
Call: H2020-EINFRA-2015-1 REPORT ON D5.5

REPORT ON OpenDreamKit DELIVERABLE D5.5

Write an assembly superoptimiser supporting AVX and upcoming Intel processor
extensions for the MPIR library and optimise MPIR for modern processors.

WILLIAM HART

Due on 02/28/2017 (Month 18)
Delivered on 02/27/2017
Lead University of Kaiserslautern (UNIKL)
Progress on and finalization of this deliverable has been tracked publicly at:
https://github.com/OpenDreamKit/OpenDreamKit/issues/118

CONTENTS

Deliverable description, as taken from Github issue #118 on 2017-02-27 1
1. Context and Problem statement 1
2. Work completed 2
2.1. The ajs superoptimizer 2
2.2. Optimized functions for MPIR 3
2.3. Additional work 6
3. Future work 6
4. Source code 6
5. Testing this code 6
6. Blog post 7

DELIVERABLE DESCRIPTION, AS TAKEN FROM GITHUB ISSUE #118 ON 2017-02-27

• WP5: High Performance Mathematical Computing
• Lead Institution: University of Kaiserslautern
• Due: 2017-02-28 (month 18)
• Nature: Demonstrator
• Task: T5.5 (#103): MPIR
• Proposal: P. 52
• Final report

1. CONTEXT AND PROBLEM STATEMENT

MPIR is a highly optimised library for bignum arithmetic forked from GMP. It is a fundamental
building block for many open source mathematical computational components (SageMath,
FLINT, Nemo, Eiffelroom, GMPY, Advanpix, PHP and MPIR.net), and therefore its fine
optimization on a variety of processor architecture is important for the High Performance aims
of OpenDreamKit.

For this deliverable the task was to implement a superoptimizer which tries valid permutations
(i.e., that do not change program behaviour) of instructions in assembly functions, times each
permutation, and chooses the fastest one. In addition, new MPIR functions for recent processor

676541 OpenDreamKit 1

https://github.com/OpenDreamKit/OpenDreamKit/issues/118
https://github.com/OpenDreamKit/OpenDreamKit/issues/118
https://github.com/OpenDreamKit/OpenDreamKit/issues/118
https://github.com/OpenDreamKit/OpenDreamKit/tree/master/WP5
https://github.com/OpenDreamKit/OpenDreamKit/issues/103
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/Proposal/proposal-www.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP5/D5.5/report-final.pdf
www.mpir.org
https://gmplib.org/
http://sagemath.org
http://flintlib.org/
http://nemocas.org/
https://room.eiffel.com/node/407
https://pypi.python.org/pypi/gmpy2
http://www.advanpix.com/
http://php.net/
http://wezeku.github.io/Mpir.NET/


REPORT ON D5.5 Call: H2020-EINFRA-2015-1

architectures were to be written, making use of recently added features like AVX2 instructions,
and be optimized with the super-optimizer where applicable.

It is usually the case that the difference between assembly optimised code and C code compiled
by an optimising compiler such as GCC is a factor of 4-12 for bignum arithmetic. But each new
processor microarchitecture requires new assembly language code to be written. One can use
older assembly code, but each new microarchitecture can do around 20% better than the previous
one if hand optimisation is done. In addition to that, speedups due to superoptimisation can be
anywhere from 5% to 100%.

In MPIR, we are typically comparing superoptimised code that was written for a previous, but
related microarchitecture, and so if the job is done properly, we expect about 20% improvement.
We see that, and more, below.

2. WORK COMPLETED

For the first six months of the project, we wrote the ajs superoptimizer (https://github.
com/akruppa/ajs), based on the open-source AsmJit library (https://github.com/
asmjit/asmjit), a complete Just In Time and remote assembler for C++ language.

For the second six months, we solved several problems with the ajs superoptimizer, especially
erratic timings that had put the concept in jeopardy, and, with contributions from Jens Nurmann,
wrote and/or optimized a set of core functions for MPIR and some auxiliary functions used
internally (see below).

2.1. The ajs superoptimizer
The biggest problem with the superoptimizer was the highly erratic timings it measured for

function executions. This made it practically impossible to have it automatically choose (one of)
the fastest permutations for a given function.

The major problem was that the RDTSC(P) instructions no longer count cpu core cycles, but
cycles of a fixed-frequency counter, i.e., elapsed natural time. Due to extensive clock scaling
features of recent cpus, the measured time depended much more on power saving decisions made
by the cpu than on the (comparatively small) speedup by finding a good permutation. This is
especially true as functions may have to be superoptimized in several pieces, e.g., separately for
lead-in, core loop, and lead-out, to reduce the search space so that decent permutations are found
within acceptable time.

The solution we used was the RDPMC instruction which provides low-latency access to
performance measurement counters, including the “second fixed- function counter” (FFC2)
which does, in fact, count cpu core clock cycles. The problem was enabling access to this counter
from user mode applications, which requires setting some bits in MSR/CR. Attempts to do so
via kernel modules we wrote turned out unreliable as the kernel disabled the bits again (and my
modules killed machines on multiple occasions).

Eventually an excellent solution to this problem was found in the jevents library of the pmu-
tools (https://github.com/andikleen/pmu-tools/) which provides an API to the
perf subsystem of the Linux kernel. This allows enabling RDPMC to read FFC2 without the
kernel spuriously disabling it again.

The resulting timings within one program run were much more stable than before, usually
resulting in the same cycle count for a given function. The timings still vary by 1 occasionally
(very rarely 2 or more); we have tried to find the source of the remaining variance, but to no
avail.

Another major source of error, but invariant within one super-optimizer run, was the alignment
of the stack, which appears to be randomly chosen at program start. The writes to the stack
(PUSH/CALL) on a function call could alias (mod 4096) with the measured function’s input

676541 OpenDreamKit 2

https://github.com/akruppa/ajs
https://github.com/akruppa/ajs
https://github.com/asmjit/asmjit
https://github.com/asmjit/asmjit
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://github.com/andikleen/pmu-tools/


Call: H2020-EINFRA-2015-1 REPORT ON D5.5

operands, causing “partial address alias” stalls which inflated execution time by as much as 10
cycles. This problem was solved by forcing a particular stack alignment.

Other problems that occurred within ajs and which were solved:
• Jump instruction were always encoded in long form by asmjit, changing instruction

alignment compared to other assemblers. We now manually annotate those instructions
that require long form; all other use short. This requires manual work to annotate and
verify the resulting instruction encodings.

• Allow new registers introduced with AVX2, and instructions with 4 operands
• Various fixes and extensions to asm parsing code

All in all, fixing the aforementioned problems in ajs consumed well over 2 months of time on
the project. The code to generate permutations that honour data dependencies is quite powerful;
however, subtle interactions with the cpu hardware made it very time-consuming to get nearly
cycle-accurate timings as we required.

2.2. Optimized functions for MPIR
We now review the functions that have been optimized on various processor microarchitectures

(Intel Haswell and Skylake and AMD Bulldozer).
Whilst these aren’t the most recent architectures from the major chip manufacturers, they

are coming into widespread use around now. Indeed it is difficult to get access to more recent
machines. Naturally access to the particular architecture is required in order to optimise for it.

For Haswell and Skylake, the following set of core functions was re-implemented or ex-
isting code optimized to take advantage of the respective micro-architecture: add n, sub n,
addmul 1, submul 1, addlsh1 n, sublsh1 n, com n, copyi, copyd, rshift1, lshift1,
rshift, lshift, mul 1, mul basecase.

The only AMD CPU to which we could gain access was a Bulldozer which is a fairly old
and poorly designed microarchitecture; in particular, new instruction set extensions like AVX2
are so slow on Bulldozer (and Piledriver) that they are best avoided. This left little room for
optimization, and we opted not to write new code for this outdated cpu, but to cherry-pick
existing code that performs well.

We are very grateful to Jens Nurmann who contributed significant amounts of code and
expertise on AVX2 programming, to Brian Gladman for porting the new code to the Microsoft
Visual C build system, and to William Stein for granting us access to a Bulldozer machine.

2.2.1. Haswell microarchitecture. For Haswell, new AVX2 versions of com n, copyd, copyi,
lshift, lshift1, rshift, rshift1 were written anew and super-optimized.

The addmul 1, submul 1, mul 1, mul basecase, and sqr basecase functions for
Haswell in the GMP library were copied as these are extremely well optimized already - we did
not think we could produce better in what little time we had left. Attempts to super-optimize
these functions did not find better code.

Existing add n, sub n, karaadd, karasub, hgcd2 functions were modified for Haswell
and super-optimized, while sumdiff n and nsumdiff n were written anew.

To give a summary of the speedups obtained, we include here results obtained with the
mpir bench program (https://github.com/akruppa/mpir_bench_two). Higher
values are better (function executions per unit time); the apparent slow-down for size < 512
GCD is to be investigated.

Program multiply (weight 1.00) Old New

128 128 108222650 107111633
512 512 22816149 26895874
8192 8192 228124 289984

676541 OpenDreamKit 3

https://en.wikipedia.org/wiki/Haswell_(microarchitecture)
https://en.wikipedia.org/wiki/Skylake_(microarchitecture)
https://en.wikipedia.org/wiki/Bulldozer_(microarchitecture)
https://github.com/akruppa/mpir_bench_two


REPORT ON D5.5 Call: H2020-EINFRA-2015-1

Program multiply (weight 1.00) Old New

131072 131072 3884 5015
2097152 2097152 173 203
128 128 108109328 107223557
512 512 17689648 20384648
8192 8192 155145 189057
131072 131072 2771 3479
2097152 2097152 118 133
15000 10000 80120 91788
20000 10000 61030 71776
30000 10000 37966 42448
16777216 512 501 658
16777216 262144 24.6 28.7

Program gcd (weight 0.50) Old New

128 128 3729465 3646816
512 512 767983 554155
8192 8192 10974 15908
131072 131072 175 223
1048576 1048576 9.38 11.5

Program gcdext (weight 0.50) Old New

128 128 2628011 2036197
512 512 595026 451973
8192 8192 7900 11192
131072 131072 129 171
1048576 1048576 6.04 7.94

The new code can be found in the directory https://github.com/akruppa/mpir/
tree/master/mpn/x86_64/haswell .

2.2.2. Skylake microarchitecture. For Skylake, add n, sub n, mul 1, add err1 n and
sub err1 n were written anew and super-optimized. The addmul 1, mul basecase and
sqr basecase functions were taken from GMP. The other functions for Haswell are used as
fall-backs.

Program multiply (weight 1.00) Old New

128 128 123326551 123312872
512 512 29477397 33899135
8192 8192 298474 358841
131072 131072 4924 6024
2097152 2097152 213 246
128 128 123340235 123340948
512 512 22551903 25322713
8192 8192 208058 238204
131072 131072 3497 4316
2097152 2097152 142 155

676541 OpenDreamKit 4

https://github.com/akruppa/mpir/tree/master/mpn/x86_64/haswell
https://github.com/akruppa/mpir/tree/master/mpn/x86_64/haswell


Call: H2020-EINFRA-2015-1 REPORT ON D5.5

Program multiply (weight 1.00) Old New

15000 10000 104503 112647
20000 10000 80121 89101
30000 10000 47871 54247
16777216 512 611 693
16777216 262144 29.1 33.6

Program gcd (weight 0.50) Old New

128 128 4387356 4373122
512 512 814864 682194
8192 8192 11468 18970
131072 131072 208 274
1048576 1048576 11.3 14.1

Program gcdext (weight 0.50) Old New

128 128 2750101 2562046
512 512 640358 557060
8192 8192 8526 13743
131072 131072 155 212
1048576 1048576 7.50 9.83

The new code can be found in the directory https://github.com/akruppa/mpir/
tree/master/mpn/x86_64/skylake .

2.2.3. Bulldozer microarchitecture. On Bulldozer, the speed gains obtained are much more
humble than on Haswell and Skylake, as relatively few functions were replaced by faster ones.
This microarchitecture is not a profitable target for code optimization any more.

Program multiply (weight 1.00) Old New

128 128 55322152 55550756
512 512 12248577 12586138
8192 8192 139406 138848
131072 131072 2406 2421
2097152 2097152 101 105
128 128 55781257 51370568
512 512 7690668 8710261
8192 8192 90386 83592
131072 131072 1587 1584
2097152 2097152 64.0 65.9
15000 10000 44703 45193
20000 10000 33852 35294
30000 10000 20000 20199
16777216 512 268 294
16777216 262144 12.7 13.4

676541 OpenDreamKit 5

https://github.com/akruppa/mpir/tree/master/mpn/x86_64/skylake
https://github.com/akruppa/mpir/tree/master/mpn/x86_64/skylake


REPORT ON D5.5 Call: H2020-EINFRA-2015-1

Program gcd (weight 0.50) Old New

128 128 2597029 2611829
512 512 284031 289573
8192 8192 6800 6810
131072 131072 108 107
1048576 1048576 5.77 5.77

Program gcdext (weight 0.50) Old New

128 128 1270472 1239850
512 512 223972 218197
8192 8192 4944 4924
131072 131072 78.1 78.0
1048576 1048576 3.65 3.65

The new code can be found in the directory https://github.com/akruppa/mpir/
tree/master/mpn/x86_64/bulldozer .

2.3. Additional work
Since the end of the project, we have added preliminary Broadwell CPU support. This does

not include any superoptimisation at this point. Broadwell is essentially a revision of Haswell,
but with some Skylake features. We have added processor detection to MPIR and sped up this
CPU by making use of the Haswell code written for this project. Work is underway to make
some of the new Skylake code available to Broadwell chips, and to write new assembly code for
Broadwell. Many thanks to our volunteers, Jens Nurmann and David Cleaver who have agreed
to work on this.

3. FUTURE WORK

The superoptimizer works reasonably reliably now and can be used to optimize more functions
in MPIR and other software projects. At this stage MPIR is the only project that has made use of
the superoptimiser, however we have already received a support request, so we expect there to be
more use cases soon.

The division and GCD functions in MPIR are worthwhile targets for additional optimization
work.

The new Zen microarchitecture of AMD was released towards the end of our project, and
looks promising for scientific computation. An optimization effort here would be worthwhile; it
will require to get access to such a machine.

4. SOURCE CODE

The ajs superoptimizer can be found at https://github.com/akruppa/ajs . The
optimized functions for MPIR are merged into the main MPIR repository at https://github.
com/wbhart/mpir .

5. TESTING THIS CODE

Build instructions for MPIR are as follows:
Download MPIR-3.0.0 from http://mpir.org/
Note that you also need to have the latest yasm to build MPIR: http://yasm.tortall.

net/

676541 OpenDreamKit 6

https://github.com/akruppa/mpir/tree/master/mpn/x86_64/bulldozer
https://github.com/akruppa/mpir/tree/master/mpn/x86_64/bulldozer
https://github.com/akruppa/ajs
https://github.com/wbhart/mpir
https://github.com/wbhart/mpir
http://mpir.org/
http://yasm.tortall.net/
http://yasm.tortall.net/


Call: H2020-EINFRA-2015-1 REPORT ON D5.5

To build yasm, download the tarball:
./configure
make

To test MPIR, download the tarball:
./configure --enable-gmpcompat --with-yasm=/path_to_yasm/yasm
make
make check

A Haswell, Skylake, or Bulldozer CPU is required to test the changes referred to above.

6. BLOG POST

I have blogged about this project at https://wbhart.blogspot.de/2017/02/assembly-superoptimisation-in-mpir.
html .

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.

676541 OpenDreamKit 7

https://wbhart.blogspot.de/2017/02/assembly-superoptimisation-in-mpir.html
https://wbhart.blogspot.de/2017/02/assembly-superoptimisation-in-mpir.html

	Deliverable description, as taken from Github issue #118 on 2017-02-27
	1. Context and Problem statement
	2. Work completed
	2.1. The ajs superoptimizer
	2.2. Optimized functions for MPIR
	2.3. Additional work

	3. Future work
	4. Source code
	5. Testing this code
	6. Blog post

