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The OpenDreamKit proposal had envisioned WP6: Data/Knowledge/Software bases
as a foundational enterprise that would develop a knowledge-based architecture over the
course of the project and would allow to re-engineer ad-hoc interfaces between systems
(e.g. from T3.2 (#51)) on a more semantic basis – the knowledge aspect (K). Consequently,
the proposal envisioned concentrating the data (D) aspect on the mathematical knowledge
bases (specifically LMFDB, OEIS, and FindStat) and proposed a host of foundational
investigations of mathematical for the software (S) aspect with applications e.g. in the
verification of algorithms.

Already the kickoff meeting in Paris in September 2015 revealed that the D/K/S aspects
are much more tightly coupled in systems than anticipated. This was confirmed by the
DKS survey conducted subsequently. In particular, the participants of WP6 identified the
interoperability of OpenDreamKit systems to be one of the most critical steps in creating a
VRE toolkit. Thus we prioritized tasks T6.1 (#123), T6.2 (#124), T6.3 (#125) and organized
a series of workshops and code-maratons to develop a semantic foundation for system
interoperability and simultaneously test it in implementations.
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As a consequence, we have completed the initial design of D/K/S-bases (for this deliv-
erable) in parallel with the initial implementation of a DKS base format based on OM-
Doc/MMT and the implementation of a DKS base system itself based on the MMT system
(both for D6.3 (#137)), all activities fuelling each other. D6.3 (#137) was thus completed
about three months ahead of schedule. Note that the RNC schema envisioned in the title
proved un-necessary since, with the refined Math-in-the-Middle (MitM) design, the normal
OMDoc/MMT schema is sufficient. Due to the resulting tight coupling between this deliver-
able and D6.3 (#137), and for the convenience of the reader, we have decided to report on
both deliverables together.

In this report we therefore present the design process towards DKS-theories including the
overall architecture (for this deliverable), a survey of the systems involved (for D6.3 (#137)),
our current implementation (for D6.3 (#137)) as well as our plans for the future. Each part
is labeled by the deliverable they contribute to mainly.
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1. INTRODUCTION

The goal of the OpenDreamKit project is to develop a generic toolkit that will enable mathe-
maticians (and scientists in general) to build so-called Virtual Research Environments (VREs)
that are optimally tailored to specific communities. These will combine a multitude of different
tasks, such as symbolic mathematics, automatic code generation, numerical computation, data
bases, post-processing or visualisation. A VRE will provide end-users with a single tool-chain
that can be used for most, if not all, of their research.

To be able to build such a toolkit, we will need to combine three different aspects of “doing
mathematics research” – Data (D), Knowledge (K) and Software (S). Ultimately we want to
create and make use of these through a VRE: we want to model the real world, translate it into a
set of mathematical objects and computationally simulate and thereby explore them.

Presently, the Data Aspect is commonly implemented in special databases, such as LMFDB,
FINDSTAT or OEIS, that use tables or lists of numerical of symbolic data. The Software Aspect
is represented by mathematical computation systems, such as GAP, SageMath, and others that
implement algorithms on top of this data. The Knowledge Aspect is implemented in mathematical
documents that describe mathematical concepts, their meanings, and their properties. The latter
aspect includes at least the knowledge underlying the data (e.g., the schemas of the database)
and the software (e.g., the data types involved in the computations) and thus bridges between
those two. An illustration with more examples of these aspects is given in Figure 1 (from the
OpenDreamKit proposal).

Researcher
Communities

Storage resources
(local, shared folder, cloud)

Computational resources
(local, super computer, cloud)

Knowledge

Data

So
ft

w
ar

e

Blogs

Collaborative
help centers

Mailing lists

So
ft

w
ar

e 
Fo

rg
es

Issue trackers

Code repositories

Continuous
integration

tools

Teaching
resource

repositories

Scientific journals

wikipedia.org

User interfaces
(Jupyter notebook, ...)

Computational
components

Databases

O
nline databases

oeis.org

lmfdb.org

Wikis

mathoverflow.net

findstat.org

Preprint servers
arxiv.org

OpenDreamKit
Collaborative
workspaces

FIGURE 1. Virtual Research Environments for research in pure mathematics and applications.

Notably, even though most systems combine elements from more than one aspect, each
system has a clear primary aspect and uses only optional or auxiliary infrastructure for the
other aspects. For example, a computation system like SageMath includes knowledge mostly
in comments and data mostly in dedicated tables. Similarly, a database system like LMFDB
includes a simple knowledge base for the relevant definitions and performs some mathematical
computations in its frontend. Thus, each system tends to be biased towards one aspect, and that
makes interoperability between these systems unnecessarily difficult.
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The approach of work package WP6: “Data/Knowledge/Software-Bases” in the Open-
DreamKit project is to model these three aspects of mathematics research explicitly and uniformly.
This provides a strong theoretical basis for the envisioned mathematical VRE toolkit. Concretely,
the OpenDreamKit proposal calls for an extension of the well-established framework of theory
graphs — developed for the representation of mathematical knowledge and languages (see
Section 3) — with Data and Software components to arrive at a foundation for mathematical
DKS-bases. This deliverable report surveys the results of the first year and presents the initial
design for the DKS-bases.

In a series of workshops (September 2015 in Paris, January 2016 in St. Andrews, June 2016
in Bremen, and July 2016 in Białystok) the participants working on WP6 met and discussed the
topic of integrating the OpenDreamKit systems into a mathematical VRE toolkit1. Key results
were the observation that knowledge-aware interoperability of software and database-systems
is critical for OpenDreamKit as well as the consensus that it can be achieved by aligning the
mathematical knowledge underlying the various systems. This requires explicitly representing
the three aspects of mathematical research and basing computational services and inter-system
communication on a joint DKS-base. These results are engrained in the “Math-in-the-Middle”
(MitM) paradigm [DehKohKon:iop16], which is a central result of this report.

In the rest of this report, we describe the following:
(1) In Section 2 we report on the initial survey of existing OpenDreamKit-systems with
DKS aspects (see also Appendix A for the raw data). This survey was conducted at the
Paris workshop in September 2015 and through GitHub as part of the OpenDreamKit
project. Moreover, we derive requirements for a DKS theory from that.

(2) In Section 3 we introduce the knowledge-driven OMDoc/MMT framework, which we
use as the starting point towards building DKS theories. This is a previously existing
knowledge representation language. Because it already abstracts from system and
language-specific idiosyncrasies, it is well-suited for providing the level of abstraction
necessary for a system-integrating VRE. Our goal will be to extend it to the data and
software aspects.

(3) In Section 4, we present the MitM paradigm. This is a novel method that we have
developed in OpenDreamKit for integrating the software systems into knowledge repre-
sentation.

(4) In Section 5, we extend the MMT language and system with novel explicit concepts for
representing the data aspect.

(5) In Section 6, we present a few case studies of representing concrete software and data
systems on top of our DKS-bases.

The resulting implementation of DKS-bases on top of the MMT system provides the basis for
general VRE services, which can be developed in future OpenDreamKit phases. These include
remote procedure call via the SCSCP protocol [SCSCP; FHKLR:SCSCP08; HorRoz:ossp09],
joint search engines over heterogeneous libraries of mathematical systems, or computational
service discovery via MONET-like methods [aird-et-al:2005].

2. REPORT AND CASE-STUDY (FOR D6.2)

Starting in September 2015, we conducted a survey of the various big systems involved in
OpenDreamKit. These would be SageMath and GAP for computer algebra(-focused) projects,
and FINDSTAT and LMFDB for database(-focused) projects. The OEIS is a well-known project

1It is notable that for many years many of the participants to these workshops had collaborated on a variety
of projects, even occasionally on interoperability issues. For instance a previous workshop in Edinburgh in 2013
was titled Online databases: from L-functions to combinatorics, and grouped many participants to the SageMath,
FINDSTAT and LMFDB collaborations. However, the machinery of theory graphs was quite foreign to them then,
and still needed to be extended to the Data and Software realms.
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that is also focused on a database and was present in many discussions, but did not need to be
explicitly surveyed. We nevertheless introduce that project in our summaries below. The raw
survey results are in Appendix A

2.1. OEIS
OEIS [oeis] stands for On-Line Encyclopedia of Integer Sequences. It is a collection of around

250 thousand integer sequences that are stored as pure text form. The OEIS is licensed under
Creative Commons and thus freely accessible.

2.2. GAP
GAP [gap] is a computer algebra system with a particular emphasis on group theory and

discrete mathematics in general. Its fundamental ontology consists of objects (e.g. a monoid)
satisfying various (composite or elementary) filters (e.g. isAbelian) which can be thought of as
the types of objects. Filters can imply other filters. On top of these filters, operations are defined
(e.g. computing the degree of a group) which are implemented by arbitrarily many concrete
implementations called methods. The user only ever applies operations - the GAP system then
uses a sophisticated method selection algorithm based on the specific (additional) filters satisfied
by a given object.

GAP also has an extensive collection of associated databases.

2.3. SageMath
SageMath [sagemath] is a Python-based computer algebra system. Much of its knowledge

is organized based on the notion of a category (which is related to, but not equivalent to the
category theoretical notion), which provides methods on its elements (e.g. elements of a group),
its parents (e.g. groups themselves) and its morphisms (e.g. the group homomorphisms). Each
category can add new axioms and inherit from other categories - e.g. the category AbelianGroups
inherits from Groups and adds the axiom abelian.

Much like the object/filter/operation tools in GAP, the category framework in SageMath is
meant to provide uniform infrastructure to build mathematical objects. This is operationalised by
dynamically constructing classes that represent parents, elements, morphisms, etc (and, crucially,
their hierarchies).

Just as for GAP, a lot of the knowledge is embedded in the documentation. This seems
to be due to the ease of access for developers, but also due to the need of documenting the
implementation decisions made, which invariably are tied to very domain-specific knowledge. I

2.4. LMFDB
LMFDB [lmfdb] is a web service interacting with a database of objects from number theory. It

is mostly focused on L-functions, but these can be obtained through many different constructions,
so the LMFDB is also concerned with the many related objects. The database is built in
MongoDB and as such uses JSON to model all of its data, and the web service interfaces to it
mostly through custom Python or SageMath software for on-the-fly computations (or software
packaged within SageMath), although there are efforts to switch to precomputed tables. A lot of
the mathematical knowledge is implicit in that workflow.

The LMFDB includes a collaborative knowledge base, called knowls. Remarkably that
knowledge base is important for the onboarding process to the collaboration.

2.5. FindStat
FINDSTAT [findstat] is a database of objects from combinatorics. These objects are of very

few kinds: combinatorial collections, combinatorial statistics and combinatorial maps, each
containing many collections. FINDSTAT is a clear extension to the idea underpinning the OEIS,
and uses lots of SageMath code. Users of FINDSTAT are almost certainly users of the OEIS, and
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tend to be SageMath contributors. FINDSTAT is also meant to be very collaborative, with a wiki
attached to each of the collections.

2.6. Observations
The projects listed here are of two types: either data-backed or software-backed. In both

cases, the mathematical knowledge is implicit, but communicated through different channels:
software documentation for software projects, database schemas and wikis for data-backed
projects. There is a lot of interdependency between those projects, both on the developer base
and on the functionalities. SageMath, for instance, interfaces (or is interfaced to) by all the other
projects.

3. THEORY GRAPHS: THE KNOWLEDGE ASPECT

We only sketch MMT here to the extent that we need it and refer to [RabKoh:WSMSML13]
for details. An OMDoc/MMT theory graph is a diagram in the category of MMT theories and
theory morphisms. Theories represent all kinds of languages such as mathematical foundations
and type systems as well as individual mathematical theories. Theory morphisms represent
relations between them including translations, imports, and representation theorems.

Theories. In the simplest case an MMT theory is a finite list of symbol declarations. Each
symbol declaration must have a name and may optionally have a type object, a defining
object, and arbitrary meta-data (such as tags, cross-references, comments, etc). The objects are
OpenMath 2.0 objects [BusCapCar:2oms04] — these are complex expressions formed from
application, binding, variables, literals, and symbol references.

Critically, MMT enforces structural validity: Every object may only reference symbols that
are declared in or imported into the containing theory. But MMT abstracts from the foundational
semantics such as type and logic systems that specify exactly which objects are meaningful.
This puts MMT into a powerful intermediate position, where enough structure is guaranteed for
knowledge management while not committing to a particular foundation.

An example MMT theory can be found in Listing 1. The theory Int shows a part of the
formalisation of integers including comments. Here the namespace is just a URI that is used
to form globally unique URIs for all subsequent knowledge items. As described above, each
symbol declaration may consist of multiple components: types are prefixed with :, definitions
with =, and notations with #.

LISTING 1. Example of an MMT theory: Defining a theory of integers.
/T MMT theories have an attached namespace
namespace http://www.opendreamkit.org/

/T We define a formalisation for integers
theory Int : ?LF =

/T We make use of a logical foundation
include ?Logic

/T We declare a type of integers
int: tp # Z

/T We define a minus operation
minus : tm Z→ tm Z # − 1

/T Now we define even more operations
leq : tm Z→ tm Z→ prop # 1 ≤ 2
geq : tm Z→ tm Z→ prop
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= [a,b] b ≤ a # 1 ≥ 2

/T And axioms on them
leq refl : {a} ` a ≤ a
leq antisym : {a,b} ` a ≤ b→ ` b ≤ a→ ` a =̇ b
leq trans : {a,b,c} ` a ≤ b→ ` b ≤ c→ ` a ≤ c

/T (omitted some more declarations here)

Above we have skipped the MMT module system, which is not essential for our results
here. In the simplest case, include declarations import declarations from other theories. Above
this is used to include the theory Logic into the theory Int. (The ? character occurs to form
the URI of a theory relative to the current namespace.) Moreover, there is one detail of the
MMT module system that is critical for OpenDreamKit: Every theory may have a meta-theory.
Above, the meta-theory of Int is LF. Practically, the meta-theory mostly behaves like an include.
But conceptually, the meta-theory of a theory T is the language that provides the foundational
background to understand T . The most common use case employs three meta-levels: Firstly,
an MMT theory introduces a logical framework F . Secondly, F serves as the meta-theory of a
foundation L, which uses the symbols of F to define a particular type system and logic. Thirdly,
a library of mathematical knowledge is developed as a theory graph in which all theories have
meta-theory L.

A sample theory graph can be found in Figure 2. It contains some of the theories we make use
of in our approach.

Math-In-The-Middle
polynomial
power series
. . .

Logic
bool
prop
and
. . .

Numbers
int
nat
. . .

. . .

Sets
set
emptyset
setcons

Elliptic Curves
elliptic curve
base field
minimal Weierstrass model
. . .

Codecs
codec
intAsString
intAsList
standardList
. . .

FIGURE 2. A Theory Graph of some of the theories (excluding their meta-
theories) involved in OpenDreamKit. Symbols are listed underneath the theory
name, and includes are represented as solid edges. We omit the full declarations
and some of the more fine-grained structure for simplicity.

Most systems (including most systems involved in OpenDreamKit) focus on the third level
only. The second level is usually left implicit, e.g. because it is hard-coded in the implementation
of the computation system. Because the second level is hard-coded, there is then no need for the
first level. For system integration, it is important to make the second level explicit so that the
semantics of the exchanged knowledge can be specified. Thus, MMT already anticipates much
of the high-level concepts needed for the system-spanning DKS-bases in OpenDreamKit.

Theory Morphisms. There are two kinds of theory morphisms: imports and views. Imports are
central for building theories modularly by pulling together symbols introduced in other theories.
Practically, imports can be interpreted as copying symbol declarations while instantiating,
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renaming, or otherwise modifying them. The semantics of theories with imports is defined
categorially via colimits.

A view from theory S to theory T is a translation of S-objects to T -objects. Contrary to
imports, views are given after the involved theories have been defined. Thus, they have the char-
acter of theorems rather than definitions, and indeed views usually induce proof obligations that
must be discharged for a view to be accepted. In the presence of appropriate logical frameworks,
MMT guarantees a critical property: the translation of objects preserves all properties of the type
system and the logic. In particular, all S-theorems are translated to T -theorems by views.

Views are mainly used for the integration of knowledge that comes from different sources.
Say system A defines a group as an associative quasigroup with identity over an operation
/ (in a theory GA), and system B as a monoid with inverses for an operation ◦ (in a theory
GB), then we can build a theory isomorphism (a pair of mutually inverse views) that relates the
two group theories GA and GB and allows to transport all theorems between the two theories
– and consequently all algorithms between the two systems A and B. The modularity of the
OMDoc/MMT system and an elaborate calculus of theory morphisms make the establishment
and management of views effective.

Implementation. Theory graphs are implemented in the MMT system [Rabe:MAGMS13;
uniformal:on]. At its core, this system allows for the declaration of theories along with symbols,
imports and views, to build objects and translate them along views.

On top of this, the MMT system provides a number of logical and knowledge management
services. The former includes computing the respective colimits, translating objects along
morphisms, or type checking and proving objects relative to the respective meta-theory. The
latter include import/export of libraries, editing, browsing, and middleware for system integration.
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4. MATH IN THE MIDDLE: THE SOFTWARE ASPECT (FOR D6.2)

The OpenDreamKit project intends to integrate multiple mathematical software systems into
a VRE toolkit. These systems are constituted by large collections of algorithms manipulating
highly optimized data structures representing mathematical objects with the intent of solving
specific computational problems. These systems overlap in the mathematical objects they cover
and the problems they can solve, but every system has aspects that are not covered by any other
system (as efficiently or generally). In particular, algorithms, implementation languages, and
data structures differ significantly between systems and are optimized to their particular domain
and intended performance profile. As the systems represent decades worth of experience and
development, a re-implementation is prohibitive in cost and might lead to systems with greater
coverage, but less efficiency.

Given this situation, the integration problem in OpenDreamKit becomes a problem of estab-
lishing an interoperability layer between systems. As we have seen in the previous section, the
mathematical knowledge — for specifying the computational problems — can be expressed and
made interoperable via views in the OMDoc/MMT format, specifying the exact data structures
and intended behavior of software systems — and possibly verifying that the implementation
conforms to this is the realm of “Formal Methods”. Again, the effort of doing this for any of the
systems in OpenDreamKit is prohibitive and way beyond the scope of the project.

4.1. Specification of Interfaces
If we analyze mathematical software from a specification-based viewpoint, then we see three

levels:
S1. Math Specification represents the underlying mathematical knowledge and the computa-

tional problems of the domain in a system-independent way.
S2. Interface Specification represents the interfaces of mathematical software systems: the

abstract data structures, and the input/output behavior (and possible side-effects) of the
user-visible functions and procedures provided by the system.

S3. Implementation gives concrete implementations of the interface specification in a specific
programming language.

Most modern programming languages support the organization of programs into software
libraries by separating the specification (S2.) and implementation levels (S3.), allowing multiple
implementations of a single interface specification. Examples include abstract vs. concrete
classes in object-oriented programming, signatures vs. structures in SML, header files vs. C files
in C, and operations vs. methods in GAP.

In all of these languages, the interface specification level is utilized for intra-library interop-
erability, making use of the more abstract description of the interface specification that can be
instantiated by its various implementations. The interface specifications usually tie the names of
the interface functions to argument and result types.

The specification of intended behavior is usually left to documentation facilities. This is
the domain of the math specification level (S1.). This level is only marginally supported
by programming languages, but a central concern in the OpenDreamKit project. The math
specification level differs from the other levels by using some kind of logical system that can
express universal properties like ∀x, y.x = sqrt(y)⇔ x2 = y.

Fortunately, we do not need to specify and verify all existing systems in order to integrate
them into a VRE toolkit: the specification (of objects and intended behavior) at the mathematical
and interface level is sufficient. In particular quality control (establishment of correctness of the
implementations) can be left to other means2 and as a result we can resort to more lightweight
methods for establishing interoperability.

2In particular, it is independent of interoperability of mathematical software systems.
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4.2. The Math-in-the-Middle Paradigm
In the OpenDreamKit project we want to cover the software aspect of a math VRE toolkit

via an approach we call “Math-In-The-Middle” paradigm (MitM; see [DehKohKon:iop16] for
details and Figure 3 for an overview diagram). In contrast to most programming languages, the
MitM paradigm concentrates on levels S1. and S2., represents them in the OMDoc/MMT format
and leaves the implementation (S3.) to the respective systems.

Here the underlying mathematical knowledge (level S1.), the “real math”, is used as a reference
ontology (in the “middle” – hence the name) for the math VRE toolkit. This ontology is
represented as an OMDoc/MMT theory graph M as described in the previous section.

Additionally, for every systen in the OpenDreamKit VRE toolkit we establish an interface
specification as an OMDoc/MMT theory graph I and link it to the MitM ontology via interface
views. These fulfil two purposes: they align the namespaces of the systems with the math
specification and they specify the intended behavior of the systems in terms of the MitM
ontology: recall that OMDoc/MMT views transport I-theorems to M -theorems, so all properties
expressed in these are conserved.

MathF
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PyF C++F

Sage GAP
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SEC
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SAGE

Algorithms

Database
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Abstract Classes

GAP

Algorithms

Database

Knowledge

AbstractClasses

LMFDB
MongoDBKnowls Abstract Classes
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generategenerate

refactor refactor

refactor

FIGURE 3. The MitM paradigm in detail. PyF, C++F and CompF are (basic)
foundational theories for Python, C++ and a generic computational model. SEC,
LEC and GEC are theories for SageMath, LMFDB and GAP elliptic curves.

A sketch of the theory graph based on the example of elliptic curves can be found in Figure 2,
an overview of the paradigm can be found in Figure 3. We will not go into details here but show
how this architecture integrates the Software and Knowledge Aspects. Clearly, the MitM ontology
– the blue cloud in the middle – is a specification of the underlying mathematical knowledge as
an OMDoc/MMT theory graph, while the system interface theories – the purple clouds around it
– formally specify the names and types (i.e. the argument patterns) and intended behaviour of the
interface functions of the systems (often semi-formally to make the MitM approach scalable).
The OMDoc/MMT views – the wavy arrows between the theories – are interpretation morphisms;
in this particular case where they connect the mathematical specification to the system theories,
they express the “implementation relation”. Thus the OMDoc/MMT framework already allows
to integrate the knowledge and software aspects for system interoperability.
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4.3. Design Decisions and Initial Evaluation
The MitM paradigm we choose for the software (S) aspect of the OpenDreamKit VRE toolkit

essentially takes two design decisions:
D1. Formalizing the interface specification (S2.: names and types of the interface functions) of

the systems is sufficient to ensure system interoperability.
D2. Integrating the implementations at Level S3. — e.g. GAP or Python code — into the

OMDoc/MMT theory graphs is overkill: this code can anyway only be executed by the
respective systems — i.e. GAP or SageMath— and is rarely exchanged between systems.

Therefore we will base our foundation on OMDoc/MMT theory graphs directly rather than on an
extension of OMDoc/MMT with “biform theories” [KohManRab:aumftg13; Farmer:btc07]
as envisioned in the proposal. Such biform theories could explicitly represent the code as well
and thus enable the (partial) verification of mathematical software systems, but this is not on the
critical path towards a mathematical VRE.

The MitM paradigm constitutes a lightweight alternative; identifying and refining it has been
one of the major achievements of the first year in WP6.

To evaluate the paradigm and the design decisions we have implemented extensions to the
GAP and SageMath systems that export interface theory graphs in the OMDoc/MMT format
(see Section 6 for details):

• GAP exports types, constructors, functions, data, and their documentation: 4097 Objects
exported (2996 unique) in ca. 210 theories.
• SageMath exports categories/types, annotates functions: 382 Categories using 25 Axioms

and (in total) 808 methods.
These interface theories allow the representation of all mathematical objects in GAP and Sage-
Math as OpenMath2/MathML3 objects [BusCapCar:2oms03; CarlisleEd:MathML3] whose
symbols are grounded in the interface theories (interpreted as OpenMath content dictionaries).
GAP already had an OpenMath phrasebook — an import/export facility for OpenMath objects
— and we have developed one for Python and SageMath [py-openmath:on].

Even though the development of the MitM paradigm is still at an early stage, these case studies
show the potential of the approach. We hope that the nontrivial cost of curating an ontology
of mathematical knowledge and interface views to the interface theories will be offset by its
utility as a resource, and we are currently exploring this hope. The unification of the knowledge
representation components in the MMT system

(1) enables VRE-wide domain-centered (rather than system-centered) documentation: the
namespace alignment given by the interface-views allows to re-use documentation for a
concept, object, or model in the MitM ontology in all interface functions aligned with it.

(2) can be leveraged for distributed computation via uniform protocols like the SCSCP [HorRoz:ossp09]
and MONET-style service matching [CaprottiEtAl:MathServiceMatching04:tr] (the
absence of content dictionaries — now given as interface theories — was the main
hurdle that kept these from gaining more traction). Again, GAP already had an SCSCP
interface, and we are developing one for SageMath at [py-scscp:on].

(3) will lead to the wider adoption of best practices in mathematical knowledge management
in the systems involved; in fact, this is already happening: the development of the GAP
interface theory exporter led to the discovery of hundreds of documentation errors and to
a large-scale code refactoring that made type information more explicit and could lead to
efficiency gains by extended static analysis in the future.
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5. VIRTUAL THEORIES: THE DATA ASPECT

5.1. Virtual Theories (for D6.2)
OMDoc/MMT theories are limited when it comes to representing large amounts of data.

Conceptually, every database should be represented as one theory, but this can easily lead to very
large theories. For example, the theory for elliptic curves in the LMFDB would contain 319,882
symbol declarations: one definition for every curve. Prior to OpenDreamKit, MMT could only
load whole theories into main memory, which made it insufficient as a basis for DKS-bases.

Moreover, many data-driven theories are technically infinite collections of which only finite
fragments have been explored so far. For example, this applies to almost all the databases in the
LMFDB (each of which enumerates a certain infinite class of mathematical objects) and OEIS
(each of which enumerates a certain integer sequence). As the explored fragments grow, the set
of symbol declarations in the corresponding MMT theory must grow accordingly.

Therefore, we generalize MMT theories to allow for a virtual, possibly infinite set of declara-
tions, that is explored dynamically. The combination of virtual theories with the Math-in-the-
Middle approach yields our desired DKS-bases.

Definition 1 (Virtual Theory). A virtual theory is like an MMT theory but with a (possibly
infinite) partially ordered set of declarations.

We give a trivial example of an infinite virtual theory for the natural numbers: besides the
usual symbols for 0 and succ as well as the Peano axioms, it contains the totally ordered set of
one declaration for every natural number. For example, we might have a declaration

5 : nat = succ(4)

to introduce a symbol for the number 5. In the presence of an addition operator, this theory might
also contain one axiom for every pair of natural numbers, e.g., to state the truth of 2 + 2 = 4.

This is a typical situation: we have an infinite (or very big) set of declarations that are generated
systematically. In some cases (as for the natural numbers above), every declaration can be easily
generated on-demand. Thus, one might think that virtual theories can be easily represented in a
finitary way by storing the algorithm that produces the generations.

However, this falls short in general. For example, the generation of the declarations may be
so expensive that it is only practical if they are precomputed and stored in a database. This is
what happens in the LMFDB (and was why the LMFDB was introduced in the first place). It is
also possible that there are multiple algorithms enumerating different fragments of the virtual
theory, or that no generating algorithm is known (e.g., for some integer sequences in the OEIS)
and individual declarations must be collected manually.

LISTING 2. JSON representation of a curve in LMFDB.
{

”torsion structure”: [”5”],
”ainvs”: [”0”,”−1”,”1”,”−10”,”−20”],
”x−coordinates of integral points”: ”[5,16]”,
”cm”: 0,
”number”: 1,
”rank”: 0,
”sha primes”: [],
”galois images”: [”5Cs.1.1”],
”heights”: [],
”torsion”: 5,
”iso nlabel”: 0,
”aplist”: [−2,−1,1,−2,1,4,−2,0,−1,0,7,3,−8,−6,8,−6,5,12,−7,−3,4,−10,−6,15,−7],
”min quad twist”: {”disc”:1,”label”:”11a1”},
”sha an”: 1,
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”local data”: [{”ord disc”:5,”ord cond”:1,”kod”:”\\( I {5} \\)”,”ord den j”:5,”p”:11,”cp”:5,”rootno”:−1,”
red”:1}],

”conductor”: 11,
”lmfdb iso”: ”11.a”,
”2adic label”: ”X1”,
”xainvs”: ”[0,−1,1,−10,−20]”,
”jinv”: ”−122023936/161051”,
”label”: ”11a1”,
”2adic log level”: 0,
”tamagawa product”: 5,
”lmfdb number”: 2,
”torsion generators”: [”(5, 5)”],
”degree”: 1,
”2adic gens”: [],
”torsion primes”: [5],
”signD”: −1,
”real period”: 1.26920930427955,
”isogeny matrix”: [[1,5,25],[5,1,5],[25,5,1]],
”special value”: 0.253841860855911,
”non−surjective primes”: [5],
”lmfdb label”: ”11.a2”,
”2adic index”: 1,
”equation”: ”\\( yˆ2 + y = xˆ{3} − xˆ{2} − 10x − 20\\)”,
”gens”: [],
”regulator”: 1,
”sha”: 1,
”anlist”: [0,1,−2,−1,2,1,2,−2,0,−2,−2,1,−2,4,4,−1,−4,−2,4,0,2],
”iso”: ”11a”

}

For example, consider the database of elliptic curves in the LMFDB. A curve is typically
defined by a JSON object such as the one in Listing 2. Not only does this record include a field
label for a unique identifier and the defining equation, but it includes numerous additional values
such as the conductor or the 2-adic generators, some of which can be very expensive to compute.

Implementation. In practice we never need to access all of the virtual declarations at once —
in most scenarios we only need a very small subset of them, usually small enough to hold in
memory. This motivates the main idea behind how we have implemented virtual theories in the
MMT system.

MMT already abstracts from physical storage backends (working copies, databases, etc.),
from which theories are loaded. We have extended this storage abstraction to allow loading not
only theories but individual declarations on demand. This is more difficult than it sounds because
while theories have a self-contained semantics, declarations only make sense in the context of
the containing theory. Thus, we had to comb through the MMT code base and generalize all
processing to the case where a theory’s declarations are only partially known.

We have also built an LMFDB-specific implementation of this this generalized storage
abstraction. This instance dynamically queries LMFDB for the appropriate entry, computes the
corresponding declarations, and adds it to the in-memory representation of the virtual theory.
(Additionally, if that virtual theory is not in memory yet, it first creates it.) We were able to
retain an important feature of MMT: the loading of declarations is transparent to the user, and
the storage loads a declaration automatically when and if it is needed by some operation.

5.2. Relating Database Objects and Mathematical Objects (for D6.3)
The storages sketched in Section 5.1 are not as simple as one might think. A major com-

plication is that scalable databases only provide relatively low-level data types. For example,
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a typical relational database provides primitive types for, e.g., integers and strings, and tables
contain records built from these. JSON databases (as used in MongoDB [Chodorow:mdg10],
which is used in LMFDB) or XML databases are slightly better by providing structured types
like trees and lists. But the sets of mathematical objects stored in mathematical data systems
use much richer data types such as matrices, polynomials, permutations, and arbitrarily more
complex types built from them.

Therefore, any data system must employ encodings that translate the actual mathematical
objects into database objects. This has been done ad hoc in the past and has proved both
very difficult and — due to differing or undocumented encodings — an obstacle for system
interoperability. Therefore, we have developed a systematic method for encoding/decoding
mathematical objects as database objects. This allows formally specifying the schema of a
database in such a way that MMT storages can use it to encapsulate the encoding and provide
users with a high-level view of a mathematical database. A sketch of our method can be found in
Figure 4 — we will give a detailed explanation below.

Database

LMFDB
(MongoDB)

label: ”11a1”,
conductor: 5,
. . .

contains

Record Schema Theory
conductor: pos
?codec standardPos
?implements cond

. . .

describes

Math-In-The-Middle Theory
elliptic curve: type
conductor: elliptic curve→ pos
. . .

implements

Virtual Theory
11a1: elliptic curve = . . .

. . .

included

FIGURE 4. Translation between Database and Mathematical Objects: The exam-
ple shows the elliptic curves database of LMFDB

5.2.1. Codecs. We fix an arbitrary data type of codes. These are the primitive values of the
database. Typical examples are strings or JSON objects. We will use JSON for the purpose of
giving concrete examples.

Our goal is to define codecs that define the relation between MMT objects and codes.

Definition 2 (Codec). For an MMT object t, a t-codec is a pair (encode, decode) where
• encode is a partial function from MMT objects of type t to codes
• decode is a partial function from codes to MMT objects of type t

such that decode and encode are inverse to each other whenever defined.

Both encoding and decoding are partial functions. This is to be expected for decoding: only
certain codes are the result of encoding objects of type t. It may be surprising for encoding.
Here we need partiality because MMT objects may be arbitrarily complex expressions, not all of
which denote mathematical values and can be encoded easily. This can include non-normalized
expressions or expressions with free variables or uninterpreted symbols. We will see some
examples below.
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Recall the Math-in-the-Middle theory from Section 3. A trivial example of an int-codec is
essentially the identity function: encode maps integer literals to the corresponding JSON integer,
and decode inverts it. encode is partial because it only encodes literals, e.g., it does not encode
expressions like x + 1 or min{x4 + x3 + x2 + x + 1|x ∈ N}. (An object like 1 + 1 can be
encoded by first simplifying it to a literal 2.)

One might think that it is sufficient to fix one t-codec for every type t. However, that is not
realistic. In fact, already for the seemingly-trivial case of integers, we need multiple different
codecs.

First of all, note that the int-codec given above cannot encode integer literals that do not
fit into the 64 bit integers of a typical JSON implementation. In LMFDB databases, we
indeed encounter such integers very often. Therefore, we have specified two additional codecs.
intAsString encodes integer literal as strings in decimal representation. intAsString has the
advantage of easily encoding all integers, but it is not convenient for computations. Therefore,
LMFDB users have occasionally used a smarter encoding: intAsList encodes integer literals as
lists of JSON integers such that the list [n, d1, . . . , dn] corresponds to the integer whose base 264

representation is (d1 . . . dn). intAsList has the advantage that the lexicographic ordering can be
used for size comparisons without having to decode (this requires first comparing the length of
the sequences, encoded).

Along the same lines, we can define codecs for other simple data types. For example, we
can define a codec for matrices of integers that encodes pairs of pairs of integers as JSON lists
of 4 JSON integers. This example is interesting because it comes up in the LMFDB and has
previously caused confusion: because the encoding was not fully documented, users mistakenly
assumed that the mathematical type of the field is list of integers rather than pair of pair of
integers.

LISTING 3. Fragment of the special Codec Theory in MMT
namespace http://www.opendreamkit.org/

theory Codecs : ?LF

/T We include the Math theory to be able to use types
include odk:?Math

/T Declare a type of codecs
/T There can be multiple codecs for each type
codec : type→ type

/T a codec that codes strings as JSON strings
standardString: codec string

/T a codec that codes integers as JSON integers if
/T within 32 bits, and as JSON strings otherwise
standardInt: codec int

/T a codec that codes natural numbers (with 0)
/T as JSON integers if within 32 bits, and as
/T JSON strings otherwise
standardNat: codec nat0

/T a codec that codes positive natural numbers
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/T as JSON integers if within 32 bits, and as JSON
/T strings otherwise
standardPos: codec pos

/T a codec that codes integers as a JSON array
/T of integers each of which fits within 32 bits
intAsArray: codec int

/T a codec that codes booleans as JSON
/T booleans
standardBool: codec bool

/T a codec that codes booleans as JSON integers
/T 0/1
boolAsInt : codec bool

/T a codec operator that codes lists as JSON
/T arrays, recursively coding each element of
/T the list
standardList: {A} codec A→ codec (list A)

/T a codec operator that codes vectors of
/T fixed length as JSON arrays
standardVector: {A,n} codec A→ codec (vector A n)

/T a codec operator that codes matrices of
/T fixed size as JSON lists of lists
standardMatrix: {A,n,m} codec A→ codec (matrix A n m)

We collect and document all available codecs in a special MMT theory, a fraction of which
can be seen in Listing 3. Here, codec t is the type of codecs that can encode expressions of type
t.

Note that our codec theory does not include any implementations (which usually require highly
programming language–specific function calls. Instead, it standardizes names for the codecs
and documents their behavior so that each codec can be implemented faithfully in multiple
programming languages. This is in line with the Math-in-the-Middle approach of centrally
storing the shared knowledge.

We have seeded this theory with a few important codecs. And for every codec we describe,
we have already given a reference implementation in Scala [scala:webpage] so that the MMT
system (which is written in Scala) can use all codecs. In the future, OpenDreamKit will gradually
build a library of relevant codecs and implement them in multiple programming languages.

Codec Operators. int is an atomic type, but mathematical types are usually very complex
types. Already, types like List(int) provide substantial encoding problems because both integers
and lists can be encoded in multiple ways. To systematize these choices, we introduce codec
operators.

Definition 3 (Codec Operator). For an MMT symbol t and an arity n, a t-codec operator takes
an o1-codec C1, . . . , an on-codec Cn and returns a t(o1, . . . , on)-codec.
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For example, Listing 3 declares a symbol List, which maps t-codecs to List(int)-codecs. We
specify it as the following codec operator standardList of arity 1. It takes a type t-codec C and
returns the following codec: encode maps the object Cons(a1,Cons(a2, . . . ,Cons(an,Nil) . . .))
to the JSON list [e1, . . . , en] where each ei is the result or encoding ai with C. decode is defined
accordingly.

Similar to the codecs, the special MMT codec theory (Listing 3) also includes standardised
names for these. Apart from standardList, we also have straightforward codec operators for
vectors (as lists of fixed length) and matrices (as lists of lists of fixed lengths).

5.2.2. Schema Theories. Codecs can transform between MMT objects and codes, but we still
have to specify which codecs to use for which types. We use special theories for this purpose,
which we call schema theories. These satisfy two functions.

Firstly, a schema theory describes the database schema: many databases (including the ones
in LMFDB) can be seen as sets of records conforming to a certain schema. We represent
these schemas as MMT theories with one symbol declaration for each field. The meta-theory
of these theories is the math-in-the-middle theory so that the types of the symbols can be the
intended mathematical types. Secondly, we annotate meta-data to each declaration, providing
the information which concept in the math-in-the-middel theory a field implements and which
codecs to use for converting between the two.

Thus, the schema documents both the mathematical meaning of the fields and the physical
encoding used when exchanging records conforming to the schema. By giving the schema theory
for each database, we can capture all knowledge necessary to automatically interface with it.

LISTING 4. Fragment of the Elliptic Curve Schema Theory in MMT
namespace http://www.lmfdb.org/schema/elliptic curves

/T This file documents the schema of the elliptic curves collection of the LMFDB (see
/T http://lmfdb.org) in terms of an MMT theory. The documentation (and source) is in
/T https://github.com/LMFDB/lmfdb−inventory/blob/master/db−elliptic curves.md

theory curves : odk:elliptic curves?elliptic curve =
include odk:?Codecs

meta /?Metadata?implements elliptic curve?elliptic curve
meta /?Metadata?constructor elliptic curve?from record
meta /?Metadata?key ”label”

degree : pos
meta /?Metadata?codec standardPos
link /?Metadata?implements odk:elliptic curves?modular degree?

modular degree

2adic gens: list (matrix int 2 2)
meta /?Metadata?codec standardList (standardMatrix standardInt 2 2)
link /?Metadata?implements odk:elliptic curves?Rouse classification?

rouse generators

/T (omitted some more declarations here)
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As an example, the schema theory for the database of elliptic curves in LMFDB is indicated in
Figure 4. A larger fragment is given in Listing 4. It has meta-data linking it to the type of elliptic
curves in the corresponding math-in-the-middle theory, as well as meta-data telling MMT which
field in the database to use as names for the resulting MMT declarations — in this case the field
label, which corresponds to a unique LMFDB-internal naming scheme. The schema theory
contains e.g. a declaration degree of type pos (for positive integers), corresponding to a field
in the database by the same name, which is annotated with meta-data telling MMT

(1) to use the codec standardPos to convert from (and to) an LMFDB entry, and
(2) that the field degree implements the function modular degree in the math-in-the-

middle theory.
We have implemented a new component of the MMT system that takes an expression c of type

codec t and builds the appropriate t-codec by traversing c. We use this in the storage instance for
LMFDB as follows:

(1) A declaration with name n in theory T is requested (e.g. the elliptic curve with label
11a1 in the virtual theory lmfdb:db/elliptic curves?curves).

(2) We load the schema theory S for T (e.g. lmfdb:schema/elliptic curves?curves)
(3) We connect to LMFDB and retrieve the corresponding record (e.g. the database entry

for the curve with label 11a1).
(4) We decode every field of the record according to the codec specified in S.
(5) We collect the decoded MMT object in an MMT record r, the mathematical representation

of the requested object.
(6) We add the declaration n : elliptic curve = r to the corresponding virtual theory.

5.3. Towards Mathematical Querying of Databases (for D6.3)
So far we have only concerned ourselves with accessing virtual theories one declaration at

a time. Going beyond the scope of the present deliverable, it is desirable to also implement a
querying operation for virtual theories. Conceptually, this means to ask the MMT backend to
load all those declarations of a virtual theory that satisfy a certain property. This operation is
much more difficult because the naive approach of loading all declarations and then filtering
them does not scale at all.

In the future of the OpenDreamKit project we want to investigate this question further. At this
point, a result of OpenDreamKit is to sketch and discuss possible solutions to this problem.

Encoding Queries. A straightforward solution is to translate the property into a query expres-
sion that the underlying database can evaluate efficiently. This is similar to encoding objects
as presented in Section 5.2 except that we have to encode complex expressions instead of only
atomic values. Our current implementation already anticipates this solution, but we have not
implemented the specific connection to LMFDB yet.

An example for a practically relevant query that is covered by this approach is to retrieve all
elliptic curves whose conductor is 5. However, this approach is limited by the capabilities of the
underlying database. For example, MongoDB does not allow efficiently retrieving all elliptic
curves whose conductor is divisible by 5.3

In other data systems, there may not even be a strong query language. For example, OEIS
stores sequences in semi-normalized text files. Therefore, it can answer a fixed set of query
operators that combine text search with integer sequence–specific search in the precomputed
prefixes of the sequences. This allows querying for all OEIS sequences whose precomputed
prefixes contain the integers 5 and 10 with any sequence of numbers in between. But it cannot
retrieve, e.g., all sequences containing n, n+ 1, n+ 2 for some n.

3This particular query was posed to John Cremona, who curates the elliptic curves database, by a mathematician.
He was unable to carry out the query directly in the current architecture.
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Indexing Sets of Values. Going beyond the above approach, we can supplement existing
database with custom mathematics-specific indices. For example, we can easily create an index
of all integers that occur anywhere in a database. This would have the additional advantage
of allowing queries across different databases, e.g., to find occurrences of the number 142857
anywhere in LMFDB, OEIS, or any other data system.

The key design question here is what index to use. Indexing all integers is the simplest possible
attempt.

For every occurrence of an integer, the index can store additional information that can be used
in the query, e.g.,

• which database does it occur in,
• which function does it serve (conductor, sequence element, etc.),
• what values occur nearby.

An orthogonal improvement is to add for each integer in the index its factorization to the index.
This would allow fast queries based on divisibility. Naturally, this yields a trade-off problem
between the complexity of the index and the complexity of the queries that can be answered.
This problem is well-known in databases in general but has not been studied for mathematical
data.

The most difficult design question is how to extend such an index to more complex values such
as complex numbers, sequences, or polynomials. Indeed, finding occurrences of polynomials,
or simply storing an index of known factorizations of big polynomials is a concrete service
currently needed by mathematicians.

Here the design space includes a gradual transition from indexing values to indexing mathe-
matical expressions. An integer-only index can be seen as the extreme case of the former. The
extreme case of the latter — indexing arbitrary expressions — has been explored already in the
MathWebSearch system D6.1; it is optimized for substitution and unification queries, which are
different from the integer-oriented queries discussed above. We conjecture that after realizing an
integer-only index, a key question will be how to combine the best of both kinds of indices.

Composite Queries. The above has discussed only atomic queries. Composite queries arise
when we use operators such as in SPARQL, XQuery, or SQL to join, intersect, filter, or translate
query results.

Here two cases must be distinguished. Firstly, it may be possible to factor the query into
atomic queries whose results can be aggregated into the overall result. For example, we might
ask for all elliptic curves whose conductor is divisible by 5 and whose defining equation unifies
with a certain pattern. Such a query can be evaluated by taking the intersection of the two atomic
queries. This can be handled comparably simply. For example, the query language developed
for MMT in [Rabe:qlfml12] already combines ideas from XQuery and SPARQL to compose
queries from atomic ones.

Second, it is much harder to answer queries that do not factor. For example, we might ask
for all elliptic curves whose conductor occurs in a certain sequence in the OEIS. Barring an
unrealistically sophisticated index, such a query would require iterating over all elliptic curves
or all entries of that sequence, and evaluate another query for each one. Either one of these
iterations might be prohibitively expensive.
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6. CASE STUDIES (FOR D6.3)

While our theoretical model of DKS-bases theories and our architectural design of virtual
theories are applicable to a wide variety of systems, in the scope of OpenDreamKit we want to
conduct a few case studies and connect to some databases in particular. These case studies are
not formally part of this deliverable (they are mostly in D6.4), but we give a short overview of
the current state below, except for FINDSTAT, where no progress has been made so far beyond
the survey.

6.1. GAP
The interface specification (Level S2 from Section 4) for GAP consists of two parts. Firstly,

we have a manually-written theory for GAP’s ontology in MMT containing declarations for all of
the above concepts. This serves as a meta-theory for a large number of theories that automatically
generated from the GAP library. The result is currently a set of 4097 filters and operations as
MMT symbols collected in approximately 200 theories. So far, all the imported operations have
no information about their return types (i.e. the filters that apply to the returned object) because
those are not specified by GAP. Currently, work is ongoing on GAP to make that information
available within GAP in general and thus for the interface specification in particular.

As a first knowledge management application of this representation, we used MMT’s generic
graph display components to display the implications between GAP filters.

6.2. SageMath
For the interface specification, we proceed in the same way as for GAP. The manually-written

meta-theory defines all the above concepts, and we automatically generate theories from the
SageMath categories. The latter yields 274 categories with 25 axioms and 569 methods, where
each category corresponds to one MMT theory declaring its methods and axioms as well as the
corresponding documentation. The theory graph of the resulting theories mirrors exactly the
inheritance graph of the original categories in Sage.

6.3. LMFDB
We have already implemented the schema and codec architecture above to build a virtual

theory for the databases in LMFDB and — and as a guiding examples — written a first schema
theory for the database of elliptic curves.

In the future we want to extend the coverage of the approach. This will include writing
more schema theories and possibly introducing more codecs. This will likely also lead to some
refactoring inside LMFDB itself, as the community for the first time will try to semantically
describe its entire dataset.

6.4. OEIS
We have already semantified the pure text format and, among other things, this has helped us

finding new relations between the existing sequences. A more detailed look at our previous work
can be found in [LuzKoh:fsarfo16] and we will not go into details here. So far these efforts
have helped us to understand how the OEIS database is structured.

Similar to LMFDB we plan on integrating this into our virtual theories architecture. We are
considering building one DK theory per sequence, where the declarations in each theory contain
the known elements of the sequence. We also plan to integrate this with our infrastructure on
knowledge management services, such as MathHub and MathWebSearch.
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7. OUTLOOK AND CONCLUSION

In this report we have outlined the initial design of a DKS-base (the main objective of
WP6: “Data/Knowledge/Software-Bases”). The basis is the OMDoc/MMT format that allows a
foundation-independent representation of mathematical knowledge in theories that are linked by
imports for modular development and views for integrating knowledge from different sources by
interpretation. As anticipated in the OpenDreamKit proposal, the OMDoc/MMT format and its
implementation in the MMT system is sufficient to for the knowledge (K) aspect of DKS-bases.

The OpenDreamKit workshops and the survey (see Section 2 and Appendix A) clarified that
the system integration task is much more critical in the development of a VRE toolkit than
the classical “Formal Methods” tasks of software verification or synthesis. As a consequence
we base our integration of the software aspect (S) on the specifically-developed “Math-in-the-
Middle” paradigm, which constitutes a much more lightweight approach by concentrating on
abstract (mathematics-level) specifications. We were able to show that this can represent this
OMDoc/MMT theory graphs, if we can generate interface theories for the OpenDreamKit systems
and align them to a mathematical reference ontology (the MitM ontology) via OMDoc/MMT
views. We have established the feasibility of this by generating interface ontologies for the GAP
and SageMath systems and conjecture that carries over to other OpenDreamKit systems.

For the data aspect (D) of DKS-bases we had to extend OMDoc/MMT to allow virtual
theories that consist of arbitrarily many declarations and the MMT system to handle them
efficiently, – loading only small subsets into system memory for processing. Thus we can
connect to external databases which we model as a set of well-typed records, that is list of (key,
value) pairs. We introduced the concept of record types inside MMT, keys are symbols which
are declared inside a schema theory and values are MMT literals translated from the physical
database representations using codecs. We used the LMFDB database of elliptic curves as a case
study to test this approach and implemented a multitude of codecs as a “database connector”
that lifts the database contents to virtual declarations in virtual theories that can be seamlessly
integrated into the MMT system.

In the future we want to expand on both the implementation and the concept as a whole.
Right now we can only translate database records into MMT objects. While we want to use the
form of the objects used by MMT as the primary representation we want to be able to translate
these objects to system specific objects, thereby building true DKS theories. Each system might
have system-specific constructors and / or representations. In practice all systems will have a
constructor for these objects. These will take a set of arguments. These arguments will either
be primitive (in which case we can just encode them from MMT using a codec) or be complex
objects themselves (in which case we can recurse into the entire procedure). Storing these
encodings inside MMT we will be able to write thin interfaces to MMT, which can then easily
retrieve objects from MMT in their preferred representation.

Together with the opposite process – the understanding of objects by using accessors from
arbitrary systems – will also allow (almost) arbitrary systems and databases to exchange objects
via MMT. We are already working on a Python Client implementation. This will not apply any
recoding to the objects – it just retrieves records in an easily accessible form from MMT. In the
future we are hoping to use this to integrate MMT and GAP and enable GAP to use any kind of
object that MMT has access to.

It is interesting to note that both the integration of the S and D aspects into OMDoc/MMT
necessitate the generation of theories: pre-generated as interface theories in the MitM paradigm,
and on-the-fly in virtual theories.
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APPENDIX A. RAW CASE STUDY RESULTS (FOR D6.2)

The authors are grateful to John Cremona, Alex Konovalov, Markus Pfeiffer, Viviane Pons,
and Nicolas M. Thiéry for their time in answering our survey. Their responses and the structure
of this survey have been adapted to fit this presentation format.

A.1. FINDSTAT
A.1.1. Overview at a high level of the system

FINDSTAT [findstat] is a database and a web interface accessing the database. It is designed
by and for combinatorists. The purpose is to store and search information on statistics over
combinatorial objects. A statistic is mostly a map between a set of combinatorial objects to the
natural numbers. As an example, the number of edges is a statistic on graphs. The main purpose
of FINDSTAT is to give an interface for one to search for some statistics the same way one would
search for integer sequences on the OEIS [oeis].

A.1.2. Available data
A.1.2.1. Structure of the data

FINDSTAT has basically 3 categories of objects.
The combinatorial collections: FINDSTAT stores a list of combinatorial collections: 18

as of today (January 2016). All these combinatorial collections are actually linked to a
SageMath combinatorial collection. We only store the minimal information needed to
print the collection on the website and to recreate the collection in SageMath.

For every collection, we store a list of combinatorial objects. More precisely, we
use SageMath to generate the list of objects, but we store a standardised version of the
printout of the object. This standardised version is homemade: it has to be

standardized: a single given graph will always be printed the same way,
unique: two different graphs will never be printed the same way,
human readable: when possible, it should be easy to understand for a human reader

and not only a machine (so no hash-key or anything like this). When possible, we
keep the default printout of SageMath object. Sometimes, we have to store a little
bit of code to convert this printout into a SageMath entry.

The combinatorial statistics: A statistic is a list of couples : combinatorial object from a
certain collection or value. As of now, we have 364 statistics, each of them containing
between 200 and 1000 entries. For each statistic, we store some metadata: name, identi-
fier (specific to FINDSTAT, can be referenced from outside), combinatorial collection,
description, code, references, etc. And we also store the data itself: a list of entries, each
entry is made from combinatorial object (as a string, by its standardised printout) and a
integer value. As an example, the values of ”The number of edges of a graph” St000081
is a list of all graphs up to size 6 with their associated number of edges.

The combinatorial maps: A combinatorial map is a mathematical function from a com-
binatorial collection to another combinatorial collection. For example: binary search
tree insertion turns permutations into binary trees. As of now, we store 107 maps each
of them containing between 200 and 1000 entries. We store the metadata of the map:
domain, codomain, description, code, etc. And we store the map-data as a list of (value,
image) where value and image are combinatorial objects stored as strings through their
standardised printout.

As an addition, FINDSTAT also provides some wiki pages with information on combinatorial
objects, maps and statistics in a less formalized way.

The low level data format is a SQL database where we store everything we need. Most of
the data described above is accessible through the website in HTML. All information about
combinatorial statistics and combinatorial maps can be accessed through JSON files that have
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standardised URLs depending on the identifier of said statistics or maps. It is possible that
the URL changes if the website organisation is changed in the future but it will always be
related to the identifiers which are set once and for all. The format of the JSON files are also
likely to change but we try to limit those changes and keep backward compatibility as much
as possible. Those JSON files are the closest we have to an external API, they are used by the
SageMath-FINDSTAT interface.

All our data are distributed under Creative Commons Attribution-ShareAlike 3.0 Unported
License.

A.1.2.2. How is this data produced? How is it changed?
The data are produced and changed through user contributions. As for now, 55 people are

listed as contributors. We have an HTML form to submit statistics where the user receives many
information on what should be submitted and in what format. Once a new statistic is submitted
or a change is proposed, it has to be validated by one of the day developers. We don’t receive
that much data so the process is usually very quick. Each change is stored and so we have access
to the full history of the statistic information with authors.

For maps, we don’t have yet the ”Add Map” form. Each map has to be added by one of the
FINDSTAT developers. The reason is just that the maps are a more recent addition and so the
adding process has not been finalized yet.

A.1.2.3. How do you document it?
We have a very basic documentation for statistic data that we provide to the user who which

to contribute. We don’t have any documentation for our dataformat (JSON files).

A.1.3. What knowledge do you have in the system?
A.1.3.1. What are the sources of external knowledge?

We rely on the knowledge of our contributors about statistics and maps and try to store it. We
also depend on some SageMath algorithms, for example to generate the combinatorial objects.

A.1.3.2. Can you point to implicit knowledge? Is it common knowledge?
Our website is targeted at combinatorists. Even though we try to give all the basic definitions

and information, it might be difficult to use for someone who has no knowledge of these objects.

A.1.3.3. What would you gain if it was made explicit/machine actionable?
At the moment, our infrastructure is really SageMath oriented (object printouts, names, etc). A

language-neutral description of our objects might make it easier for interfaces from other system
to appear. The gain for us is that the more user we have (from different background), the more
contributors we might get and so the more mathematically pertinent our database is.

A.1.3.4. Have you gone in this direction? How did you represent the knowledge then?
Giving access to the statistics and maps data as JSON files was a first step in this direction.

A.1.3.5. How do you collaborate on knowledge representation?
By referencing those data (statistics and maps) and proposing unique identifiers that can be

referenced from the outside (the same way the OEIS identifies integer sequences with a unique
number).

A.1.4. What software do you have?
A.1.4.1. What custom software are you running?

We need the software SageMath to run some computations: basically, generating the objects,
printing them, etc. The statistic and maps code are usually integrated into SageMath for
consistency but it is not mandatory.

There is also some FINDSTAT specific code to run the website. Most of this code is just basic
web-programming views of our database.
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The database search is the heart of the service. It is a small algorithm that takes a user-given
statistics and compares it to the database up to some maps.

A.1.4.2. In which language is your system written?
Our server runs on SageMath with some imported web packages, so it is written in Python.

We use the Python wiki server MoinMoin as a backend and have written some customized
MoinMoin plugins to run our service.

A.1.4.3. How does it use the data and the knowledge?
The data is stored in a SQL database. It is preloaded and precomputed when we launch the

server then all computations are made on this preloaded data. We don’t use the knowledge at
this stage, we just basically request the database and compare numbers using some parameters.
In the future, we might want to use the knowledge we have on the maps (bijection, injection,
surjection, involution, etc) to improve our algorithm.

A.1.4.4. How does your software act on represented knowledge?
The software might put into light some mathematical relations between combinatorial objects

but doesn’t store them or anything like this.

A.2. SageMath
A.2.1. Overview at a high level of the system

SageMath [sagemath] is general purpose computational (pure) mathematics software. It has
300 contributors and consists of 1.5 million lines of Python/Cython code, around 40000 function,
and 4000 classes. It is distributed with hundreds of open source (math) software and libraries.

Most of the survey answers are given specifically for the SageMath category framework,
which is used to structure a lot of SageMath code by exploiting as much as possible of the
underlying mathematical structure.

A.2.2. Available data
SageMath interfaces with a large collection of (optional) databases, usually coming from

external software and possibly repackaged from external databases. Examples include GAP
databases, the OEIS [oeis], various databases of elliptic curves, etc.

The data format is heavily reliant on pickling (Python protocol for serialization). Objects can
be converted to strings and reconstructed. This is used for persistence, for storing in SageMath
databases, for data exchange between SageMath instances. SageMath comes with code to
reconstruct the object and perform sanity checks. By default, pickling is done by class and stores
plain data (no encapsulation). We aim for pickling by construction (which would require more
semantics).

A.2.3. What knowledge do you have in the system?
The system effectively knows many mathematical properties and theorems, algorithms, ...
In designing the system, a few key points conditioned the design:

(1) There are only a handful of fundamental concepts: operations (*, +, ...), axioms (associa-
tivity, commutativity, ...), ...;

(2) The richness arises in the combinations of these concepts (e.g. fields);
(3) We use an existing language and its object oriented features for modelling and method

selection.

A.2.3.1. Sources of external knowledge?
Each SageMath contributor brings on specific mathematical knowledge about the objects

studied, which might not be available to others in the collaboration.
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A.2.3.2. Can you point to implicit knowledge?
The algorithms rely heavily on the mathematical properties of the objects they manipulate.

SageMath uses the Object Oriented features of Python. The properties of a SageMath object are
specified by its Python class:

• what mathematical object does it represent?
• how is it represented?
• the class information is often of technical flavor, and complemented by additional

information on its universe (parent, category)

SageMath strives to model mathematics closely: not only matrices are instances of a specific
classes and not plain list of lists, but linear maps themselves are instances of specific classes and
not just represented by matrices. This reduces the risk of calling a meaningless function.

The abstract algebraic properties of an object (e.g. being a group or a field) are modelled
relatively explicitly: objects know the names of their categories and axioms. The meaning is
essentially implicit except, in the good cases, informally in the documentation and as testing
methods. The names of the operations are hardcoded, which leads to duplication (for instance
between additive and multiplicative structures). The size of the code is linear in the number
of methods, which in the current setup ought to grow exponentially as the complexity of the
modeled objects increases.

It is not always made explicit which methods an object in a given category should implement:
methods and operations are documented, but their exact specifications is not always completely
defined or defined consistently across the class hierarchy.

Some theorems (e.g. Wedderburn) are embedded in actionable form, but that information
cannot be extracted or operated on.

A.2.3.3. Is it common knowledge?
The meaning of the relevant categories and axioms (e.g. ring or associativity) is relatively well

known by the users and developers.

A.2.3.4. What would you gain if it was made explicit/machine actionable?
• Dynamic generation of documentation that the user can navigate
• Sanity/correctness checks; proofs?
• Semantic handles to communicate with other systems
• Avoiding duplication (e.g. additive magmas / multiplicative magmas)?

A.2.3.5. Have you gone in this direction? How did you represent the knowledge then?
The category framework for SageMath goes in this direction.

A.2.3.6. How do you collaborate on knowledge representation?
This is done through collaborative development of code, documentation and tests in the

SageMath sources.

A.2.4. Available software
The SageMath library consists of 1.5 M lines of code (Python/Cython), and relies on hundreds

of other software packages, in a myriad of languages.
The software, and particularly the category framework, builds on the available data and

knowledge to construct a hierarchy of classes mirroring the categorical properties. Those are
used for code factorization, documentation, and generic testing. For instance, a computation
relying on the lattice of categories would be helped by the conclusion that if X is a division ring
and X is a finite set, then X is a finite field.
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A.3. GAP
A.3.1. Overview at a high level of the GAP system

GAP [gap] is an open-source system for computational discrete algebra, with particular
emphasis on Computational Group Theory. GAP provides a programming language, a library of
thousands of functions implementing algebraic algorithms written in the GAP language as well
as large data libraries of algebraic objects. It is used in research and teaching for studying groups
and their representations, rings, vector spaces, algebras, combinatorial structures, and more.

A.3.2. Available data
GAP includes a number of data libraries listed online4. Some of them are part of the core

GAP system, while some others belong to GAP packages. Their exact format may vary, but in
all cases there are some text files with data and there is certain code responsible for processing
particular pieces of information from those files. In some cases, the data library may only consist
of the GAP code which will construct GAP objects on demand. Documentation is contained
in the manual of the GAP system or relevant packages; however, it may not contain technical
details which in the best case will be placed in README files or as comments in the code.
Usually once produced, the data libraries are only changed when new data are added to them.
Existing data may be altered only in case of discovered errors.

A.3.3. What knowledge do you have?
Apart from the knowledge that is stored in data libraries as explained above, there is a wealth

of knowledge about properties of algebraic objects, or how to compute them, encoded in method
installation and code. This knowledge can often not easily be extracted from the system.

However, the GAP type system has a number of advantages over a ”standard” object-oriented
model for algebraic computation. Among the most important are:

• Method selection based equally on the types of all arguments. Thus, in implementing
an extension field K of an existing field L, new methods for multiplying kl and lk can
be added without any special support. Similarly, inheritance applies to all arguments
equally.
• Method selection can take account of information accumulated during the lifetime of an

object. For instance, as soon as a group is found to be abelian, special methods for abelian
groups will be applied to it. Similarly, when the size of a group has been determined
once, not only is it remembered in case it is needed again, but different methods for other
computations may be selected to take account of this information.

A central idea in the design of GAP is that as much of possible of the core functionality
should be polymorphic, so that it can be applied to any mathematical object with appropriate
properties, without knowing the underlying representation. Thus if you create some new kind of
GAP object, supply a method for multiplying such objects, and claim that it is associative, then
you should be able to make semigroups from your objects. With additional methods and some
additional claims of algebraic properties, you can make groups, rings or algebras.

A.3.4. What software do you have?
GAP has a kernel written in C. It implements:

• the GAP language,
• an interactive environment for developing and using GAP programs,
• memory management, and
• fast versions of time critical operations for various data types.

4http://www.GAP-system.org/Datalib/datalib.html
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All the rest of the library of functions is written in the GAP language. Packages (user contributed
extensions) are mainly written in the GAP language, but some also involve standalone executa-
bles. Some packages, for example, extend mathematical functionality of the system or add data
libraries, while some others add infrastructural capabilities or links to other systems.

A.4. LMFDB
A.4.1. Overview at a high level of the LMFDB system

The L-functions and Modular Forms DataBase [lmfdb] aims to aggregate and integrate
computational and mathematical knowledge about L-functions and other number theoretic
objects, and to present these complex and interconnected objects reliably while maintaining
accessibility. At a mathematical level, this could help provide a uniform view of the concept
of L-function, objects which can (sometimes conjecturally) be produced out of very different
mathematical constructions. The collaboration involves around 50 mathematicians of varying
coding skills and with different mathematical expertise.

A.4.2. Available data
The entirety of the data held by the LMFDB is accessible through an API. One counts around

30 different types of objects stored, for a total of a few Tb. The data is downloadable directly.
The data is held in a MongoDB database server, holding around 30 or so databases, each with

their own collections. It is held there as BSON (binary JSON), the internal format of Mongo
documents.

Data that ends up in the LMFDB has many different origins. Some are historical computations.
Most are done in either GAP, PARI, SageMath, MAGMA, etc, with the person who coded these
original sources a member of the LMFDB who aims to make their data more accessible to their
peers. Some of the data shown on the website is actually computed on the fly.

Data comes in through a variety of ad hoc ways, but essentially always transits through a
JSON format before upload to the Mongo database. Updating is mostly done through some form
of overwriting, but it is not uniform across the LMFDB. In the best cases, the data is stored
completely separately from the LMFDB’s own (Mongo) database, e.g. in a GitHub repository,
under full revision control of text files, and there are scripts to populate the database from that.
At some point there was discussion of allowing anyone to upload their data through an online
form. This option has never been used seriously, and is not currently supported.

In general, proper referencing of data sources and documentation of its quality is a struggle,
but there is recent improvement. Progress has been made on these through a new collection of
”data quality” pages. The intention is to have source, extent and quality reliably documented for
the main sections of the database.

In addition, the various formats are in the process of being formalised5.

A.4.3. What knowledge do you have?
A.4.3.1. What are the sources of external knowledge?

Each participant in the LMFDB brings on specific mathematical knowledge about the objects
studied, which might not be available to others in the collaboration. The LMFDB has the
concept of knowls, which are encyclopaedic bits of content integrated alongside the data, and
editable collaboratively. These help converge on common definitions of the objects described.

A.4.3.2. Can you point to implicit knowledge? Is it common knowledge?
There is a lot of implicit knowledge in the encodings chosen for the data (ad hoc formats and

references), some of it is made explicit6. There is also a lot of implicit knowledge in the source

5See https://github.com/LMFDB/LMFDB-inventory, with the most advanced example (for el-
liptic curves) at https://github.com/LMFDB/LMFDB-inventory/blob/master/db-elliptic_
curves.md. The formalisation format itself does not have a spec.

6emphe.g. at http://www.LMFDB.org/knowledge/show/ec.conductor_label
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code. There is little common knowledge across the collaboration, or at least there is a lot that is
not common.
A.4.3.3. What would you gain if it was made explicit/machine actionable?

The development process could probably be made more robust and efficient. The knowls
currently serve as entry points for users and crucially also for onboarding future collaborators,
as a stable basis for further collaboration. LMFDB could gain in productivity, robustness and
ultimately utility if this process could be extended a bit further along the chain of contributions.
A.4.3.4. Have you gone in this direction? How did you represent the knowledge then?

The furthest the LMFDB has gone into the direction of formalising knowledge is in modular-
ising as much as possible of the mathematical knowledge through knowls, creating an ad hoc
ontology to classify them, and aligning it to the mathematical data objects that are presented.
The LMFDB also tries to adhere to the concept of ”one URL per object”.
A.4.3.5. How do you collaborate on knowledge representation?

Edition of the knowls requires an account, which the LMFDB intends to offer to anyone who
wishes to contribute. There is some versioning in place for knowls.
A.4.4. What software do you have?

The LMFDB is mostly written in Python, relies on SageMath and PARI/GP as libraries. It
uses the database MongoDB (and possibly also an SQL one), uses the web framework Flask,
and the templating engine Jinja.
A.4.4.1. What custom software are you running?

In a way SageMath is custom, since lots of LMFDB developers also contribute the relevant
functionality to SageMath. Otherwise a whole lot of the logic is embedded in the website code.
A.4.4.2. How does the system use the data and the knowledge?

Generally, a URL path will be associated to a Jinja template, requiring simultaneous fetching
of pre-entered knowledge (knowls, Mongo DB), precomputed data (Mongo DB), and on-the-fly
computation based on this precomputed data or existing functions implemented in some of the
Computer Algebra Software already used.
A.4.4.3. Which knowledge is implicit in the data you have?

A lot of information about the data encoding is implicit in the data itself. For instance, even
if [0, 4, 5, 1] is known to represent a polynomial, depending on the context it might represent
4 ∗ x+ 5 ∗ x2 + x3 or x(x− 4)(x− 5)(x− 1).
A.4.4.4. Which knowledge is implicit in the software you have?

When populating templates, some of the mathematical knowledge might be really entered
through the code, by completing the template in different ways according to the calling class
(e.g. elliptic curve L-functions are of degree 2).

I don’t know if it is relevant here but we are also accumulating a set of bibliographic references
and have already instituted a system for making citations within knowls very easy.

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
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been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.
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