
Call: H2020-EINFRA-2015-1 REPORT ON D2.3

REPORT ON OpenDreamKit DELIVERABLE D2.3

Review on emerging technologies

ERIK BRAY, LUCA DE FEO, VIVIANE PONS, NICOLAS THIÉRY, TOM WIESING

Due on 31/08/2016 (M12)
Delivered on 21/09/2016
Lead Universit«e Paris-Sud (UPSud)
Progress on and finalization of this deliverable has been tracked publicly at:
https://github.com/OpenDreamKit/OpenDreamKit/issues/43

DELIVERABLE DESCRIPTION, AS TAKEN FROM GITHUB ISSUE #43 ON 2017-01-04

• WP2: Community Building, Training, Dissemination, Exploitation, and Outreach
• Lead Institution: Université Paris-Sud
• Due: 2016-08-31 (month 12)
• Delivered: 2016-09-21
• Nature: Report
• Task: T2.4
• Proposal: p.39
• Final report

This deliverable reviews emerging technologies that did not exist, or were not sufficiently
visible at the time the OpenDreamKit proposal was written. Its goal is to inform other Work
Packages on technologies that have a potential impact on the achievement of their tasks,
and to suggest corrective actions to be undertaken when needed. A secondary goal for this
review is to inform the general public about technologies related to OpenDreamKit.

Parts of this deliverable appeared, or will appear, on OpenDreamKit’s weblog, and we
will keep posting reviews there as new technologies emerge.

CONTENTS

Deliverable description, as taken from Github issue #43 on 2017-01-04 1
1. Emerging technologies external to OpenDreamKit 2
1.1. Anaconda 2
1.2. Docker for Mac and Windows 2
1.3. Windows Subsystem for Linux 3
1.4. Cap’n proto 6
1.5. Binder 6
2. GÉANT Open Education Resource project 7
3. Emerging technologies internal to OpenDreamKit 7
3.1. JupyterLab 7
3.2. SAGEMATHCLOUD 8

676541 OpenDreamKit 1

https://github.com/OpenDreamKit/OpenDreamKit/issues/43
https://github.com/OpenDreamKit/OpenDreamKit/issues/43
https://github.com/OpenDreamKit/OpenDreamKit/tree/master/WP2
https://github.com/OpenDreamKit/OpenDreamKit/issues/27
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/Proposal/proposal-www.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP2/D2.3/report-final.pdf
http://opendreamkit.org
https://github.com/OpenDreamKit/OpenDreamKit/issues/43


REPORT ON D2.3 Call: H2020-EINFRA-2015-1

1. EMERGING TECHNOLOGIES EXTERNAL TO OPENDREAMKIT

This section is about technologies being developed outside of OpenDreamKit.

1.1. Anaconda
Anaconda is a free open source Python-based distribution for scientific computing, powered

by the Conda package manager. Anaconda is also the name of a family of derived solutions sold
by Continuum Analytics, however here we will only refer to the free source distribution by the
name of Anaconda.

Anaconda is already extremely popular; it is thus slightly misleading to include it in a report
on emerging technologies. However we mention it here because of its impact on OpenDreamKit
and on WP3 in particular.

One of the main goals of WP3 is to make SAGE and its components easily packaged and
distributed. This is to be implemented in deliverables D3.6: “Open package repository for
SAGE” and D3.10: “Packaging for major Linux distributions”. Because of Anaconda’s size and
popularity, its packages are another obvious target for OpenDreamKit. WP3 is already exploring
the possibilities to make SAGE and its components available as Anaconda packages. For details
and reviews of other packaging and build systems, see the notes about Sage packaging taken at
Sage Days 77.

1.2. Docker for Mac and Windows
Docker is an emerging technology for packaging software in so-called containers that can

run processes isolated from the rest of the operating system. It is the midway point between a
complete virtual machine for a single system and a process running with limited user rights.

Docker provides so-called software images that package software. These images can then be
executed inside a docker container. Furthermore, Docker provides a service called DockerHub
that allows users to upload and publish their own images. This allows developers to bundle their
software and distribute it easily. Furthermore, since each container runs isolated from the rest of
the systems, the developers do not have to rely on any kind of other system configuration.

Within the OpenDreamKit project this allows us to bundle mathematical software systems
(such as GAP, SAGE, etc) and distribute them in a manner that is both accessible to users and
easily maintainable for developers (see D3.1: “Virtual images and containers”). Furthermore
the isolated aspect of docker containers allows us to easily integrate multiple systems together
without having to make additional assumptions about the user’s specific setup — we can just
run all systems in one docker container. This way users can install entire mathematical software
stacks that the OpenDreamKit project aims to provide easily.

Docker was originally a Linux only application — it relied on a lot of functionality provided
by the Linux kernel. To make it available on Windows and Mac the Docker developers provide
a virtual machine, called Docker Toolbox, that runs a streamlined Linux system with Docker
pre-installed. This makes it possible for Windows and Mac users to run docker containers;
however it introduces an additional layer of abstraction that comes with some disadvantages.
The additional virtualisation slows down docker containers and faces technical limitations when
wanting to integrate with the host system. It also requires users to install virtualisation software
before being able to run any kind of Docker Image. Even though Docker Toolbox automatically
installs VirtualBox, this is a separate application that adds load to users machines.

Recently Docker started to build native versions for Windows and Mac. These versions do
not rely on Linux functionality — instead they leverage functionality provided by Windows
and OS X operating systems natively. In terms of the OpenDreamKit project these are a big
step in terms of usability — they make it significantly easier for users of such systems to run a
Docker container. Users can now install Docker just as they would install any other software
on their machine. Among speed and resource advantages, these versions will make it easier

676541 OpenDreamKit 2

https://www.continuum.io/anaconda-overview
http://conda.pydata.org/docs/
https://github.com/OpenDreamKit/OpenDreamKit/issues/65
https://github.com/OpenDreamKit/OpenDreamKit/issues/65
https://github.com/OpenDreamKit/OpenDreamKit/issues/59
https://wiki.sagemath.org/days77/packaging
https://www.docker.com
https://hub.docker.com/
https://github.com/OpenDreamKit/OpenDreamKit/issues/58
https://www.docker.com/products/docker-toolbox
https://www.virtualbox.org/


Call: H2020-EINFRA-2015-1 REPORT ON D2.3

for developers to create docker-powered applications and Docker containers because of better
integration between host system and containers; for example the file system of the physical
machine can be mounted inside containers more easily. As a side note, the Windows version
of Docker only works on Windows 10 Professional and Enterprise editions and requires some
manual configuration — a setting in the BIOS has to be changed (for more information see
Docker for Windows — Getting Started Documentation). This is much less effort than was
required previously, however it is not quite ready for adoption by inexperienced users yet. The
Docker developers have stated clearly their intention to make the Docker experience in Windows
and OSX as easy and streamlined as it is for Linux. When the users will be able to run Docker
without the need for manual configuration or a high-end edition of Windows, we expect many
components of OpenDreamKit to be avaible via Docker containers on Windows and OSX as
easily as they are now for Linux.

Docker for Windows and Mac has been in a private Beta since March 2016 and has recently
become available as a public Beta. Interested readers can find more information on the Docker
Blog.

When this technology reaches maturity, it will impact deliverables D3.1: “Virtual images
and containers” and D3.7: “One-click install SAGE distribution for Windows with Cygwin
32bits and 64bits”. D3.1 is already delivered; the recommended action for its continuous main-
tenance is to add Windows and Mac Docker containers to the ones already distributed. The
recommended action for D3.7 is to reconsider Cygwin as a platform for distributing one-click
installs of SAGE on Windows; this recommendation has already been enacted: progress on an ex-
perimental Docker-based installer is being tracked at https://github.com/sagemath/
docker-images/issues/1.

1.3. Windows Subsystem for Linux
One of the goals of the OpenDreamKit project is to improve support for open source mathemat-

ics software on a wider range of hardware platforms and operating systems (see T3.1). Among
the largest portability challenges is improving installation and operation of such softwares on
Microsoft Windows—still the dominant OS in many user communities, especially on desktop
and laptop computers. Despite there being many large communities of Windows users, most
open source software developers have traditionally preferred UNIX-like software development
environments. The UNIX environment differs in many significant ways from Windows, such
that support for Windows has often been neglected by those developers.

1.3.1. Introducing Windows Subsystem for Linux. In late March of 2016, at its annual developers’
conference, Microsoft announced a surprising new technology. Dubbed Windows Subsystem
for Linux (WSL), this new feature premiering in the Windows 10 “Anniversary Update” would
add a Linux system call compatibility layer to the Windows NT kernel, and a Windows-native
port of the popular “bash” shell. Furthermore, in partnership with Canonical – creators of the
popular Ubuntu – Linux distribution, the WSL supports Ubuntu’s “apt” package repository,
giving Windows users access to a large swath of open source software built for Ubuntu, but
running directly on Windows.

In short, what this means, is that Windows users will now have a Microsoft-supported Unix-
like shell environment, and the ability to run Linux-based software directly on Windows, without
a virtual machine. This would have been unthinkable to most even a decade ago.

1.3.2. Why porting UNIX software to Windows is hard. Software that is compiled from languages
like C and C++, often favored by researchers, is generally built in such a way that the compiled
binaries support a specific operating system. Each OS has a particular binary format—the way
the program is organized on disk and copied into memory at runtime. So any compiled software
built for that OS has to be arranged in the binary format for that OS in order for the OS to know

676541 OpenDreamKit 3

https://docs.docker.com/docker-for-windows/#/what-to-know-before-you-install
https://blog.docker.com/2016/06/docker-mac-windows-public-beta/
https://blog.docker.com/2016/06/docker-mac-windows-public-beta/
https://github.com/OpenDreamKit/OpenDreamKit/issues/58
https://github.com/OpenDreamKit/OpenDreamKit/issues/58
https://github.com/OpenDreamKit/OpenDreamKit/issues/66
https://github.com/OpenDreamKit/OpenDreamKit/issues/66
https://github.com/OpenDreamKit/OpenDreamKit/issues/58
https://github.com/OpenDreamKit/OpenDreamKit/issues/66
https://github.com/sagemath/docker-images/issues/1
https://github.com/sagemath/docker-images/issues/1
https://github.com/OpenDreamKit/OpenDreamKit/issues/50
https://msdn.microsoft.com/commandline/wsl/about
https://msdn.microsoft.com/commandline/wsl/about
http://www.ubuntu.com/


REPORT ON D2.3 Call: H2020-EINFRA-2015-1

how to interpret and execute it. It is not typical for one OS to be able to understand binaries for
another OS. For example, software built for Linux uses the ELF binary format; normally if one
tried to run a program built for Linux on Windows, which only understands the PE format, it
will not be recognized as a valid executable.

An even deeper complication to writing portable software is the system calls— software run
by users interacts with the operating system to perform low-level operations such as writing
to disk, or making network connections, through special functions provided by the operating
system called “system calls”. Modern UNIX-like operating systems follow, to an extent, the
POSIX standard for system calls, allowing them to be generally more interoperable. Windows,
on the other hand, has its own system call definitions that are not necessarily in one-to-one
correspondence with POSIX system calls. As such, a program built for Linux has no idea how to
communicate with a Windows operating system.

This can be a problem even on higher-level interpreted languages like Python. Although
writing code in Python abstracts away most operating system differences, Python code can still
access OS-specific features such as system calls, and this is sometimes necessary to access
more advanced OS features needed by some scientific software. So Python code that uses
Linux-specific features, for example, can only run on a version of the Python interpreter built for
Linux.

A third difficulty has to do with minor differences in user interface standards. For example, a
common issue in Windows support is its different standard for representing file paths. While
Windows paths contain a “drive letter” and uses the backslash (“\”) to separate between folders
(e.g. C:\Windows\cmd.exe), UNIX-like systems have no concept of a “drive letter”, and use
forward-slashes (“/”) (e.g. /bin/bash). Issues like this can cause many small, but pervasive
bugs when porting software between operating systems.

1.3.3. How WSL gets around it. The Windows Subsystem for Linux does two main things:

(1) It enables the Windows NT kernel to understand the ELF binary format, and translate it,
as closely as possible, to the binary format used by Windows.

(2) It implements a sizeable subset of the POSIX system call standard on top of Windows.
Although Windows’ own system calls do not map directly the POSIX, because Microsoft
has access to how its underlying operating system is implemented, they are able to
implement the POSIX interface on top of the lower-level details of their NT kernel.

WSL also provides its own bash shell—a command-line interface favored by many users
of Linux. This provides a UNIX-like command-line interface within Windows, also has an
underlying system for transparently translating things like file paths between the Windows and
UNIX formats.

The ultimate goal is to be able to take a program compiled and built on a Linux system, copy
it over to Windows, and allow it to run without any modifications, with all the system-level
translations completely transparent to the user. Targeting Linux software specifically makes this
possible, because the system interfaces it will use are well-specified and predictable in most
cases. This is as opposed to running a virtual machine, in which an entire separate operating
system is run in order to run software on that OS, and which needs to be able to run any arbitrary
OS.

This is direct support for Linux software in Windows itself—there is no virtualization.
This is also an improvement over previous efforts at supporting Linux software on Windows,

such as Cygwin. Because Cygwin is third-party software it cannot modify the Windows NT
kernel itself. It does not support ELF binaries: to run some software with Cygwin it has to be
recompiled to the native PE binaries understood by Windows. It also does its best to provide
emulation of POSIX system calls, but it has to do this by building them on to of the NT system

676541 OpenDreamKit 4

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/POSIX
https://www.cygwin.com/


Call: H2020-EINFRA-2015-1 REPORT ON D2.3

calls which, as noted above, is not a one-to-one mapping. WSL, on the other hand, provides
support directly from the operating system for POSIX and other Linux system calls.

1.3.4. What it means for OpenDreamKit. Because WSL allows binaries built for Linux to
run directly on Windows, it makes much of the enormous repository of software built for
Ubuntu (and potentially other Linux distributions) immediately available to run on Windows.
No recompilation has to be performed or anything. At least, that is the goal—as we’ll see below
it is still not fully realized.

For example, Ubuntu’s software repository already includes builds of many of the packages
that are central to OpenDreamKit, such as GAP, PARI, and some smaller packages including
many of the dependencies of SAGE. SAGE itself has an unofficial Ubuntu package—this has
been found so far to nominally “work” on WSL, but there have been found to be many bugs.
That said, a great deal of other mathematical software—especially that which is less dependent
on OS-specific features, should already work out of the box.

An additional potential advantage for WSL (indeed, one of the project’s goals as detailed in
an Ars Technica article1) is to make the development tools and command-line interfaces favored
by UNIX-oriented developers available on Windows. This makes it possible, in principle, to
develop software like SAGE the same way on both Windows and Linux.

In some sense this could be an end-run around OpenDreamKit’s goal of better supporting
Windows—Microsoft has already done the lion’s share of the work for us. But there is more to
be done, and it may not be an end-all be-all solution.

1.3.5. Caveats. As mentioned in the previous section, while some OpenDreamKit software has
been found to work in WSL, it is not without issues. Many bugs were found in running SAGE on
WSL (and even more when trying to compile it). This is not unexpected—the current release is
marked “beta” by Microsoft, and they fully acknowledge that it is buggy and incomplete.

Second, Microsoft has made it clear in several statements2 that the WSL and “Bash for
Windows” are to be considered tools for developer convenience only. It is not intended for
use in a server infrastructure nor, presumably, as a means of distributing/installing software for
end-users (i.e. who are agnostic about how the software is implemented). Although one could
take the cynical view that this just Microsoft’s way of protecting its own server products, there
are also some practical reasons for this:

(1) As a developer tool, the WSL + Bash for Windows are not easy for casual users to install.
First, it is only available on Windows 10 with the recent (as of writing) “Anniversary
Update”. Not all users are on Windows 10 yet. It also requires having an account on
Microsoft’s developer network, and for their Windows to be configured to “developer
mode” in order to receive development-related updates, plus a few extra steps. This can
also involve some sizeable downloads. This is not especially onerous for a developer, but
is not a series of steps that can or should be asked of the “casual” or first-time user just
to install some software.

(2) Despite having support directly in the kernel, the WSL is something of a walled garden.
It is not possible to run native Windows applications from within the Windows bash
prompt. Nor is it possible (in any transparent sense) to interact with Linux applications
from native Windows applications. This is probably required, on some level, to maintain
a clean abstraction.

Finally, it is not currently supported to run GUI applications on top of WSL, in part because
that requires a lot more than just system call compatibility. While not supported officially

1http://arstechnica.com/information-technology/2016/04/
why-microsoft-needed-to-make-windows-run-linux-software/

2https://blogs.windows.com/buildingapps/2016/03/30/run-bash-on-ubuntu-on-windows/

676541 OpenDreamKit 5

http://packages.ubuntu.com/trusty/gap
http://packages.ubuntu.com/trusty/pari-gp
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
http://arstechnica.com/information-technology/2016/04/why-microsoft-needed-to-make-windows-run-linux-software/
http://arstechnica.com/information-technology/2016/04/why-microsoft-needed-to-make-windows-run-linux-software/
https://blogs.windows.com/buildingapps/2016/03/30/run-bash-on-ubuntu-on-windows/


REPORT ON D2.3 Call: H2020-EINFRA-2015-1

by Microsoft, some hobbyists have made progress on it though, by integrating with existing
X server implementations for Windows3. For many mathematical softwares this is a non-
issue—they are text based: numbers in; numbers out. Additionally, graphical interfaces for
interactive research environments are increasingly moving to the web (see for example JUPYTER
or SAGEMATHCLOUD). In such cases the GUI elements have been moved out to the web
browser and the backend typically runs “headlessly”: it has no reliance on the system’s desktop
interface.

1.3.6. Conclusion. The Windows Subsystem for Linux represents a major step in the right
direction for Microsoft. It shows that they are listening to the needs of the broader software
developer community (not just those who work exclusively on Windows) and that they have
some interest in cooperating with the open source software community (this has also been
demonstrated in several other ways in recent years).

For the purposes of OpenDreamKit, this work will make development of open mathematical
software more accessible to a wider community. Although this may not improve accessiblity
for casual end-users, many users of open research software tend to become de facto developers
as well, as the more they use the software the more interested they become in modifying it for
their own purposes. Making it possible for Windows users to do development on otherwise
UNIX-oriented software, without leaving their personal desktop environments, is appealing.
Being able to compile one’s own software is also important for some highly optimized numerical
software, which tunes itself at compile time to the computer it is being built on, sometimes with
dramatic results.

In conclusion, we do not recommend any corrective action on OpenDreamKit’s deliverables.
Although WSL does not yet provide a fully reliable immediate solution for porting Open-
DreamKit software to Windows, we encourage partners involved in T3.1 to keep an eye on it as
it evolves.

1.4. Cap’n proto
Cap’n proto is a multi-language serialization protocol and toolkit, providing zero-cost encod-

ing/decoding. Cap’n proto is an open source project of Sandstorm.io.
Cap’n proto works by fixing a portable, efficient, memory layout for its data structures. This

way, data can be serialized and transferred simply by coping the raw data in memory. Cap’n
proto ships with an official C++ implementation, and many contributed implementations in other
languages (notably C, Python, Java, ...). Each implementation gives access to Cap’n proto data
structures through the language’s native APIs, thus abstracting away all the protocol’s complexity
and making data access very efficient.

Serialization is a core component of any complex system. It allows communication inter-
process, inter-node, and across time. The specific design of Cap’n proto has the potential to
allow even inter-language shared-memory communication inside the same process, something
that is usually done in a language-dependent and non-portable way.

Because of its focus on efficiency, Cap’n proto has potential applications in WP3 and WP5.
We recommend the partners involved in these work-packages to closely follow this technology.

1.5. Binder
Binder is a free cloud service that lets users define a running environment (e.g., by a Docker

file, a Python requirements.txt or a Conda environment), and obtain a link to a cloud
instance of the running environment, together with a Jupyter frontend.

This is similar to the tmpnb service, except that the repository owner defines the running
environment. The computing power for the default instance is provided by The Freeman Lab at

3http://www.pcworld.com/article/3055403/windows/windows-10s-bash-shell-can-run-graphical-linux-applications-with-this-trick.
html

676541 OpenDreamKit 6

http://opendreamkit.org/activities/2016-08-30_SMC
https://github.com/OpenDreamKit/OpenDreamKit/issues/50
http://capnproto.org/
http://sandstorm.io
http://mybinder.com
http://tmpnb.org/
http://www.pcworld.com/article/3055403/windows/windows-10s-bash-shell-can-run-graphical-linux-applications-with-this-trick.html
http://www.pcworld.com/article/3055403/windows/windows-10s-bash-shell-can-run-graphical-linux-applications-with-this-trick.html


Call: H2020-EINFRA-2015-1 REPORT ON D2.3

HHMI Janelia Research Campus to support open science. However Binder is open source and
could be deployed elsewhere.

Relevance to OpenDreamKit. Binder is a promising approach to make it as easy as possible
for our users to share publicly their Jupyter notebooks. OpenDreamKit could help by:

• Contributing ready-to-use environment descriptions for our favorite sofware (GAP, . . . )
Docker containers developed in D3.1 are probably a good starting point.

• Finding infrastructure support (universities, EGI, . . . ) to run more instances of Binder.

2. GÉANT OPEN EDUCATION RESOURCE PROJECT

The goal of D2.7: “Community-curated indexing tool (open source)” is to provide a (open
source) community-curated indexing tool for resources (documentation, tutorials, courses, note-
books, . . . ) related to mathematical software.

eduOER is a searchable, metadata-driven, multilingual, indexing service for educational
multimedia content. The eduOER service is being developed by the “Real Time Communications
and Multimedia Management” service activity of the GN4-1 project partly funded by the
European Commission. Its alpha version was released in March 2016.

There is a clear overlap between the goals of D2.7 and eduOER, which could justify offloading
the contents of D2.7 to eduOER. However, there are also some major differences:

• Role: eduOER is an aggregator (it aggregates metadata from third-party repositories),
D2.7 is a repository (of URLs + metadata).

• Content: eduOER is audio-video only (although support for other contents may be added
in the future), D2.7 is text-oriented (although any format is supported in principle).

• Metadata: eduOER aggregates metadata from participating repositories, metadata in
D2.7 is user-generated.

• Search: eduOER offers search on metadata, D2.7 requires metadata and full-text search.
However eduOER can perform full-text search if full-text-extraction is provided as
metadata.

• Social: eduOER has no social interaction (however the frontend component of eduOER
has some planned social features). D2.7 is community curated in the sense that entries
are reviewed, commented and scored by humans.

We recommend that the partners involved in D2.7 keep surveying the state of eduOER, in view
of a possible partial or total adoption of the technology, or at least in view of interoperability.

3. EMERGING TECHNOLOGIES INTERNAL TO OPENDREAMKIT

This section being about technologies developed internally by OpenDreamKit, its goal is
mainly to inform the general public. However, some task leaders may get some useful insights
on technologies they have only been following from a distance.

3.1. JupyterLab
At the SciPy 2016 conference, Brian Granger and Jason Grout presented the next generation

of the Jupyter Notebook application: JupyterLab. The presentation was followed by a post on
Jupyter’s blog4. JupyterLab is in pre-alpha stage, and is available on GitHub5.

4http://blog.jupyter.org/2016/07/14/jupyter-lab-alpha/
5https://github.com/jupyter/jupyterlab

676541 OpenDreamKit 7

https://github.com/OpenDreamKit/OpenDreamKit/issues/58
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://oer.geant.org/
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
https://github.com/OpenDreamKit/OpenDreamKit/issues/47
http://blog.jupyter.org/2016/07/14/jupyter-lab-alpha/
https://github.com/jupyter/jupyterlab


REPORT ON D2.3 Call: H2020-EINFRA-2015-1

3.1.1. What is JupyterLab? JupyterLab captures a lot of what has been learned from the usage
patterns of the Notebook application over the last 5 years and seeks to build a clean and robust
foundation that will offer not only an improved user interface and experience, but also a flexible
and extensible environment for interactive computing.

Today’s Notebook application includes not only support for Notebooks but also a file manager,
a text editor, a terminal emulator, a monitor for running Jupyter processes, an IPython cluster
manager and a pager to display help.

But the underlying code is not the cleanest to extend and providing a more responsive and
flexible UI atop it is difficult. JupyterLab is a next-generation architecture to support all of the
above tools, but with a flexible and responsive UI that adapts easily to multiple workflow needs,
thanks to its user-controlled layout that ties together many tools under a single roof. The entire
JupyterLab is built as a collection of plugins that talk to kernels for code execution and that can
communicate with one another.

3.1.2. JupyterLab in OpenDreamKit. The way JupyterLab is being built enables building differ-
ent applications, such as making other non-notebook webpages (e.g. documentation) interactive.
This fits the OpenDreamKit philosophy perfectly: rather than building one unique VRE, Jupyter-
Lab ships a modular environment to build VREs tailored to each user’s needs.

JupyterLab has the potential to be the one-size-fits-all standard for graphical user interfaces
delivered by OpenDreamKit. Given the very large projected user base of JupyerLab, this will
make adoption OpenDreamKit products easier for end-users. WP4 (user interfaces) will be
especially involved in integrating JupyterLab into its demonstrators.

We strongly encourage all partners working on delivering a fully integrated VRE, such as
SAGEMATHCLOUD (see next section), to keep assessing the maturity of JupyterLab, and its
potential to replace their currently planned UI.

3.2. SAGEMATHCLOUD
Part of OpenDreamKit’s mission is to work on user-interfaces for better collaboration and also

component architectures. This is why the SAGEMATHCLOUD platform is of special interest for
us. The goal of T3.6 is even to have a deeper look into its code base.

3.2.1. What is SAGEMATHCLOUD? SAGEMATHCLOUD is an online platform which allows
the creation of collaborative scientific projects including many scientific softwares and tools
like SAGE, Jupyter, SciPy, Julia, Latex, and more.

Its codebase is open-source, distributed under the GNU General Public License. The platform
is run by a private company (SageMath Inc.) created by William Stein who is also the initiator of
the SAGE software. The platform offers both free and paying premium accounts.

Projects. The main tool of the SAGEMATHCLOUD platform is the possibility to create projects
from which you can access the many features. A single user can create as many projects as
needed. Each project is an independant Linux virtual machine. It thus comes with a full file
system and an online terminal that allows you to run Linux commands. The storage of each
project is limited by default but can be extended on premium accounts. You can access the files
through the SAGEMATHCLOUD web interface or also through ssh.

One key feature is that each project can be shared by multiple users. This allows sharing
access to the files and also real time editing though the platform. Single files or folders can
also be made public. A link is then provided which allows either viewing or downloading the
files (even without a SAGEMATHCLOUD account) and also an easy way to copy onto a different
SAGEMATHCLOUD project owned by the viewer.

676541 OpenDreamKit 8

http://cloud.sagemath.com/
https://github.com/OpenDreamKit/OpenDreamKit/issues/55
http://www.sagemath.org/
http://jupyter.org/
https://www.scipy.org/
http://julialang.org/
https://fr.wikipedia.org/wiki/LaTeX
https://github.com/sagemathinc/smc


Call: H2020-EINFRA-2015-1 REPORT ON D2.3

Softwares. When you create a SAGEMATHCLOUD project, your Linux virtual machine comes
with many softwares and tools especially useful for mathematicians and scientists in general. We
list here the most important ones.

• SAGE and SAGE worksheets. As the name indicates, the platform was primarily devel-
oped as a replacement for the old SAGE notebook server to allow collaborative online
work using SAGE. The SAGE software is of course installed by default on the virtual
machine and one can run SAGE through the online terminal. The platform also offers its
own SAGE worksheet filetype to edit and run SAGE code in a cell-type system (as in
the Jupyter notebook or the old SAGE notebook) mixed with other cell types like text
and HTML. This is used to create interactive worksheets that can be easily shared and
copied.

• Jupyter. SAGEMATHCLOUD includes a Jupyter notebook interface with many kernel
options (Python 2, Python 3, Anaconda, SAGE, R, Julia, and more). On top of the usual
interface, SAGEMATHCLOUD’s Jupyter offers real time synchronization among multi
users.

• Latex. The common document preparation system Latex is installed on the virtual
machine. It also offers a multi user editor with real time synchronization and a dual view
of both the Latex source code and pdf output.

Notebooks: SAGEMATHCLOUD, SAGE and JUPYTER. SAGEMATHCLOUD offers very
inovative features in terms of notebooks which should be studied both on technichal and usability
aspects.

• Real time notebooks. Real time multi user synchronization is a key aspect of SAGE-
MATHCLOUD development. In particulatr, it has been a motivation for the development
of SAGEMATHCLOUD homemade SAGE worksheet. More recently, it has also been
added to the JUPYTER notebook by enhancing the original software. This enhancement
is of particular interest for OpenDreamKit as this could benefit all JUPYTER users.

• Muli-kernel, multi-client. The multi-kernel philosophy is an inherent part of JUPYTER
development. Indeed, JUPYTER is a notebook interface that can be used with many
different language kernels (python, SAGE, Julia, and more). SAGEMATHCLOUD follows
the same spirit and offers a variety of kernels on the SAGE worksheet. One advantage
of the SAGE worksheet is that it allows for many kernels to be used in different cells
of one single worksheet (in JUPYTER, the kernel has to be chosen once and for all for
the entire worksheet). Furthermore, SAGEMATHCLOUD has developed what they call
the JUPYTER bridge: allowing user to run a JUPYTER kernel from within a SAGE
worksheet. In this sense, the SAGE worksheet could be seen as alternative client to
JUPYTER the same way one can develop alternative kernels. More on this question can
be read on the github page of SageMathInc.

3.2.2. Sharing and teaching with SAGEMATHCLOUD.

Accessibility. The great advantage of SAGEMATHCLOUD is that it offers a complete scientific
environment without the usual setting up hassle. It makes the different software very easy to
access independently of the user personal system as long as there is an access to a good Internet
connection. As an example, a mathematician can share a demo of code (in a Jupyter or a SAGE
notebook) that could be used directly by its collaborators. Of course, the Internet access is itself
a limit. Given poor network access, for example but not only in some developing countries, the
latency can considerably reduce the usability of the system.

676541 OpenDreamKit 9

https://github.com/sagemathinc/smc/wiki/sagejupyter


REPORT ON D2.3 Call: H2020-EINFRA-2015-1

Teaching. When teaching is concerned, the sharing facilities of SAGEMATHCLOUD come
very useful. Moreover, the platform offers a course managing system. The principle is as follows:
the teacher has acces to a “main project” containing the class material; every student has its own
project which is shared with the teacher. The course management system allows for automatic
actions like:

• Create all the student projects where the teacher is automatically added as a collaborator.
• Create assignments by copying some material from the main project to the students

projects.
• Collecting, grading, and returning assignments by copying back and forth between the

students projects and the main project.
An assignment is just a folder. It can have multiple content depending on the class. Of

course, the system is especially interesting when the assignment is given within an interactive
worksheet and can then be achieved by the student directly on the interface. SAGEMATHCLOUD
then becomes a very good interface to initiate students to the many scientific softwares it offers.

3.2.3. SAGEMATHCLOUD and OpenDreamKit. The many features of SAGEMATHCLOUD
make it a very interesting project for OpenDreamKit to look at. Indeed, it offers one of the
leading technologies for scientists in terms of cloud project management, teaching and sharing
facilities. In particular it showcases a collection of features that have been selected and adopted
by a wide community.

It also has some limits which we would like to address through our project:
• Accessibility. As previously mentioned, the cloud based interface can not be easily

accessed in places where the Internet connection is not good enough. One solution would
be to have clear easy-to-follow instructions on how to install a SAGEMATHCLOUD
platform in a local institution or on a personal machine. This is to be taken care of
in D3.2: “Understand and document SAGEMATHCLOUD backend code.” and D3.4:
“Personal SAGEMATHCLOUD: single user version of SAGEMATHCLOUD distributed
with SAGE.”

• Interoperability and file formats. At the moment, the SAGEMATHCLOUD platform
offers two file formats for interactive worksheet: the Jupyter one and a home-made
SAGE worksheet one. It is not possible to run the SAGE worksheets elsewhere than on
the platform. Especially, there is no way to run a SAGE worksheet on a local SAGE
installation. It is not yet clear what a long term unified worksheet solution would be and
it is part of the OpenDreamKit project to work on this question. The technical choices
made for the SAGE worksheets are interesting to investigate in this regard, as well as, file
conversions and so on.

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.

676541 OpenDreamKit 10

https://github.com/OpenDreamKit/OpenDreamKit/issues/61
https://github.com/OpenDreamKit/OpenDreamKit/issues/63
https://github.com/OpenDreamKit/OpenDreamKit/issues/63
https://github.com/OpenDreamKit/OpenDreamKit/issues/63

	Deliverable description, as taken from Github issue #43 on 2017-01-04
	1. Emerging technologies external to OpenDreamKit
	1.1. Anaconda
	1.2. Docker for Mac and Windows
	1.3. Windows Subsystem for Linux
	1.4. Cap'n proto
	1.5. Binder

	2. GÉANT Open Education Resource project
	3. Emerging technologies internal to OpenDreamKit
	3.1. JupyterLab
	3.2. SageMathCloud


