are not per-
mitted to introduce any implicit rational number transformations that may result in a loss of information.

The DSDL name of the rational number type is “rational”.

Rational numbers are assumed to be stored in a normalized form, where the denominator is positive and the
greatest common divisor of the numerator and the denominator is one.

A rational number can be used in a context where an integer value is expected only if its denominator equals
one.

Implicit conversions between boolean-valued entities and rational numbers are not allowed.

Op Type Constraints Description

+ (rational) → rational No effect.

- (rational) → rational Negation.

** (rational,rational) → rational Power denominator equals
one

Exact exponentiation.

** (rational,rational) → rational Power denominator greater
than one

Exponentiation with imp-
lementation-defined accu-
racy.

* (rational,rational) → rational Exact multiplication.

/ (rational,rational) → rational Non-zero divisor Exact division.

% (rational,rational) → rational Non-zero divisor Exact modulo.

+ (rational,rational) → rational Exact addition.

- (rational,rational) → rational Exact subtraction.

| (rational,rational) → rational Denominators equal one Bitwise or.

^ (rational,rational) → rational Denominators equal one Bitwise xor.

& (rational,rational) → rational Denominators equal one Bitwise and.

!= (rational,rational) → bool Exact inequality.

== (rational,rational) → bool Exact equality.

<= (rational,rational) → bool Less or equal.

>= (rational,rational) → bool Greater or equal.

< (rational,rational) → bool Strictly less.

> (rational,rational) → bool Strictly greater.

Table 3.6: Operators defined on instances of rational numbers

3.3.2 Unicode string

This type contains a sequence of Unicode characters. It is used to represent string literals internally.

The DSDL name of the Unicode string type is “string”.

A Unicode string containing one symbol whose code point is within [0,127] (i.e., an ASCII character) is implic-
itly convertible into a uint8-typed constant attribute value, where the value of the constant is to be equal the
code point of the symbol.

Op Type Description

+ (string,string) → string Concatenation.

!= (string,string) → bool Inequality of Unicode NFC normalized forms. NFC stands for Nor-
malization Form Canonical Composition – one of standard Unicode
normalization forms where characters are recomposed by canonical
equivalence.

== (string,string) → bool Equality of Unicode NFC normalized forms.

Table 3.7: Operators defined on instances of Unicode strings

The set of operations and conversions defined for Unicode strings is to be extended in future versions of the
specification.

29Technically, the range may only be limited by the memory resources available to the DSDL processing tool.

18/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

3.3.3 Set

A set type represents an unordered collection of unique objects. All objects shall be of the same type. Unique-
ness of elements is determined by application of the equality operator “==”.

The DSDL name of the set type is “set”.

A set can be constructed from a set literal, in which case such set shall contain at least one element.

The attributes and operators defined on set instances are listed in the tables 3.3.3 and 3.3.3, where E represents
the set element type.

Name Type Constraints Description

min E Operator “<” is defined (E ,E) → bool Smallest element in the set determined
by sequential application of the operator
“<”.

max E Operator “<” is defined (E ,E) → bool Greatest element in the set determined
by sequential application of the operator
“<”.

count rational Cardinality.

Table 3.8: Attributes defined on instances of sets

Op Type Constraints Description

== (set<E>,set<E>) → bool Left equals right.

!= (set<E>,set<E>) → bool Left does not equal right.

<= (set<E>,set<E>) → bool Left is a subset of right.

>= (set<E>,set<E>) → bool Left is a superset of right.

< (set<E>,set<E>) → bool Left is a proper subset of right.

> (set<E>,set<E>) → bool Left is a proper superset of right.

| (set<E>,set<E>) → set<E> Union.

^ (set<E>,set<E>) → set<E> Disjunctive union.

& (set<E>,set<E>) → set<E> Intersection.

** (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

** (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

* (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

* (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

/ (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

/ (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

% (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

% (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

+ (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

+ (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

- (set<E>,E) → set<R> E is not a set Elementwise (E ,E) → R.

- (E ,set<E>) → set<R> E is not a set Elementwise (E ,E) → R.

Table 3.9: Operators defined on instances of sets

3.3.4 Serializable metatype

Serializable types (which are reviewed in section 3.4) are instances of the serializable metatype. This metatype
is convenient for expression of various relations and attributes defined on serializable types.

The DSDL name of the serializable metatype is “metaserializable”.

Available attributes are defined on a per-instance basis.

3.4 Serializable types

3.4.1 General principles

Values of the serializable type category can be exchanged between nodes over the Cyphal network. This is
opposed to the expression types (section 3.3), instances of which can only exist while DSDL definitions are
being evaluated. The data serialization rules are defined in section 3.7.

3. Data structure description language 19/85

Specification v1.0-beta 2023-05-02

3.4.1.1 Alignment and padding

For any serializable type, its alignment A is defined as some positive integer number of bits such that the
offset of a serialized representation of an instance of this type relative to the origin of the containing serialized
representation (if any) is an integer multiple of A.

Given an instance of type whose alignment is A, it is guaranteed that its serialized representation is always an
integer multiple of A bits long.

When constructing a serialized representation, the alignment and length requirements are satisfied by means
of padding, which refers to the extension of a bit sequence with zero bits until the resulting alignment or length
requirements are satisfied. During deserialization, the padding bits are ignored (skipped) irrespective of their
value (also see related section 3.7.1.3).

For example, given a variable-length entity whose length varies between 1 and 3 bits, followed by a field
whose type has the alignment requirement of 8, one may end up with 5, 6, or 7 bits of padding inserted
before the second field at runtime.

The exact amount of such padding cannot always be determined statically because it depends on the size of
the preceding entity; however, it is guaranteed that it is always strictly less than the alignment requirement
of the following field or, if this is the last field in a group, the alignment requirement of its container.

3.4.2 Void types

Void types are used for padding purposes. The alignment of void types is 1 bit (i.e., no alignment).

Void-typed field attributes are set to zero when an object is serialized and ignored when it is deserialized. Void
types can be used to reserve space in data type definitions for possible use in later versions of the data type.

The DSDL name pattern for void types is as follows: “void[1-9]\d*”, where the trailing integer represents its
width, in bits, ranging from 1 to 64, inclusive.

Void types can be referred to directly by their name from any namespace.

3.4.3 Primitive types

Primitive types are assumed to be known to DSDL processing tools a priori, and as such, they need not be
defined by the user. Primitive types can be referred to directly by their name from any namespace.

The alignment of primitive types is 1 bit (i.e., no alignment).

3.4.3.1 Hierarchy

The hierarchy of primitive types is documented below.

• Boolean types. A boolean-typed value represents a variable of the Boolean algebra. A Boolean-typed value
can have two values: true and false. The corresponding DSDL data type name is “bool”.

• Algebraic types. Those are types for which conventional algebraic operators are defined.
• Integer types are used to represent signed and unsigned integer values. See table 3.4.3.1.

• Signed integer types. These are used to represent values which can be negative. The correspond-
ing DSDL data type name pattern is “int[1-9]\d*”, where the trailing integer represents the
length of the serialized representation of the value, in bits, ranging from 2 to 64, inclusive.

• Unsigned integer types. These are used to represent non-negative values. The corresponding
DSDL data type name pattern is “uint[1-9]\d*”, where the trailing integer represents the length
of the serialized representation of the value, in bits, ranging from 1 to 64, inclusive.

• Floating point types are used to approximately represent real values. The underlying serialized
representation follows the IEEE 754 standard. The corresponding DSDL data type name pattern is
“float(16|32|64)”, where the trailing integer represents the type of the IEEE 754 representation. See
table 3.4.3.1.

Category DSDL names Range, X is bit length

Signed integers int2, int3, int4 . . . int62, int63, int64
[
− 2X

2 , 2X

2 −1
]

Unsigned integers uint1, uint2, uint3 . . . uint62, uint63, uint64
[
0,2X −1

]
Table 3.10: Properties of integer types

20/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

DSDL name Representation Approximate epsilon Approximate range

float16 IEEE 754 binary16 0.001 ±65504

float32 IEEE 754 binary32 10−7 ±1039

float64 IEEE 754 binary64 2×10−16 ±10308

Table 3.11: Properties of floating point types

3.4.3.2 Cast mode

The concept of cast mode is defined for all primitive types. The cast mode defines the behavior when a
primitive-typed entity is assigned a value that exceeds its range. Such assignment requires some of the in-
formation to be discarded; due to the loss of information involved, it is called a lossy assignment.

The following cast modes are defined:

Truncated mode — denoted with the keyword “truncated” placed before the primitive type name.

Saturated mode — denoted with the optional keyword “saturated” placed before the primitive type
name. If neither cast mode is specified, saturated mode is assumed by default. This essentially makes the
“saturated” keyword redundant; it is provided only for consistency.

When a primitive-typed entity is assigned a value that exceeds its range, the resulting value is chosen according
to the lossy assignment rules specified in table 3.4.3.2. Cases that are marked as illegal are not permitted in
DSDL definitions.

Type category Truncated mode Saturated mode (default)

Boolean Illegal: boolean type with truncated cast mode
is not allowed.

Falsity if the value is zero or false, truth other-
wise.

Signed integer Illegal: signed integer types with truncated cast
mode are not allowed.

Nearest reachable value.

Unsigned integer Most significant bits are discarded. Nearest reachable value.

Floating point Infinity with the same sign, unless the original
value is not-a-number, in which case it will be
preserved.

If the original value is finite, the nearest finite
value will be used. Otherwise, in the case of in-
finity or not-a-number, the original value will
be preserved.

Table 3.12: Lossy assignment rules per cast mode

Rules of conversion between values of different type categories do not affect compatibility at the protocol level,
and as such, they are to be implementation-defined.

3.4.3.3 Expressions

At the time of DSDL definition processing, values of primitive types are represented as instances of the
rational type (section 3.3.1), with the exception of the type bool, instances of which are usable in DSDL
expressions as-is.

Op Type Description

! (bool) → bool Logical not.

|| (bool,bool) → bool Logical or.

&& (bool,bool) → bool Logical and.

== (bool,bool) → bool Equality.

!= (bool,bool) → bool Inequality.

Table 3.13: Operators defined on instances of type boolean

3.4.3.4 Reference list

An exhaustive list of all void and primitive types ordered by bit length is provided below for reference. Note
that the cast mode specifier is omitted intentionally.

3.4.4 Array types

An array type represents an ordered collection of values. All values in the collection share the same type, which
is referred to as array element type. The array element type can be any type except:

• void type;
• array type30.

30Meaning that nested arrays are not allowed; however, the array element type can be a composite type which in turn may contain arrays. In other

3. Data structure description language 21/85

Specification v1.0-beta 2023-05-02

The number of elements in the array can be specified as a constant expression at the data type definition
time, in which case the array is said to be a fixed-length array. Alternatively, the number of elements can vary
between zero and some static limit specified at the data type definition time, in which case the array is said
to be a variable-length array. Variable-length arrays with unbounded maximum number of elements are not
allowed.

Arrays are defined by adding a pair of square brackets after the array element type specification, where the
brackets contain the array capacity expression. The array capacity expression shall yield a positive integer of
type “rational” upon its evaluation; any other value or type renders the current DSDL definition invalid.

The array capacity expression can be prefixed with the following character sequences in order to define a
variable-length array:

• “<” (ASCII code 60) — indicates that the integer value yielded by the array capacity expression specifies the
non-inclusive upper boundary of the number of elements. In this case, the integer value yielded by the array
capacity expression shall be greater than one.

• “<=” (ASCII code 60 followed by 61) — same as above, but the upper boundary is inclusive.

If neither of the above prefixes are provided, the resultant definition is that of a fixed-length array.

The alignment of an array equals the alignment of its element type31.

3.4.5 Composite types

3.4.5.1 Kinds

There are two kinds of composite type definitions: message types and service types. All versions of a data type
shall be of the same kind32.

A service type defines two inner data types: one for service request object, and one for service response object,
in that order. The two types are separated by the service response marker (“---”) on a separate line.

The presence of the service response marker indicates that the data type definition at hand is of the service
kind. At most one service response marker shall appear in a given definition.

3.4.5.2 Dependencies

In order to refer to a composite type from another composite type definition (e.g., for nesting or for referring to
an external constant), one has to specify the full data type name of the referred data type followed by its major
and minor version numbers separated by the namespace separator character, as demonstrated on figure 3.4.

To facilitate look-up of external dependencies, implementations are expected to obtain from external
sources33 the list of directories that are the roots of namespaces containing the referred dependencies.

uavcan.node.Heartbeat︸ ︷︷ ︸
full data type name

.1.0︸ ︷︷ ︸
version

numbers

Figure 3.4: Reference to an external composite data type definition

If the referred data type and the referring data type share the same full namespace name, it is allowed to omit
the namespace from the referred data type specification leaving only the short data type name, as demon-
strated on figure 3.5. In this case, the referred data type will be looked for in the namespace of the referrer.
Partial omission of namespace components is not permitted.

Heartbeat︸ ︷︷ ︸
short data type name

.1.0︸ ︷︷ ︸
version

numbers

Figure 3.5: Reference to an external composite data type definition located in the same namespace

Circular dependencies are not permitted. A circular dependency renders all of the definitions involved in the
dependency loop invalid.

words, indirect nesting of arrays is permitted.
31E.g., the alignment of uint5[<=3] or int64[3] is 1 bit (that is, no alignment).
32For example, if a data type version 0.1 is of a message kind, all later versions of it shall be messages, too.
33For example, from user-provided configuration options.

22/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

If any of the referred definitions are marked as deprecated, the referring definition shall be marked depre-
cated as well34. If a non-deprecated definition refers to a deprecated definition, the referring definition is
malformed35.

When a data type is referred to from within an expression context, it constitutes a literal of type
“metaserializable” (section 3.3.4). If the referred data type is of the message kind, its attributes are
accessible in the referring expression through application of the attribute reference operator “.”. The
available attributes and their semantics are documented in the section 3.5.2.

1 uint64 MY_CONSTANT = vendor.MessageType.1.0.OTHER_CONSTANT
2 uint64 MY_CONSTANT = MessageType.1.0.OTHER_CONSTANT
3 # The above is valid if the referring definition and the referred definition
4 # are located inside the root namespace "vendor".
5 @print MessageType.1.0

3.4.5.3 Tagged unions

Any data type definition can be supplied with a special directive (section 3.6) indicating that it forms a tagged
union.

A tagged union type shall contain at least two field attributes. A tagged union shall not contain padding field
attributes.

The value of a tagged union object is a function of the field attribute which value it is currently holding and the
value of the field attribute itself.

To avoid ambiguity, a data type that is not a tagged union is referred to as a structure.

3.4.5.4 Alignment and cumulative bit length set

The alignment of composite types is one byte (8 bits)36.

Per the definitions given in 3.4.1.1, a serialized representation of a composite type is padded to 8 bits by insert-
ing padding bits after its last element until the resulting length is a multiple of 8 bits.

Given a set of field attributes, their cumulative bit length set is computed by evaluating every permutation of
their respective bit length sets plus the required padding.

• For tagged unions, this amounts to the union of the bit length sets of each field plus the bit length set of the
implicit union tag.

• Otherwise, the cumulative bit length set is the Cartesian product of the bit length sets of each field plus the
required inter-field padding.

Related specifics are given in section 3.7 on data serialization.

3.4.5.5 Extent and sealing

As detailed in section 3.8, data types may evolve over time to accommodate new design requirements, new
features, to rectify issues, etc. In order to allow gradual migration of deployed systems to revised data types,
it is desirable to ensure that they can be modified in a way that does not render new definitions incompatible
with their earlier versions. In this context there are two related concepts:

Extent — the minimum amount of memory, in bits, that shall be allocated to store the serialized representa-
tion of the type. The extent of any type is always greater than or equal the maximal value of its bit length set. It
is always a multiple of 8.

Sealing — a type that is sealed is non-evolvable and its extent equals the maximal value of its bit length set37.
A type that is not sealed is also referred to as delimited.

The extent is the growth limit for the maximal bit length of the type as it evolves. The extent should be at least
as large as the longest serialized representation of any compatible version of the type, which ensures that an
agent leveraging a particular version can correctly process any other compatible version due to the avoidance
of unintended truncation of serialized representations.

Serialized representations of evolvable definitions may carry additional metadata which introduces a certain
overhead. This may be undesirable in some scenarios, especially in cases where serialized representations of

34Deprecation is indicated with the help of a special directive, as explained in section 3.6.
35This tainting behavior is designed to prevent unexpected breakage of type hierarchies when one of the deprecated dependencies reaches its end of

life.
36Regardless of the content. It follows that empty composites can be inserted arbitrarily to force byte alignment of the next field(s) at runtime.
37I.e., the smallest possible extent.

3. Data structure description language 23/85

Specification v1.0-beta 2023-05-02

the definition are expected to be highly compact, thereby making the overhead comparatively more signifi-
cant. In such cases, the designer may opt out of the extensibility by declaring the definition sealed. Serialized
representations of sealed definitions do not incur the aforementioned overhead.

The related mechanics are described in section 3.7.5.3.

Extent
(memory requirement)︷ ︸︸ ︷

■■■■■■■■■■■■︸ ︷︷ ︸
Longest serialized

representation

⊠⊠⊠⊠⊠⊠⊠⊠︸ ︷︷ ︸
Memory reserve
(none if sealed)

Figure 3.6: Serialized representation and extent

Because of Cyphal’s commitment to determinism, memory buffer allocation can become an issue. When
using a flat composite type (where each field is of a primitive type) with the implicit truncation rule, it is
clear that the last defined fields are to be truncated out shall the allocated buffer be too small to accom-
modate the serialized representation in its entirety. If there is a composite-typed field, this behavior can no
longer be relied on. The technical details explaining this are given in section 3.7.5.3.

Conventional protocols manage this simply by delaying the memory requirement identification until run-
time, which is unacceptable to Cyphal. The solution for Cyphal is to allow the data type author to require
implementations to reserve more memory than required by the data type definition unless it is @sealed (or
unless the implementation does use dynamic memory allocation).

The extent shall be set explicitly using the directive described in section 3.6.2, unless the definition is declared
sealed using the directive described in section 3.6.3. The directives are mutually exclusive.

It is allowed for a sealed composite type to nest non-sealed (delimited) composite types, and vice versa.

3.4.5.6 Bit length set

The bit length set of a sealed composite type equals the cumulative bit length set of its fields plus the final
padding (see section 3.4.5.4).

The bit length set of the following is {8,24,40,56}:

1 uint16[<=3] foo
2 @sealed

The bit length set of the following is {16,32,48,64}:

1 uint16[<=3] foo
2 int2 bar
3 @sealed

The bit length set of the following is {8,16}:

1 bool[<=3] foo
2 @sealed

The bit length set of a non-sealed (delimited) composite type is dependent only on its extent X , and is defined
as follows: {

BDH +8b | b ∈Z, 0 ≤ b ≤ X

8

}
where BDH is the bit length of the delimiter header as defined in section 3.7.5.3.

24/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

This is intentionally not dependent on the fields of the composite because the definition of delimited com-
posites should be possible to change without violating the backward compatibility.

If the bit length set was dependent on the field composition, then a composite A that nests another com-
posite B could have made a fragile assumption about the offset of the fields that follow B that could be
broken when B is modified. Example:

1 # A.1.0
2 B.1.0 x
3 float32 assume_aligned # B.1.0 contains a single uint64, assume this field is 32-bit aligned?
4 @sealed

1 # B.1.0
2 uint64 x
3 @extent 17 * 8

Imagine then that B.1.0 is replaced with the following:

1 # B.1.1
2 uint64 x
3 bool[<=64] y
4 @extent 17 * 8

Once this modification is introduced, the fragile assumption about the alignment of
A.1.0.assume_aligned would be violated. To avoid this issue, the bit length set definition of de-
limited types intentionally discards the information about its field composition, forcing dependent types
to avoid any non-trivial assumptions.

When serializing an object, the amount of memory needed for storing its serialized representation may be
taken as the maximal value of its bit length set minus the size of the delimiter header, since this bound is
tighter than the extent yet guaranteed to be sufficient. This optimization is not applicable to deserialization
since the actual type of the object may not be known.

3.4.5.7 Type polymorphism and equivalency

Type polymorphism is supported in DSDL through structural subtyping. The following definition relies on the
concept of field attribute, which is introduced in section 3.5.

Polymorphic relations are not defined on service types.

Let B and D be DSDL types that define b and d field attributes, respectively. Let each field attribute be assigned
a sequential index according to its position in the DSDL definition (see section 3.2 on statement ordering).

1. Structure subtyping rule — D is a structural subtype of B if all conditions are satisfied:
• neither B nor D define a tagged union38;
• neither B nor D are sealed39;
• the extent of B is not less than the extent of D40;
• B is not D ;
• b ≤ d ;
• for each field attribute of B at index i there is an equal41 field attribute in D at index i .

2. Tagged union subtyping rule — D is a structural subtype of B if all conditions are satisfied:
• both B and D define tagged unions;
• neither B nor D are sealed;
• the extent of B is not less than the extent of D ;
• B is not D ;
• b ≤ d ;
• 2⌈log2 max(8,⌈log2 b⌉)⌉ = 2⌈log2 max(8,⌈log2 d⌉)⌉42;
• for i ∈ [0,b), the type of the field attribute of D at index i is the same or is a subtype of the type of the field

38This is because tagged unions are serialized differently.
39Sealed types are serialized in-place as if their definition was directly copied into the outer (containing) type (if any). This circumstance effectively

renders them non-modifiable because that may break the bit layout of the outer types (if any). More on this in section 3.7.5.3.
40This is to uphold the Liskov substitution principle. A deserializer expecting an instance of B in a serialized representation should be invariant to the

replacement B ← D . If the extent of D was larger, then its serialized representation could spill beyond the allocated container, possibly resulting in the
truncation of the following data, which in turn could result in incorrect deserialization. See 3.7.

41Field attribute equality is defined in section 3.5.
42I.e., the length of the implicit union tag field should be the same.

3. Data structure description language 25/85

Specification v1.0-beta 2023-05-02

attribute of B at index i .
• for i ∈ [0,b), the name of the field attribute of D at index i is the same as the name of the field attribute of

B at index i .
3. Empty type subtyping rule — D is a structural subtype of B if all conditions are satisfied:

• b = 043;
• neither B nor D are sealed;
• the extent of B is not less than the extent of D ;
• B is not D .

4. Header subtyping rule — D is a structural subtype of B if all conditions are satisfied:
• neither B nor D define a tagged union;
• both B and D are sealed;
• the first field attribute of D is of type B .

If D is a structural subtype of B , then B is a structural supertype of D .

D and B are structurally equivalent if D is a structural subtype and a structural supertype of B .

A type hierarchy is an ordered set of data types such that for each pair of its members one type is a subtype of
another, and for any member its supertypes are located on the left.

43If B contains no field attributes, the applicability of the Liskov substitution principle is invariant to whether its subtypes are tagged union types or
not.

26/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

Subtyping example for structure (non-union) types. First type:

1 float64 a # Index 0
2 int16[<=9] b # Index 1
3 @extent 32 * 8

The second type is a structural subtype of the first type:

1 float64 a # Index 0
2 int16[<=9] b # Index 1
3 uint8 foo # Index 2
4 @extent 32 * 8

Subtyping example for union types. First type:

1 @union # The implicit union tag field is 8 bits wide
2 uavcan.primitive.Empty.1.0 foo
3 float16 bar
4 uint8 zoo
5 @extent 128 * 8

The second type is a structural subtype of the first type:

1 @union # The implicit union tag field is 8 bits wide
2 uavcan.diagnostic.Record.1.0 foo # Subtype
3 float16 bar # Same
4 uint8 zoo # Same
5 int64[<=64] baz # New field
6 @extent 128 * 8

A structure type that defines zero fields is a structural supertype of any other structure type, regardless of
either or both being a union, provided that its extent is sufficient. A structure type may have an arbitrary
number of supertypes as long as the field equality constraint is satisfied.

Header subtyping example. The first type is named A.1.0:

1 float64 a
2 int16[<=9] b
3 @sealed

The second type is a structural subtype of the first type:

1 A.1.0 base
2 uint8 foo
3 @sealed

3. Data structure description language 27/85

Specification v1.0-beta 2023-05-02

The following example in C demonstrates the concept of polymorphic compatibility detached from DSDL.

1 struct base
2 {
3 int a;
4 float b;
5 };

6 struct derived_first
7 {
8 int a;
9 float b;
10 double c;
11 };

12 struct derived_second
13 {
14 int a;
15 float b;
16 short d;
17 };

18 float compute(struct base* value)
19 {
20 return (float)value->a + value->b;
21 }

22 int main()
23 {
24 struct derived_first foo = { .a = 123, .b = -456.789F, .c = 123.456 };
25 struct derived_second bar = { .a = -123, .b = 456.789F, .d = -123 };
26 // Both derived_first and derived_second are structural subtypes of base. The program returns zero.
27 return compute(&foo) + compute(&bar);
28 }

3.5 Attributes
An attribute is a named (excepting padding fields) entity associated with a particular object or type.

3.5.1 Composite type attributes

A composite type attribute that has a value assigned at the data type definition time is called a constant at-
tribute; a composite type attribute that does not have a value assigned at the definition time is called a field
attribute.

The name of a composite type attribute shall be unique within the data type definition that contains it, and
it shall not match any of the reserved name patterns specified in the table 3.2.5. This requirement does not
apply to padding fields.

3.5.1.1 Field attributes

A field attribute represents a named dynamically assigned value of a statically defined type that can be ex-
changed over the network as a member of its containing object. The data type of a field attribute shall be of
the serializable type category (section 3.4), excepting the void type category, which is not allowed.

Exception applies to the special kind of field attributes — padding fields. The type of a padding field attribute
shall be of the void category. A padding field attribute may not have a name.

A pair of field attributes is considered equal if, and only if, both field attributes are of the same type, and both
share the same name or both are padding field attributes.

Example:

1 uint8[<=10] regular_field # A field named "regular field"
2 void16 # A padding field; no name is permitted

3.5.1.2 Constant attributes

A constant attribute represents a named statically assigned value of a statically defined type. Values of constant
attributes are never exchanged over the network, since they are assumed to be known to all involved nodes by
virtue of them sharing the same definition of the data type.

28/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

The data type of a constant attribute shall be of the primitive type category (section 3.4).

The value of the constant attribute is determined at the DSDL definition processing time by evaluating its
initialization expression. The expression shall yield a compatible type upon its evaluation in order to initialize
the value of its constant attribute. The set of compatible types depends on the type of the initialized constant
attribute, as specified in table 3.5.1.2.

Constant

type

category

Expression

type

bool rational string

Boolean Allowed. Not allowed. Not allowed.

Integer Not allowed. Allowed if the denominator equals
one and the numerator value is
within the range of the constant
type.

Allowed if the target type is uint8
and the source string contains one
symbol whose code point falls into
the range [0,127].

Floating point Not allowed. Allowed if the source value does
not exceed the finite range of the
constant type. The final value is
computed as the quotient of the
numerator and the denominator
with implementation-defined ac-
curacy.

Not allowed.

Table 3.14: Permitted constant attribute value initialization patterns

Due to the value of a constant attribute being defined at the data type definition time, the cast mode of
primitive-typed constants has no observable effect.

A real literal 1234.5678 is represented internally as 6172839
5000 , which can be used to initialize a float16 value,

resulting in 1235.0.

The specification states that the value of a floating-point constant should be computed with an
implementation-defined accuracy. Cyphal avoids strict accuracy requirements in order to ensure com-
patibility with implementations that rely on non-standard floating point formats. Such laxity in the spec-
ification is considered acceptable since the uncertainty is always confined to a single division expression
per constant; all preceding computations, if any, are always performed by the DSDL compiler using exact
rational arithmetic.

3.5.2 Local attributes

Local attributes are available at the DSDL definition processing time.

As defined in section 3.2, a DSDL definition is an ordered collection of statements; a statement may contain
DSDL expressions. An expression contained in a statement number E may refer to a composite type attribute
introduced in a statement number A by its name, where A < E and both statements belong to the same data
type definition44. The representation of the referred attribute in the context of the referring DSDL expression
is specified in table 3.5.2.

Attribute category Value type Value

Constant attribute Type of the constant attribute Value of the constant attribute

Field attribute Illegal Illegal

Table 3.15: Local attribute representation

1 uint8 FOO = 123
2 uint16 BAR = FOO ** 2
3 @assert BAR == 15129
4 --- # The request type ends here; its attributes are no longer accessible.
5 #uint16 BAZ = BAR # Would fail - BAR is not accessible here.
6 float64 FOO = 3.14
7 @assert FOO == 3.14

44Per 3.1.4, in case of services, this applies only to their request and response types.

3. Data structure description language 29/85

Specification v1.0-beta 2023-05-02

3.5.3 Intrinsic attributes

Intrinsic attributes are available in any expression. Their values are constructed by the DSDL processing tool
depending on the context, as specified in this section.

3.5.3.1 Offset attribute

The offset attribute is referred to by its identifier “_offset_”. Its value is of type set<rational>.

In the following text, the term referring statement denotes a statement containing an expression which refers
to the offset attribute. The term bit length set is defined in section 3.1.5.

The value of the attribute is a function of the field attribute declarations preceding the referring statement and
the category of the containing definition.

If the current definition belongs to the tagged union category, the referring statement shall be located after the
last field attribute definition. A field attribute definition following the referring statement renders the current
definition invalid. For tagged unions, the value of the offset attribute is defined as the cumulative bit length
set45 of the union’s fields, where each element of the set is incremented by the bit length of the implicit union
tag field (section 3.7.5).

If the current data definition does not belong to the tagged union category, the referring statement may be
located anywhere within the current definition. The value of the offset attribute is defined as the cumulative bit
length set46 of the fields defined in statements preceding the referring statement (see section 3.2 on statement
ordering).

1 @union
2 uint8 a
3 #@print _offset_ # Would fail: it's a tagged union, _offset_ is undefined until after the last field
4 uint16 b
5 @assert _offset_ == {8 + 8, 8 + 16}
6 ---
7 @assert _offset_ == {0}
8 float16 a
9 @assert _offset_ == {16}
10 void4
11 @assert _offset_ == {20}
12 int4 b
13 @assert _offset_ == {24}
14 uint8[<4] c
15 @assert _offset_ == 8 + {24, 32, 40, 48}
16 @assert _offset_ % 8 == {0}
17 # One of the main usages for _offset_ is statically proving that the following field is byte-aligned
18 # for all possible valid serialized representations of the preceding fields. It is done by computing
19 # a remainder as shown above. If the field is aligned, the remainder set will equal {0}. If the
20 # remainder set contains other elements, the field may be misaligned under some circumstances.
21 # If the remainder set does not contain zero, the field is never aligned.
22 uint8 well_aligned # Proven to be byte-aligned.

3.6 Directives
Per the DSDL grammar specification (section 3.2), a directive may or may not have an associated expression.
In this section, it is assumed that a directive does not expect an expression unless explicitly stated otherwise.

If the expectation of an associated directive expression or lack thereof is violated, the containing DSDL defini-
tion is malformed.

The effect of a directive is confined to the data type definition that contains it. That means that for service
types, unless specifically stated otherwise, a directive placed in the request (response) type affects only the
request (response) type.

3.6.1 Tagged union marker

The identifier of the tagged union marker directive is “union”. Presence of this directive in a data type def-
inition indicates that the data type definition containing this directive belongs to the tagged union category
(section 3.4.5.3).

Usage of this directive is subject to the following constraints:

• The directive shall not be used more than once per data type definition.

45Section 3.4.5.4.
46Section 3.4.5.4.

30/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

• The directive shall be placed before the first composite type attribute definition in the current definition.

1 uint8[<64] name # Request is not a union
2 ---
3 @union # Response is a union
4 uint64 natural
5 #@union # Would fail - @union is not allowed after the first attribute definition
6 float64 real

3.6.2 Extent specifier

The identifier of the extent specification directive is “extent”. This directive declares the current data type
definition to be delimited (non-sealed) and specifies its extent (section 3.4.5.5). The extent value is obtained
by evaluating the provided expression. The expression shall be present and it shall yield a non-negative integer
value of type “rational” (section 3.4.3) upon its evaluation.

Usage of this directive is subject to the following constraints (otherwise, the definition is malformed):

• The directive shall not be used more than once per data type definition.
• The directive shall be placed after the last attribute definition in the current data type47.
• The value shall satisfy the constraints given in section 3.4.5.5.
• The data type shall not be sealed.

1 uint64 foo
2 @extent 256 * 8 # Make the extent 256 bytes large
3 #@sealed # Would fail -- mutually exclusive directives

1 uint64[<=64] bar
2 @extent _offset_.max * 2
3 #float32 baz # Would fail (protects against incorrectly computing
4 # the extent when it is a function of _offset_)

3.6.3 Sealing marker

The identifier of the sealing marker directive is “sealed”. This directive marks the current data type sealed
(section 3.4.5.5).

Usage of this directive is subject to the following constraints (otherwise, the definition is malformed):

• The directive shall not be used more than once per data type definition.
• The extent directive shall not be used in this data type definition.

1 uint64 foo
2 @sealed # The request type is sealed.
3 #@extent 128 # Would fail -- cannot specify extent for sealed type
4 ---
5 float64 bar # The response type is not sealed.
6 @extent 4000 * 8

3.6.4 Deprecation marker

The identifier of the deprecation marker directive is “deprecated”. Presence of this directive in a data type
definition indicates that the current version of the data type definition is nearing the end of its life cycle and
may be removed soon. The data type versioning principles are explained in section 3.8.

Code generation tools should use this directive to reflect the impending removal of the current data type ver-
sion in the generated code.

Usage of this directive is subject to the following constraints:

• The directive shall not be used more than once per data type definition.
• The directive shall be placed before the first composite type attribute definition in the definition.
• In case of service types, this directive may only be placed in the request type, and it affects the response type

as well.

47This constraint is to help avoid issues where the extent is defined as a function of the offset past the last field of the type, and a new field is mistakenly
added after the extent directive.

3. Data structure description language 31/85

Specification v1.0-beta 2023-05-02

1 @deprecated # Applies to the entire definition
2 uint8 FOO = 123
3 #@deprecated # Would fail - shall be placed before the first attribute definition
4 ---
5 #@deprecated # Would fail - shall be placed in the request type

A C++ class generated from the above definition could be annotated with the [[deprecated]] attribute.

A Rust structure generated from the above definition could be annotated with the #[deprecated] at-
tribute.

A Python class generated from the above definition could raise DeprecationWarning upon usage.

3.6.5 Assertion check

The identifier of the assertion check directive is “assert”. The assertion check directive expects an expression
which shall yield a value of type “bool” (section 3.4.3) upon its evaluation.

If the expression yields truth, the assertion check directive has no effect.

If the expression yields falsity, a value of type other than “bool”, or fails to evaluate, the containing DSDL
definition is malformed.

1 float64 real
2 @assert _offset_ == {32} # Would fail: {64} != {32}

3.6.6 Print

The identifier of the print directive is “print”. The print directive may or may not be provided with an associ-
ated expression.

If the expression is not provided, the behavior is implementation-defined.

If the expression is provided, it is evaluated and its result is displayed by the DSDL processing tool in a human-
readable implementation-defined form. Implementations should strive to produce textual representations
that form valid DSDL expressions themselves, so that they would produce the same value if evaluated by a
DSDL processing tool.

If the expression is provided but cannot be evaluated, the containing DSDL definition is malformed.

1 float64 real
2 @print _offset_ / 6 # Possible output: {32/3}
3 @print uavcan.node.Heartbeat.1.0 # Possible output: uavcan.node.Heartbeat.1.0
4 @print bool[<4] # Possible output: saturated bool[<=3]
5 @print float64 # Possible output: saturated float64
6 @print {123 == 123, false} # Possible output: {true, false}
7 @print 'we all float64 down here\n' # Possible output: 'we all float64 down here\n'

3.7 Data serialization

3.7.1 General principles

3.7.1.1 Design goals

The main design principle behind the serialized representations described in this section is the maximization
of compatibility with native representations used by currently existing and likely future computer microar-
chitectures. The goal is to ensure that the serialized representations defined by DSDL match internal data
representations of modern computers, so that, ideally, a typical system will not have to perform any data con-
version whatsoever while exchanging data over a Cyphal network.

The implicit truncation and implicit zero extension rules introduced in this section are designed to facilitate
structural subtyping and to enable extensibility of data types while retaining backward compatibility. This is a
conscious trade-off between runtime type checking and long-term stability guarantees. This model assumes
that data type compatibility is determined statically and is not, normally, enforced at runtime.

3.7.1.2 Bit and byte ordering

The smallest atomic data entity is a bit. Eight bits form one byte; within the byte, the bits are ordered so that the
least significant bit is considered first (0-th index), and the most significant bit is considered last (7-th index).

Numeric values consisting of multiple bytes are arranged so that the least significant byte is encoded first; such

32/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

format is also known as little-endian.

bit index
M
7

0
6

1
5

0
4

1
3

0
2

1
1

0
L
0

1︸ ︷︷ ︸
least significant byte

...

bit index
M
7

0
6

1
5

0
4

1
3

0
2

1
1

0
L
0

1︸ ︷︷ ︸
most significant byte

Figure 3.7: Bit and byte ordering

3.7.1.3 Implicit truncation of excessive data

When a serialized representation is deserialized, implementations shall ignore any excessive (unused) data or
padding bits remaining upon deserialization48. The total size of the serialized representation is reported either
by the underlying transport layer, or, in the case of nested objects, by the delimiter header (section 3.7.5.3).

As a consequence of the above requirement the transport layer can introduce additional zero padding bits at
the end of a serialized representation to satisfy data size granularity constraints. Non-zero padding bits are
not allowed49.

Because of implicit truncation a serialized representation constructed from an instance of type B can be
deserialized into an instance of type A as long as B is a structural subtype of A.

Let x be an instance of data type B , which is defined as follows:

1 float32 parameter
2 float32 variance

Let A be a structural supertype of B , being defined as follows:

1 float32 parameter

Then the serialized representation of x can be deserialized into an instance of A. The topic of data type
compatibility is explored in detail in section 3.8.

3.7.1.4 Implicit zero extension of missing data

For the purposes of deserialization routines, the serialized representation of any instance of a data type shall
implicitly end with an infinite sequence of bits with a value of zero (0).50.

Despite this rule, implementations are not allowed to intentionally truncate trailing zeros upon construction
of a serialized representation of an object51.

The total size of the serialized representation is reported either by the underlying transport layer, or, in the
case of nested objects, by the delimiter header (section 3.7.5.3).

48The presence of unused data should not be considered an error.
49Because padding bits may be misinterpreted as part of the serialized representation.
50This can be implemented by checking for out-of-bounds access during deserialization and returning zeros if an out-of-bounds access is detected.

This is where the name “implicit zero extension rule” is derived from.
51Intentional truncation is prohibited because a future revision of the specification may remove the implicit zero extension rule. If intentional trunca-

tion were allowed, removal of this rule would break backward compatibility.

3. Data structure description language 33/85

Specification v1.0-beta 2023-05-02

The implicit zero extension rule enables extension of data types by introducing additional fields without
breaking backward compatibility with existing deployments. The topic of data type compatibility is ex-
plored in detail in section 3.8.

The following example assumes that the reader is familiar with the variable-length array serialization rules,
explained in section 3.7.4.2.

Let the data type A be defined as follows:

1 uint8 scalar

Let x be an instance of A, where the value of scalar is 4. Let the data type B be defined as follows:

1 uint8[<256] array

Then the serialized representation of x can be deserialized into an instance of B where the field array
contains a sequence of four zeros: 0,0,0,0.

3.7.1.5 Error handling

In this section and further, an object that nests other objects is referred to as an outer object in relation to the
nested object.

Correct Cyphal types shall have no serialization error states.

A deserialization process may encounter a serialized representation that does not belong to the set of serialized
representations of the data type at hand. In such case, the invalid serialized representation shall be discarded
and the implementation shall explicitly report its inability to complete the deserialization process for the given
input. Correct Cyphal types shall have no other deserialization error states.

Failure to deserialize a nested object renders the outer object invalid52.

3.7.2 Void types

The serialized representation of a void-typed field attribute is constructed as a sequence of zero bits. The
length of the sequence equals the numeric suffix of the type name.

When a void-typed field attribute is deserialized, the values of respective bits are ignored; in other words, any
bit sequence of correct length is a valid serialized representation of a void-typed field attribute. This behavior
facilitates usage of void fields as placeholders for non-void fields introduced in newer versions of the data type
(section 3.8).

The following data type will be serialized as a sequence of three zero bits 0002:

1 void3

The following bit sequences are valid serialized representations of the type: 0002, 0012, 0102, 0112, 1002,
1012, 1102, 1112.

Shall the padding field be replaced with a non-void-typed field in a future version of the data type, nodes
utilizing the newer definition may be able to retain compatibility with nodes using older types, since the
specification guarantees that padding fields are always initialized with zeros:

1 # Version 1.1
2 float64 a
3 void64

1 # Version 1.2
2 float64 a
3 float32 b # Messages v1.1 will be interpreted such that b = 0.0
4 void32

52Therefore, failure in a single deeply nested object propagates upward, rendering the entire structure invalid. The motivation for such behavior is that
it is likely that if an inner object cannot be deserialized, then the outer object is likely to be also invalid.

34/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

3.7.3 Primitive types

3.7.3.1 General principles

Implementations where native data formats are incompatible with those adopted by Cyphal shall perform
conversions between the native formats and the corresponding Cyphal formats during serialization and de-
serialization. Implementations shall avoid or minimize information loss and/or distortion caused by such
conversions.

Serialized representations of instances of the primitive type category that are longer than one byte (8 bits)
are constructed as follows. First, only the least significant bytes that contain the used bits of the value are
preserved; the rest are discarded following the lossy assignment policy selected by the specified cast mode.
Then the bytes are arranged in the least-significant-byte-first order53. If the bit width of the value is not an
integer multiple of eight (8) then the next value in the type will begin starting with the next bit in the current
byte. If there are no further values then the remaining bits shall be zero (0).

The value 1110110110102 (3802 in base-10) of type uint12 is encoded as follows. The bit sequence is shown
in the base-2 system, where bytes (octets) are comma-separated:

byte 0
7

1
6

1
5

0
4

1
3

1
2

0
1

1
0

0︸ ︷︷ ︸
Least significant 8

bits of 380210

,
byte 1

7

?
6

?
5

?
4

?︸ ︷︷ ︸
Next object

or zero
padding bits

3

1
2

1
1

1
0

0︸ ︷︷ ︸
Most

significant
4 bits of
380210

3.7.3.2 Boolean types

The serialized representation of a value of type bool is a single bit. If the value represents falsity, the value of
the bit is zero (0); otherwise, the value of the bit is one (1).

3.7.3.3 Unsigned integer types

The serialized representation of an unsigned integer value of length n bits (which is reflected in the numerical
suffix of the data type name) is constructed as if the number were to be written in base-2 numerical system
with leading zeros preserved so that the total number of binary digits would equal n.

The serialized representation of integer 42 of type uint7 is 01010102.

3.7.3.4 Signed integer types

The serialized representation of a non-negative value of a signed integer type is constructed as described in
section 3.7.3.3.

The serialized representation of a negative value of a signed integer type is computed by applying the following
transformation:

2n +x

where n is the bit length of the serialized representation (which is reflected in the numerical suffix of the
data type name) and x is the value whose serialized representation is being constructed. The result of the
transformation is a positive number, whose serialized representation is then constructed as described in sec-
tion 3.7.3.3.

The representation described here is widely known as two’s complement.

The serialized representation of integer -42 of type int7 is 10101102.

3.7.3.5 Floating point types

The serialized representation of floating point types follows the IEEE 754 series of standards as follows:

• float16— IEEE 754 binary16;
• float32— IEEE 754 binary32;
• float64— IEEE 754 binary64.

Implementations that model real numbers using any method other than IEEE 754 shall be able to model pos-
itive infinity, negative infinity, signaling NaN54, and quiet NaN.

53Also known as “little endian”.
54Per the IEEE 754 standard, NaN stands for “not-a-number” – a set of special bit patterns that represent lack of a meaningful value.

3. Data structure description language 35/85

Specification v1.0-beta 2023-05-02

3.7.4 Array types

3.7.4.1 Fixed-length array types

Serialized representations of a fixed-length array of n elements of type T and a sequence of n field attributes
of type T are equivalent.

Serialized representations of the following two data type definitions are equivalent:

1 AnyType[3] array

1 AnyType item_0
2 AnyType item_1
3 AnyType item_2

3.7.4.2 Variable-length array types

A serialized representation of a variable-length array consists of two segments: the implicit length field imme-
diately followed by the array elements.

The implicit length field is of an unsigned integer type. The serialized representation of the implicit length
field is injected in the beginning of the serialized representation of its array. The bit length of the unsigned
integer value is first determined as follows:

b = ⌈ log2(c +1)⌉

where c is the capacity (i.e., the maximum number of elements) of the variable-length array and b is the min-
imum number of bits needed to encode c as an unsigned integer. An additional transformation of b ensures
byte alignment of this implicit field when serialized55:

2⌈ log2(max(8,b))⌉

The number of elements n contained in the variable-length array is encoded in the serialized representation
of the implicit length field as described in section 3.7.3.3. By definition, n ≤ c; therefore, bit sequences where
the implicit length field contains values greater than c do not belong to the set of serialized representations of
the array.

The rest of the serialized representation is constructed as if the variable-length array was a fixed-length array
of n elements56.

55Future updates to the specification may allow this second step to be modified but the default action will always be to byte-align the implicit length
field.

56Observe that the implicit array length field, per its definition, is guaranteed to never break the alignment of the following array elements. There may
be no padding between the implicit array length field and its elements.

36/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

Data type authors must take into account that variable-length arrays with a capacity of ≤ 255 elements will
consume an additional 8 bits of the serialized representation (where a capacity of ≤ 65535 will consume 16
bits and so on). For example:

1 uint8 first
2 uint8[<=6] second # The implicit length field is 8 bits wide
3 @assert _offset_.max / 8 <= 7 # This would fail.

In the above example the author attempted to fit the message into a single Classic CAN frame but did not
account for the implicit length field. The correct version would be:

1 uint8 first
2 uint8[<=5] second # The implicit length field is 8 bits wide
3 @assert _offset_.max / 8 <= 7 # This would pass.

If the array contained three elements, the resulting set of its serialized representations would be equivalent
to that of the following definition:

1 uint8 first
2 uint8 implicit_length_field # Set to 3, because the array contains three elements
3 uint8 item_0
4 uint8 item_1
5 uint8 item_2

3.7.5 Composite types

3.7.5.1 Sealed structure

A serialized representation of an object of a sealed composite type that is not a tagged union is a sequence of
serialized representations of its field attribute values joined into a bit sequence, separated by padding if such
is necessary to satisfy the alignment requirements. The ordering of the serialized representations of the field
attribute values follows the order of field attribute declaration.

Consider the following definition, where the fields are assigned runtime values shown in the comments:

1 # decimal bit sequence comment
2 truncated uint12 first # +48858 1011_1110_1101_1010 overflow, MSB truncated
3 saturated int3 second # -1 111 two's complement
4 saturated int4 third # -5 1011 two's complement
5 saturated int2 fourth # -1 11 two's complement
6 truncated uint4 fifth # +136 1000_1000 overflow, MSB truncated
7 @sealed

It can be seen that the bit layout is rather complicated because the field boundaries do not align with byte
boundaries, which makes it a good case study. The resulting serialized byte sequence is shown below in the
base-2 system:

first︷ ︸︸ ︷
7

1
7

6

1
6

5

0
5

4

1
4

3

1
3

2

0
2

1

1
1

0

0
0︸ ︷︷ ︸

byte 0

,

third︷︸︸︷
0

1
7

second︷ ︸︸ ︷
2

1
6

1

1
5

0

1
4

first︷ ︸︸ ︷
11

1
3

10

1
2

9

1
1

8

0
0︸ ︷︷ ︸

byte 1

,

fifth︷ ︸︸ ︷
2

0
7

1

0
6

0

0
5

fourth︷ ︸︸ ︷
1

1
4

0

1
3

third︷ ︸︸ ︷
3

1
2

2

0
1

1

1
0︸ ︷︷ ︸

byte 2

,

Next object or
zero padding bits︷ ︸︸ ︷

?

?
7

?

?
6

?

?
5

?

?
4

?

?
3

?

?
2

?

?
1

fifth︷︸︸︷
3

1
0︸ ︷︷ ︸

byte 3

Note that some of the complexity of the above illustration stems from the modern convention of represent-
ing numbers with the most significant components on the left moving to the least significant component
of the number of the right. If you were to reverse this convention the bit sequences for each type in the
composite would seem to be continuous as they crossed byte boundaries. Using this reversed representa-
tion, however, is not recommended because the convention is deeply ingrained in most readers, tools, and
technologies.

3.7.5.2 Sealed tagged union

Similar to variable-length arrays, a serialized representation of a sealed tagged union consists of two segments:
the implicit union tag value followed by the selected field attribute value.

3. Data structure description language 37/85

Specification v1.0-beta 2023-05-02

The implicit union tag is an unsigned integer value whose serialized representation is implicitly injected in
the beginning of the serialized representation of its tagged union. The bit length of the implicit union tag is
determined as follows:

b = ⌈ log2 n⌉
where n is the number of field attributes in the union, n ≥ 2 and b is the minimum number of bits needed to
encode n as an unsigned integer. An additional transformation of b ensures byte alignment of this implicit
field when serialized57:

2⌈ log2(max(8,b))⌉

Each of the tagged union field attributes is assigned an index according to the order of their definition; the
order follows that of the DSDL statements (see section 3.2 on statement ordering). The first defined field
attribute is assigned the index 0 (zero), the index of each following field attribute is incremented by one.

The index of the field attribute whose value is currently held by the tagged union is encoded in the serialized
representation of the implicit union tag as described in section 3.7.3.3. By definition, i < n, where i is the index
of the current field attribute; therefore, bit sequences where the implicit union tag field contains values that
are greater than or equal n do not belong to the set of serialized representations of the tagged union.

The serialized representation of the implicit union tag is immediately followed by the serialized representation
of the currently selected field attribute value58.

Consider the following example:

1 @sealed
2 @union # In this case, the implicit union tag is one byte wide
3 uint16 FOO = 42 # A regular constant attribute
4 uint16 a # Field index 0
5 uint8 b # Field index 1
6 uint32 BAR = 42 # Another regular constant attribute
7 float64 c # Field index 2

In order to serialize the field b, the implicit union tag shall be assigned the value 1. The following type will
have an identical layout:

1 @sealed
2 uint8 implicit_union_tag # Set to 1
3 uint8 b # The actual value

Suppose that the value of b is 7. The resulting serialized representation is shown below in the base-2 system:

byte 0

00000001︸ ︷︷ ︸
union

tag

,
byte 1

00000111︸ ︷︷ ︸
field b

57Future updates to the specification may allow this second step to be modified but the default action will always be to byte-align the implicit length
field.

58Observe that the implicit union tag field, per its definition, is guaranteed to never break the alignment of the following field. There may be no padding
between the implicit union tag field and the selected field.

38/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

Let the following data type be defined under the short name Empty and version 1.0:

1 # Empty. The only valid serialized representation is an empty bit sequence.
2 @sealed

Consider the following union:

1 @sealed
2 @union
3 Empty.1.0 none
4 AnyType.1.0 some

The set of serialized representations of the union given above is equivalent to that of the following variable-
length array:

1 @sealed
2 AnyType.1.0[<=1] maybe_some

3.7.5.3 Delimited types

Objects of delimited (non-sealed) composite types that are nested inside other objects59 are serialized into
opaque containers that consist of two parts: the fixed-length delimiter header, immediately followed by the
serialized representation of the object as if it was of a sealed type.

Objects of delimited composite types that are not nested inside other objects (i.e., top-level objects) are seri-
alized as if they were of a sealed type (without the delimiter header). The delimiter header, therefore, logically
belongs to the container object rather than the contained one.

Top-level objects do not require the delimiter header because the change in their length does not necessar-
ily affect the backward compatibility thanks to the implicit truncation rule (section 3.7.1.3) and the implicit
zero extension rule (section 3.7.1.4).

The delimiter header is an implicit field of type uint32 that encodes the length of the serialized representation
it precedes in bytes60. During deserialization, if the length of the serialized representation reported by its
delimiter header does not match the expectation of the deserializer, the implicit truncation (section 3.7.1.3)
and the implicit zero extension (section 3.7.1.4) rules apply.

The length encoded in a delimiter header cannot exceed the number of bytes remaining between the delimiter
header and the end of the serialized representation of the outer object. Otherwise, the serialized representa-
tion of the outer object is invalid and is to be discarded (section 3.7.1.5).

It is allowed for a sealed composite type to nest non-sealed composite types, and vice versa. No special rules
apply in such cases.

59Of any type, not necessarily composite; e.g., arrays.
60Remember that by virtue of the padding requirement (section 3.4.5.4), the length of the serialized representation of a composite type is always an

integer number of bytes.

3. Data structure description language 39/85

Specification v1.0-beta 2023-05-02

The resulting serialized representation of a delimited composite is identical to uint8[<2**32] (sans the
higher alignment requirement). The implicit array length field is like the delimiter header, and the array
content is the serialized representation of the composite as if it was sealed.

The following illustrates why this is necessary for robust extensibility. Suppose that some composite C
contains two fields whose types are A and B . The fields of A are a0, a1; likewise, B contains b0, b1.

Suppose that C ′ is modified such that A′ contains an extra field a2. If A (and A′) were sealed, this would
result in the breakage of compatibility between C and C ′ as illustrated in figure 3.8 because the positions of
the fields of B (which is sealed) would be shifted by the size of a2.

The use of opaque containers allows the implicit truncation and the implicit zero extension rules to apply
at any level of nesting, enabling agents expecting C to truncate a2 away, and enabling agents expecting C ′
to zero-extend a2 if it is not present, as shown in figure 3.9, where HA is the delimiter header of A. Observe
that it is irrelevant whether C (same as C ′) is sealed or not.

C a0 a1 b0 b1

✓ ✓ × × ×
C ′ a0 a1 a2 b0 b1

Figure 3.8: Non-extensibility of sealed types

C HA a0 a1 . . . b0 b1

✓ ✓ ✓ ✓ ✓ ✓
C ′ HA a0 a1 a2 b0 b1

Figure 3.9: Extensibility of delimited types with the help of the delimiter header

This example also illustrates why the extent is necessary. Per the rules set forth in 3.4.5.5, it is required
that the extent (i.e., the buffer memory requirement) of A shall be large enough to accommodate serialized
representations of A′, and, therefore, the extent of C is large enough to accommodate serialized represen-
tations of C ′. If that were not the case, then an implementation expecting C would be unable to correctly
process C ′ because the implicit truncation rule would have cut off b1, which is unexpected.

The design decision to make the delimiter header of a fixed width may not be obvious so it’s worth explain-
ing. There are two alternatives: making it variable-length and making the length a function of the extent
(section 3.4.5.5). The first option does not align with the rest of the specification because DSDL does not
make use of variable-length integers (unlike some other formats, like Google Protobuf, for example), and
because a variable-length length (sic!) prefix would have somewhat complicated the bit length set computa-
tion. The second option would make nested hierarchies (composites that nest other composites) possibly
highly fragile because the change of the extent of a deeply nested type may inadvertently move the delim-
iter header of an outer type into a different length category, which would be disastrous for compatibility
and hard to spot. There is an in-depth discussion of this issue (and other related matters) on the forum.

The fixed-length delimiter header may be considered large, but delimited types tend to also be complex,
which makes the overhead comparatively insignificant, whereas sealed types that tend to be compact and
overhead-sensitive do not contain the delimiter header.

40/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

In order to efficiently serialize an object of a delimited type, the implementation may need to perform a
second pass to reach the delimiter header after the object is serialized, because before that, the value of the
delimiter header cannot be known unless the object is of a fixed-size (i.e., the cardinality of the bit length
set is one).

Consider:

1 uint8[<=4] x

Let x= [4,2], then the nested serialized representation would be constructed as:

1. Memorize the current memory address Morigin.
2. Skip 32 bits.
3. Encode the length: 2 elements.
4. Encode x0 = 4.
5. Encode x1 = 2.
6. Memorize the current memory address Mcurrent.
7. Go back to Morigin.
8. Encode a 32-bit wide value of (Mcurrent −Morigin).
9. Go back to Mcurrent.

However, if the object is known to be of a constant size, the above can be simplified, because there may be
only one possible value of the delimiter header. Automatic code generation tools should take advantage of
this knowledge.

3.8 Compatibility and versioning

3.8.1 Rationale

Data type definitions may evolve over time as they are refined to better address the needs of their applications.
Cyphal defines a set of rules that allow data type designers to modify and advance their data type definitions
while ensuring backward compatibility and functional safety.

3.8.2 Semantic compatibility

A data type A is semantically compatible with a data type B if relevant behavioral properties of the application
are invariant under the substitution of A with B . The property of semantic compatibility is commutative.

The following two definitions are semantically compatible and can be used interchangeably:

1 uint16 FLAG_A = 1
2 uint16 FLAG_B = 256
3 uint16 flags
4 @extent 16

1 uint8 FLAG_A = 1
2 uint8 FLAG_B = 1
3 uint8 flags_a
4 uint8 flags_b
5 @extent 16

It should be noted here that due to different set of field and constant attributes, the source code auto-
generated from the provided definitions may be not drop-in replaceable, requiring changes in the applica-
tion; however, source-code-level application compatibility is orthogonal to data type compatibility.

The following supertype may or may not be semantically compatible with the above depending on the
semantics of the removed field:

1 uint8 FLAG_A = 1
2 uint8 flags_a
3 @extent 16

3. Data structure description language 41/85

Specification v1.0-beta 2023-05-02

Let node A publish messages of the following type:

1 float32 foo
2 float64 bar
3 @extent 128

Let node B subscribe to the same subject using the following data type definition:

1 float32 foo
2 float64 bar
3 int16 baz # Extra field; implicit zero extension rule applies.
4 @extent 128

Let node C subscribe to the same subject using the following data type definition:

1 float32 foo
2 # The field 'bar' is missing; implicit truncation rule applies.
3 @extent 128

Provided that the semantics of the added and omitted fields allow it, the nodes will be able to interoperate
successfully despite using different data type definitions.

3.8.3 Versioning

3.8.3.1 General assumptions

The concept of versioning applies only to composite data types. As such, unless specifically stated otherwise,
every reference to “data type” in this section implies a composite data type.

A data type is uniquely identified by its full name, assuming that every root namespace is uniquely named.
There is one or more versions of every data type.

A data type definition is uniquely identified by its full name and the version number pair. In other words, there
may be multiple definitions of a data type differentiated by their version numbers.

3.8.3.2 Versioning principles

Every data type definition has a pair of version numbers — a major version number and a minor version
number, following the principles of semantic versioning.

For the purposes of the following definitions, a release of a data type definition stands for the disclosure of the
data type definition to its intended users or to the general public, or for the commencement of usage of the
data type definition in a production system.

In order to ensure a deterministic application behavior and ensure a robust migration path as data type defini-
tions evolve, all data type definitions that share the same full name and the same major version number shall
be semantically compatible with each other.

The versioning rules do not extend to scenarios where the name of a data type is changed, because that would
essentially construe the release of a new data type, which relieves its designer from all compatibility require-
ments. When a new data type is first released, the version numbers of its first definition shall be assigned “1.0”
(major 1, minor 0).

In order to ensure predictability and functional safety of applications that leverage Cyphal, it is recommended
that once a data type definition is released, its DSDL source text, name, version numbers, fixed port-ID, extent,
sealing, and other properties cannot undergo any modifications whatsoever, with the following exceptions:

• Whitespace changes of the DSDL source text are allowed, excepting string literals and other semantically
sensitive contexts.

• Comment changes of the DSDL source text are allowed as long as such changes do not affect semantic com-
patibility of the definition.

• A deprecation marker directive (section 3.6) can be added or removed61.

Addition or removal of the fixed port identifier is not permitted after a data type definition of a particular
version is released.

Therefore, substantial changes can be introduced only by releasing new definitions (i.e., new versions) of the

61Removal is useful when a decision to deprecate a data type definition is withdrawn.

42/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

same data type. If it is desired and possible to keep the same major version number for a new definition of
the data type, the minor version number of the new definition shall be one greater than the newest existing
minor version number before the new definition is introduced. Otherwise, the major version number shall be
incremented by one and the minor version shall be set to zero.

An exception to the above rules applies when the major version number is zero. Data type definitions bearing
the major version number of zero are not subjected to any compatibility requirements. Released data type
definitions with the major version number of zero are permitted to change in arbitrary ways without any re-
gard for compatibility. It is recommended, however, to follow the principles of immutability, releasing every
subsequent definition with the minor version number one greater than the newest existing definition.

For any data type, there shall be at most one definition per version. In other words, there shall be exactly one
or zero definitions per combination of data type name and version number pair.

All data types under the same name shall be also of the same kind. In other words, if the first released definition
of a data type is of the message kind, all other versions shall also be of the message kind.

All data types under the same name and major version number should share the same extent and the same
sealing status. It is therefore advised to:

• Avoid marking types sealed, especially complex types, because it is likely to render their evolution impossi-
ble.

• When the first version is released, its extent should be sufficiently large to permit addition of new fields in
the future. Since the value of extent does not affect the network traffic, it is safe to pick a large value without
compromising the temporal properties of the system.

3.8.3.3 Fixed port identifier assignment constraints

The following constraints apply to fixed port-ID assignments:

∃P (xa.b) →∃P (xa.c) | b < c; x ∈ (M ∪S)

∃P (xa.b) → P (xa.b) = P (xa.c) | b < c; x ∈ (M ∪S)

∃P (xa.b)∧∃P (xc.d) → P (xa.b) ̸= P (xc.d) | a ̸= c; x ∈ (M ∪S)

∃P (xa.b)∧∃P (yc.d) → P (xa.b) ̸= P (yc.d) | x ̸= y ; x ∈ T ; y ∈ T ; T = {M ,S}

where ta.b denotes a data type t version a.b (a major, b minor); P (t) denotes the fixed port-ID (whose existence
is optional) of data type t ; M is the set of message types, and S is the set of service types.

3.8.3.4 Data type version selection

DSDL compilers should compile every available data type version separately, allowing the application to
choose from all available major and minor version combinations.

When emitting a transfer, the major version of the data type is chosen at the discretion of the application. The
minor version should be the newest available one under the chosen major version.

When receiving a transfer, the node deduces which major version of the data type to use from its port identifier
(either fixed or non-fixed). The minor version should be the newest available one under the deduced major
version62.

It follows from the above two rules that when a node is responding to a service request, the major data type
version used for the response transfer shall be the same that is used for the request transfer. The minor versions
may differ, which is acceptable due to the major version compatibility requirements.

A simple usage example is provided in this intermission.

Suppose a vendor named “Sirius Cybernetics Corporation” is contracted to design a cryopod management
data bus for a colonial spaceship “Golgafrincham B-Ark”. Having consulted with applicable specifications
and standards, an engineer came up with the following definition of a cryopod status message type (named
sirius_cyber_corp.b_ark.cryopod.Status):

1 # sirius_cyber_corp.b_ark.cryopod.Status.0.1

2 float16 internal_temperature # [kelvin]
3 float16 coolant_temperature # [kelvin]

4 uint8 FLAG_COOLING_SYSTEM_A_ACTIVE = 1

62Such liberal minor version selection policy poses no compatibility risks since all definitions under the same major version are compatible with each
other.

3. Data structure description language 43/85

Specification v1.0-beta 2023-05-02

5 uint8 FLAG_COOLING_SYSTEM_B_ACTIVE = 2
6 # Status flags in the lower bits.
7 uint8 FLAG_PSU_MALFUNCTION = 32
8 uint8 FLAG_OVERHEATING = 64
9 uint8 FLAG_CRYOBOX_BREACH = 128
10 # Error flags in the higher bits.
11 uint8 flags # Storage for the above defined flags (this is not the recommended practice).

12 @extent 1024 * 8 # Pick a large extent to allow evolution. Does not affect network traffic.

The definition is then deployed to the first prototype for initial laboratory testing. Since the definition is
experimental, the major version number is set to zero in order to signify the tentative nature of the defini-
tion. Suppose that upon completion of the first trials it is identified that the units should track their power
consumption in real time for each of the three redundant power supplies independently.

It is easy to see that the amended definition shown below is not semantically compatible with the original
definition; however, it shares the same major version number of zero, because the backward compatibil-
ity rules do not apply to zero-versioned data types to allow for low-overhead experimentation before the
system is deployed and fielded.

1 # sirius_cyber_corp.b_ark.cryopod.Status.0.2

2 truncated float16 internal_temperature # [kelvin]
3 truncated float16 coolant_temperature # [kelvin]

4 saturated float32 power_consumption_0 # [watt] Power consumption by the redundant PSU 0
5 saturated float32 power_consumption_1 # [watt] likewise for PSU 1
6 saturated float32 power_consumption_2 # [watt] likewise for PSU 2
7 # breaking compatibility with Status.0.1 is okay because the major version is 0

8 uint8 FLAG_COOLING_SYSTEM_A_ACTIVE = 1
9 uint8 FLAG_COOLING_SYSTEM_B_ACTIVE = 2
10 # Status flags in the lower bits.
11 uint8 FLAG_PSU_MALFUNCTION = 32
12 uint8 FLAG_OVERHEATING = 64
13 uint8 FLAG_CRYOBOX_BREACH = 128
14 # Error flags in the higher bits.
15 uint8 flags # Storage for the above defined flags (this is not the recommended practice).

16 @extent 512 * 8 # Extent can be changed freely because v0.x does not guarantee compatibility.

The last definition is deemed sufficient and is deployed to the production system under the version number
of 1.0: sirius_cyber_corp.b_ark.cryopod.Status.1.0.

Having collected empirical data from the fielded systems, the Sirius Cybernetics Corporation has identified
a shortcoming in the v1.0 definition, which is corrected in an updated definition. Since the updated defi-
nition, which is shown below, is semantically compatiblea with v1.0, the major version number is kept the
same and the minor version number is incremented by one:

1 # sirius_cyber_corp.b_ark.cryopod.Status.1.1

2 saturated float16 internal_temperature # [kelvin]
3 saturated float16 coolant_temperature # [kelvin]

4 float32[3] power_consumption # [watt] Power consumption by the PSU

5 bool flag_cooling_system_a_active
6 bool flag_cooling_system_b_active
7 # Status flags (this is the recommended practice).

8 void3 # Reserved for other flags

9 bool flag_psu_malfunction
10 bool flag_overheating
11 bool flag_cryobox_breach
12 # Error flags (this is the recommended practice).

13 @extent 512 * 8 # Extent is to be kept unchanged now to avoid breaking compatibility.

Since the definitions v1.0 and v1.1 are semantically compatible, Cyphal nodes using either of them can
successfully interoperate on the same bus.

44/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

Suppose further that at some point a newer version of the cryopod module, equipped with better temper-
ature sensors, is released. The definition is updated accordingly to use float32 for the temperature fields
instead of float16. Seeing as that change breaks the compatibility, the major version number has to be
incremented by one, and the minor version number has to be reset back to zero:

1 # sirius_cyber_corp.b_ark.cryopod.Status.2.0

2 float32 internal_temperature # [kelvin]
3 float32 coolant_temperature # [kelvin]

4 float32[3] power_consumption # [watt] Power consumption by the PSU

5 bool flag_cooling_system_a_active
6 bool flag_cooling_system_b_active
7 void3
8 bool flag_psu_malfunction
9 bool flag_overheating
10 bool flag_cryobox_breach

11 @extent 768 * 8 # Since the major version number is different, extent can be changed.

Imagine that later it was determined that the module should report additional status information relating
to the coolant pump. Thanks to the implicit truncation (section 3.7.1.3), implicit zero extension (section
3.7.1.4), and the delimited serialization (section 3.7.5.3), the new fields can be introduced in a semantically-
compatible way without releasing a new major version of the data type:

1 # sirius_cyber_corp.b_ark.cryopod.Status.2.1

2 float32 internal_temperature # [kelvin]
3 float32 coolant_temperature # [kelvin]

4 float32[3] power_consumption # [watt] Power consumption by the PSU

5 bool flag_cooling_system_a_active
6 bool flag_cooling_system_b_active
7 void3
8 bool flag_psu_malfunction
9 bool flag_overheating
10 bool flag_cryobox_breach

11 float32 rotor_angular_velocity # [radian/second] (usage of RPM would be non-compliant)
12 float32 volumetric_flow_rate # [meter^3/second]
13 # Coolant pump fields (extension over v2.0; implicit truncation/extension rules apply)
14 # If zero, assume that the values are unavailable.

15 @extent 768 * 8

It is also possible to add an optional field at the end wrapped into a variable-length array of up to one ele-
ment, or a tagged union where the first field is empty and the second field is the wrapped value. In this way,
the implicit truncation/extension rules would automatically make such optional field appear/disappear
depending on whether it is supported by the receiving node.

Nodes using v1.0, v1.1, v2.0, and v2.1 definitions can coexist on the same network, and they can interop-
erate successfully as long as they all support at least v1.x or v2.x. The correct version can be determined at
runtime from the port identifier assignment as described in section 2.1.1.2.

In general, nodes that need to maximize their compatibility are likely to employ all existing major versions
of each used data type. If there are more than one minor versions available, the highest minor version within
the major version should be used in order to take advantage of the latest changes in the data type definition.
It is also expected that in certain scenarios some nodes may resort to publishing the same message type
using different major versions concurrently to circumvent compatibility issues (in the example reviewed
here that would be v1.1 and v2.1).

The examples shown above rely on the primitive scalar types for reasons of simplicity. Real applications
should use the type-safe physical unit definitions available in the SI namespace instead. This is covered in
section 5.3.6.1.

aThe topic of data serialization is explored in detail in section 3.7.

3. Data structure description language 45/85

Specification v1.0-beta 2023-05-02

3.9 Conventions and recommendations
This section is dedicated to conventions and recommendations intended to help data type designers maintain
a consistent style across the ecosystem and avoid some common pitfalls. All of the conventions and recom-
mendations provided in this section are optional (not mandatory to follow).

3.9.1 Naming recommendations

The DSDL naming recommendations follow those that are widely accepted in the general software develop-
ment industry.

• Namespaces and field attributes should be named in the snake_case.
• Constant attributes should be named in the SCREAMING_SNAKE_CASE.
• Data types (excluding their namespaces) should be named in the PascalCase.
• Names of message types should form a declarative phrase or a noun. For example, BatteryStatus or
OutgoingPacket.

• Names of service types should form an imperative phrase or a verb. For example, GetInfo or
HandleIncomingPacket.

• Short names, unnecessary abbreviations, and uncommon acronyms should be avoided.

3.9.2 Comments

Every data type definition file should begin with a header comment that provides an exhaustive description
of the data type, its purpose, semantics, usage patterns, any related data exchange patterns, assumptions,
constraints, and all other information that may be necessary or generally useful for the usage of the data type
definition.

Every attribute of the data type definition, and especially every field attribute of it, should have an associated
comment explaining the purpose of the attribute, its semantics, usage patterns, assumptions, constraints, and
any other pertinent information. Exception applies to attributes supplied with sufficiently descriptive and
unambiguous names.

A comment should be placed after the entity it is intended to describe; either on the same line (in which case
it should be separated from the preceding text with at least two spaces) or on the next line (without blank lines
in between). This recommendation does not apply to the file header comment.

3.9.3 Optional value representation

Data structures may include optional field attributes that are not always populated.

The recommended approach for representing optional field attributes is to use variable-length arrays with the
capacity of one element.

Alternatively, such one-element variable-length arrays can be replaced with two-field unions, where the first
field is empty and the second field contains the desired optional value. The described layout is semantically
compatible with the one-element array described above, provided that the field attributes are not swapped.

Floating-point-typed field attributes may be assigned the value of not-a-number (NaN) per IEEE 754 to indi-
cate that the value is not specified; however, this pattern is discouraged because the value would still have to
be transferred over the bus even if not populated, and special case values undermine type safety.

Array-based optional field:

1 MyType[<=1] optional_field

Union-based optional field:

1 @sealed # Sic!
2 @union # The implicit tag is one byte long.
3 uavcan.primitive.Empty none # Represents lack of value, unpopulated field.
4 MyType some # The field of interest; field ordering is important.

The defined above union can be used as follows (suppose it is named MaybeMyType):

1 MaybeMyType optional_field

The shown approaches are semantically compatible.

46/85 3. Data structure description language

2023-05-02 Specification v1.0-beta

The implicit truncation and the implicit zero extension rules allow one to freely add such optional fields at
the end of a definition while retaining semantic compatibility. The implicit truncation rule will render them
invisible to nodes that utilize older data type definitions which do not contain them, whereas nodes that
utilize newer definitions will be able to correctly process objects serialized using older definitions because
the implicit zero extension rule guarantees that the optional fields will appear unpopulated.

For example, let the following be the old message definition:

1 float64 foo
2 float32 bar

The new message definition with the new field is as follows:

1 float64 foo
2 float32 bar
3 MyType[<=1] my_new_field

Suppose that one node is publishing a message using the old definition, and another node is receiving
it using the new definition. The implicit zero extension rule guarantees that the optional field array will
appear empty to the receiving node because the implicit length field will be read as zero. Same is true if the
message was nested inside another one, thanks to the delimiter header.

3.9.4 Bit flag representation

The recommended approach to defining a set of bit flags is to dedicate a bool-typed field attribute for each.
Representations based on an integer sum of powers of two63 are discouraged due to their obscurity and failure
to express the intent clearly.

Recommended approach:

1 void5
2 bool flag_foo
3 bool flag_bar
4 bool flag_baz

Not recommended:

1 uint8 flags # Not recommended
2 uint8 FLAG_BAZ = 1
3 uint8 FLAG_BAR = 2
4 uint8 FLAG_FOO = 4

63Which are popular in programming.

3. Data structure description language 47/85

Specification v1.0-beta 2023-05-02

4 Transport layer
This chapter defines the transport layer of Cyphal. First, the core abstract concepts are introduced. Afterwards,
they are concretized for each supported underlying transport protocol (e.g., CAN bus); such concretizations
are referred to as concrete transports.

When referring to a concrete transport, the notation “Cyphal/X” is used, where X is the name of the underlying
transport protocol. For example, “Cyphal/CAN” refers to CAN bus.

As the specification is extended to add support for new concrete transports, some of the generic aspects may
be pushed to the concrete sections if they are found to map poorly onto the newly supported protocols. Such
changes are guaranteed to preserve full backward compatibility of the existing concrete transports.

48/85 4. Transport layer

2023-05-02 Specification v1.0-beta

4.1 Abstract concepts

The function of the transport layer is to facilitate exchange of serialized representations of DSDL objects64

between Cyphal nodes over the transport network.

4.1.1 Transport model

This section introduces an abstract implementation-agnostic model of the Cyphal transport layer. The core
relations are depicted in figure 4.1. Some of the concepts introduced at this level may not be manifested in the
design of concrete transports; despite that, they are convenient for an abstract discussion.

Taxonomy Message transfers Service transfers Description

Transfer payload Serialized object The serialized instance of a specific DSDL data type.

Tr
an

sf
er

m
et

ad
at

a Transfer priority Defines the urgency (time sensitivity) of the transferred object.
Transfer-ID An integer that uniquely identifies a transfer within its session.

Se
ss

io
n

sp
ec

ifi
er

Route
specifier

Source node-ID Source node-ID is not specified for anonymous transfers.
Destination node-ID Destination node-ID is not specified for broadcast transfers.

Data
specifier

Subject-ID
Service-ID Port-ID specifies how the serialized object should be processed.

Request Response Request/response specifier applies to services only.
Transfer kind Message (subject) or service transfer.

Figure 4.1: Cyphal transport layer model

4.1.1.1 Transfer

A transfer is a singular act of data transmission from one Cyphal node to zero or more other Cyphal nodes over
the transport network. A transfer carries zero or more bytes of transfer payload together with the associated
transfer metadata, which encodes the semantic and temporal properties of the carried payload. The elements
comprising the metadata are reviewed below.

Transfers are distinguished between message transfers and service transfers depending on the kind of the car-
ried DSDL object. Service transfers are further differentiated between service request transfers, which are sent
from the invoking node – client node – to the node that provides the service – server node, and service response
transfers, which are sent from the server node to the client node upon handling the request.

A transfer is manifested on the transport network as one or more transport frames. A transport frame is an
atomic entity carrying the entire transfer payload or a fraction thereof with the associated transfer metadata
– possibly extended with additional elements specific to the concrete transport – over the transport network.
The exact definition of a transport frame and the mapping of the abstract transport model onto it are specific
to concrete transports65.

4.1.1.2 Transfer payload

The transfer payload contains the serialized representation of the carried DSDL object66.

Concrete transports may extend the payload with zero-valued padding bytes at the end to meet the transport-
specific data granularity constraints. Usage of non-zero-valued padding bytes is prohibited for all implemen-
tations67.

Concrete transports may extend the payload with a transfer CRC – an additional metadata field used for vali-
dating its integrity. The details of its implementation are dictated by the concrete transport specification.

The deterministic nature of Cyphal in general and DSDL in particular allows implementations to statically
determine the maximum amount of memory that is required to contain the serialized representation of a
DSDL object of a particular type. Consequently, an implementation that is interested in receiving data objects
of a particular type can statically determine the maximum length of the transfer payload.

Implementations should handle incoming transfers containing a larger amount of payload data than expected.
In the event of such extra payload being received, a compliant implementation should discard the excessive
(unexpected) data at the end of the received payload68. The transfer CRC, if applicable, shall be validated
regardless of the presence of the extra payload in the transfer. See figure 4.2.

A transport-layer maximum transmission unit (MTU) is the maximum amount of data with the associated
metadata that can be transmitted per transport frame for a particular concrete transport. All nodes connected

64DSDL and data serialization are reviewed in chapter 3.
65For example, Cyphal/CAN (introduced later) defines a particular CAN frame format. Frames that follow the format are Cyphal transport frames of

Cyphal/CAN.
66Chapter 3.
67Non-zero padding bytes are disallowed because they would interfere with the implicit zero extension rule (section 3.7).
68Such occurrence is not indicative of a problem so it should not be reported as such.

4. Transport layer 49/85

Specification v1.0-beta 2023-05-02

to a given transport network should share the same transport-layer MTU setting69.

In order to facilitate the implicit zero extension rule introduced in section 3.7, implementations shall not dis-
card a transfer even if it is determined that it contains less payload data than a predicted minimum.

A transfer whose payload exceeds the capacity of the transport frame is manifested on the transport network
as a set of multiple transport frames; such transfers are referred to as multi-frame transfers. Implementa-
tions shall minimize the number of transport frames constituting a multi-frame transfer by ensuring that their
payload capacity is not underutilized. Implementations should minimize the delay between transmission of
transport frames that belong to the same transfer. Transport frames of a multi-frame transfer shall be trans-
mitted following the order of the transfer payload fragments they contain.

A transfer whose payload does not exceed the capacity of the transport frame shall be manifested on the trans-
port network as a single transport frame70; such transfers are referred to as single-frame transfers.

first byte

Transfer CRC is validated
for the entire transfer payload

before the truncation︷ ︸︸ ︷
■■■■■■■■■■■■︸ ︷︷ ︸

Expected, accepted
payload

⊠⊠⊠⊠⊠⊠⊠⊠︸ ︷︷ ︸
Excessive, discarded

payload

last byte

Figure 4.2: Transfer payload truncation

The requirement to discard the excessive payload data at the end of the transfer is motivated by the neces-
sity to allow extensibility of data type definitions, as described in chapter 3. Additionally, excessive payload
data may contain zero padding bytes if required by the concrete transport.

Let node A publish an object of the following type over the subject x:

1 float32 parameter
2 float32 variance

Let node B subscribe to the subject x expecting an object of the following type:

1 float32 parameter

The payload truncation requirement guarantees that the two nodes will be able to interoperate despite
relying on incompatible data type definitions. Under this example, the duty of ensuring the semantic com-
patibility lies on the system integrator.

The requirement that all involved nodes use the same transport-layer MTU is crucial here. Suppose that
the MTU expected by the node B is four bytes and the MTU of the node A is eight bytes. Under this setup,
messages emitted by A would be contained in single-frame transfers that are too large for B to process,
resulting in the nodes being unable to communicate. An attempt to optimize the memory utilization of B by
relying on the fact that the maximum length of a serialized representation of the message is four bytes would
be a mistake, because this assumption ignores the existence of subtyping and introduces leaky abstractions
throughout the protocol stack.

The implicit zero extension rule makes deserialization routines sensitive to the trailing unused data. For
example, suppose that a publisher emits an object of type:

1 uint16 foo

Suppose that the concrete transport at hand requires padding to 4 bytes, which is done with 5516 (inten-
tionally non-compliant for the sake of this example). Suppose that the published value is 123416, so the
resulting serialized representation is [3416,1216,5516,5516]. Suppose that the receiving side relies on the
implicit zero extension rule with the following definition:

1 uint16 foo
2 uint16 bar

69Failure to follow this rule may render nodes unable to communicate if a transmitting node emits larger transport frames than the receiving node is
able to accept.

70In other words, multi-frame transfers are prohibited for payloads that can be transferred using a single-frame transfer.

50/85 4. Transport layer

2023-05-02 Specification v1.0-beta

The expectation is that foo will be deserialized as 123416, and bar will be zero-extended as 000016. If arbi-
trary padding values were allowed, the value of bar would become undefined; in this particular example it
would be 555516.

Therefore, the implicit zero-extension rule requires that padding is done with zero bytes only.

4.1.1.3 Transfer priority

Transfers are prioritized by means of the transfer priority parameter, which allows at least 8 (eight) distinct
priority levels. Concrete transports may support more than eight priority levels.

Transmission of transport frames shall be ordered so that frames of higher priority are transmitted first. It
follows that higher-priority transfers may preempt transmission of lower-priority transfers.

Transmission of transport frames that share the same priority level should follow the order of their appearance
in the transmission queue.

Priority of message transfers and service request transfers can be chosen freely according to the requirements
of the application. Priority of a service response transfer should match the priority of the corresponding ser-
vice request transfer.

Transfer prioritization is paramount for distributed real-time applications.

The priority level mnemonics and their usage recommendations are specified in the following list. The
mapping between the mnemonics and actual numeric identifiers is transport-dependent.

Exceptional – The bus designer can ignore these messages when calculating bus load since they should
only be sent when a total system failure has occurred. For example, a self-destruct message on a rocket
would use this priority. Another analogy is an NMI on a microcontroller.

Immediate – Immediate is a “high priority message” but with additional latency constraints. Since ex-
ceptional messages are not considered when designing a bus, the latency of immediate messages can be
determined by considering only immediate messages.

Fast – Fast and immediate are both “high priority messages” but with additional latency constraints. Since
exceptional messages are not considered when designing a bus, the latency of fast messages can be deter-
mined by considering only immediate and fast messages.

High – High priority messages are more important than nominal messages but have looser latency re-
quirements than fast messages. This priority is used so that, in the presence of rogue nominal messages,
important commands can be received. For example, one might envision a failure mode where a tempera-
ture sensor starts to load a vehicle bus with nominal messages. The vehicle remains operational (for a time)
because the controller is exchanging fast and immediate messages with sensors and actuators. A system
safety monitor is able to detect the distressed bus and command the vehicle to a safe state by sending high
priority messages to the controller.

Nominal – This is what all messages should use by default. Specifically the heartbeat messages should use
this priority.

Low – Low priority messages are expected to be sent on a bus under all conditions but cannot prevent the
delivery of nominal messages. They are allowed to be delayed but latency should be constrained by the bus
designer.

Slow – Slow messages are low priority messages that have no time sensitivity at all. The bus designer need
only ensure that, for all possible system states, these messages will eventually be sent.

Optional – These messages might never be sent (theoretically) for some possible system states. The system
shall tolerate never exchanging optional messages in every possible state. The bus designer can ignore these
messages when calculating bus load. This should be the priority used for diagnostic or debug messages that
are not required on an operational system.

4.1.1.4 Route specifier

The route specifier defines the node-ID of the origin and the node-ID of the destination of a transfer.

A broadcast transfer is a transfer that does not have a specific destination; the decision of whether to process

4. Transport layer 51/85

Specification v1.0-beta 2023-05-02

a broadcast transfer is delegated to receiving nodes71. A unicast transfer is a transfer that is addressed to
a specific single node72 whose node-ID is not the same as that of the origin; which node should process a
unicast transfer is decided by the sending node.

A node that does not have a node-ID is referred to as anonymous node. Such nodes are unable to emit transfers
other than anonymous transfers. An anonymous transfer is a transfer that does not have a specific source.
Anonymous transfers have the following limitations73:

• An anonymous transfer can be only a message transfer.
• An anonymous transfer can be only a single-frame transfer.
• Concrete transports may introduce arbitrary additional restrictions on anonymous transfers or omit their

support completely.

A message transfer can be only a broadcast transfer; unicast message transfers are not defined74. A service
transfer can be only a unicast transfer; broadcast service transfers are prohibited.

Transfer kind Unicast Broadcast

Message transfer Not defined Valid

Service transfer Valid Prohibited

4.1.1.5 Data specifier

The data specifier encodes the semantic properties of the DSDL object carried by a transfer and its kind.

The data specifier of a message transfer is the subject-ID of the contained DSDL message object.

The data specifier of a service transfer is a combination of the service-ID of the contained DSDL service object
and an additional binary parameter that segregates service requests from service responses.

4.1.1.6 Session specifier

The session specifier is a combination of the data specifier and the route specifier. Its function is to uniquely
identify a category of transfers by the semantics of exchanged data and the agents participating in its exchange
while abstracting over individual transfers and their concrete data75.

The term session used here denotes the node’s local representation of a logical communication channel that it
is a member of. Following the stateless and low-context nature of Cyphal, this concept excludes any notion of
explicit state sharing between nodes.

One of the key design principles is that Cyphal is a stateless low-context protocol where collaborating agents
do not make strong assumptions about the state of each other. Statelessness and context invariance are
important because they facilitate behavioral simplicity and robustness; these properties are desirable for
deterministic real-time distributed applications which Cyphal is designed for.

Design and verification of a system that relies on multiple agents sharing the same model of a distributed
process necessitates careful analysis of special cases such as unintended state divergence, latency and tran-
sient states, sudden loss of state (e.g., due to disconnection or a software reset), etc. Lack of adequate con-
sideration may render the resulting solution fragile and prone to unspecified behaviors.

Some of the practical consequences of the low-context design include the ability of a node to immediately
commence operation on the network without any prior initialization steps. Likewise, addition and removal
of a subscriber to a given subject is transparent to the publisher.

The above considerations only hold for the communication protocol itself. Applications whose functional-
ity is built on top of the protocol may engage in state sharing if such is found to be beneficiala.

aRelated discussion in https://forum.opencyphal.org/t/idempotent-interfaces-and-deterministic-data-loss-mitigation/643.

Some implementations of the Cyphal communication stack may contain states indexed by the session spec-
ifier. For example, in order to emit a transfer, the stack may need to query the appropriate transfer-ID

71This does not imply that applications are required to be involved with every broadcast transfer. The opt-in logic is facilitated by the low-level routing
and/or filtering features implemented by the network stack and/or the underlying hardware.

72Whose existence and availability is optional.
73Anonymous transfers are intended primarily for the facilitation of the optional plug-and-play feature (section 5.3) which enables fully automatic

configuration of Cyphal nodes upon their connection to the network. Some transports may provide native support for auto-configuration, rendering
anonymous transfers unnecessary.

74Unicast message transfers may be defined in a future revision of this Specification.
75Due to the fact that anonymous transfers lack information about their origin, all anonymous transfers that share the same data specifier and desti-

nation are grouped under the same session specifier.

52/85 4. Transport layer

https://forum.opencyphal.org/t/idempotent-interfaces-and-deterministic-data-loss-mitigation/643

2023-05-02 Specification v1.0-beta

counter (section 4.1.1.7) by the session specifier of the transfer. Likewise, in order to process a received
frame, the stack may need to locate the appropriate states keyed by the session specifier.

Given the intended application domains of Cyphal, the temporal characteristics of such look-up activities
should be well-characterized and predictable. Due to the fact that all underlying primitive parameters that
form the session specifier (such as node-ID, port-ID, etc.) have statically defined bounds, it is trivial to con-
struct a look-up procedure satisfying any computational complexity envelope, from constant-complexity
O(1) at the expense of heightened memory utilization, up to low-memory-footprint O(n) if temporal pre-
dictability is less relevant.

For example, given a subject-ID, the maximum number of distinct sessions that can be observed by the
local node will never exceed the number of nodes in the network minus onea. If the number of nodes in the
network cannot be reliably known in advance (which is the case in most applications), it can be considered
to equal the maximum number of nodes permitted by the concrete transportb. The total number of distinct
sessions that can be observed by a node is a product of the number of distinct data specifiers utilized by the
node and the number of other nodes in the network.

It is recognized that highly rigid safety-critical applications may benefit from avoiding any dynamic look-
up by sacrificing generality, by employing automatic code generation, or through other methods, in the
interest of greater determinism and robustness. In such cases, the above considerations may be irrelevant.

aA node cannot receive transfers from itself, hence minus one.
bE.g., 128 nodes for the CAN bus transport.

4.1.1.7 Transfer-ID

The transfer-ID is an unsigned integer value that is provided for every transfer. Barring the case of transfer-ID
overflow reviewed below, each transfer under a given session specifier has a unique transfer-ID value. This
parameter is crucial for many aspects of Cyphal communication76; specifically:

Message sequence monitoring – transfer-ID allows receiving nodes to detect discontinuities in incoming
message streams from remote nodes.

Service response matching – when a server responds to a request, it uses the same transfer-ID for the re-
sponse transfer as in the request transfer, allowing the client to emit concurrent requests to the same server
while being able to match each response with the corresponding local request state.

Transfer deduplication – the transfer-ID allows receiving nodes to detect and eliminate duplicated transfers.
Transfer duplication may occur either spuriously as an artifact of a concrete transport77 or deliberately as a
method of deterministic data loss mitigation for unreliable links (section 4.1.3.3).

Multi-frame transfer reassembly – a transfer that is split over multiple transport frames is reassembled back
upon reception with the help of transfer-ID: all transport frames that comprise a transfer share the same
transfer-ID value.

Automatic management of redundant interfaces – in redundant transport networks, transfer-ID enables au-
tomatic switchover to a back-up interface shall the primary interface fail. The switchover logic can be com-
pletely transparent to the application, joining several independent redundant transport networks into a highly
reliable single virtual communication channel.

For service response transfers the transfer-ID value shall be directly copied from the corresponding service
request transfer78.

A node that is interested in emitting message transfers or service request transfers under a particular session
specifier, whether periodically or on an ad-hoc basis, shall allocate a transfer-ID counter state associated with
said session specifier exclusively. The transfer-ID value of every emitted transfer is determined by sampling the
corresponding counter keyed by the session specifier of the transfer; afterwards, the counter is incremented
by one.

76One might be tempted to use the transfer-ID value for temporal synchronization of parallel message streams originating from the same node, where
messages bearing the same transfer-ID value are supposed to correspond to the same moment in time. Such use is strongly discouraged because it
is incompatible with transports that rely on overflowing transfer-ID values and because it introduces a leaky abstraction into the system. If temporal
synchronization is necessary, explicit time stamping should be used instead.

77For example, in CAN bus, a frame that appears valid to the receiver may under certain (rare) conditions appear invalid to the transmitter, triggering
the latter to retransmit the frame, in which case it will be duplicated on the side of the receiver. Sequence counting mechanisms such as transfer-ID
allow implementations to circumvent this problem.

78This behavior facilitates request-response matching on the client node.

4. Transport layer 53/85

Specification v1.0-beta 2023-05-02

The initial value of a transfer-ID counter shall be zero. Once a new transfer-ID counter is created, it shall
be kept at least as long as the node remains connected to the transport network; destruction of transfer-ID
counter states is prohibited79.

When the transfer-ID counter reaches the maximum value defined for the concrete transport, the next incre-
ment resets its value to zero. Transports where such events are expected to take place during operation are said
to have cyclic transfer-ID; the number of unique transfer-ID values is referred to as transfer-ID modulo. Trans-
ports where the maximum value of the transfer-ID is high enough to be unreachable under all conceivable
practical circumstances are said to have monotonic transfer-ID.

Transfer-ID difference for a pair of transfer-ID values a and b is defined for monotonic transfer-ID as their
arithmetic difference a − b. For a cyclic transfer-ID, the difference is defined as the number of increment
operations that need to be applied to b so that a = b′.

A C++ implementation of the cyclic transfer-ID difference operator is provided here.

1 #include <cstdint>
2 /**
3 * Cyphal cyclic transfer-ID difference computation algorithm implemented in C++.
4 * License: CC0, no copyright reserved.
5 * @param a Left-hand operand (minuend).
6 * @param b Right-hand operand (subtrahend).
7 * @param modulo The number of distinct transfer-ID values, or the maximum value plus one.
8 * @returns The number of increment operations separating b from a.
9 */
10 [[nodiscard]]
11 constexpr std::uint8_t computeCyclicTransferIDDifference(const std::uint8_t a,
12 const std::uint8_t b,
13 const std::uint8_t modulo)
14 {
15 std::int16_t d = static_cast<std::int16_t>(a) - static_cast<std::int16_t>(b);
16 if (d < 0)
17 {
18 d += static_cast<std::int16_t>(modulo);
19 }
20 return static_cast<std::uint8_t>(d);
21 }

4.1.2 Redundant transports

Cyphal supports transport redundancy for the benefit of a certain class of safety-critical applications. A re-
dundant transport interconnects nodes belonging to the same network (all or their subset) via more than one
transport network. A set of such transport networks that together form a redundant transport is referred to as
a redundant transport group.

Each member of a redundant transport group shall be capable of independent operation such that the level of
service of the resulting redundant transport remains constant as long as at least one member of the redundant
group remains functional80.

Networks containing nodes with different reliability requirements may benefit from nonuniform redundant
transport configurations, where non-critical nodes are interconnected using a lower number of transports
than critical nodes.

Designers should recognize that nonuniform redundancy may complicate the analysis of the network.

4.1.3 Transfer transmission

4.1.3.1 Transmission timeout

The transport frames of a time-sensitive transfer whose payload has lost relevance due to its transmission be-
ing delayed should be removed from the transmission queue81. The time interval between the point where the
transfer is constructed and the point where it is considered to have lost relevance is referred to as transmission
timeout.

The transmission timeout should be documented for each outgoing transfer port.

79The number of unique session specifiers is bounded and can be determined statically per application, so this requirement does not introduce non-
deterministic features into the application even if it leverages aperiodic/ad-hoc transfers.

80Redundant transports are designed for increased fault tolerance, not for load sharing.
81Trailing transport frames of partially transmitted multi-frame transfers should be removed as well. The objective of this recommendation is to ensure

that obsolete data is not transmitted as it may have adverse effects on the system.

54/85 4. Transport layer

2023-05-02 Specification v1.0-beta

4.1.3.2 Pending service requests

In the case of cyclic transfer-ID transports (section 4.1.1.7), implementations should ensure that upon a
transfer-ID overflow a service client session does not reuse the same transfer-ID value for more than one
pending request simultaneously.

4.1.3.3 Deterministic data loss mitigation

Performance of transport networks where the probability of a successful transfer delivery does not meet design
requirements can be adjusted by repeating relevant outgoing transfers under the same transfer-ID value82.
This tactic is referred to as deterministic data loss mitigation83.

4.1.3.4 Transmission over redundant transports

Nodes equipped with redundant transports shall submit every outgoing transfer to the transmission queues of
all available redundant transports simultaneously84. It is recognized that perfectly simultaneous transmission
may not be possible due to different utilization rates of the redundant transports, different phasing of their
traffic, and/or application constraints, in which case implementations should strive to minimize the temporal
skew as long as that does not increase the latency.

An exception to the above rule applies if the payload of the transfer is a function of the identity of the transport
instance that carries the transfer85.

4.1.4 Transfer reception

4.1.4.1 Definitions

Transfer reassembly is the real-time process of reconstruction of the transfer payload and its metadata from a
sequence of relevant transport frames.

Transfer-ID timeout is a time interval whose semantics are explained below. Implementations may define this
value statically according to the application requirements. Implementations may automatically adjust this
value per session at runtime as a function of the observed transfer reception interval. Transfer-ID timeout
values greater than 2 (two) seconds are not recommended. Implementations should document the value of
transfer-ID timeout or the rules of its computation.

Transport frame reception timestamp specifies the moment of time when the frame is received by a node.
Transfer reception timestamp is the reception timestamp of the earliest received frame of the transfer.

An ordered transfer sequence is a sequence of transfers whose temporal order is covariant with their transfer-ID
values.

4.1.4.2 Behaviors

For a given session specifier, every unique transfer (differentiated from other transfers in the same session by
its transfer-ID) shall be received at most once86.

For a given session specifier, a successfully reassembled transfer that is temporally separated from any other
successfully reassembled transfer under the same session specifier by more than the transfer-ID timeout is
considered unique regardless of its transfer-ID value.

If the optimal transfer-ID timeout value for a given session cannot be known in advance, it can be computed
at runtime on a per-session basis87. The parameters of such computation are to be chosen according to the
requirements of the application, but they should always be documented.

82Removal of intentionally duplicated transfers on the receiving side is natively guaranteed by this transport layer specification; no special activities
are needed there to accommodate this feature.

83Discussed in https://forum.opencyphal.org/t/idempotent-interfaces-and-deterministic-data-loss-mitigation/643.
84The objective of this requirement is to guarantee that a redundant transport remains fully functional as long as at least one transport in the redundant

group is functional.
85An example of such a special case is the time synchronization algorithm documented in section 5.3.
86In other words, intentional and unintentional duplicates shall be removed. Intentional duplications are introduced by the deterministic data loss

mitigation measure or redundant transports. Unintentional duplications may be introduced by various artifacts of the transport network.
87E.g., as a multiple of the average transfer reception interval.

4. Transport layer 55/85

https://forum.opencyphal.org/t/idempotent-interfaces-and-deterministic-data-loss-mitigation/643

Specification v1.0-beta 2023-05-02

Low transfer-ID timeout values increase the risk of undetected transfer duplication when such transfers are
significantly delayed due to network congestion, which is possible with very low-priority transfers when
the network load is high.

High transfer-ID timeout values increase the risk of an undetected transfer loss when a remote node suffers
a loss of state (e.g., due to a software reset).

The ability to auto-detect the optimal transfer-ID timeout value per session at runtime ensures that the
application can find the optimal balance even if the temporal properties of the network are not known in
advance. As a practical example, an implementation could compute the exponential moving average of the
transfer reception interval x for a given session and define the transfer-ID timeout as 2x.

It is important to note that the automatic adjustment of the transfer-ID timeout should only be done on
a per-session basis rather than for the entire port, because there may be multiple remote nodes emitting
transfers on the same port at different rates. For example, if one node emits transfers at a rate r transfers
per second, and another node emits transfers on the same port at a much higher rate 100r , the resulting
auto-detected transfer-ID timeout might be too low, creating the risk of accepting duplicates.

Implementations are recommended, but not required, to support reassembly of multi-frame transfers where
the temporal ordering of the transport frames is distorted.

For a certain category of transport implementations, reassembly of multi-frame transfers from an un-
ordered transport frame sequence increases the probability of successful delivery if the probability of a
transport frame loss is non-zero and transport frames are intentionally duplicated.

Such intentional duplication occurs in redundant transports and if deterministic data loss mitigation is
used. The reason is that the loss of a single transport frame is observed by the receiving node as its reloca-
tion from its original position in the sequence to the position of its duplicate.

Reassembled transfers shall form an ordered transfer sequence.

For a cyclic transfer-ID redundant transport whose redundant group contains n transports, if up to n−1 trans-
ports in the redundant group lose the ability to exchange transport frames between nodes, the transfer re-
assembly process shall be able to restore nominal functionality in an amount of time that does not exceed the
transfer-ID timeout.

Cyclic transfer-ID transport implementations are recommended to insert a delay before performing an au-
tomatic fail-over. As indicated in the normative description, the delay may be arbitrary as long as it does
not exceed the transfer-ID timeout value.

The fail-over delay allows implementations to uphold the transfer uniqueness requirement when the phas-
ing of traffic on different transports within the redundant group differs by more than the transfer-ID over-
flow period.

For a monotonic transfer-ID redundant transport whose redundant group contains n transports, if up to n−1
transports in the redundant group lose the ability to exchange transport frames between nodes, the perfor-
mance of the transfer reassembly process shall not be affected.

Monotonic transfer-ID transport implementations are recommended to always accept the first transfer to
arrive regardless of which transport within the redundant group it was delivered over.

This behavior ensures that the total latency of a redundant transport equals the latency of the best-
performing transport within the redundant group (i.e., the total latency equals the latency of the fastest
transport). Since a monotonic transfer-ID does not overflow, there is no risk of failing to uphold the unique-
ness guarantee unlike with the case of cyclic transfer-ID.

If anonymous transfers are supported by the concrete transport, reassembly of anonymous transfers shall be
implemented by unconditional acceptance of their transport frames. Requirements pertaining to ordering
and uniqueness do not apply.

56/85 4. Transport layer

2023-05-02 Specification v1.0-beta

Regardless of the concrete transport in use and its capabilities, Cyphal provides the following guarantees
(excluding anonymous transfers):

• Removal of duplicates. If a transfer is delivered, it is guaranteed that it is delivered once, even if inten-
tionally duplicated by the origin.

• Correct ordering. Received transfers are ordered according to their transfer-ID values.
• Deterministic automatic fail-over in the event of a failure of a transport (or several) in a redundant group.

For anonymous transfers, ordering and uniqueness are impossible to enforce because anonymous transfers
that originate from different nodes may share the same session specifier.

Reassembly of transfers from redundant interfaces may be implemented either on the per-transport-frame
level or on the per-transfer level. The former amounts to receiving individual transport frames from re-
dundant interfaces which are then used for reassembly; it can be seen that this method requires that all
transports in the redundant group use identical application-level MTU (i.e., same number of transfer pay-
load bytes per frame). The latter can be implemented by treating each transport in the redundant group
separately, so that each runs an independent transfer reassembly process, whose outputs are then dedupli-
cated on the per-transfer level; this method may be more computationally complex but it provides greater
flexibility. A detailed discussion is omitted because it is outside of the scope of this specification.

4. Transport layer 57/85

Specification v1.0-beta 2023-05-02

4.2 Cyphal/CAN
This section specifies a concrete transport based on ISO 11898 CAN bus. Throughout this section, “CAN”
implies both Classic CAN 2.0 and CAN FD, unless specifically noted otherwise. CAN FD should be considered
the primary transport protocol.

Parameter Value References

Maximum node-ID value 127 (7 bits wide). 2

Transfer-ID mode Cyclic, modulo 32. 4.1.1.7

Number of transfer priority levels 8 (no additional levels). 4.1.1.3

Largest single-frame transfer payload Classic CAN – 7 bytes, CAN FD – up to 63 bytes. 4.1.1.2

Anonymous transfers Supported with non-deterministic collision resolu-
tion policy.

4.1.1.4

Table 4.1: Cyphal/CAN transport capabilities

4.2.1 CAN ID field

Cyphal/CAN transport frames are CAN 2.0B frames. The 29-bit CAN ID encodes the session specifier88 of the
transfer it belongs to along with its priority. The CAN data field of every frame contains the transfer payload
(or, in the case of multi-frame transfers, a fraction thereof), the transfer-ID, and other metadata.

Cyphal/CAN can share the same bus with other high-level CAN bus protocols provided that they do not make
use of CAN 2.0B frames89. However, future revisions of Cyphal/CAN may utilize CAN 2.0A as well, so backward
compatibility with other high-level CAN bus protocols is not guaranteed.

Cyphal/CAN utilizes two different CAN ID bit layouts for message transfers and service transfers. The bit
layouts are summarized on figure 4.3. Tables 4.2.1 and 4.2.1 summarize the purpose of each field and their
permitted values for message transfers and service transfers, respectively.

Message
Service, not message Anonymous

Subject-ID R Source node-ID
Priority R R R

Values [0,7] 0 B 0 1 1 [0,8191] 0 [0,127]

CAN ID bit 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAN ID byte 3 2 1 0

Service
Service, not message Request, not response

Destination node-ID Source node-ID
Priority R Service-ID

Values [0,7] 1 B 0 [0,511] [0,127] [0,127]

CAN ID bit 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAN ID byte 3 2 1 0

Figure 4.3: CAN ID bit layout

Field Width Valid values Description

Transfer priority 3 [0,7] (any) Section 4.1.1.3.

Service, not message 1 0 Always zero for message transfers.

Anonymous 1 {0,1} (any) Zero for regular message transfers, one for anonymous transfers.

Reserved bit 23 1 0 Discard frame if this field has a different value.

Reserved bit 22 1 1, any Transmit 1; ignore (do not check) when receiving.

Reserved bit 21 1 1, any Transmit 1; ignore (do not check) when receiving.

Subject-ID 13 [0,8191] (any) Subject-ID of the current message transfer.

Reserved bit 7 1 0 Discard frame if this field has a different value.

Source node-ID 7 [0,127] (any) Node-ID of the origin. For anonymous transfers, this field contains a
pseudo-ID instead, as described in section 4.2.1.2.

Table 4.2: CAN ID bit fields for message transfers

88Section 4.1.1.6.
89For example, CANOpen or CANaerospace.

58/85 4. Transport layer

2023-05-02 Specification v1.0-beta

Field Width Valid values Description

Transfer priority 3 [0,7] (any) Section 4.1.1.3.

Service, not message 1 1 Always one for service transfers.

Request, not response 1 {0,1} (any) One for service request, zero for service response.

Reserved bit 23 1 0 Discard frame if this field has a different value.

Service-ID 9 [0,511] (any) Service-ID of the encoded service object (request or response).

Destination node-ID 7 [0,127] (any) Node-ID of the destination: server if request, client if response.

Source node-ID 7 [0,127] (any) Node-ID of the origin: client if request, server if response.

Table 4.3: CAN ID bit fields for service transfers

4.2.1.1 Transfer priority

Valid values for transfer priority range from 0 to 7, inclusively, where 0 corresponds to the highest priority, and
7 corresponds to the lowest priority (according to the CAN bus arbitration policy).

In multi-frame transfers, the value of the priority field shall be identical for all frames of the transfer.

When multiple transfers of different types with the same priority contest for bus access, the following prece-
dence is ensured (from higher priority to lower priority):

1. Message transfers (the primary method of data exchange in Cyphal networks).
2. Anonymous (message) transfers.
3. Service response transfers (preempt requests).
4. Service request transfers (responses take precedence over requests to make service calls more atomic

and reduce the number of pending states in the system).

Mnemonics for transfer priority levels are provided in section 4.1.1.3, and their mapping to the Cyphal/CAN
priority field is as follows:

Priority field value Mnemonic name

0 Exceptional

1 Immediate

2 Fast

3 High

4 Nominal

5 Low

6 Slow

7 Optional

Since the value of transfer priority is required to be the same for all frames in a transfer, it follows that
the value of the CAN ID is guaranteed to be the same for all CAN frames of the transfer. Given a constant
transfer priority value, all CAN frames under a given session specifier will be equal.

4.2.1.2 Source node-ID field in anonymous transfers

The source node-ID field of anonymous transfers shall be initialized with a pseudorandom pseudo-ID value.
The source of the pseudorandom data used for the pseudo-ID shall aim to produce different values for differ-
ent CAN frame data field values.

A node transmitting an anonymous transfer shall abort its transmission and discard it upon detection of a
bus error. Some method of media access control should be used at the application level for further conflict
resolution.

CAN bus does not allow different nodes to transmit CAN frames with different data under the same CAN ID
value. Owing to the fact that the CAN ID includes the node-ID of the transmitting node, this restriction does
not affect non-anonymous transfers. However, anonymous transfers would violate this restriction because
their source node-ID is not defined, hence the additional measures described in this section.

A possible way of initializing the source node pseudo-ID value is to compute the arithmetic sum of all bytes
of the transfer payload, taking the least significant bits of the result as the pseudo-ID (usage of stronger
hashes is encouraged). Implementations that adopt this approach will be using the same pseudo-ID value
for identical transfer payloads, which is acceptable since this will not trigger an error on the bus.

Because the set of possible pseudo-ID values is small, a collision where multiple nodes emit CAN frames

4. Transport layer 59/85

Specification v1.0-beta 2023-05-02

with different data but the same CAN ID is likely to happen despite the randomization measures described
here. Therefore, if anonymous transfers are used, implementations shall account for possible errors on the
CAN bus triggered by CAN ID collisions.

Automatic retransmission should be disabled for anonymous transfers (like in TTCAN). This measure al-
lows the protocol to prevent temporary disruptions that may occur if the automatic retransmission on bus
error is not suppressed.

Additional bus access control logic is needed at the application level because the possibility of identifier
collisions in anonymous frames undermines the access control logic implemented in CAN bus controller
hardware.

The described principles make anonymous transfers highly non-deterministic and inefficient. This is con-
sidered acceptable because the scope of anonymous transfers is limited to a very narrow set of use cases
which tolerate their downsides. The Cyphal specification employs anonymous transfers only for the plug-
and-play feature defined in section 5.3. Deterministic applications are advised to avoid reliance on anony-
mous transfers completely.

None of the above considerations affect nodes that do not transmit anonymous transfers.

4.2.2 CAN data field

4.2.2.1 Layout

Cyphal/CAN utilizes a fixed layout of the CAN data field: the last byte of the CAN data field contains the meta-
data, it is referred to as the tail byte. The preceding bytes of the data field contain the transfer payload, which
may be extended with padding bytes and transfer CRC.

A CAN frame whose data field contains less than one byte is not a valid Cyphal/CAN frame.

The bit layout of the tail byte is shown in table 4.4.

Table 4.4: Tail byte structure

Bit Field Single-frame transfers Multi-frame transfers

7 Start of transfer Always 1 First frame: 1, otherwise 0.

6 End of transfer Always 1 Last frame: 1, otherwise 0.

5 Toggle bit Always 1 First frame: 1, then alternates; section 4.2.2.2.

4

3 Modulo 32 (range [0, 31])

2 Transfer-ID section 4.1.1.7

1

0 (least significant bit)

4.2.2.2 Toggle bit

Transport frames that form a multi-frame transfer are equipped with a toggle bit which alternates its state
every frame within the transfer for frame deduplication purposes90.

4.2.2.3 Transfer payload decomposition

The transport-layer MTU of Classic CAN-based implementations shall be 8 bytes (the maximum). The
transport-layer MTU of CAN FD-based implementations should be 64 bytes (the maximum).

CAN FD does not guarantee byte-level granularity of the CAN data field length. If the desired length of the CAN
data field cannot be represented due to the granularity constraints, zero padding bytes are used.

In single-frame transfers, padding bytes are inserted between the end of the payload and the tail byte.

In multi-frame transfers, the transfer payload is appended with trailing zero padding bytes followed by the
transfer CRC (section 4.2.2.4). All transport frames of a multi-frame transfer except the last one shall fully
utilize the available data field capacity; hence, padding is unnecessary there. The number of padding bytes is
computed so that the length granularity constraints for the last frame of the transfer are satisfied.

90A frame that appears valid to the receiving node may under certain conditions appear invalid to the transmitter, triggering the latter to retransmit
the frame, in which case it will be duplicated on the side of the receiver.

60/85 4. Transport layer

2023-05-02 Specification v1.0-beta

Usage of padding bytes implies that when a serialized message is being deserialized by a receiving node,
the byte sequence used for deserialization may be longer than the actual byte sequence generated by the
emitting node during serialization. This behavior is compatible with the DSDL specification.

The weak MTU requirement for CAN FD is designed to avoid compatibility issues.

4.2.2.4 Transfer CRC

Payload of multi-frame transfers is extended with a transfer CRC for validating the correctness of their re-
assembly. Transfer CRC is not used with single-frame transfers.

The transfer CRC is computed over the entire payload of the multi-frame transfer plus the trailing padding
bytes, if any. The resulting CRC value is appended to the transfer payload after the padding bytes (if any) in the
big-endian byte order (most significant byte first)91.

The transfer CRC function is CRC-16/CCITT-FALSE (section A.1).

4.2.3 Examples

Heartbeat from node-ID 42, nominal priority level, uptime starting from 0 and then incrementing by one
every transfer, health status is 0, operating mode is 1, vendor-specific status code 161 (A116):

CAN ID (hex) CAN data (hex)

107D552A 00 00 00 00 00 01 A1 E0

107D552A 01 00 00 00 00 01 A1 E1

107D552A 02 00 00 00 00 01 A1 E2

107D552A 03 00 00 00 00 01 A1 E3

uavcan.primitive.String.1.0 under subject-ID 4919 (133716) published by an anonymous node, the
string is “Hello world!” (ASCII); one byte of zero padding can be seen between the payload and the tail
byte:

CAN ID (hex) CAN data (hex)

11133775 0C 00 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 00 E0

11133775 0C 00 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 00 E1

11133775 0C 00 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 00 E2

11133775 0C 00 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 00 E3

Node info request from node 123 to node 42 via Classic CAN, then response; notice how the transfer CRC is
scattered across two frames:

CAN ID (hex) CAN data (hex) ASCII Comment

136B957B E1 . The request contains no payload.

126BBDAA 01 00 00 00 01 00 00 A1 Start of response, toggle bit is set.

126BBDAA 00 00 00 00 00 00 00 01 Toggle bit is cleared.

126BBDAA 00 00 00 00 00 00 00 21! Toggle bit is set.

126BBDAA 00 00 00 00 00 00 00 01 Etc.

126BBDAA 00 00 24 6F 72 67 2E 21 ..$org.! Array (string) length prefix.

126BBDAA 75 61 76 63 61 6E 2E 01 uavcan..

126BBDAA 70 79 75 61 76 63 61 21 pyuavca!

126BBDAA 6E 2E 64 65 6D 6F 2E 01 n.demo..

126BBDAA 62 61 73 69 63 5F 75 21 basic_u!

126BBDAA 73 61 67 65 00 00 9A 01 sage.... Transfer CRC, MSB.

126BBDAA E7 61 .a Transfer CRC, LSB.

uavcan.primitive.array.Natural8.1.0 under subject-ID 4919 (133716) published by node 59, the ar-
ray contains an arithmetic sequence (0,1,2, . . . ,89,90,91); the transport MTU is 64 bytes:

91This is the native byte order for this CRC function.

4. Transport layer 61/85

Specification v1.0-beta 2023-05-02

CAN ID (hex) CAN data (hex) Comment

1013373B 5C 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C
0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A
2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39
3A 3B 3C A0

First frame: 1. payload (ar-
ray length prefix is 92); 2. tail
byte.

1013373B 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B
4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A
5B 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BC 19 40

Last frame: 1. payload;
2. padding (underlined);
3. transfer CRC (bold); 4. tail
byte.

4.2.4 Software design considerations

4.2.4.1 Ordered transmission

The CAN controller driver software shall guarantee that CAN frames with identical CAN ID values will be trans-
mitted in their order of appearance in the transmission queue92.

4.2.4.2 Transmission timestamping

Certain application-level functions of Cyphal may require the driver to timestamp outgoing transport
frames, e.g., the time synchronization function. A sensible approach to transmission timestamping is built
around the concept of loop-back frames, which is described here.

If the application needs to timestamp an outgoing frame, it sets a special flag – the loop-back flag – on the
frame before sending it to the driver. The driver would then automatically re-enqueue this frame back into
the reception queue once it is transmitted (keeping the loop-back flag set so that the application is able to
distinguish the loop-back frame from regular received traffic). The timestamp of the loop-backed frame
would be of the moment when it was delivered to the bus.

The advantage of the loop-back based approach is that it relies on the same interface between the appli-
cation and the driver that is used for regular communications. No complex and dangerous callbacks or
write-backs from interrupt handlers are involved.

4.2.4.3 Inner priority inversion

Implementations should take necessary precautions against the problem of inner priority inversion.

Suppose the application needs to emit a frame with the CAN ID X . The frame is submitted to the CAN
controller’s registers and the transmission is started. Suppose that afterwards it turned out that there is a
new frame with the CAN ID (X −1) that needs to be sent, too, but the previous frame X is in the way, and it
is blocking the transmission of the new frame. This may turn into a problem if the lower-priority frame is
losing arbitration on the bus due to the traffic on the bus having higher priority than the current frame, but
lower priority than the next frame that is waiting in the queue.

A naive solution to this is to continuously check whether the priority of the frame that is currently being
transmitted by the CAN controller is lower than the priority of the next frame in the queue, and if it is, abort
transmission of the current frame, move it back to the transmission queue, and begin transmission of the
new one instead. This approach, however, has a hidden race condition: the old frame may be aborted at
the moment when it has already been received by remote nodes, which means that the next time it is re-
transmitted, the remote nodes will see it duplicated. Additionally, this approach increases the complexity
of the driver and can possibly affect its throughput and latency.

Most CAN controllers offer a robust solution to the problem: they have multiple transmission mailboxes
(usually at least 3), and the controller always chooses for transmission the mailbox which contains the
highest priority frame. This provides the application with a possibility to avoid the inner priority inversion
problem: whenever a new transmission is initiated, the application should check whether the priority of
the next frame is higher than any of the other frames that are already awaiting transmission. If there is
at least one higher-priority frame pending, the application doesn’t move the new one to the controller’s
transmission mailboxes, it remains in the queue. Otherwise, if the new frame has a higher priority level
than all of the pending frames, it is pushed to the controller’s transmission mailboxes and removed from
the queue. In the latter case, if a lower-priority frame loses arbitration, the controller would postpone its

92This is because multi-frame transfers use identical CAN ID for all frames of the transfer, and Cyphal requires that all frames of a multi-frame transfer
shall be transmitted in the correct order.

62/85 4. Transport layer

2023-05-02 Specification v1.0-beta

transmission and try transmitting the higher-priority one instead. That resolves the problem.

There is an interesting extreme case, however. Imagine a controller equipped with N transmission mail-
boxes. Suppose the application needs to emit N frames in the increasing order of priority, which leads to all
of the transmission mailboxes of the controller being occupied. Now, if all of the conditions below are sat-
isfied, the system ends up with a priority inversion condition nevertheless, despite the measures described
above:

• The highest-priority pending CAN frame cannot be transmitted due to the bus being saturated with a
higher-priority traffic.

• The application needs to emit a new frame which has a higher priority than that which saturates the bus.

If both hold, a priority inversion is afoot because there is no free transmission mailbox to inject the new
higher-priority frame into. The scenario is extremely unlikely, however; it is also possible to construct the
application in a way that would preclude the problem, e.g., by limiting the number of simultaneously used
distinct CAN ID values.

The following pseudocode demonstrates the principles explained above:

1 // Returns the index of the TX mailbox that can be used for the transmission of the newFrame
2 // If none are available, returns -1.
3 getFreeMailboxIndex(newFrame)
4 {
5 chosen_mailbox = -1 // By default, assume that no mailboxes are available

6 for i = 0...NumberOfTxMailboxes
7 {
8 if isTxMailboxFree(i)
9 {
10 chosen_mailbox = i
11 // Note: cannot break here, shall check all other mailboxes as well.
12 }
13 else
14 {
15 if not isFramePriorityHigher(newFrame, getFrameFromTxMailbox(i))
16 {
17 chosen_mailbox = -1
18 break // Denied - shall wait until this mailbox has finished transmitting
19 }
20 }
21 }

22 return chosen_mailbox
23 }

4.2.4.4 Automatic hardware acceptance filter configuration

Most CAN controllers are equipped with hardware acceptance filters. Hardware acceptance filters reduce
the application workload by ignoring irrelevant CAN frames on the bus by comparing their ID values against
the set of relevant ID values configured by the application.

There exist two common approaches to CAN hardware filtering: list-based and mask-based. In the case of
the list-based approach, every CAN frame detected on the bus is compared against the set of reference CAN
ID values provided by the application; only those frames that are found in the reference set are accepted.
Due to the complex structure of the CAN ID field used by Cyphal, usage of the list-based filtering method
with this protocol is impractical.

Most CAN controller vendors implement mask-based filters, where the behavior of each filter is defined by
two parameters: the mask M and the reference ID R. Then, such filter accepts only those CAN frames for
which the following bitwise logical condition holds truea:

((X ∧M)⊕R) ↔ 0

where X is the CAN ID value of the evaluated frame.

Complex Cyphal applications are often required to operate with more distinct transfers than there are ac-
ceptance filters available in the hardware. That creates the challenge of finding the optimal configuration
of the available filters that meets the following criteria:

• All CAN frames needed by the application are accepted.

4. Transport layer 63/85

Specification v1.0-beta 2023-05-02

• The number of irrelevant frames (i.e., not used by the application) accepted from the bus is minimized.

The optimal configuration is a function of the number of available hardware filters, the set of distinct trans-
fers needed by the application, and the expected frequency of occurrence of all possible distinct transfers
on the bus. The latter is important because if there are to be irrelevant transfers, it makes sense to optimize
the configuration so that the acceptance of less common irrelevant transfers is preferred over the more
common irrelevant transfers, as that reduces the processing load on the application.

The optimal configuration depends on the properties of the network the node is connected to. In the ab-
sence of the information about the network, or if the properties of the network are expected to change
frequently, it is possible to resort to a quasi-optimal configuration which assumes that the occurrence of all
possible irrelevant transfers is equally probable. As such, the quasi-optimal configuration is a function of
only the number of available hardware filters and the set of distinct transfers needed by the application.

The quasi-optimal configuration can be easily found automatically. Certain implementations of the Cyphal
protocol stack include this functionality, allowing the application to easily adjust the configuration of the
hardware acceptance filters using a very simple API.

A quasi-optimal hardware acceptance filter configuration algorithm is described below. The approach was
first proposed by P. Kirienko and I. Sheremet in 2015.

First, the bitwise filter merge operation is defined on filter configurations A and B . The set of CAN frames
accepted by the merged filter configuration is a superset of those accepted by A and B . The definition is as
follows:

mM (RA ,RB , MA , MB) = MA ∧MB ∧¬(RA ⊕RB)

mR (RA ,RB , MA , MB) = RA ∧mM (RA ,RB , MA , MB)

The filter rank is a function of the mask of the filter. The rank of a filter is a unitless quantity that defines in
relative terms how selective the filter configuration is. The rank of a filter is proportional to the likelihood
that the filter will reject a random CAN ID. In the context of hardware filtering, this quantity is conveniently
representable via the number of bits set in the filter mask parameter (also known as population count):

r (M) =


0 | M < 1

r (⌊M
2 ⌋) | M mod 2 = 0

r (⌊M
2 ⌋)+1 | M mod 2 ̸= 0

Having the low-level operations defined, we can proceed to define the whole algorithm. First, construct the
initial set of CAN acceptance filter configurations according to the requirements of the application. Then,
as long as the number of configurations in the set exceeds the number of available hardware acceptance
filters, repeat the following:

1. Find the pair A, B of configurations in the set for which r (mM (RA ,RB , MA , MB)) is maximized.
2. Remove A and B from the set of configurations.
3. Add a new configuration X to the set of configurations, where MX = mM (RA ,RB , MA , MB), and RX =

mR (RA ,RB , MA , MB).

The algorithm reduces the number of filter configurations by one at each iteration, until the number of
available hardware filters is sufficient to accommodate the whole set of configurations.

aNotation: ∧ – bitwise logical AND, ⊕ – bitwise logical XOR, ¬ – bitwise logical NOT.

64/85 4. Transport layer

2023-05-02 Specification v1.0-beta

4.3 Cyphal/UDP

4.3.1 Overview

This section specifies a concrete transport based on the UDP/IPv4 protocol93, as specified in IETF RFC 768.
As of this version, the Cyphal/UDP specification remains experimental. Breaking changes affecting wire
compatibility are possible.

Cyphal/UDP is intended for low-latency, high-throughput intravehicular Ethernet networks with complex
topologies, which may be switched, multi-drop, or mixed. A network utilizing Cyphal/UDP can be built with
standards-compliant commercial off-the-shelf networking equipment and software.

Cyphal/UDP relies exclusively on IP multicast traffic defined in IETF RFC 1112 for all communication94. The
entirety of the session specifier (section 4.1.1.6) is reified through the multicast group address. The transfer-ID,
transfer priority, and the multi-frame transfer reassembly metadata are allocated in the Cyphal-specific fixed-
size UDP datagram header. In this transport, a UDP datagram represents a single Cyphal transport frame.
All UDP datagrams are addressed to the same, fixed, destination port, while the source port and the source
address bear no relevance for the protocol and thus can be arbitrary.

Parameter Value References

Maximum node-ID value 65534 (16 bits wide). 2

Transfer-ID mode Monotonic, 64 bits wide. 4.1.1.7

Number of transfer priority levels 8 (no additional levels). 4.1.1.3

Largest single-frame transfer payload Implementation-defined, but not less than
480 bytes and not greater than 65479 bytes.

4.1.1.2

Anonymous transfers Available. 4.1.1.4

Table 4.5: Cyphal/UDP transport capabilities

4.3.2 UDP/IP endpoints and routing

Transmission of a Cyphal/UDP transport frame is performed by sending a suitably constructed UDP datagram
to the destination IP multicast group address computed from the session specifier (section 4.1.1.6) as shown
in figure 4.4 with the fixed destination port number 9382.

Most significant octet︷ ︸︸ ︷
1110︸ ︷︷ ︸

RFC 1112
multicast

prefix

1111︸ ︷︷ ︸
RFC 2365

administrative
scope

.
3rd octet︷ ︸︸ ︷

0︸︷︷︸
RFC 2365
reserved

range

0︸︷︷︸
address
version

00000︸ ︷︷ ︸
reserved

keep zero

Z︸︷︷︸
service,

not
message

.
2nd octet︷ ︸︸ ︷

XXXXXXXX.
Least significant octet︷ ︸︸ ︷
XXXXXXXX︸ ︷︷ ︸

if Z: destination node-ID
else: subject-ID

Numbers given in base-2.
Figure 4.4: IP multicast group address structure

Field Offset Width Value Description

RFC 1112 multicast prefix 28 4 11102

RFC 2365 scope 24 4 11112 Selects the administratively scoped range 239.0.0.0/8
per RFC 2365 to avoid collisions with well-known mul-
ticast groups.

RFC 2365 reserved range 23 1 02 Selects the ad-hoc defined range 239.0.0.0/9 per
RFC 2365.

Cyphal/UDP address version 22 1 02 Deconflicts this layout with future revisions.

Reserved 17 5 000002 May be used for domain-ID segregation in future ver-
sions.

Z: service, not message 16 1 any Set for service transfers, cleared for message transfers.

X if Z: destination node-ID 0 16 [0,65534] The destination node-ID of the current service transfer.

X if not Z: subject-ID 0 16 [0,8191] The subject-ID of the current message transfer.

Table 4.6: IP multicast group address bit fields

A subscriber to certain Cyphal subjects will join the IP multicast groups corresponding to said subjects. Like-

93Support for IPv6 may appear in future versions of this specification.
94For rationale, refer to https://forum.opencyphal.org/t/1765.

4. Transport layer 65/85

https://forum.opencyphal.org/t/1765

Specification v1.0-beta 2023-05-02

wise, a node that provides at least one RPC-service will join the IP multicast group corresponding to its own
node-ID95.

The IP address of a node bears no relevance for the protocol — multiple nodes may share the same IP address;
likewise, a node may have more than one IP address. Nodes on a Cyphal/UDP network are identified exclu-
sively by their node-ID value96. The set of valid node-ID values for Cyphal/UDP is [0,65534]. Value 65535 is
reserved to represent both the broadcast and anonymous node-ID, depending on context.

Sources of Cyphal/UDP traffic should set the packet TTL to 16 or higher97.

The DSCP98 field of outgoing IP packets should be populated based on the Cyphal transfer priority level (sec-
tion 4.1.1.3) such that the maximum Cyphal priority level corresponds to class selector CS7 and the minimum
Cyphal priority level corresponds to class selector CS0, with the intermediate values mapped following the
same principle.

Cyphal priority DSCP class selector IP precedence value IP precedence name

Exceptional CS7 7 network control

Immediate CS6 6 internetwork control

Fast CS5 5 critical

High CS4 4 flash override

Nominal CS3 3 flash

Low CS2 2 immediate

Slow CS1 1 priority

Optional CS0 0 routine

Table 4.7: Recommended DSCP class selector values

The implementation of suitable network policies is outside the scope of this document. RFC 4594 provides
a starting point for the design of such policies.

Freezing (at least) the 9 most significant bits of the multicast group address ensures that the variability is
confined to the 23 least significant bits of the address only, which is desirable because the IPv4 Ethernet
MAC layer does not differentiate beyond the 23 least significant bits of the multicast group address. That is,
addresses that differ only in the 9 MSb collide at the MAC layer, which is unacceptable in a real-time system;
see RFC 1112 section 6.4. Without this limitation, an engineer designing a network might inadvertently
create a configuration that causes MAC-layer collisions which may be difficult to detect.

For example, the multicast group address for subject 42 is 239.0.0.42. The multicast group address for a
service transfer with the destination node-ID of 42 is 239.1.0.42.

Per RFC 1112, in order to emit multicast traffic, a limited level-1 implementation without the full support of
IGMP and multicast-specific packet handling policies is sufficient. Thus, trivial nodes that are only required
to publish messages on the network may be implemented without the need for a full IGMP stack.

The reliance on IP multicasting exclusively allows baremetal implementations to omit ARP support.

Due to the dynamic nature of the IGMP protocol, a newly configured subscriber may not immediately re-
ceive data from the subject — a brief subscription initialization delay may occur because the underlying
IGMP stack needs to inform the router about its interest in the specified multicast group by sending an
IGMP membership report first. Certain high-integrity applications may choose to rely on static switch con-
figurations to eliminate the subscription initialization delay.

95Observe that multicast groups are not differentiated by service-ID.
96A node that is registered on an IP network (e.g., via DHCP) still needs to obtain a node-ID value to participate in a Cyphal/UDP network. This may

be done either through manual assignment or by using the plug-and-play node-ID allocation service (section 5.3.12).
97RFC 1112 prescribes a default TTL of 1, but this is not sufficient for most applications Cyphal/UDP is intended for.
98RFC 2474

66/85 4. Transport layer

2023-05-02 Specification v1.0-beta

4.3.3 UDP datagram payload format

The layout of the Cyphal/UDP datagram payload header is shown in the following snippet in DSDL notation
(section 3). The payload header is followed by the payload data, which is opaque to the protocol.

1 # This 24-byte header can be aliased as a C structure with each field being naturally aligned:
2 #
3 # uint8_t version;
4 # uint8_t priority;
5 # uint16_t source_node_id;
6 # uint16_t destination_node_id;
7 # uint16_t data_specifier_snm;
8 # uint64_t transfer_id;
9 # uint32_t frame_index_eot;
10 # uint16_t user_data;
11 # uint8_t[2] header_crc16_big_endian;

12 uint4 version
13 # The version of the header format. This document specifies version 1.
14 # Packets with an unknown version number must be ignored.

15 void4

16 uint3 priority
17 # The values are assigned from 0 (HIGHEST priority) to 7 (LOWEST priority).
18 # The numerical priority identifiers are chosen to be consistent with Cyphal/CAN.
19 # Notice that this is the opposite of the priority ordering in the IP DSCP field.

20 void5

21 uint16 source_node_id
22 # The node-ID of the source node.
23 # Value 65535 represents anonymous transfers.

24 uint16 destination_node_id
25 # The node-ID of the destination node.
26 # Value 65535 represents broadcast transfers.

27 uint15 data_specifier
28 # If this is a service request transfer, this value equals the service-ID.
29 # If this is a service response transfer, this value equals 16384 + service-ID.
30 # If this is a message transfer, this value equals the subject-ID.

31 bool service_not_message
32 # If true, this is a service transfer. If false, this is a message transfer.

33 @assert _offset_ == {64}
34 uint64 transfer_id
35 # The monotonic transfer-ID value of the current transfer (never overflows).

36 uint31 frame_index
37 # Zero for a single-frame transfer and for the first frame of a multi-frame transfer.
38 # Incremented by one for each subsequent frame of a multi-frame transfer.

39 bool end_of_transfer
40 # True if this is the last frame of a multi-frame transfer.

41 uint16 user_data
42 # Opaque application-specific data with user-defined semantics.
43 # Generic implementations should emit zero and ignore this field upon reception.

44 uint8[2] header_crc16_big_endian
45 # CRC-16/CCITT-FALSE of the preceding serialized header data in the big endian byte order.
46 # Application of the CRC function to the entire header shall yield zero, otherwise the header is malformed.

47 @assert _offset_ / 8 == {24}
48 @sealed # The payload data follows.

The header CRC function is CRC-16/CCITT-FALSE; refer to section A.1 for further information.

4. Transport layer 67/85

Specification v1.0-beta 2023-05-02

Certain states provided in the header duplicate information that is already available in the IP header or the
multicast group address. This is done for reasons of unification of the header format with other standard
transport layer definitions, and to simplify the access to the transfer parameters that otherwise would be
hard to reach above the network layer, such as the DSCP value. The latter consideration is particularly
important for forwarding nodes.

4.3.4 Transfer payload

After the transfer payload is constructed but before it is scheduled for transmission over the network, it is
appended with the transfer CRC field. The transfer CRC function is CRC-32C (section A.2), and its value is
serialized in the little-endian byte order. The transfer CRC function is applied to the entire transfer payload
and only transfer payload.

The transfer CRC is provided for all transfers, including single-frame transfers and transfers with an empty
payload99. An implementation receiving a transfer should verify the correctness of its transfer CRC.

From the perspective of the multi-frame segmentation logic, the transfer CRC field is part of the transfer
payload. From the definition of the header format it follows that the transfer CRC can only be found at the
end of the packet if the end_of_transfer bit is set, unless the transfer CRC field has spilled over to the
next frame (in which case the frame would contain only the transfer CRC itself or the tail thereof).

4.3.5 Maximum transmission unit

In this section, the maximum transmission unit (MTU) is defined as the maximum size of a UDP/IP datagram
payload.

This specification does not restrict the MTU of the underlying transport. It is recommended, however, to
avoid MTU values less than 508 bytes to allow reduced (simplified) implementations of the protocol that do
not require large transfer payloads to omit support for multi-frame transfers. The MTU of 508 bytes allows
applications to exchange up to 508−24−4 = 480 bytes of payload in a single-frame transfer.

99This provides end-to-end integrity protection for the transfer payload.

68/85 4. Transport layer

2023-05-02 Specification v1.0-beta

5 Application layer
Previous chapters of this specification define a set of basic concepts that are the foundation of the protocol:
they allow one to define data types and exchange data objects over the bus in a robust and deterministic
manner. This chapter is focused on higher-level concepts: rules, conventions, and standard functions that are
to be respected by applications utilizing Cyphal to maximize cross-vendor compatibility, avoid ambiguities,
and prevent some common design pitfalls.

The rules, conventions, and standard functions defined in this chapter are designed to be an acceptable middle
ground for any sensible aerospace or robotic system. Cyphal favors no particular domain or kind of system
among targeted applications.

• Section 5.1 contains a set of mandatory rules that shall be followed by all Cyphal implementations.
• Section 5.2 contains a set of conventions and recommendations that are not mandatory to follow. Every

deviation, however, should be justified and well-documented.
• Section 5.3 contains a full list of high-level functions defined on top of Cyphal. Formal specification of such

functions is provided in the DSDL data type definition files that those functions are based on (see chapter 6).

5. Application layer 69/85

Specification v1.0-beta 2023-05-02

5.1 Application-level requirements
This section describes a set of high-level rules that shall be obeyed by all Cyphal implementations.

5.1.1 Port identifier distribution

An overview of related concepts is provided in chapter 2.

The subject and service identifier values are segregated into three ranges:

• unregulated port identifiers that can be freely chosen by users and integrators (both fixed and non-fixed);
• regulated fixed identifiers for non-standard data type definitions that are assigned by the Cyphal maintainers

for publicly released data types;
• regulated identifiers of the standard data types that are an integral part of the Cyphal specification.

More information on the subject of data type regulation is provided in section 2.1.2.2.

The ranges are summarized in table 5.1.1. The ranges may be expanded, but not contracted, in a future version
of the document.

Subject-ID Service-ID Purpose

[0,6143] [0,255] Unregulated identifiers (both fixed and non-fixed).

[6144,7167] [256,383] Non-standard fixed regulated identifiers (i.e., vendor-specific).

[7168,8191] [384,511] Standard fixed regulated identifiers.

Table 5.1: Port identifier distribution

5.1.2 Port compatibility

The system integrator shall ensure that nodes participating in data exchange via a given port100 use data type
definitions that are sufficiently congruent so that the resulting behavior of the involved nodes is predictable
and the possibility of unintended behaviors caused by misinterpretation of exchanged serialized objects is
eliminated.

Let there be type A:

1 void1
2 uint7 demand_factor_pct # [percent]
3 # Values above 100% are not allowed.

And type B :

1 uint8 demand_factor_pct # [percent]
2 # Values above 100% indicate overload.

The data types are not semantically compatible, but they can be used on the same subject nevertheless: a
subscriber expecting B can accept A. The reverse is not true, however.

This example shows that even semantically incompatible types can facilitate behaviorally correct interop-
erability of nodes.

Compatibility of subjects and services is completely independent from the names of the involved data
types. Data types can be moved between namespaces and freely renamed and re-versioned without break-
ing compatibility with existing deployments. Nodes provided by different vendors that utilize differently
named data types may still interoperate if such data types happen to be compatible. The duty of ensuring
the compatibility lies on the system integrator.

5.1.3 Standard namespace

An overview of related concepts is provided in chapter 3.

This specification defines a set of standard regulated DSDL data types located under the root namespace
named “uavcan”101 (section 6).

Vendor-specific, user-specific, or any other data types not defined by this specification shall not be defined

100I.e., subject or service.
101The standard root namespace is named uavcan, not cyphal, for historical reasons.

70/85 5. Application layer

2023-05-02 Specification v1.0-beta

inside the standard root namespace102.

102Custom data type definitions shall be located inside vendor-specific or user-specific namespaces instead.

5. Application layer 71/85

Specification v1.0-beta 2023-05-02

5.2 Application-level conventions
This section describes a set of high-level conventions designed to enhance compatibility of applications lever-
aging Cyphal. The conventions described here are not mandatory to follow; however, every deviation should
be justified and documented.

5.2.1 Node identifier distribution

An overview of related concepts is provided in chapter 2.

Valid values of node-ID range from 0 up to a transport-specific upper boundary which is guaranteed to be
above 127 for any transport.

The two uppermost node-ID values are reserved for diagnostic and debugging tools; these node-ID values
should not be used in fielded systems.

5.2.2 Service latency

If the server uses a significant part of the timeout period to process the request, the client might drop the
request before receiving the response. Servers should minimize the request processing time; that is, the time
between reception of a service request transfer and the transmission of the corresponding service response
transfer.

The worst-case request processing time should be documented for each server-side service port.

5.2.3 Coordinate frames

Cyphal follows the conventions that are widely accepted in relevant applications. Adherence to the coordinate
frame conventions described here maximizes compatibility and reduces the amount of computations for con-
versions between incompatible coordinate systems and representations. It is recognized, however, that some
applications may find the advised conventions unsuitable, in which case deviations are permitted. Any such
deviations shall be explicitly documented.

All coordinate systems defined in this section are right-handed. If application-specific coordinate systems are
introduced, they should be right-handed as well.

North-East-Down (NED) frame and body frame conventions. All systems are right-handed.
Figure 5.1: Coordinate frame conventions

5.2.3.1 World frame

For world fixed frames, the North-East-Down (NED) right-handed notation is preferred: X – northward, Y –
eastward, Z – downward.

5.2.3.2 Body frame

In relation to a body, the convention is as follows, right-handed103: X – forward, Y – rightward, Z – downward.

103This convention is widely used in aeronautic applications.

72/85 5. Application layer

2023-05-02 Specification v1.0-beta

5.2.3.3 Optical frame

In the case of cameras, the following right-handed convention is preferred104: X – rightward, Y – downward, Z
– towards the scene along the optical axis.

5.2.4 Rotation representation

All applications should represent rotations using quaternions with the elements ordered as follows105: W, X, Y,
Z. Other forms of rotation representation should be avoided.

Angular velocities should be represented using the right-handed, fixed-axis (extrinsic) convention: X (roll), Y
(pitch), Z (yaw).

Quaternions are considered to offer the optimal trade-off between bandwidth efficiency, computation com-
plexity, and explicitness:

• Euler angles are not self-contained, requiring applications to agree on a particular convention before-
hand; a convention would be difficult to establish considering different demands of various use cases.

• Euler angles and fixed axis rotations typically cannot be used for computations directly due to angular
interpolation issues and singularities; thus, to make use of such representations, one often has to convert
them to a different form (e.g., quaternion); such conversions are computationally heavy.

• Rotation matrices are highly redundant.

5.2.5 Matrix representation

5.2.5.1 General

Matrices should be represented as flat arrays in the row-major order.[
x11 x12 x13

x21 x22 x23

]
→ (x11, x12, x13, x21, x22, x23)

5.2.5.2 Square matrices

There are standard compressed representations of an n ×n square matrix.

An array of size n2 represents a full square matrix. This is equivalent to the general case reviewed above.

An array of (1+n)n
2 elements represents a symmetric matrix, where array members represent the elements of

the upper-right triangle arranged in the row-major order.a b c

b d e

c e f

→ (
a,b,c,d ,e, f

)
This form is well-suited for covariance matrix representation.

An array of n elements represents a diagonal matrix, where an array member at position i (where i = 1 for the
first element) represents the matrix element xi ,i (where x1,1 is the upper-left element).a 0 0

0 b 0

0 0 c

→ (a,b,c)

An array of one element represents a scalar matrix.a 0 0

0 a 0

0 0 a

→ a

An empty array represents a zero matrix.

104This convention is widely used in various applications involving computer vision systems.
105Assuming w +xi + y j + zk .

5. Application layer 73/85

Specification v1.0-beta 2023-05-02

5.2.5.3 Covariance matrices

A zero covariance matrix represents an unknown covariance106.

Infinite error variance means that the associated value is undefined.

5.2.6 Physical quantity representation

5.2.6.1 Units

All units should be SI107 units (base or derived). Usage of any other units is strongly discouraged.

When defining data types, fields and constants that represent unscaled quantities in SI units should not have
suffixes indicating the unit, since that would be redundant.

On the other hand, fields and constants that contain quantities in non-SI units108 or scaled SI units109 should
be suffixed with the standard abbreviation of the unit110 and its metric prefix111 (if any), maintaining the
proper letter case of the abbreviation. In other words, the letter case of the suffix is independent of the let-
ter case of the attribute it is attached to.

Scaling coefficients should not be chosen arbitrarily; instead, the choice should be limited to the standard
metric prefixes defined by the International System of Units.

All standard metric prefixes have well-defined abbreviations that are constructed from ASCII characters, ex-
cept for one: the micro prefix is abbreviated as a Greek letter “µ” (mu). When defining data types, “µ” should
be replaced with the lowercase Latin letter “u”.

Irrespective of the suffix, it is recommended to always specify units for every field in the comments.

1 float16 temperature # [kelvin] Suffix not needed because an unscaled SI unit is used here.

2 uint24 delay_us # [microsecond] Scaled SI unit, suffix required. Mu replaced with "u".
3 uint24 MAX_DELAY_us = 600000 # [microsecond] Notice the letter case.

4 float32 kinetic_energy_GJ # [gigajoule] Notice the letter case.

5 float16 estimated_charge_mAh # [milliampere hour] Scaled non-SI unit. Discouraged, use coulomb.
6 float16 MAX_CHARGE_mAh = 1e4 # [milliampere hour] Notice the letter case.

5.2.6.2 Enhanced type safety

In the interest of improving type safety and reducing the possibility of a human error, it is recommended to
avoid reliance on raw scalar types (such as float32) when defining fields containing physical quantities. In-
stead, the explicitly typed alternatives defined in the standard DSDL namespace uavcan.si.unit (section ??
on page ??) (also see section 5.3.6.1) should be used.

1 float32[4] kinetic_energy # [joule] Not recommended.
2 uavcan.si.unit.energy.Scalar.1.0[4] kinetic_energy # This is the recommended practice.
3 # Kinetic energy of four bodies.

4 float32[3] velocity # [meter/second] Not recommended.
5 uavcan.si.unit.velocity.Vector3.1.0 # This is the recommended practice.
6 # 3D velocity vector.

106As described above, an empty array represents a zero matrix, from which follows that an empty array represents unknown covariance.
107International System of Units.
108E.g., degree Celsius instead of kelvin.
109E.g., microsecond instead of second.
110E.g., kg for kilogram, J for joule.
111E.g., M for mega, n for nano.

74/85 5. Application layer

2023-05-02 Specification v1.0-beta

5.3 Application-level functions
This section documents the high-level functionality defined by Cyphal. The common high-level functions
defined by the specification span across different application domains. All of the functions defined in this sec-
tion are optional (not mandatory to implement), except for the node heartbeat feature (section 5.3.2), which
is mandatory for all Cyphal nodes.

The detailed specifications for each function are provided in the DSDL comments of the data type definitions
they are built upon, whereas this section serves as a high-level overview and index.

5.3.1 Node initialization

Cyphal does not require that nodes undergo any specific initialization upon connection to the bus — a node
is free to begin functioning immediately once it is powered up. The operating mode of the node (such as ini-
tialization, normal operation, maintenance, and so on) is to be reflected via the mandatory heartbeat message
described in section 5.3.2.

5.3.2 Node heartbeat

Every non-anonymous Cyphal node shall report its status and presence by periodically publishing messages
of type uavcan.node.Heartbeat (section ?? on page ??) at a fixed rate specified in the message definition
using the fixed subject-ID. Anonymous nodes shall not publish to this subject.

This is the only high-level protocol function that Cyphal nodes are required to support. All other data types
and application-level functions are optional.

No types match the pattern: uavcan.node.Heartbeat

5.3.3 Generic node information

The service uavcan.node.GetInfo (section ?? on page ??) can be used to obtain generic information about
the node, such as the structured name of the node (which includes the name of its vendor), a 128-bit globally
unique identifier, the version information about its hardware and software, version of the Cyphal specification
implemented on the node, and the optional certificate of authenticity.

While the service is, strictly speaking, optional, omitting its support is highly discouraged, since it is instru-
mental for network discovery, firmware update, and various maintenance and diagnostic needs.

No types match the pattern: uavcan.node.GetInfo

5.3.4 Bus data flow monitoring

Interfaces defined in the namespace uavcan.node.port (section ?? on page ??) (see table ??) facilitate net-
work inspection and monitoring.

By comparing the data obtained with the help of these interfaces from each node on the bus, the caller can
reconstruct the data exchange graph for the entire bus (assuming that every node on the bus supports the
services in question; they are not mandatory).

No types match the pattern: uavcan.node.port.*

5.3.5 Network-wide time synchronization

Cyphal provides a simple and robust method of time synchronization112 that is built upon the work “Imple-
menting a Distributed High-Resolution Real-Time Clock using the CAN-Bus” published by M. Gergeleit and
H. Streich113. The detailed specification of the time synchronization algorithm is provided in the documenta-
tion for the message type uavcan.time.Synchronization (section ?? on page ??).

uavcan.time.GetSynchronizationMasterInfo (section ?? on page ??) provides nodes with information
about the currently used time system and related data like the number of leap seconds added.

Redundant time synchronization masters are supported for the benefit of high-reliability applications.

112The ability to accurately synchronize time between nodes is instrumental for building distributed real-time data processing systems such as various
robotic applications, autopilots, autonomous driving solutions, and so on.
113Proceedings of the 1st international CAN-Conference 94, Mainz, 13.-14. Sep. 1994, CAN in Automation e.V., Erlangen.

5. Application layer 75/85

Specification v1.0-beta 2023-05-02

Time synchronization with explicit sensor feed timestamping should be preferred over inferior alternatives
such as sensor lag reporting that are sometimes found in simpler systems because such alternatives are
difficult to scale and they do not account for the delays introduced by communication interfaces.

It is the duty of every node that publishes timestamped data to account for its own internal delays; for ex-
ample, if the data latency of a local sensor is known, it needs to be accounted for in the reported timestamp
value.

No types match the pattern: uavcan.time.*

5.3.6 Primitive types and physical quantities

The namespaces uavcan.si (section ?? on page ??) and uavcan.primitive (section ?? on page ??) included
in the standard data type set are designed to provide a generic and flexible method of real-time data exchange.
However, these are not bandwidth-efficient.

Generally, applications where the bus bandwidth and latency are important should minimize their reliance on
these generic data types and favor more specialized types instead that are custom-designed for their particular
use cases; e.g., vendor-specific types or application-specific types, either designed in-house, published by
third parties114, or supplied by vendors of COTS equipment used in the application.

Vendors of COTS equipment are recommended to ensure that some minimal functionality is available via
these generic types without reliance on their vendor-specific types (if there are any). This is important for
reusability, because some of the systems where such COTS nodes are to be integrated may not be able to easily
support vendor-specific types.

5.3.6.1 SI namespace

The si namespace is named after the International System of Units (SI). The namespace contains a collection
of scalar and vector value types that describe most commonly used physical quantities in SI; for example,
velocity, mass, energy, angle, and time. The objective of these types is to permit construction of arbitrarily
complex distributed control systems without reliance on any particular vendor-specific data types.

The namespace uavcan.si.unit (section ?? on page ??) contains basic units that can be used as type-safe
wrappers over float32 and other scalar and array types. The namespace uavcan.si.sample (section ?? on
page ??) contains time-stamped versions of the same.

Each message type defined in the namespace uavcan.si.sample contains a timestamp field of type
uavcan.time.SynchronizedTimestamp (section ?? on page ??). Every emitted message should be
timestamped in order to allow subscribers to identify which of the messages relate to the same event or
to the same instant. Messages that are emitted in bulk in relation to the same event or the same instant
should contain exactly the same value of the timestamp to simplify the task of timestamp matching for the
subscribers.

The exact strategy of matching related messages by timestamp employed by subscribers is entirely
implementation-defined. The specification does not concern itself with this matter because it is expected
that different applications will opt for different design trade-offs and different tactics to suit their constraints.
Such diversity is not harmful, because its effects are always confined to the local node and cannot affect
operation of other nodes or their compatibility.

Tables ?? and ?? provide a high-level overview of the SI namespace. Please follow the references for details.

No types match the pattern: uavcan.si.unit.*

No types match the pattern: uavcan.si.sample.*

5.3.6.2 Primitive namespace

The primitive namespace contains a collection of primitive types: integer types, floating point types, bit flag,
string, raw block of bytes, and an empty value. Integer, floating point, and bit flag types are available in two
categories: scalar and array; the latter are limited so that their serialized representation is never larger than
257 bytes.

The primitive types are designed to complement the SI namespace with an even simpler set of basic types that
do not make any assumptions about the meaning of the data they describe. The primitive types provide a very
high degree of flexibility, but due to their lack of semantic information, their use carries the risk of creating
suboptimal interfaces that are difficult to use, validate, and scale.

Normally, the use of primitive types should be limited to very basic vendor-neutral interfaces for COTS equip-

114As long as the license permits.

76/85 5. Application layer

2023-05-02 Specification v1.0-beta

ment and software, debug and diagnostic purposes, and whenever there is a need to exchange data the type of
which cannot be determined statically.115

Table ?? provides a high-level overview of the primitive namespace. Please follow the references for details.

No types match the pattern: uavcan.primitive.*

5.3.7 Remote file system interface

The set of standard data types contains a collection of services for manipulation of remote file systems (names-
pace uavcan.file (section ?? on page ??), see table ??). All basic file system operations are supported, in-
cluding file reading and writing, directory listing, metadata retrieval (size, modification time, etc.), moving,
renaming, creating, and deleting.

The set of supported operations may be extended in future versions of the protocol.

Implementers of file servers are strongly advised to always support services Read and GetInfo, as that allows
clients to make assumptions about the minimal degree of available service. If write operations are required,
all of the defined services should be supported.

No types match the pattern: uavcan.file.*

5.3.8 Generic node commands

Commonly used node-level application-agnostic auxiliary commands (such as: restart, power off, factory re-
set, emergency stop, etc.) are supported via the standard service uavcan.node.ExecuteCommand (section ??
on page ??). The service also allows vendors to define vendor-specific commands alongside the standard ones.

It is recommended to support this service in all nodes.

5.3.9 Node software update

A simple software116 update protocol is defined on top of the remote file system interface (section 5.3.7) and
the generic node commands (section 5.3.8).

The software update process involves the following data types:

• uavcan.node.ExecuteCommand (section ?? on page ??) – used to initiate the software update process.
• uavcan.file.Read (section ?? on page ??) – used to transfer the software image file(s) from the file server

to the updated node.

The software update protocol logic is described in detail in the documentation for the data type
uavcan.node.ExecuteCommand (section ?? on page ??). The protocol is considered simple enough to be
usable in embedded bootloaders with small memory-constrained microcontrollers.

5.3.10 Register interface

Cyphal defines the concept of named register – a scalar, vector, or string value with an associated human-
readable name that is stored on a Cyphal node locally and is accessible via Cyphal117 for reading and/or mod-
ification by other nodes on the bus.

Named registers are designed to serve the following purposes:

Node configuration parameter management — Named registers can be used to expose persistently stored
values that define behaviors of the local node.

Diagnostics and monitoring — Named registers can be used to expose internal states (variables) of the node’s
decision-making and data processing logic (implemented in software or hardware) to provide insights about
its inner processes.

Advanced node information reporting — Named registers can store any invariants provided by the vendor,
such as calibration coefficients or unique identifiers.

Special functions — Non-persistent named registers can be used to trigger specific behaviors or start prede-
fined operations when written.

Advanced debugging — Registers following a specific naming pattern can be used to provide direct read and
write access to the local node’s application software to facilitate in-depth debugging and monitoring.

115An example of the latter use case is the register protocol described in section 5.3.10.
116Or firmware – Cyphal does not distinguish between the two.
117And, possibly, other interfaces.

5. Application layer 77/85

Specification v1.0-beta 2023-05-02

The register protocol rests upon two service types defined in the namespace uavcan.register (section ?? on
page ??); the namespace index is shown in table ??. Data types supported by the register protocol are defined
in the nested data structure uavcan.register.Value (section ?? on page ??).

The Cyphal specification defines several standard naming patterns to facilitate cross-vendor compatibility and
provide a framework of common basic functionality.

No types match the pattern: uavcan.register.*

5.3.11 Diagnostics and event logging

The message type uavcan.diagnostic.Record (section ?? on page ??) is designed to facilitate emission of
human-readable diagnostic messages and event logging, both for the needs of real-time display118 and for
long-term storage119.

5.3.12 Plug-and-play nodes

Every Cyphal node shall have a node-ID that is unique within the network (excepting anonymous nodes).
Normally, such identifiers are assigned by the network designer, integrator, some automatic external tool, or
another entity that is external to the network. However, there exist circumstances where such manual assign-
ment is either difficult or undesirable.

Nodes that can join any Cyphal network automatically without any prior manual configuration are called plug-
and-play nodes (or PnP nodes for brevity).

Plug-and-play nodes automatically obtain a node-ID and deduce all necessary parameters of the physical layer
such as the bit rate.

Cyphal defines an automatic node-ID allocation protocol that is built on top of the data types defined in the
namespace uavcan.pnp (section ?? on page ??) (where pnp stands for “plug-and-play”) (see table ??). The pro-
tocol is described in the documentation for the data type uavcan.pnp.NodeIDAllocationData (section ??
on page ??).

The plug-and-play node-ID allocation protocol relies on anonymous messages reviewed in section 4.1.1.4.
Remember that the plug-and-play feature is entirely optional and it is expected that applications where a high
degree of determinism and robustness is expected are unlikely to benefit from it.

This feature derives from the work “In search of an understandable consensus algorithm”120 by Diego Ongaro
and John Ousterhout.

No types match the pattern: uavcan.pnp.*

5.3.13 Internet/LAN forwarding interface

Data types defined in the namespace uavcan.internet (section ?? on page ??) (see table ??) are designed for
establishing robust direct connectivity between local Cyphal nodes and hosts on the Internet or on a local area
network (LAN) using modem nodes121 (possibly redundant).

This basic support for world-wide communication provided at the protocol level allows any component of a
vehicle equipped with modem nodes to reach external resources or exchange arbitrary data globally without
depending on an application-specific means of communication122.

The set of supported Internet/LAN protocols may be extended in future revisions of the specification.

Some of the major applications for this feature are as follows:

1. Direct telemetry transmission from Cyphal nodes to a remote data collection server.
2. Implementation of remote API for on-board equipment (e.g., web interface).
3. Reception of real-time correction data streams (e.g., RTCM RC-104) for precise positioning applications.
4. Automatic upgrades directly from the vendor’s Internet resources.

No types match the pattern: uavcan.internet.*

118E.g., messages displayed to a human operator/pilot in real time.
119E.g., flight data recording.
120Proceedings of USENIX Annual Technical Conference, p. 305-320, 2014.
121Usually such modem nodes are implemented using on-board cellular, radio frequency, or satellite communication hardware.
122Information security and other security-related concerns are outside of the scope of this specification.

78/85 5. Application layer

2023-05-02 Specification v1.0-beta

5.3.14 Meta-transport

Data types defined in the namespace uavcan.metatransport (section ?? on page ??) (see table ??) are de-
signed for tunneling transport frames123 over Cyphal subjects, as well as logging Cyphal traffic in the form of
serialized Cyphal message objects.

No types match the pattern: uavcan.metatransport.*

123Section 4.1.1.

5. Application layer 79/85

Specification v1.0-beta 2023-05-02

6 List of standard data types
This chapter contains the full list of standard data types defined by the Cyphal specification124. The source text
of the DSDL data type definitions provided here is also available via the official project website at uavcan.org.

Regulated non-standard definitions125 are not included in this list.

In the table, BLS stands for bit length set. The extent is not shown for sealed entities – that would be redundant
because sealing implies that the extent equals the maximum bit length set. For service types, the parameters
pertaining to the request and response are shown separately.

The index table ?? is provided before the definitions for ease of navigation.

124The standard root namespace is named uavcan, not cyphal, for historical reasons.
125I.e., public definitions contributed by vendors and other users of the specification, as explained in section 2.1.2.2.

80/85 6. List of standard data types

http://uavcan.org

2023-05-02 Specification v1.0-beta

No types match the pattern: uavcan.*

6. List of standard data types 81/85

Specification v1.0-beta 2023-05-02

A CRC algorithm implementations
A.1 CRC-16/CCITT-FALSE

This algorithm is also known as CRC-16/AUTOSAR or CRC-16/IBM-3740. Not to be confused with CRC-
16/KERMIT.

Width 16 bits, polynomial 102116, initial value FFFF16, not reflected, no output XOR. The native byte order is
big endian.

The value for an input sequence (49,50, . . . ,56,57) is 29B116.

A.1.1 C++, bitwise

1 #include <cstdint>
2 #include <cstddef>

3 class CRC16_CCITT_False final
4 {
5 public:
6 void add(const std::uint8_t byte)
7 {
8 value_ ^= static_cast<std::uint16_t>(byte) << 8U;
9 for (std::uint8_t bit = 8; bit > 0; --bit)
10 {
11 if ((value_ & 0x8000U) != 0)
12 {
13 value_ = (value_ << 1U) ^ 0x1021U;
14 }
15 else
16 {
17 value_ = value_ << 1U;
18 }
19 }
20 }

21 void add(const std::uint8_t* bytes, std::size_t length)
22 {
23 while (length --> 0)
24 {
25 add(*bytes++);
26 }
27 }

28 [[nodiscard]] std::uint16_t get() const { return value_; }

29 private:
30 std::uint16_t value_ = 0xFFFFU;
31 };

82/85 A. CRC algorithm implementations

2023-05-02 Specification v1.0-beta

A.1.2 Python, bytewise

1 class CRC16CCITT:
2 def __init__(self) -> None:
3 self._value = 0xFFFF

4 def add(self, data: bytes | bytearray | memoryview) -> None:
5 val = self._value
6 for x in data:
7 val = ((val << 8) & 0xFFFF) ^ self._TABLE[(val >> 8) ^ x]
8 self._value = val

9 def check_residue(self) -> bool:
10 return self._value == 0

11 @property
12 def value(self) -> int:
13 return self._value

14 @property
15 def value_as_bytes(self) -> bytes:
16 return self.value.to_bytes(2, "big")

17 _TABLE = [
18 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
19 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
20 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
21 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
22 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
23 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
24 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
25 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
26 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
27 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
28 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
29 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
30 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
31 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
32 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
33 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
34 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
35 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
36 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
37 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
38 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
39 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
40 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
41 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
42 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
43 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
44 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
45 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
46 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
47 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
48 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
49 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0,
50]

A. CRC algorithm implementations 83/85

Specification v1.0-beta 2023-05-02

A.2 CRC-32C
This algorithm is also known as CRC-32/ISCSI, CRC-32/CASTAGNOLI, CRC-32/BASE91-C, or CRC-
32/INTERLAKEN.

Width 32 bits, polynomial 1EDC6F4116, initial value FFFFFFFF16, input reflected, output reflected, output XOR
FFFFFFFF16, residue B798B43816. The native byte order is little endian.

The value for an input sequence (49,50, . . . ,56,57) is E306928316.

A.2.1 C++, bitwise

1 #include <array>
2 #include <cstdint>

3 class CRC32C final
4 {
5 public:
6 static constexpr std::size_t Size = 4;

7 void update(const std::uint8_t b) noexcept
8 {
9 value_ ^= static_cast<std::uint32_t>(b);
10 for (auto i = 0U; i < 8U; i++)
11 {
12 value_ = ((value_ & 1U) != 0) ? ((value_ >> 1U) ^ ReflectedPoly) : (value_ >> 1U);
13 }
14 }

15 [[nodiscard]] std::uint32_t get() const noexcept { return value_ ^ Xor; }

16 [[nodiscard]] std::array<std::uint8_t, Size> getBytes() const noexcept
17 {
18 const auto x = get();
19 return {
20 static_cast<std::uint8_t>(x >> (8U * 0U)),
21 static_cast<std::uint8_t>(x >> (8U * 1U)),
22 static_cast<std::uint8_t>(x >> (8U * 2U)),
23 static_cast<std::uint8_t>(x >> (8U * 3U)),
24 };
25 }

26 [[nodiscard]] auto isResidueCorrect() const noexcept { return value_ == Residue; }

27 private:
28 static constexpr std::uint32_t Xor = 0xFFFF'FFFFUL;
29 static constexpr std::uint32_t ReflectedPoly = 0x82F6'3B78UL;
30 static constexpr std::uint32_t Residue = 0xB798'B438UL;

31 std::uint32_t value_ = Xor;
32 };

84/85 A. CRC algorithm implementations

2023-05-02 Specification v1.0-beta

A.2.2 Python, bytewise

1 class CRC32C:
2 def __init__(self) -> None:
3 self._value = 0xFFFFFFFF

4 def add(self, data: bytes | bytearray | memoryview) -> None:
5 val = self._value
6 for x in data:
7 val = (val >> 8) ^ self._TABLE[x ^ (val & 0xFF)]
8 self._value = val

9 def check_residue(self) -> bool:
10 return self._value == 0xB798B438 # Checked before the output XOR is applied.

11 @property
12 def value(self) -> int:
13 return self._value ^ 0xFFFFFFFF

14 @property
15 def value_as_bytes(self) -> bytes:
16 return self.value.to_bytes(4, "little")

17 _TABLE = [
18 0x00000000, 0xF26B8303, 0xE13B70F7, 0x1350F3F4, 0xC79A971F, 0x35F1141C, 0x26A1E7E8, 0xD4CA64EB,
19 0x8AD958CF, 0x78B2DBCC, 0x6BE22838, 0x9989AB3B, 0x4D43CFD0, 0xBF284CD3, 0xAC78BF27, 0x5E133C24,
20 0x105EC76F, 0xE235446C, 0xF165B798, 0x030E349B, 0xD7C45070, 0x25AFD373, 0x36FF2087, 0xC494A384,
21 0x9A879FA0, 0x68EC1CA3, 0x7BBCEF57, 0x89D76C54, 0x5D1D08BF, 0xAF768BBC, 0xBC267848, 0x4E4DFB4B,
22 0x20BD8EDE, 0xD2D60DDD, 0xC186FE29, 0x33ED7D2A, 0xE72719C1, 0x154C9AC2, 0x061C6936, 0xF477EA35,
23 0xAA64D611, 0x580F5512, 0x4B5FA6E6, 0xB93425E5, 0x6DFE410E, 0x9F95C20D, 0x8CC531F9, 0x7EAEB2FA,
24 0x30E349B1, 0xC288CAB2, 0xD1D83946, 0x23B3BA45, 0xF779DEAE, 0x05125DAD, 0x1642AE59, 0xE4292D5A,
25 0xBA3A117E, 0x4851927D, 0x5B016189, 0xA96AE28A, 0x7DA08661, 0x8FCB0562, 0x9C9BF696, 0x6EF07595,
26 0x417B1DBC, 0xB3109EBF, 0xA0406D4B, 0x522BEE48, 0x86E18AA3, 0x748A09A0, 0x67DAFA54, 0x95B17957,
27 0xCBA24573, 0x39C9C670, 0x2A993584, 0xD8F2B687, 0x0C38D26C, 0xFE53516F, 0xED03A29B, 0x1F682198,
28 0x5125DAD3, 0xA34E59D0, 0xB01EAA24, 0x42752927, 0x96BF4DCC, 0x64D4CECF, 0x77843D3B, 0x85EFBE38,
29 0xDBFC821C, 0x2997011F, 0x3AC7F2EB, 0xC8AC71E8, 0x1C661503, 0xEE0D9600, 0xFD5D65F4, 0x0F36E6F7,
30 0x61C69362, 0x93AD1061, 0x80FDE395, 0x72966096, 0xA65C047D, 0x5437877E, 0x4767748A, 0xB50CF789,
31 0xEB1FCBAD, 0x197448AE, 0x0A24BB5A, 0xF84F3859, 0x2C855CB2, 0xDEEEDFB1, 0xCDBE2C45, 0x3FD5AF46,
32 0x7198540D, 0x83F3D70E, 0x90A324FA, 0x62C8A7F9, 0xB602C312, 0x44694011, 0x5739B3E5, 0xA55230E6,
33 0xFB410CC2, 0x092A8FC1, 0x1A7A7C35, 0xE811FF36, 0x3CDB9BDD, 0xCEB018DE, 0xDDE0EB2A, 0x2F8B6829,
34 0x82F63B78, 0x709DB87B, 0x63CD4B8F, 0x91A6C88C, 0x456CAC67, 0xB7072F64, 0xA457DC90, 0x563C5F93,
35 0x082F63B7, 0xFA44E0B4, 0xE9141340, 0x1B7F9043, 0xCFB5F4A8, 0x3DDE77AB, 0x2E8E845F, 0xDCE5075C,
36 0x92A8FC17, 0x60C37F14, 0x73938CE0, 0x81F80FE3, 0x55326B08, 0xA759E80B, 0xB4091BFF, 0x466298FC,
37 0x1871A4D8, 0xEA1A27DB, 0xF94AD42F, 0x0B21572C, 0xDFEB33C7, 0x2D80B0C4, 0x3ED04330, 0xCCBBC033,
38 0xA24BB5A6, 0x502036A5, 0x4370C551, 0xB11B4652, 0x65D122B9, 0x97BAA1BA, 0x84EA524E, 0x7681D14D,
39 0x2892ED69, 0xDAF96E6A, 0xC9A99D9E, 0x3BC21E9D, 0xEF087A76, 0x1D63F975, 0x0E330A81, 0xFC588982,
40 0xB21572C9, 0x407EF1CA, 0x532E023E, 0xA145813D, 0x758FE5D6, 0x87E466D5, 0x94B49521, 0x66DF1622,
41 0x38CC2A06, 0xCAA7A905, 0xD9F75AF1, 0x2B9CD9F2, 0xFF56BD19, 0x0D3D3E1A, 0x1E6DCDEE, 0xEC064EED,
42 0xC38D26C4, 0x31E6A5C7, 0x22B65633, 0xD0DDD530, 0x0417B1DB, 0xF67C32D8, 0xE52CC12C, 0x1747422F,
43 0x49547E0B, 0xBB3FFD08, 0xA86F0EFC, 0x5A048DFF, 0x8ECEE914, 0x7CA56A17, 0x6FF599E3, 0x9D9E1AE0,
44 0xD3D3E1AB, 0x21B862A8, 0x32E8915C, 0xC083125F, 0x144976B4, 0xE622F5B7, 0xF5720643, 0x07198540,
45 0x590AB964, 0xAB613A67, 0xB831C993, 0x4A5A4A90, 0x9E902E7B, 0x6CFBAD78, 0x7FAB5E8C, 0x8DC0DD8F,
46 0xE330A81A, 0x115B2B19, 0x020BD8ED, 0xF0605BEE, 0x24AA3F05, 0xD6C1BC06, 0xC5914FF2, 0x37FACCF1,
47 0x69E9F0D5, 0x9B8273D6, 0x88D28022, 0x7AB90321, 0xAE7367CA, 0x5C18E4C9, 0x4F48173D, 0xBD23943E,
48 0xF36E6F75, 0x0105EC76, 0x12551F82, 0xE03E9C81, 0x34F4F86A, 0xC69F7B69, 0xD5CF889D, 0x27A40B9E,
49 0x79B737BA, 0x8BDCB4B9, 0x988C474D, 0x6AE7C44E, 0xBE2DA0A5, 0x4C4623A6, 0x5F16D052, 0xAD7D5351,
50]

A. CRC algorithm implementations 85/85

	1 Introduction
	1.1 Overview
	1.2 Document conventions
	1.3 Design principles
	1.4 Capabilities
	1.5 Management policy
	1.6 Referenced sources
	1.7 Revision history
	1.7.1 v1.0 – work in progress
	1.7.2 v1.0-beta – Sep 2020
	1.7.3 v1.0-alpha – Jan 2020

	2 Basic concepts
	2.1 Main principles
	2.1.1 Communication
	2.1.2 Data types
	2.1.3 High-level functions

	2.2 Message publication
	2.2.1 Anonymous message publication

	2.3 Service invocation

	3 Data structure description language
	3.1 Architecture
	3.1.1 General principles
	3.1.2 Data types and namespaces
	3.1.3 File hierarchy
	3.1.4 Elements of data type definition
	3.1.5 Serialization

	3.2 Grammar
	3.2.1 Notation
	3.2.2 Definition
	3.2.3 Expressions
	3.2.4 Literals
	3.2.5 Reserved identifiers
	3.2.6 Reserved comment forms

	3.3 Expression types
	3.3.1 Rational number
	3.3.2 Unicode string
	3.3.3 Set
	3.3.4 Serializable metatype

	3.4 Serializable types
	3.4.1 General principles
	3.4.2 Void types
	3.4.3 Primitive types
	3.4.4 Array types
	3.4.5 Composite types

	3.5 Attributes
	3.5.1 Composite type attributes
	3.5.2 Local attributes
	3.5.3 Intrinsic attributes

	3.6 Directives
	3.6.1 Tagged union marker
	3.6.2 Extent specifier
	3.6.3 Sealing marker
	3.6.4 Deprecation marker
	3.6.5 Assertion check
	3.6.6 Print

	3.7 Data serialization
	3.7.1 General principles
	3.7.2 Void types
	3.7.3 Primitive types
	3.7.4 Array types
	3.7.5 Composite types

	3.8 Compatibility and versioning
	3.8.1 Rationale
	3.8.2 Semantic compatibility
	3.8.3 Versioning

	3.9 Conventions and recommendations
	3.9.1 Naming recommendations
	3.9.2 Comments
	3.9.3 Optional value representation
	3.9.4 Bit flag representation

	4 Transport layer
	4.1 Abstract concepts
	4.1.1 Transport model
	4.1.2 Redundant transports
	4.1.3 Transfer transmission
	4.1.4 Transfer reception

	4.2 Cyphal/CAN
	4.2.1 CAN ID field
	4.2.2 CAN data field
	4.2.3 Examples
	4.2.4 Software design considerations

	4.3 Cyphal/UDP
	4.3.1 Overview
	4.3.2 UDP/IP endpoints and routing
	4.3.3 UDP datagram payload format
	4.3.4 Transfer payload
	4.3.5 Maximum transmission unit

	5 Application layer
	5.1 Application-level requirements
	5.1.1 Port identifier distribution
	5.1.2 Port compatibility
	5.1.3 Standard namespace

	5.2 Application-level conventions
	5.2.1 Node identifier distribution
	5.2.2 Service latency
	5.2.3 Coordinate frames
	5.2.4 Rotation representation
	5.2.5 Matrix representation
	5.2.6 Physical quantity representation

	5.3 Application-level functions
	5.3.1 Node initialization
	5.3.2 Node heartbeat
	5.3.3 Generic node information
	5.3.4 Bus data flow monitoring
	5.3.5 Network-wide time synchronization
	5.3.6 Primitive types and physical quantities
	5.3.7 Remote file system interface
	5.3.8 Generic node commands
	5.3.9 Node software update
	5.3.10 Register interface
	5.3.11 Diagnostics and event logging
	5.3.12 Plug-and-play nodes
	5.3.13 Internet/LAN forwarding interface
	5.3.14 Meta-transport

	6 List of standard data types
	A CRC algorithm implementations
	A.1 CRC-16/CCITT-FALSE
	A.1.1 C++, bitwise
	A.1.2 Python, bytewise

	A.2 CRC-32C
	A.2.1 C++, bitwise
	A.2.2 Python, bytewise

