
Call: H2020-EINFRA-2015-1 REPORT ON D4.9

REPORT ON OpenDreamKit DELIVERABLE D4.9

In-place computation in active documents (context/computation)

MICHAEL KOHLHASE & TOM WIESING
FAU ERLANGEN-NÜRNBERG

HTTP://KWARC.INFO

Due on 02/28/2017 (Month 18)
Delivered on 02/27/2017
Lead Jacobs University Bremen (JacobsUni)
Progress on and finalization of this deliverable has been tracked publicly at:
https://github.com/OpenDreamKit/OpenDreamKit/issues/97

DELIVERABLE DESCRIPTION, AS TAKEN FROM GITHUB ISSUE #97 ON 2017-02-27

• WP4: User Interfaces
• Lead Institution: Jacobs University Bremen
• Due: 2017-02-28 (month 18)
• Nature: Demonstrator
• Task: T4.6 (#74)
• Proposal: p. 48
• Final report

One of the most prominent features of a virtual research environment (VRE) is a unified
user interface (UI). There are two complementary approaches that can serve as a basis for
OpenDreamKit’s mathematical VRE UI: computational notebooks and active structured
documents. The former allows for mathematical text around the computation cells of a real-
eval-print loop of a mathematical computational system and the latter makes semantically
annotated documents active.

In D4.2 “Active/Structured Documents Requirements and existing Solutions” (#91) we
reported on two systems in the OpenDreamKit project which follow respectively those
two approaches: Jupyter – a notebook server for various computational systems – and
MathHub.info – a platform for active mathematical documents. We identified commonalities
and differences and developed a vision for integrating their functionalities.

As a first step into this direction we explore in this deliverable the requirements of
integrating in-situ (i.e. in-document) computation – a forte and indeed the raison-d’être of
notebooks – into conventional, narrative-structured mathematical documents. We present,
analyze, and classify examples for in-situ computation and explore – in particular in a
MathHub.info based prototype – how the active documents technology has to be extended to
accommodate this functionality as a semantic service.

676541 OpenDreamKit 1

HTTP://KWARC.INFO
https://github.com/OpenDreamKit/OpenDreamKit/issues/97
https://github.com/OpenDreamKit/OpenDreamKit/issues/97
https://github.com/OpenDreamKit/OpenDreamKit/tree/master/WP4
https://github.com/OpenDreamKit/OpenDreamKit/issues/74
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/Proposal/proposal-www.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP4/D4.9/report-final.pdf
https://github.com/OpenDreamKit/OpenDreamKit/issues/91
http://jupyter.org
http://MathHub.info
http://MathHub.info

REPORT ON D4.9 Call: H2020-EINFRA-2015-1

CONTENTS

Deliverable description, as taken from Github issue #97 on 2017-02-27 1
1. Introduction 3
2. Examples of In-Situ Computation 4
2.1. Unit Conversions 4
2.2. Exploring Equations 4
2.3. Hypothetical Computations Playing with Constants 5
2.4. Updating Values to Current or Historical Values 5
2.5. Computation with Document and Content Structure 6
2.6. Computation with Proofs 6
3. Information Architecture 7
3.1. Information Architecture for Unit Conversion 10
4. Implementation 11
4.1. Unit Conversion 11
4.2. A General Framework for In-Situ Computation 12
4.3. Code Availability, Licensing and Demos 13
5. Conclusion and Future Work 15
Acknowledgements 15
References 16

676541 OpenDreamKit 2

https://github.com/OpenDreamKit/OpenDreamKit/issues/97

Call: H2020-EINFRA-2015-1 REPORT ON D4.9

1. INTRODUCTION

In D4.2: “Active/Structured Documents Requirements and existing Solutions”, we have
proposed “Active Structured Documents” as a natural interface for interacting with mathematical
knowledge for the working mathematician, and thus as a UI component for the OpenDreamKit
Virtual Math Research Environment Toolkit. In a nutshell, active documents are documents
which make aspects of the meaning of their contents explicit enough that it becomes machine-
actionable in a document player that delivers services – in our case for computation – that can be
triggered.

In [Koh+11] we present a system for active documents following the “active document para-
digm” which defines Active Documents as semantically annotated documents associated with a
content commons that holds the corresponding background ontologies. An Active Document
Player embeds user-visible, interactive services like program execution, computation, visu-
alization, navigation, information aggregation and information retrieval to make documents
executable. We call this framework the Active Documents Paradigm (ADP; see Figure 1), since
documents can also actively adapt to user preferences and environment rather than only executing
services upon user request.

Document Commons Content Commons

Content
Objects

Semantic
Docu-
ments

Semantic
Docu-
ments

Semantic
Docu-
ments

Semantic
Docu-
ments

Active
Document

Player
User

view
interact

FIGURE 1. Active Documents

The ADP is implemented in the Active Documents Portal MathHub.info [MH] building on
standard components as an instance of the Planetary system [Koh12].

In the long run, we propose to integrate active structured documents with the Jupyter note-
books, and as a first step into this direction we explore the requirements of integrating in-situ
(i.e. in-document) computation – a forte and indeed the raison-d’être of notebooks – into conven-
tional, narrative-structured mathematical documents; Section 2 presents, analyzes, and classifies
examples for in-situ computation. We also explore how the active documents technology has to
be extended to accomodate this functionality as a semantic service – see Section 3 for details.
Section 4 details the implementation, and Section 5 concludes the report and gives directions of
future research and development.

676541 OpenDreamKit 3

https://github.com/OpenDreamKit/OpenDreamKit/issues/91

REPORT ON D4.9 Call: H2020-EINFRA-2015-1

2. EXAMPLES OF IN-SITU COMPUTATION

In the following we will look at some examples to get a feeling for the applications.

2.1. Unit Conversions
Reading documents which contain units that one is not familiar with can be an annoying task,

especially when uncommon units, such as solar masses or fortnights, occur in the document
or when a document is written in a system of measurement different from the one the reader
is used to. Of course, a google query or a similar service can be used to convert units, but this
requires the reader to leave the document for another application, which in turn leads to a loss of
focus and overall productivity. This can be averted by in-situ computation. Moreover, in contrast
to existing unit conversion services, in-situ computation can also convert all expressions in a
document – without noticeable effort for the user and without productivity loss.

2.2. Exploring Equations
A common example of in-situ computation is the exploration of mathematical models that

are given as equations. In the simplest case, this can be equations like Einstein’s mass-energy
equivalence (1) – which we will use as a running example – and in other cases, this can be
complex models like van Roosbroeck’s models for drift and diffusion of electrons and holes
in semiconductor devices [Far+16]1, which comprises partial differential equations, boundary
conditions, and physical constants – a much more complex situation, but the possible interactions
are essentially the same.

So let us come back to our running example: The equation for mass-energy equivalence is
simple:

(1) E = mc2 ,

where E is the energy, m is the mass, and c is the speed of light. It appears in many documents,
e.g. the Wikipedia article in Figure 2. In such a document – were it active – a scholar or interested
layman might be interested to see what the energy equivalent of one gram of matter might be.
Today a google query reveals a custom-made answer at [Ode], but really our scholar would like
to just right click on the symbol m in 1, instantiate it to 1g and have the document simplify the
changed expression (in-situ computation) to give the answer.

Conversely, she might want to know how what mass it would take to drive e.g. from Erlangen
to Paris in a Tesla (which gets 6.25 km per kWh)2. Here she would like to just instantiate E with
776× 6.25 = 4850 kWh and the document solves the equation 4850 = mc2 for m. Of course,
the direct result m = 4850 kWh/(299792458 m

s)
2 = 1.942704 10−7 kg is so minuscule that she

wants to have it changed form she understand, e.g. the number of carbon atoms that weigh as
much.

Of course, the computations themselves in our example are rather simple, and can be executed
by any computer algebra system, and even complex examples like the van Roosbroeck models
alluded to above would not tax modern systems exceedingly; indeed they are the kind of
computations that are often carried out and documented in Jupyter notebooks.

The point here is that the envisioned in-situ computation service allows computation without
changing to another system and avoids errors (data entry errors and data interpretation errors)
induced by crossing system borders.

1We are currently studying this model, formalizing the inherent knowledge and augmenting (parts of) [Far+16]
into an active document, see [Koh+] for first results. The methods reported on here will eventually be employed in
this case study, which itself is beyond the scope of this deliverable report

2This is a natural and common question; see [Rte] which computes the mileage a car would get out of a 1/16
inch drop of water – the value it comes up with is 96.000 miles.

676541 OpenDreamKit 4

Call: H2020-EINFRA-2015-1 REPORT ON D4.9

In physics, mass–energy equivalence states that anything having mass has an equivalent
amount of energy and vice versa, with these fundamental quantities directly relating to one
another by Albert Einstein’s famous formula:

E = mc2

This formula states that the equivalent energy (E) can be calculated as the mass (m) multi-
plied by the speed of light (c = about 3× 108m/s) squared.

FIGURE 2. From the Mass-Energy-Equivalence page at Wikipedia [Wik17]

2.3. Hypothetical Computations Playing with Constants
In the previous example, we only explored the equation by instantiating the variables (we are

free to do so, since they are ‘universal’, i.e. the equation holds for all E and m). The ‘constant’
c is a different beast, it has a globally fixed value: 299 792 458 m/s. In principle, we could
instantiate such ‘constants’ as well, e.g. to answer questions like ‘What would the word described
in the paper look like if the speed of light were 88mph?’ This kind of hypothetical computations
are quite common e.g. in Physics, where some of the ‘constants’ – not the speed of light, but e.g.
the proton decay (half-life of protons) – are ‘constants’ of unknown magnitude (with various
theories projecting values between 1028 and∞). Apart from the fact that playing with ‘constants’
essentially switches between ‘alternative worlds’, in-situ computation remains as useful as the
instantiation of ‘universal variables’ from the last section.

A variant of the ‘constants’ case is the case of ‘existential variables’, which are introduced by
declarations like “for some”. In essence ‘existential variables’ behave like ‘constants’ in that
they should not be substituted for and have a fixed value – albeit an unknown one. Indeed we can
generalize equation (1) to “There is a velocity c, such that E = mc2.” without changing much of
the physical reality – only that it becomes more permissible to experiment with concrete values.

In fact, often ‘constants’ are not constant after all, for instance the value c = 299 792 458 m/s
only holds for photons in vacuum, with other values for other media – including values near
88mph in exotic materials like Bose-Einstein condensates. Here, light speed becomes a function
of the medium, and we have a “hidden parameter” to the equation, which comes into play in
in-situ computation. We will not consider existential variables and functional dependencies in
this report and leave the interfaces to future research.

2.4. Updating Values to Current or Historical Values
Additionally to the “computation with hypothetical values” discussed above, we often want to

compute with “current or historical values”, for time-dependent phenomena. Documents become
much more useful if they can adapt values via in-situ computation. Examples uses would be e.g.
papers on global warming that adapt to the present state of the art with newer models or data,
another is the tongue-in-cheek query “Does it snow in Hell?” to Wolfram alpha [Wol], which
interprets it to be a meterological query about the town of Hell, Norway, and the answer varies
with the weather there – 0◦C and rain at the time of writing this report.

There are many special-purpose documents that can already do that, though the mechanisms
are largely special-purpose. Stock ticker widgets are inserted into news web pages, and weather
apps supply the “current weather” in travel guides. But none of these allow computation with the
values. An exception to this are (some) spreadsheets players that allow linking data cells to live
feeds; with this spreadsheets – a well-understood form of special-purpose active documents –
can do in-situ computation with live data feeds.

But there is also a case to be made for general documents with in-situ computation: Consider
the case of the expression “five gold doubloons” used by Adam Smith in an intuition-building
example in his seminal book “Wealth of Nations” from 1776 [Smi76]. The example cannot be

676541 OpenDreamKit 5

REPORT ON D4.9 Call: H2020-EINFRA-2015-1

understood by today’s readers, unless they have an intuition about the comparative magnitude
of this monetary unit – which was clear to contemporary readers. Indeed the example changes
meaning depending on whether “five gold doubloons” buy a simple meal, a fine riding horse or a
mansion. Here, an in-situ “computation” that explains their relative purchasing power would be
extremely helpful for scholars and politicians (who love to quote Smith).

2.5. Computation with Document and Content Structure
In semantic documents we often have access to the dependency relation between document

fragments – in the document itself and to other documents and the content commons. This can
be used to compute new document structures. A striking example is the computation of guided
tours for any concept in the document. A guided tour [Koh+11] is a document that is

• self-contained – it builds on the (estimated) knowledge of the reader
• dependency-ordered – it introduces new concepts only when all prerequisites are al-

ready introduced before or assumed to be known
• goal-directed – it introduces the goal concept
• minimal in some form – in the class of documents satisfying the three aspects above.

Other conditions (e.g. the existence of examples and practice/self-evaluation problems) may be
added for special classes of guided tours.

Given an active document in the form described in Figure 1, we can compute guided tours
from the document itself (e.g. by adding an “explain” option to the right-click menu of technical
terms.)

2.6. Computation with Proofs
Scientific, legal, and policy documents often involve complex argumentations for or against

certain statements. In the first categories, the argument can often take the form of – or at least
approach – proofs. In the area of study of the OpenDreamKit project – Mathematics – arguments
are usually quite literally proofs. These are notoriously difficult to convey, since proofs depend
on the user’s mathematical literacy [IK15], familiarity with the concepts/facts involved, and the
proof techniques. “Proofs” as they are published in mathematic are an attempted best fit to the
expected literacy and familiarity of an assumed average reader. In active documents we can (as
in the guided tours above) adapt to the “real reader” either pre-emptively or by user interaction.
This involves computation – which is best integrated as in-situ computation, e.g.

• calling automated theorem provers on a goal in a document;
• extending the level of explanation by doing that on a subgoal or deepening the level of

explanation. E.g. from “obviously” to a full proof.

676541 OpenDreamKit 6

Call: H2020-EINFRA-2015-1 REPORT ON D4.9

3. INFORMATION ARCHITECTURE

For the OpenDreamKit project we have developed a general architecture for in-situ computa-
tion and tested it on the use cases 2.1 to 2.3 above, which involve computation with math objects
– aka. “mathematical formulae”3 in active documents.

Active Documents are represented in the OMDoc/MMT format [Koh06; MMT; Ian17] which
combines document- and content strutures and thus allows to formalize both sides of active
documents – the lower part in Figure 1; see D4.2: “Active/Structured Documents Requirements
and existing Solutions” for an overview and comparison to other OpenDreamKit systems. The
active document player is implemented in the MathHub system [MH] – see D4.3: “Distributed,
Collaborative, Versioned Editing of Active Documents in MathHub.info” for an introduction in
the context of the OpenDreamKit project – which relies on the MMT API [Rab13; MMT] for
content/knowledge management services. In particular, the MMT API can communicate with
many of the OpenDreamKit systems via the SCSCP remote procedure call standard [Ham+10];
see D3.3: “Support for the SCSCP interface protocol in all relevant components (SAGE, GAP,
etc.) distribution” for an account of the exact state of affairs. We will use this facility for the
actual computations.

To understand the realization of in-situ computation in active documents, we will first look at
the information resources involved and only in the next section give go into concrete implemen-
tation details. The latter may change over the course of the OpenDreamKit project while the
former will only be refined with more experience.

Active documents have math objects encoded in MathML [Aus+10]: In OMDoc/MMT-based
active documents documents contain presentation MathML and are crosslinked – parallel markup
– to Content MathML representations in the content commons; see Figure 1. In any case, the
objects which contain identifiers – e.g. E, m, and c in (1), which are introduced (declared)
in the text or taken for granted because they have definitions in the content commons that is
assumed to be known by the reader; see [WGK11] for an experimental account of the linguistic
side. These declarations and definitions induce a context that gives meaning to the math objects
by explaining or binding these identifiers. For in-situ computation this context – we call it the
computation context – must be identified and passed to the compute engine.

Our computation context is similar in spirit to the document and user contexts Rikko Verrijzer
identifies in [Ver15] for MathDox educational documents [Mat]. His notions focus mainly on
user modeling whereas ours are technically more generic, since our active documents have more
elaborated document and content structures.

To get a feeling for the situation, consider Figure 3 which instantiates the abstract diagram
from Figure 1 to the situation in our running example: Einstein’s energy/mass equivalence. We
have the two parts: the document commons with (a slightly rephrased fragment of) the document
in Figure 2 on the left upper corner and the content comment on the other side of the dashed line.

The latter is encoded as an OMDoc/MMT theory graph – see [RK13] for technical details
and [CICM1616] and D6.2: “Initial DKS base Design (including base survey and Requirements
Workshop Report)” for an account of the applications in the OpenDreamKit project. All relevant
concepts are grouped in named theories (the boxes with rounded corners), which introduce
symbols and their properties e.g. the definition of the unit Joule in energy or the size of the
speed of light in lightspeed. These theories are connected by theory morphisms – only inclusions
S T which make all declarations (symbols and properties) of S visible in T – and give an
object-oriented, modular regime of formalizing mathematical knowledge.

3The other use cases are possible in this architecture. Use case 2.5 has been realized before – on a similar
information architecture but different implemenation – and is currently being re-developed for the current version of
the MMT API.

676541 OpenDreamKit 7

https://github.com/OpenDreamKit/OpenDreamKit/issues/91
https://github.com/OpenDreamKit/OpenDreamKit/issues/91
https://github.com/OpenDreamKit/OpenDreamKit/issues/92
https://github.com/OpenDreamKit/OpenDreamKit/issues/92
https://github.com/OpenDreamKit/OpenDreamKit/issues/62
http://www.symbolic-computing.org/
https://github.com/OpenDreamKit/OpenDreamKit/issues/62
https://github.com/OpenDreamKit/OpenDreamKit/issues/136
https://github.com/OpenDreamKit/OpenDreamKit/issues/136

REPORT ON D4.9 Call: H2020-EINFRA-2015-1

mass
M : type, g : M, kg : M, . . .

length
L : type,m : L, . . .

time
T : type, s : T, h : T, . . .

energy
E : type, J : E, . . .
Jdef : 1J = 1kg·m2

s2

lightspeed
c : L/T
cval : 1c = 299792458m

s2

EME
E : E,m : M
eme : E = mc2

arith
+,−,×, / : R2 → R

E = mc2

where E is the Energy ,

m is the Mass , and
c the speed of light .

FIGURE 3. E = mc2 as an Active Document

Documents are marked up in terms of its document, statement, and phrase structure in the
ADP. In particular, we mark up

(1) the sectioning structure – omitted in our running example,
(2) statements – the assertion for E = mc2 coincides with the whole document D in

Figure 3, and
(3) the phrase structure – here declarations are shown as boxes and technical terms as dashed

boxes.
Finally, the marked up structures in the document commons are cross linked to the content
commons to create parallel markup4 at all levels. We see three dashed arrows: two connect
the technical terms “Energy” and “Mass” in the dashed boxes to the corresponding concepts
in the content tree and one that connects the whole declaration “c is the speed of light” to the
corresponding declaration in the theory ligthspeed. The dotted arrow on the top of Figure 3
represents still another parallel alignment relation, it is the “home theory” relation, which makes
all concepts from a theory – the home theory; here EME – in a document fragment. All parallel
markup relations must be refinements of this relation to be well-justified in OMDoc/MMT.

The crucial observation is that together, the home theory relation, its refinements, and the
document markup give a notion of context for the computation. The (required) declarations for
the local identifiers E and m in D , and the (optional) declaration for the identifier c inherited
form the theory lightspeed give meaning to E = mc2 and also determine what can be computed.
Instantiating the variables (locally declared identifiers) m and E give rise to the computations in
Section 2.2, whereas the “replacing” the constant (an identifier inherited from a theory) c with a
different value the hypothetical calculations from section 2.3. We can even predict the grade of
hypotheticality by the inheritance distance in the content theory graph.

Formally, the computation context of a formula comes in the form of declarations, i.e.
triples of the form c : τ = δ, where c is the name of the declared identifier, τ optionally) its
type, and (again optionally) δ its definiens. In our running example, the context of E = mc2

consists of three declarations: E : E, m : M, and c : L/T = 299792458 (leaving out units for

4The idea of “parallel markup” has been pioneered by the MathML format [Aus+10], which uses it to con-
nect equivalent sub-formulae in presentation and content Markup, and [Ian17] generalizes it to all levels in the
OMDoc/MMT setting.

676541 OpenDreamKit 8

Call: H2020-EINFRA-2015-1 REPORT ON D4.9

the moment). It can be inferred from the information in Figure 3; but let us make the active
document fragment more explicit.

Listing 1 shows the HTML5 representation for the active document fragment in Figure 3.
It shows the (presentation) MathML representation of E = mc2, followed by the text part in
which the declarations are marked up with span elements of class o declaration for the variable
declarations and o symbol for the symbol declaration. These carry the OMDoc/MMT attributes
o:for and o:scope. The former points to the identifier being declared, and the latter points at
the element in which this declaration is active. In this case, since the scope is the other <p>
element the declarations govern the identifiers in the displayed equation E = mc2.

LISTING 1. Native Markup for an Active Document Fragment
<p id=”p” xmlns:o=”http://omdoc.org/ns”>
<math display=”block” xref=”http://mathhub.info/ODK/ActiveComputationDemo?EME?EME”>
<mi>E</mi>
<mo>=</mo>
<mrow>

<mi>m</mi>
<mo> ⁢</mo>
<msup><mi>c</mi><mn>2</mn></msup>
</mrow>

</math>
where

<math><mi id=”E”>E</mi></math> is the
energy
,

<math><mi id=”m”>m</mi></math> is the
mass
, and

<math><mi id=”c” xref=”http://mathhub.info/ODK/ActiveComputationDemo?Lightspeed?c”>c</mi></math> the
speed of light
.
</p>

LISTING 2. E = mc2 in Content MathML
<constant name=”eme”>
<type>
<math>
<apply><eq/>
<ci>E</ci>
<apply><times/>
<ci>m</ci>
<apply><power/>
<csymbol cd=”Lightspeed”>c</csymbol>
<cn>2</cn>
</apply>
</apply>
</apply>
</math>
</type>
</constant>

676541 OpenDreamKit 9

REPORT ON D4.9 Call: H2020-EINFRA-2015-1

Now let us have a look at how this enables computation: The displayed equation E = mc2

linked into the content commons via its xref attribute, which points to the (constant) declaration
in Listing 2. The constant element combines the system name eme with the statement of the
equation in the type element5. As the equation is represented as the “operator tree” in Content
MathML, it is fully disambiguated functionally and can therefore directly be computed with in a
computational engine (e.g. the MMT system itself or a computer algebra system like GAP or
SageMath) after instantiation of the variables with concrete values.

3.1. Information Architecture for Unit Conversion
For the automatic conversion of units, we assume that the document contains formulas in

MathML with cross references between its presentational part and its content MathML. The
content MathML needs to be annotated with the semantics of the expression, which includes the
information about the present units.

5This is a consequence of using the Curry/Howard isomorphism at work; we have elided the details of the type
here.

676541 OpenDreamKit 10

Call: H2020-EINFRA-2015-1 REPORT ON D4.9

4. IMPLEMENTATION

The implementation of in-situ computation is organized along the information model outlined
in the last section. It is realized as a set of Javascript modules in the JOBAD framework [JOBAD],
a Javascript framework for instrumenting (active) documents with user interactions; see [GLR09]
for details.

We will first discuss unit conversion (see Section 2.1) as a special case of in-situ computation
and then generalize to the case of a non-trivial context and generalize to arbitrary computations
in Section 4.2.

4.1. Unit Conversion
Unit conversion is a special case of in-situ computation, because
• the computations are essentially limited to unit conversion and
• context is trivial, since the computational objects – the quantity expressions – consist

only of a number and a unit expression. The units are all defined constants and local
identifiers do not exist.

Ulrich Rabenstein of the KWARC group has implemented a semantics extraction procedure that
finds quantity expression in HTML5 documents, analyzes their content structure and represents
them in content MathML and stored as (standoff) RDF annotations. These can be used to feed
in-situ computations.

The user interface for unit conversion can be implemented directly in JOBAD by delegating
the conversion (the content MathML representation of the quantity expressions has sufficient
information) to a unit converter – we use the units package from Astropy [Ast+13], an extendible
python library for astronomy – whose result can be converted to Presentation MathML for
inclusion in the document. We show the user interaction here.

Before starting to convert something, the user can highlight all quantity expressions in a given
document. This results in a document, as shown in Figure 4. We further use this snippet as an
example.

FIGURE 4. Highlighting Quantity Expressions in [Ruh+98]

In the first case, the user wants to convert a unit in just one expression to an equivalent one, say
watt to horsepower. For that, she can right-click on this particular expression and choose a target
unit (e.g. horsepower) from the list of units that are equivalent to Watt. Figure 5a demonstrates
this and Figure 5b displays the result of the computation.

The current example only allows local conversions, but of course the user also wants to convert
units document-wide – ideally from one system of measurement to another. Figure 5c shows the
result of a prototypical implementation, which converts all units to irreducible SI base units. This

676541 OpenDreamKit 11

REPORT ON D4.9 Call: H2020-EINFRA-2015-1

(A) Choosing A Target Unit

(B) The Result of converting one QE

(C) Converting a Document To SI

FIGURE 5. In-Situ Unit Conversion

could, for instance, be extended to automatically convert all quantity expressions in a document
from imperial to metric units and vice versa.

4.2. A General Framework for In-Situ Computation
In addition to the example above, we have also implemented a prototype of the general in-situ

computation manager detailed above. A right click on a formula F triggers the JOBAD menu,
which has an “Active Computation” field.

• First, the context extractor, a function that for all the ci elements in the content formula
C associated with F , and tries to find the associated variable declarations by going up
the parent chain of F and the symbol declarations from the home theory. Note that using
the content MathML representation C of F gets us around disambiguation problems:

676541 OpenDreamKit 12

Call: H2020-EINFRA-2015-1 REPORT ON D4.9

even if the presentation of F is ambiguous (e.g. by using variable or constant names
multiple times), C is not.
• The variable context is displayed to the user prompting instantiation in a popup form:

the in-situ computation manager (see Figure 6, which allows to give values for the
components of the equation, pick different actions (simplification, equation solving, . . .)
and ways of providing the results (in-place, footnote, . . .). As the current system is only
a prototype, one can currently only select the Evalutation Action.
• In a second step, the user-supplied values are parsed into content MathML, inserted

into C, yielding the content MathML expression C ′, which is then shipped to the
computational engine. Currently we only support the MMT system as a computational
engine, but this is not a restriction, since MMT can delegate computations to engines
like GAP, Sage, PARI, . . . via the SCSCP protocol [D3.317].
• Finally, the result R of computing C ′ – a content MathML expression – is inserted back

into the original computation context. This context can then be presented in presentation
MathML and inserted into the document according to the method the user selected 6.

FIGURE 6. In-Situ Computation Manager

4.3. Code Availability, Licensing and Demos
For both of the examples in this section, an implementation is available under Open Source

license terms. For reasons of lacking MathML support in other browsers, we have only tested
these demos in Firefox.

6 Currently, the system presents the user with the computed context directly.

676541 OpenDreamKit 13

REPORT ON D4.9 Call: H2020-EINFRA-2015-1

A demo of the unit conversion is available at http://ash.eecs.jacobs-university.
de/. A user can first select a document and then repeat the procedure detailed above in Sec-
tion 4.1. The source code of the demo is available in the repository at https://gl.kwarc.
info/urabenstein/Semanticextraction/tree/master/server. The server
can be executed locally following the steps in the corressponding README file.

A protoype of the General Framework for In-Situ Computation is also availble. It can be found
at http://ash.eecs.jacobs-university.de/prototype/ and shows the basics
of the process explained in Section 4.2. it consists of a frontend component, the source code of
which can be found at https://gl.mathhub.info/ODK/ActiveComputationDemo,
as well as a backend component inside the MMT system. The source code to the backend compo-
nent can be found at https://github.com/UniFormal/MMT/tree/master/src/
mmt-odk/src/info/kwarc/mmt/odk/activecomp.

676541 OpenDreamKit 14

http://ash.eecs.jacobs-university.de/
http://ash.eecs.jacobs-university.de/
https://gl.kwarc.info/urabenstein/Semanticextraction/tree/master/server
https://gl.kwarc.info/urabenstein/Semanticextraction/tree/master/server
http://ash.eecs.jacobs-university.de/prototype/
https://gl.mathhub.info/ODK/ActiveComputationDemo
https://github.com/UniFormal/MMT/tree/master/src/mmt-odk/src/info/kwarc/mmt/odk/activecomp
https://github.com/UniFormal/MMT/tree/master/src/mmt-odk/src/info/kwarc/mmt/odk/activecomp

Call: H2020-EINFRA-2015-1 REPORT ON D4.9

5. CONCLUSION AND FUTURE WORK

We have presented a general framework for in-situ computation in active documents. This
is a contribution towards using mathematical documents – the traditional form mathematicians
interact with mathematical knowledge and computations – as a user interface for a mathematical
virtual research environments. This is also a step towards integrating the two main UI frameworks
under investigation in the OpenDreamKit project: Jupyter notebooks and active documents –
see D4.2: “Active/Structured Documents Requirements and existing Solutions” – at a conceptual
level. The system is prototypical at the moment, but can already be embedded into active
documents via a Javascript framework and is ready for use in the OpenDreamKit project.
The user interface and SCSCP connections are quite fresh and need substantial testing and
optimizations.

In the current state of the system , we have concentrated on in-situ computation with MathML
formulae, which covers the first three use cases from Section 2. The main problem with extending
this method to the other ones is flexiformalizing the data and knowledge at the document and
structure levels and implementing the narration composition engines.

Acknowledgements
This report has profited from discussions with Dennis Müller and Ulrich Rabenstein from the

KWARC group in Erlangen. Many of the underlying concepts have evolved in discussions of the
first author with Dr. Mihnea Iancu.

676541 OpenDreamKit 15

https://github.com/OpenDreamKit/OpenDreamKit/issues/91

REFERENCES Call: H2020-EINFRA-2015-1

REFERENCES

[Aus+10] Ron Ausbrooks et al. Mathematical Markup Language (MathML) Version 3.0.
W3C Recommendation. World Wide Web Consortium (W3C), 2010. URL: http:
//www.w3.org/TR/MathML3.

[CICM1616] Paul-Olivier Dehaye et al. “Interoperability in the OpenDreamKit Project: The
Math-in-the-Middle Approach”. In: Intelligent Computer Mathematics 2016.
Conferences on Intelligent Computer Mathematics. (Bialystok, Poland, July 25–
29, 2016). Ed. by Michael Kohlhase et al. LNCS 9791. Springer, 2016. URL:
https://github.com/OpenDreamKit/OpenDreamKit/blob/
master/WP6/CICM2016/published.pdf.

[D3.317] Alexander Konovalov et al. Support for the SCSCP interface protocol in all
relevant components (SAGE, GAP, etc.) distribution. Deliverable D3.3. Open-
DreamKit, 2017. URL: https://github.com/OpenDreamKit/OpenDreamKit/
raw/master/WP3/D3.3/report-final.pdf.

[Far+16] Patricio Farrell et al. Numerical methods for drift-diffusion models. Tech. rep. To
appear in: Handbook of Optoelectronic Device Modeling and Simulation: Lasers,
Modulators, Photodetectors, Solar Cells, and Numerical Models — Volume Two.
Ed. J. Piprek, Taylor & Francis, 2017. Berlin: WIAS, 2016.

[GLR09] Jana Gičeva, Christoph Lange, and Florian Rabe. “Integrating Web Services into
Active Mathematical Documents”. In: MKM/Calculemus Proceedings. Ed. by
Jacques Carette et al. LNAI 5625. Springer Verlag, July 2009, pp. 279–293. ISBN:
978-3-642-02613-3. URL: https://svn.omdoc.org/repos/jomdoc/
doc/pubs/mkm09/jobad/jobad-server.pdf.

[Ham+10] Kevin Hammond et al. “Easy Composition of Symbolic Computation Software:
A New Lingua Franca for Symbolic Computation”. In: Proceedings of the 2010
International Symposium on Symbolic and Algebraic Computation (ISSAC). ACM
Press, 2010, pp. 339–346.

[Ian17] Mihnea Iancu. “Towards Flexiformal Mathematics”. PhD thesis. Bremen, Ger-
many: Jacobs University, 2017.

[IK15] Mihnea Iancu and Michael Kohlhase. “Math Literate Knowledge Management
via Induced Material”. In: Intelligent Computer Mathematics 2015. Conferences
on Intelligent Computer Mathematics. (Washington DC, USA, July 13–17, 2015).
Ed. by Manfred Kerber et al. LNCS 9150. Springer, 2015, pp. 187–202. ISBN:
978-3-319-20615-8. URL: http://kwarc.info/kohlhase/papers/
cicm15-induced.pdf.

[JOBAD] JOBAD Framework – JavaScript API for OMDoc-based active documents. URL:
https://github.com/KWARC/JOBAD (visited on 02/18/2012).

[Koh+] Michael Kohlhase et al. A Case study for Active Documents and Formalization in
Math Models: The van Roosbroeck Model. URL: https://mathhub.info/
MitM/models (visited on 02/05/2017).

[Koh+11] Michael Kohlhase et al. “The Planetary System: Web 3.0 & Active Documents for
STEM”. In: Procedia Computer Science 4 (2011): Special issue: Proceedings of
the International Conference on Computational Science (ICCS). Ed. by Mitsuhisa
Sato et al. Finalist at the Executable Paper Grand Challenge, pp. 598–607. DOI:
10.1016/j.procs.2011.04.063. URL: http://kwarc.info/
kohlhase/papers/epc11.pdf.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical doc-
uments [Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. URL: http:
//omdoc.org/pubs/omdoc1.2.pdf.

676541 OpenDreamKit 16

http://www.w3.org/TR/MathML3
http://www.w3.org/TR/MathML3
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/blob/master/WP6/CICM2016/published.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP3/D3.3/report-final.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP3/D3.3/report-final.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
https://svn.omdoc.org/repos/jomdoc/doc/pubs/mkm09/jobad/jobad-server.pdf
http://kwarc.info/kohlhase/papers/cicm15-induced.pdf
http://kwarc.info/kohlhase/papers/cicm15-induced.pdf
https://github.com/KWARC/JOBAD
https://mathhub.info/MitM/models
https://mathhub.info/MitM/models
http://dx.doi.org/10.1016/j.procs.2011.04.063
http://kwarc.info/kohlhase/papers/epc11.pdf
http://kwarc.info/kohlhase/papers/epc11.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf

Call: H2020-EINFRA-2015-1 REFERENCES

[Koh12] Michael Kohlhase. “The Planetary Project: Towards eMath3.0”. In: Intelligent
Computer Mathematics. Conferences on Intelligent Computer Mathematics (CICM).
(Bremen, Germany, July 9–14, 2012). Ed. by Johan Jeuring et al. LNAI 7362.
Berlin and Heidelberg: Springer Verlag, 2012, pp. 448–452. ISBN: 978-3-642-
31373-8. arXiv: 1206.5048 [cs.DL].

[Mat] MathDox – Interactive Mathematics. URL: http://www.mathdox.org
(visited on 02/04/2017).

[MH] MathHub.info: Active Mathematics. URL: http://mathhub.info (visited
on 01/28/2014).

[MMT] MMT – Language and System for the Uniform Representation of Knowledge.
project web site. URL: https://uniformal.github.io/ (visited on
08/30/2016).

[Ode] Dr. Sten Odenwald. Special & General Relativity Questions and Answers, How
do you actually use Einstein’s famous equation E = mc-squared? URL: https:
//einstein.stanford.edu/content/relativity/q388.html
(visited on 02/04/2017).

[Rab13] Florian Rabe. “The MMT API: A Generic MKM System”. In: Intelligent Com-
puter Mathematics. Conferences on Intelligent Computer Mathematics. (Bath,
UK, July 8–12, 2013). Ed. by Jacques Carette et al. Lecture Notes in Computer
Science 7961. Springer, 2013, pp. 339–343. ISBN: 978-3-642-39319-8. DOI:
10.1007/978-3-642-39320-4.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In: Informa-
tion & Computation 0.230 (2013), pp. 1–54. URL: http://kwarc.info/
frabe/Research/mmt.pdf.

[Rte] Random Thoughts – E = mc2. URL: http://2000clicks.com/r/
EEqualsMCSquared.htm (visited on 02/04/2017).

[Ruh+98] H. Ruhl et al. “Collimated electron jets by intense laser beam-plasma surface in-
teraction under oblique incidence”. In: (1998). DOI: 10.1103/PhysRevLett.
82.743. arXiv: physics/9807021.

[Smi76] Adam Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. W.
Strahan and T. Cadell, 1776.

[Ver15] Rikko Verrijzer. “Context in interactive mathematical documents : personalizing
mathematics”. PhD thesis. 2015, p. 233. ISBN: 978-90-386-3975-8. URL: https:
//pure.tue.nl/ws/files/9193921/20151203_Verrijzer.
pdf.

[WGK11] Magdalena Wolska, Mihai Grigore, and Michael Kohlhase. “Using discourse con-
text to interpret object-denoting mathematical expressions”. In: Towards Digital
Mathematics Library, DML workshop. Ed. by Petr Sojka. Masaryk University,
Brno, 2011, pp. 85–101. URL: https://svn.kwarc.info/repos/
lamapun/doc/DML11/paper.pdf.

[Wik17] Wikipedia. Mass–energy equivalence — Wikipedia, The Free Encyclopedia. 2017.
URL: \url{https://en.wikipedia.org/w/index.php?title=
Mass%E2%80%93energy_equivalence&oldid=763358012} (vis-
ited on 02/04/2017).

[Wol] Wolfram—Alpha. URL: http://www.wolframalpha.com (visited on
01/05/2013).

[Ast+13] Astropy Collaboration et al. “Astropy: A community Python package for astron-
omy”. In: Astronomy & Astrophysics Volume 558, A33 (Oct. 2013). http://www.astropy.org,
A33. DOI: 10 . 1051 / 0004 - 6361 / 201322068. arXiv: 1307 . 6212
[astro-ph.IM].

676541 OpenDreamKit 17

http://arxiv.org/abs/1206.5048
http://www.mathdox.org
http://mathhub.info
https://uniformal.github.io/
https://einstein.stanford.edu/content/relativity/q388.html
https://einstein.stanford.edu/content/relativity/q388.html
http://dx.doi.org/10.1007/978-3-642-39320-4
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://2000clicks.com/r/EEqualsMCSquared.htm
http://2000clicks.com/r/EEqualsMCSquared.htm
http://dx.doi.org/10.1103/PhysRevLett.82.743
http://dx.doi.org/10.1103/PhysRevLett.82.743
http://arxiv.org/abs/physics/9807021
https://pure.tue.nl/ws/files/9193921/20151203_Verrijzer.pdf
https://pure.tue.nl/ws/files/9193921/20151203_Verrijzer.pdf
https://pure.tue.nl/ws/files/9193921/20151203_Verrijzer.pdf
https://svn.kwarc.info/repos/lamapun/doc/DML11/paper.pdf
https://svn.kwarc.info/repos/lamapun/doc/DML11/paper.pdf
\url{https://en.wikipedia.org/w/index.php?title=Mass%E2%80%93energy_equivalence&oldid=763358012}
\url{https://en.wikipedia.org/w/index.php?title=Mass%E2%80%93energy_equivalence&oldid=763358012}
http://www.wolframalpha.com
http://dx.doi.org/10.1051/0004-6361/201322068
http://arxiv.org/abs/1307.6212
http://arxiv.org/abs/1307.6212

REFERENCES Call: H2020-EINFRA-2015-1

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.

676541 OpenDreamKit 18

	Deliverable description, as taken from Github issue #97 on 2017-02-27
	1. Introduction
	2. Examples of In-Situ Computation
	2.1. Unit Conversions
	2.2. Exploring Equations
	2.3. Hypothetical Computations Playing with Constants
	2.4. Updating Values to Current or Historical Values
	2.5. Computation with Document and Content Structure
	2.6. Computation with Proofs

	3. Information Architecture
	3.1. Information Architecture for Unit Conversion

	4. Implementation
	4.1. Unit Conversion
	4.2. A General Framework for In-Situ Computation
	4.3. Code Availability, Licensing and Demos

	5. Conclusion and Future Work
	Acknowledgements

	References

