
Call: H2020-EINFRA-2015-1 REPORT ON D5.2

REPORT ON OpenDreamKit DELIVERABLE D5.2

Facility to compile PYTHRAN compliant user kernels and SAGE code and
automatically take advantage of multi-cores and SIMD instruction units in CYTHON

ADRIEN GUINET ET CLÉMENT PERNET

Due on 02/28/2017 (Month 18)
Delivered on 02/27/2017
Lead Université Grenoble Alpes (UGA)
Progress on and finalization of this deliverable has been tracked publicly at:
https://github.com/OpenDreamKit/OpenDreamKit/issues/115

DELIVERABLE DESCRIPTION, AS TAKEN FROM GITHUB ISSUE #115 ON 2017-02-27

• WP5: High Performance Mathematical Computing
• Lead Institution: Université Joseph Fourier (UJF)
• Due: 2017-02-28 (month 18)
• Nature: Demonstrator
• Task: T5.7 (#105) Pythran
• Proposal: p.51
• Final report

The Python programming language is widely used in the development of computational
mathematics systems like SageMath for its expressiveness and flexibility. Yet, as an
interpreted language, it suffers from inherent inefficiencies.

Over the years several tools have been developed to overcome this barrier. A major
player is Cython, which is both an extension of the Python language, and a compiler
generating compilable C code. At the cost of additional work from the developer (e.g. type
annotations), Cython can deliver performances similar to that of a compiled language. It’s
being used intensively in SageMath. Another emerging player is Pythran, a Python
to C++ compiler for a subset of the Python language, with a focus on scientific/numerical
computing. It takes advantage of type inference features of C++ as well as multi-cores and
SIMD instruction units to deliver high performance without the need for additional work
from the developer. In particular, it includes a C++ implementation of a major subset of
the Numpy API, optimized for speed, with support for expression templates that minimize
the number of memory transfers needed to compute complex expressions (Numpy is the
fundamental package for scientific computing with Python). However, unlike Cython,
Pythran does not support user defined classes, a key feature in systems like SageMath.

This deliverable is a step toward taking the best of both worlds, and helping bridge the gap
between numerical and exact computing. It proposes to incorporate Pythran support for
Numpy within Cython, which consequently provides high performance numerical linear
algebra to high level mathematical software developers, especially within SageMath.

As an illustration, the new Pythran backend in Cython achieves a speed-up of about
4 on the following typical Numpy based function:
def sqrt_sum (numpy.ndarray[FLOATTYPE_t, ndim=1] a,

numpy.ndarray[FLOATTYPE_t, ndim=1] b):
return numpy.sqrt(numpy.sqrt(a*a+b*b))

676541 OpenDreamKit 1

https://github.com/OpenDreamKit/OpenDreamKit/issues/115
https://github.com/OpenDreamKit/OpenDreamKit/issues/115
https://github.com/OpenDreamKit/OpenDreamKit/tree/master/WP5
https://github.com/OpenDreamKit/OpenDreamKit/issues/105
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/Proposal/proposal-www.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP5/D5.2/report-final.pdf
http://python.org
http://sagemath.org
http://cython.org
https://pythonhosted.org/pythran/
http://numpy.org

REPORT ON D5.2 Call: H2020-EINFRA-2015-1

CONTENTS

Deliverable description, as taken from Github issue #115 on 2017-02-27 1
1. Introduction 3
2. CYTHON and PYTHRAN integration 3
3. Usage 4
4. Benchmarks 4
4.1. Float computation 4
4.2. Harris 4
4.3. Convolution 5
5. Links 6

676541 OpenDreamKit 2

https://github.com/OpenDreamKit/OpenDreamKit/issues/115

Call: H2020-EINFRA-2015-1 REPORT ON D5.2

1. INTRODUCTION

The aim of this project is to optimize the overall performance of CYTHON code that uses
NumPy arrays.

CYTHON is a compiler for the PYTHON and CYTHON language. It basically converts PYTHON
code to a C/C++ module that calls directly the C PYTHON API. The CYTHON language is an
extension of PYTHON that allows to write C-like code within a PYTHON module. This code
is directly inserted into the generated module. This allows to write C python module with the
flexibility of a PYTHON script. This is used in numerous PYTHON project, with SageMath being
one of them.

In CYTHON, when operations are done on NumPy arrays, CYTHON relies on the original
NumPy package to compute them. This involves a fall back to the PYTHON interpreter. It thus
misses several optimisation opportunities, espacially with complex expressions. Optimizing
these NumPy calls can improve the overall performances of applications that rely on NumPy to
do their computation work. The interest for the OpenDreamKit project is the overall performance
gain that could be achieve within various SageMath workload.

The PYTHRAN project is a PYTHON to C++ compiler, that aims at optimizing scientific
PYTHON. It thus supports only a subset of the PYTHON language. It includes a full C++
implementation of a major set of the NumPy API. Some of the advantage of this implementation
is that it supports expression templates and SIMD instructions. Expression templates allow
to ”fuse” loops that can occurs when expressions with multiple operators are computed. For
instance, the expression a+ b ∗ c will originally be transformed by CYTHON in two calls: one
for the multiplication of b by c, and one for the addition of the result of this multiplication
and the addition by a. Each call will end-up in one loop, that will read memory, compute the
operation and write back to memory. The second loop will have the same pattern. In nowadays
architecture, memory bandwidth is often the limiting factor in this kind of operation. It is
thus really interesting to merge these loops, and load/store the memory only once. Expression
templating is a C++ technique that allows to evaluate expressions only when they are stored to
memory. Thus, in this case, the two loops will be automatically ”merged” by the C++ compiler,
and we’ll get an optimized version of this code. Note that this technique is used for instance by
the C++ wrapper of the GMP library.

2. CYTHON AND PYTHRAN INTEGRATION

The project has been focused on using this PYTHRAN backend for NumPy arrays in CYTHON
when possible. Indeed, PYTHRAN has a few limitations regarding the NumPy arrays it can
handle:

• array ”views” are not supported. That means that arrays must be stored in contiguous
memory. Fortran and C-style formats are supported.
• the endianess of the integers must be the same as the one of the targeted architecture

(note that CYTHON has the same limitation)
We thus need to be able to fall back to the CYTHON implementation if we are not in one of

those cases.
The integration within CYTHON works this way:
• at the function level, for every argument that is a NumPy array and supported by

PYTHRAN, we change its type by a fused type 1. This fused type is either a PYTHRAN
NumPy buffer or the original CYTHON buffer type
• for variables defined as NumPy array, we change them directly to a PYTHRAN buffer, if

their type and endianess are supported.

1http://cython.readthedocs.io/en/latest/src/userguide/fusedtypes.html

676541 OpenDreamKit 3

http://cython.readthedocs.io/en/latest/src/userguide/fusedtypes.html

REPORT ON D5.2 Call: H2020-EINFRA-2015-1

CYTHON has a comprehensive suite test regarding the NumPy features it supports. This test
suite is still valid after this integration.

3. USAGE

A new flag --np-pythran has been added to CYTHON that enables the usage of PYTHRAN
for NumPy operations. It will generate a C++ file that uses the optimized NumPy functions that
are in PYTHRAN. Then, when compiling the final extension, a path to an existing PYTHRAN
installation must be provided.

Here is an example of usage using distutils:

from d i s t u t i l s . c o r e import s e t u p
from Cython . B u i l d import c y t h o n i z e

s e t u p (
name = ”My h e l l o app ” ,
e x t m o d u l e s = c y t h o n i z e (’ h e l l o p y t h r a n . pyx ’ , n p p y t h r a n =True)

)

Basically, a flag np pythran has been added to the cythonize call that will enable the
usage of the PYTHRAN backend. It needs to have the PYTHRAN module installed.

4. BENCHMARKS

We did some benchmarks to see the benefits of the PYTHRAN integration for NumPy opera-
tions. These benchmarks have been done using an Intel Core i7-6700HQ.

4.1. Float computation
Here is a code snippet that does some computation on floating-point values:

import numpy
c i m p o r t numpy
def f l o a t c o m p (numpy . n d a r r a y [numpy . f l o a t t , ndim =1] a , \

numpy . n d a r r a y [numpy . f l o a t t , ndim =1] b) :
re turn numpy . s q r t (numpy . s q r t (a∗a+b∗b))

The figure 1 shows the compute time for various sizes for a and b, using the original CYTHON
mode, then CYTHON with the PYTHRAN backend, and finally CYTHON with the PYTHRAN
backend and SIMD instructions.

For instance, for N = 1000000, we have a speedup of 2.4x using the PYTHRAN backend
(against the original CYTHON version), and 3.7x using SIMD instructions (still against the
original CYTHON version).

4.2. Harris
This benchmark is based on the code available here: https://raw.githubusercontent.

com/serge-sans-paille/numpy-benchmarks/master/benchmarks/harris.
py.

The adapted CYTHON code is the following:

import numpy
c i m p o r t numpy

def h a r r i s (numpy . n d a r r a y [numpy . f l o a t t , ndim =2] I) :
c d e f i n t m = I . shape [0]
c d e f i n t n = I . shape [1]

676541 OpenDreamKit 4

https://raw.githubusercontent.com/serge-sans-paille/numpy-benchmarks/master/benchmarks/harris.py
https://raw.githubusercontent.com/serge-sans-paille/numpy-benchmarks/master/benchmarks/harris.py
https://raw.githubusercontent.com/serge-sans-paille/numpy-benchmarks/master/benchmarks/harris.py

Call: H2020-EINFRA-2015-1 REPORT ON D5.2

FIGURE 1. Float computation benchmark (logarithmic scales)

 0.001

 0.01

 0.1

 1

 10

 100

 10
 100

 1000

 10000

 100000

 1x10 6

 1x10

E
la

p
se

d
 T

im
e
 (

m
s)

Cython
Cython + Pythran

Cython + Pythran + AVX2

c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] dx = \
(I [1 : , :] − I [: m−1, :]) [: , 1 :]

c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] dy = \
(I [: , 1 :] − I [: , : n−1]) [1 : , :]

c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] A = dx ∗ dx
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] B = dy ∗ dy
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] C = dx ∗ dy
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] t r = A + B
c d e f numpy . n d a r r a y [numpy . f l o a t t , ndim =2] d e t = A ∗ B − C ∗ C
re turn d e t − t r ∗ t r

The figure 2 shows the compute time for various sizes of the 2D array I (N ×N). We’ve got a
25 % improvement with an array of 4096× 4096 floats as input using the PYTHRAN backend.
Moreover, in this case, it seems that this code does not really benefits from SIMD instructions.

4.3. Convolution
We used this example from the CYTHON documentation: http://cython.readthedocs.

io/en/latest/src/tutorial/numpy.html.
The input we use is the following:

import numpy as np
N = 1000
f = np . a r a n g e (N∗N, d t y p e =np . i n t) . r e s h a p e ((N,N))
g = np . a r a n g e (8 1 , d t y p e =np . i n t) . r e s h a p e ((9 , 9))

The results are the following:
• for the classical CYTHON version: 155ms
• for the CYTHON version using the PYTHRAN backend: 150ms
• for the CYTHON version using the PYTHRAN backend using SIMD instructions: 149ms

It seems the PYTHRAN backend don’t manage to benefit a lot from SIMD instructions in this
case. We thus still got an average speedup of 3 %.

676541 OpenDreamKit 5

http://cython.readthedocs.io/en/latest/src/tutorial/numpy.html
http://cython.readthedocs.io/en/latest/src/tutorial/numpy.html

REPORT ON D5.2 Call: H2020-EINFRA-2015-1

FIGURE 2. Harris computation benchmark

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

128
256

512
1024

2048
4096

E
la

p
se

d
 T

im
e
 (

m
s)

Cython
Cython + Pythran

Cython + Pythran + AVX2

5. LINKS

Modifications that were necessary to the PYTHRAN project have been accepted and merged
into its master branch (see https://github.com/serge-sans-paille/pythran/
pull/629, https://github.com/serge-sans-paille/pythran/pull/628, https:
//github.com/serge-sans-paille/pythran/pull/616 and https://github.
com/serge-sans-paille/pythran/pull/614).

The modifications necessary within the CYTHON project are currently being reviewed (see
https://github.com/cython/cython/pull/1607).

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.

676541 OpenDreamKit 6

https://github.com/serge-sans-paille/pythran/pull/629
https://github.com/serge-sans-paille/pythran/pull/629
https://github.com/serge-sans-paille/pythran/pull/628
https://github.com/serge-sans-paille/pythran/pull/616
https://github.com/serge-sans-paille/pythran/pull/616
https://github.com/serge-sans-paille/pythran/pull/614
https://github.com/serge-sans-paille/pythran/pull/614
https://github.com/cython/cython/pull/1607

	Deliverable description, as taken from Github issue #115 on 2017-02-27
	1. Introduction
	2. Cython and Pythran integration
	3. Usage
	4. Benchmarks
	4.1. Float computation
	4.2. Harris
	4.3. Convolution

	5. Links

