
Call: H2020-EINFRA-2015-1 REPORT ON D4.8

REPORT ON OpenDreamKit DELIVERABLE D4.8

Facilities for running notebooks as verification tests

MARTIN SANDVE ALNÆS & HANS FANGOHR & VIDAR FAUSKE & THOMAS KLUYVER & BENJAMIN
RAGAN-KELLEY & MORE?

Due on 02/28/2017 (Month 18)
Delivered on 02/27/2017
Lead Simula Research Laboratory (Simula)
Progress on and finalization of this deliverable has been tracked publicly at:
https://github.com/OpenDreamKit/OpenDreamKit/issues/98

DELIVERABLE DESCRIPTION, AS TAKEN FROM GITHUB ISSUE #98 ON 2017-02-27

• WP4: User Interfaces
• Lead Institution: Simula Research Laboratory
• Due: 2017-02-28 (month 18)
• Nature: Other
• Task: T4.3 (#71): Reproducible notebooks
• Proposal: p. 48
• Final report

The Jupyter Notebook is a web application that enables the creation and sharing of
executable documents that contains live code, equations, visualizations and explanatory
text. Thanks to a modular design, Jupyter can be used with any computational system
that provides a so-called Jupyter kernel implementing the Jupyter messaging protocol to
communicate with the notebook. OpenDreamKit therefore promotes the Jupyter notebook
as user interface of choice, in particular since it is particularly suitable for building modular
web based Virtual Research Environments.

This deliverable aims at enabling testing of Jupyter notebooks, with a good balance of
convenience and configurability to address the range of possible ways to validate noteboooks.
Testing is integral to ODK’s goals of enabling reproducible practices in computational math
and science, and this work enables validating notebooks as documentation and communica-
tion products, extending the scope of testing beyond traditional software.

Accomplishments:
• X Develop nbval package for testing notebooks;
• X Allow multiple testing modes, ranging from lax error-checking to strict output

comparison;
• X Enable normalizing output for comparison of transient values such as memory

addresses and dates;
• X Integrate D4.6 (#95: nbdime) for displaying changes between notebooks when

they differ.

676541 OpenDreamKit 1

https://github.com/OpenDreamKit/OpenDreamKit/issues/98
https://github.com/OpenDreamKit/OpenDreamKit/issues/98
https://github.com/OpenDreamKit/OpenDreamKit/tree/master/WP4
https://github.com/OpenDreamKit/OpenDreamKit/issues/71
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/Proposal/proposal-www.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP4/D4.8/report-final.pdf
https://jupyter.org
https://jupyter.readthedocs.io/en/latest/projects/kernels.html
https://jupyter-client.readthedocs.io/en/latest/
https://github.com/computationalmodelling/nbval
https://github.com/OpenDreamKit/OpenDreamKit/issues/95

REPORT ON D4.8 Call: H2020-EINFRA-2015-1

CONTENTS

Deliverable description, as taken from Github issue #98 on 2017-02-27 1
1. Background 3
1.1. Jupyter notebook 3
1.2. Testing 4
1.3. Testing and validation of Jupyter Notebooks 4
2. Validating notebooks with nbval 5
2.1. Introduction 5
2.2. Example 1 5
2.3. Example 2 5
2.4. Installation 8
2.5. Documentation 8
2.6. Testing and continuous integration 8
2.7. Support 8
2.8. License 8
3. Design 8
3.1. Overview 8
3.2. Implementation 8
3.3. Changing outputs 9
3.4. Exceptional behaviour 9
3.5. Choice of kernel 9
3.6. Numbering of cells 10
4. nbval and reproducibility 10
5. nbval and nbdime 10
6. Usage reports 11
7. Future work 12
Appendix A. NBVal’s home page 13
Appendix B. NBVal’s documentation 17

676541 OpenDreamKit 2

https://github.com/OpenDreamKit/OpenDreamKit/issues/98

Call: H2020-EINFRA-2015-1 REPORT ON D4.8

FIGURE 1. Self-contained JUPYTER Notebook demonstrating the concepts of
cells that contain different types of material and can be executed (or updated) in
arbitrary or sequential order.

1. BACKGROUND

1.1. Jupyter notebook
The Jupyter Notebook is a web application that enables the creation and sharing of executable

documents that contain live code, equations, visualizations and explanatory text.
Thanks to a modular design, Jupyter notebooks can be used with any computational system that

provides a so-called Jupyter kernel implementing the Jupyter messaging protocol to communicate
with the notebook. OpenDreamKit therefore promotes the Jupyter notebook as user interface
of choice, in particular since it is particularly suitable for building modular web based Virtual
Research Environments.

An example Jupyter notebook (using a Python kernel) is shown in Figure 1. Once the
calculation, exploration and annotation is completed, the document can be saved to disk as a
(json) file. This notebook can be opened again later at the same or different computers, and will
display input and output data as visible in the figure. Furthermore, if a Python kernel is installed,
the notebook can be executed again - thus providing an executable document, that can integrate
text, equations, code, output from the code, and graphs and other multimedia objects.

The very nature of the notebook enables and encourages reproducible science, contribut-
ing to our overall ambition of enabling better science through better electronic infrastructure:
researchers can carry out a computation within the notebook, and all steps are automatically
recorded and can be saved at the press of a button. While some editing (and maybe removing
avenues of computational exploration that were unsuccessful from the notebook) is necessary
before the notebook can be shared with others effectively, this is still a significant advancement
over managing snippets of code, post processing scripts, figures and (latex) manuscripts in
different files and with no explicitly documented dependency.

We see Jupyter notebooks being used in a number of use cases, including

• computational exploration
• documentation of software packages
• tutorials for software
• teaching materials in higher education

In this deliverable, we enrich the ecosystem of Jupyter notebook tools with the NoteBook
VALidation tool (nbval), that allows to check the types of documents listed above automatically
for they validity.

676541 OpenDreamKit 3

REPORT ON D4.8 Call: H2020-EINFRA-2015-1

1.2. Testing
It is good practice to test computer code through so-called unit tests: for every functionality

a code provides (through a class, a method of a class, a function, etc), the developers write
additional code that tests each unit of functionality. It is key that these unit tests can be executed
automatically. Once this set up is provided, it is easy for the developer to quickly execute all
tests to check the state of the code base: if the tests all “pass” (this is the best possible outcome),
then there is confidence that the code is working correctly (at least for the functionality that is
covered by the unit tests). On the other hand, if one or more tests “fail”, then something is not
right with the code.

Having a suite of unit tests available that can be executed automatically greatly assists the
development process: developers can change code and be reasonably confident not to have
broken other parts of the functionality if the test suite passes without fails after the modification.

The typical structure of a unit test is that the code to be tested is called with some given input
data, and that the code to be tested returns some output data for that input data. The test code then
compares input and output data: if they are the same (or for numerical tests within acceptable
deviation), this unit test is reported at a pass.

The Software Engineering domain uses terms unit test, integration test and system tests (and
others) to classify tests. Integration and system tests test more than just one unit of code, but are
concerned with multiple units working together when being integrated, or combining multiple
integrated units to form the entire production system.

A test suite also increases confidence in (research) software: many (good) software packages
will allow users to run the test suite after installing the code on their own system. This is a
convenient way to check that the code works correctly, and that - for example - no unexpected
incompatibilities exist with installed third party libraries, which may change from installation to
installation.

Reasons for test failures of a software tool include (i) developers modifying the actual source
code and introducing errors inadvertently, (ii) changes or incompatibilities with other libraries
that the tool needs, (iii) changes in data that is used as input for the software.

1.3. Testing and validation of Jupyter Notebooks
Jupyter notebook documents have become an important part of the development and com-

munication of computational ideas. When research results of researcher A are communicated
by a notebook and researcher B wants to extend them, the first thing that B will need to do
is no re-execute the notebook on their computer to check that all the previous results can be
reproduced. This can be done by manually executing all cells in the notebook, or re-running the
whole notebook, and then checking if any errors have occurred. If the re-execution fails, one
needs to test if the notebook was working on researcher A’s setup, and what is different in terms
of libraries being used etc.

These are known problems for conventional computer code, which are routinely address by
having test suites, and executing the tests suites automatically after every code change (known as
“continuous integration”).

However, the existing testing frameworks do not support notebooks. Further, Jupyter notebooks
aim to be a tool for enabling reproducible computation and communication, and the ability to
validate and verify the contents of notebooks is critical to that goal. For these reasons, it
is important that notebooks can be tested efficiently, so that authors and readers alike can
automatically and effectively verify that the notebooks contents remain valid.

676541 OpenDreamKit 4

Call: H2020-EINFRA-2015-1 REPORT ON D4.8

2. VALIDATING NOTEBOOKS WITH NBVAL

2.1. Introduction
Jupyter Notebooks are executable documents that transfer sets of input code into output,

possibly using data files in the process. We can thus use the software engineering experience of
automatic testing (Section 1.2) to establish if output data in the jupyter notebook is compatible
with the input cells that have triggered the computation of the data.

The nature of notebooks presents different opportunities and challenges from conventional
code testing. Notebooks are narrative documents, and their code is often not arranged in functions
and classes, which normally form the units of code to be tested. However, because outputs are
stored in the notebook, output from running the code can be compared against previously saved
output.

In contrast to unit-test based testing, where the test code has to be written in addition to the
production code, we can use every pair of input output cell as a test case: the input cell contains
the code to execute as part of the test. The computed output is then compared to the output stored
on disk for that cell. If the outputs agree, the test passes, otherwise it fails.

We have developed the nbval tool that VALidates a given NoteBook. nbval validates a
saved notebook in the sense that stored input cells produce output cells that are identical to the
output cell data saved in the notebook.

2.2. Example 1
We use the trivial notebook in Figure 2 as an example.

FIGURE 2. Trivial notebook demo.ipynb. The code in cell [1] is representative
of the computational package we use (typically accessed via the import state-
ment).

Once the nbval tool is installed (Section 2.4), we can use the
py.test --nbval demo.ipynb command to validate the notebook with name demo.ipynb.
Figure 3 shows the output from the testing process.

2.3. Example 2
We show another example where the code computes a different output every time the notebook

is run. This could be due to a change in the software that is imported into the notebook, and
might be something that we want to report as an error. (There are other cases where we like to
ignore changing output - this is discussed in more detail in Section 3.3)

We use the notebook in Figure 4 as an example.

676541 OpenDreamKit 5

REPORT ON D4.8 Call: H2020-EINFRA-2015-1

FIGURE 3. nbval Command and output from validating notebook
demo.ipynb with nbval . For each of the 3 cells in the notebook, the in-
put code is re-executed, and any output compared with the output stored in the
notebook file (see Figure 2 for the notebook file).

FIGURE 4. Trivial notebook demo-with-fail.ipynb. The code in cell [5]
produces a different output every time the notebook executes as it reports the
current date and time.

As before, we trigger validation of the notebook with
py.test --nbval demo-with-fail.ipynb. Figure 5 shows the output from the test-
ing process.

We can see that cells [1] to [5] pass tests, but cell [7] fails the test. The tool provides a detailed
breakdown on what the output for cell [7] is in the stored file, and contrasts it with the output
from the re-execution that has just taken place.

676541 OpenDreamKit 6

Call: H2020-EINFRA-2015-1 REPORT ON D4.8

FIGURE 5. nbval Command and output from validating notebook
demo-with-fail.ipynb with nbval . Cells [1], [2], [3], and [5] are code
cells and produce output (although it could be None), and pass their tests. Cell
[7] fails the test. The tool provides a detailed breakdown on what the output for
cell [7] is in the stored file, and contrasts it with the output from the re-execution
that has just taken place (see Figure 4 for the notebook file).

676541 OpenDreamKit 7

REPORT ON D4.8 Call: H2020-EINFRA-2015-1

2.4. Installation
The installation of the package is described as part of the documentation available on Github

(https://github.com/computationalmodelling/nbval, in particular
https://github.com/computationalmodelling/nbval/blob/master/README.md).

Installation via pip in supported, which allows to install the package in all Python installations.

2.5. Documentation
The detailed behaviour of the tool, as well as basic installation and use instructions, is described

in the online documentation
(https://github.com/computationalmodelling/nbval/blob/master/documentation.ipynb).

2.6. Testing and continuous integration
We have test suite with about 30 tests, that are executed automatically using the Travis CI

continuous integration service (https://travis-ci.org/computationalmodelling/nbval.)
We are testing for successful completion of the test suite for Python versions 2.7, 3.5, 3.5, 3.6

and the nightly build of Python.

2.7. Support
nbval support can be requested via GitHub Issues ().

2.8. License
nbval is made freely available to all, under the OSI-Approved Berkeley Software Distribution

(BSD) License.

3. DESIGN

3.1. Overview
nbval (https://github.com/computationalmodelling/nbval) is a new tool

for testing notebooks, built as a plugin for the pytest testing framework (http://pytest.
org). By leveraging existing tools, nbval fits well into the software development tools such as
continuous integration services and testing environments.

When nbval encounters a notebook to test, it identifies the language of the notebook from
the notebook’s metadata and starts a process to run the code found in notebook, called the Kernel.
nbval communicates with this Kernel via the Jupyter protocol, as in the notebook environment.
Each cell in a notebook constitutes a test, and is executed in order, as if the notebook had been
executed in the interactive notebook environment.

Unlike traditional source code files, notebooks contain both code to execute and the output.
Validating notebooks can take the output into account or not. At its most basic level, called
‘lax mode’, nbval executes a cell, only checking for errors. This verifies that execution of a
notebook completes without error, but makes no effort to guarantee that the result is the same
across executions.
nbval ’s default mode is to record the output produced by executing the notebook, and

compare it with the output stored in the notebook. At its strictest, any visible change in the
output will result in a failed test. Many times, output can contain transient values that are not
informative, such as memory addresses or dates. To deal with this, nbval provides an extensible
mechanism for normalizing output, so that these transient values may be excluded from the
comparison (see Section 3.3).

3.2. Implementation
nbval uses pytest, which is a popular, extensible testing framework for the Python language.

We use pytest because it is a standard tool for running tests in the Python community, and enables
extending functionality via a robust plugin system. nbval functions as a plugin for pytest,
adding the following functionality:

676541 OpenDreamKit 8

https://github.com/computationalmodelling/nbval/blob/master/README.md
https://github.com/computationalmodelling/nbval/blob/master/documentation.ipynb
https://travis-ci.org/computationalmodelling/nbval
https://github.com/computationalmodelling/nbval/issues
https://github.com/computationalmodelling/nbval
http://pytest.org
http://pytest.org

Call: H2020-EINFRA-2015-1 REPORT ON D4.8

• recognize Jupyter notebooks as files that could contain tests
• construct and run tests based on notebook cells
• report test results based on output, optionally with nbdime

One nbval is installed, notebooks can be included in any pytest-based test suite with a single
--nbval argument. Similarly, collections of notebooks can be tested without any configuration
by running pytest --nbval in any directory containing notebooks.

3.3. Changing outputs
One of the test features of nbval that differs from traditional tests is that notebooks contain

the output produced by their previous execution. One of the ways nbval tests notebooks is
by comparing outputs produced during the tests with those recorded in the notebook. Not all
outputs are necessarily useful to test, so nbval provides some configuration for deciding which
outputs should be tested, and which should get some normalization before comparison.

The general mechanisms for less-than-exact output comparison are:
• mark cell to be ignored
• use regular expressions
• use nbval-lax

The output checking in nbval may be controlled on a cell-by-cell basis: notebook authors
may either start with no output checking (‘lax mode’) and mark specific cells whose output
should be checked, or start with full output checking and mark cells whose output should be
ignored. The author indicate that nbval should not execute a cell at all, or that it an error is the
expected result of a cell.

3.4. Exceptional behaviour
There are three ways that a cell run as a test by nbval can result in a test failure:

• The kernel reports that executing the cell contains an error, and the cell is not marked as
expected to produce an error.

• The output from running a cell differs from that saved in a notebook, nbval is not
instructed to ignore that output, and the changes are not covered by the regular expression
patterns used to normalise output.

• Execution of the cell does not complete within a configurable timeout, which by default
is 2000 seconds.

In all three cases, the test corresponding to that cell is reported as a failure through pytest,
which will result in a description of the error being displayed to the user (see Figure 6).

When the failure is due to a difference in output, nbval can also optionally use nbdime to
display how the notebook has changed (see Section 5).

When the failure is due to a timeout executing code, execution is stopped. Later cells in the
same notebook are marked as ‘expected failures’, as later code often relies on the completion of
earlier code, and reporting several separate failures would obscure the underlying cause.

3.5. Choice of kernel
In the Jupyter protocol, a ‘kernel’ is the process where code executes, and is a separate process

from the one reading the notebook and determining what code should be execute. When kernels
are installed on a system, they register a ‘kernel spec’ that describes how to start the kernel. There
can be many such kernels installed on a system, some corresponding to different languages, such
as GAP, PARI (D4.7), Sage, or Python, while others may correspond to particular environments.
Notebooks record information about the kernel used to run them in metadata. nbval can look
at this metadata to select the appropriate kernel to run the notebook for tests.

When the notebook’s code is Python, Default kernel selection can be bypassed in nbval to
run the code with the same interpreter with the --current-env flag. This makes nbval fit

676541 OpenDreamKit 9

https://github.com/OpenDreamKit/OpenDreamKit/issues/96

REPORT ON D4.8 Call: H2020-EINFRA-2015-1

FIGURE 6. nbval output, showing that output changed.

best in testing frameworks, which often create temporary environments in which to run tests.
The test code itself will execute in this environment, but default kernel selection could result in
the tests running in a different environment. --current-env ensures that not only the test
runner, but the test code in the notebooks themselves, is run in the test environment.

3.6. Numbering of cells
The Jupyter Notebook numbers code cells, in the order of execution. These can be increasing

integers starting from top of the notebook to the bottom, for example if the cells are (written and)
executed in this order, or at a later point the user chooses to restart the kernel, and run all cells in
order. However, the notebook also allows to execute cells in arbitrary order.

In contrast, With nbval cells are always executed in order from start to finish, and labelled
with increasing integer numbers starting from 1. This sequential execution enables nbval to
catch errors that may not have been noticed due to out-of-order execution.

4. NBVAL AND REPRODUCIBILITY

nbval facilitates integrating notebooks into a reproducible scientific workflow. Tests are
integral to maintaining and verifying software, which is critical for validating and reproducing
scientific computation. A publication can include a notebook that produces its results or figures.
By using nbval , the validation of this notebook and output can be automated, to make it more
convenient, and thus more likely, for scientific publications to follow reproducible practices.

5. NBVAL AND NBDIME

Testing notebooks with nbval involves comparing the notebook as saved, and the notebook
recently run. This is comparing two notebooks, which can build on earlier OpenDreamKit work.
nbval can use nbdime, produced in D4.6, to display the difference between the before and after
notebooks, for more effective comparison and identification of changes.

A graphical display allows humans to quickly take in a lot of information, and intuitively spot
visual differences between the two documents, in particular when before and after images of
plots, graphs, and figures are shown.

676541 OpenDreamKit 10

https://github.com/OpenDreamKit/OpenDreamKit/issues/95

Call: H2020-EINFRA-2015-1 REPORT ON D4.8

FIGURE 7. An nbval output rendered with nbdime

6. USAGE REPORTS

As notebooks can be integrated directly into sphinx (and then be hosted on readthedocs,
for example), they are a convenient way to create documentation for a software package.

Any examples that demonstrate interaction with the code are naturally and efficiently included:
the documentation developer just types the command, the note book automatically displays the
behaviour.

With nbval , we can now include regression testing of the documentation into the continuous
integration, and will automatically be alerted if the documented behaviour has changed (and thus
the documentation is outdated).

An example can be seen in this repository: https://github.com/joommf/oommfc, which pro-
vides the documentation, for example at
http://oommfc.readthedocs.io/en/latest/ipynb/new discretisedfield interface.html.

Being able to test the documentation automatically addresses the common scenario in which
documentation is developed for the first version of a tool, but not updated later, and increasingly
getting out of date. The package developers are unlikely to notice as they would never read the
documentation, in particular not the beginning aimed at new users of the package. With nbval

676541 OpenDreamKit 11

https://github.com/joommf/oommfc
http://oommfc.readthedocs.io/en/latest/ipynb/new_discretisedfield_interface.html

REPORT ON D4.8 Call: H2020-EINFRA-2015-1

one can integrate the regression testing of the documentation into the continuous integration
cycle.

7. FUTURE WORK

nbval has been integrated successfully into some repositories of notebook-based educational
materials and software documentation by OpenDreamKit participants, and is being integrated
into the existing notebook-based documentation of projects in the wider Jupyter community. We
will work to encourage adoption of nbval for verifying documentation, and would like to see
nbval used to enable verification of scientific publications now that it has proved its effectiveness
in educational materials.

676541 OpenDreamKit 12

Call: H2020-EINFRA-2015-1 REPORT ON D4.8

APPENDIX A. NBVAL’S HOME PAGE

676541 OpenDreamKit 13

A py.test plugin to validate Jupyter notebooks

ipython-notebook jupyter-notebook python testing pytest-plugin pytest

issues Adding example file for issue #27 a month ago

nbval Version number -> 0.5 3 days ago

tests Timeouts test should not capture 14 days ago

utils Updated documentation. Organised files. Clean. 2 years ago

.gitignore Ignore py.test .cache folder 20 days ago

.hgignore Updated ignore file 2 years ago

.travis.yml Have travis update pip/setuptools 19 days ago

CONTRIBUTORS authors a year ago

INSTALL Added installation instructions and cleaned up the main file. 2 years ago

LICENSE Update URL, author details. 2 years ago

Makefile I like the green "PASSED" 14 days ago

README.md Add spaces in copy and pasted ODK reference a month ago

doc_sanitize Updated test notebook to include examples and instructions for usage 2 years ago

documentation.ipynb Also document tags 18 days ago

setup.cfg Lint 24 days ago

setup.py Version number -> 0.5 3 days ago

This repository Search Pull requests Issues Gist

Clone or downloadClone or downloadCreate new file Upload files Find fileNew pull request

Py.test plugin for validating Jupyter notebooks
build passing

The plugin adds functionality to py.test to recognise and collect Jupyter notebooks. The intended purpose of the tests is to
determine whether execution of the stored inputs match the stored outputs of the .ipynb file. Whilst also ensuring that the
notebooks are running without errors.

The tests were designed to ensure that Jupyter notebooks (especially those for reference and documentation), are executing
consistently.

Each cell is taken as a test, a cell that doesn't reproduce the expected output will fail.

See documentation.ipynb for the full documentation.

Installation

Available on PyPi:

computationalmodelling / nbval

Code Issues 4 Pull requests 1

273 commits 2 branches 6 releases 9 contributors

masterBranch:

Latest commit 1997b75 3 days agotakluyver Version number -> 0.5

41 107

 Projects 0 Wiki Pulse Graphs

 README.md

 Watch Star Fork

https://github.com/computationalmodelling/nbval

pip install nbval

or install the latest version from cloning the repository and running:

pip install .

from the main directory. To uninstall:

pip uninstall nbval

How it works

The extension looks through every cell that contains code in an IPython notebook and then the py.test system compares
the outputs stored in the notebook with the outputs of the cells when they are executed. Thus, the notebook itself is used as a
testing function. The output lines when executing the notebook can be sanitized passing an extra option and file, when calling
the py.test command. This file is a usual configuration file for the ConfigParser library.

Regarding the execution, roughly, the script initiates an IPython Kernel with a shell and an iopub sockets. The shell is
needed to execute the cells in the notebook (it sends requests to the Kernel) and the iopub provides an interface to get the
messages from the outputs. The contents of the messages obtained from the Kernel are organised in dictionaries with
different information, such as time stamps of executions, cell data types, cell types, the status of the Kernel, username, etc.

In general, the functionality of the IPython notebook system is quite complex, but a detailed explanation of the messages and
how the system works, can be found here

http://ipython.org/ipython-doc/stable/development/messaging.html

Execution

To execute this plugin, you need to execute py.test with the nbval flag to differentiate the testing from the usual python
files:

py.test --nbval

You can also specify --nbval-lax , which runs notebooks and checks for errors, but only compares the outputs of cells with
a #NBVAL_CHECK_OUTPUT marker comment.

py.test --nbval-lax

The commands above will execute all the .ipynb files in the current folder. Alternatively, you can execute a specific
notebook:

py.test --nbval my_notebook.ipynb

If the output lines are going to be sanitized, an extra flag, --sanitize-with together with the path to a confguration file with
regex expressions, must be passed, i.e.

py.test --nbval my_notebook.ipynb --sanitize-with path/to/my_sanitize_file

where my_sanitize_file has the following structure.

[Section1]

regex: [a-z]*

replace: abcd

regex: [1-9]*

replace: 0000

[Section2]

regex: foo

https://github.com/computationalmodelling/nbval

replace: bar

The regex option contains the expression that is going to be matched in the outputs, and replace is the string that will
replace the regex match. Currently, the section names do not have any meaning or influence in the testing system, it will
take all the sections and replace the corresponding options.

Help

The py.test system help can be obtained with py.test -h , which will show all the flags that can be passed to the
command, such as the verbose -v option. The IPython notebook plugin can be found under the general section.

Acknowledgements

This plugin was inspired by Andrea Zonca's py.test plugin for collecting unit tests in the IPython notebooks (https://github.com
/zonca/pytest-ipynb).

The original prototype was based on the template in https://gist.github.com/timo/2621679 and the code of a testing system for
notebooks https://gist.github.com/minrk/2620735 which we integrated and mixed with the py.test system.

We acknowledge financial support from

OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541), http://opendreamkit.org

EPSRC’s Centre for Doctoral Training in Next Generation Computational Modelling, http://ngcm.soton.ac.uk
(#EP/L015382/1) and EPSRC’s Doctoral Training Centre in Complex System Simulation ((EP/G03690X/1),

The Gordon and Betty Moore Foundation through Grant GBMF #4856,by the Alfred P. Sloan Foundation and by the
Helmsley Trust.

Authors

2014 - 2017 David Cortes-Ortuno, Oliver Laslett, T. Kluyver, Vidar Fauske, Maximilian Albert, MinRK, Ondrej Hovorka, Hans
Fangohr

Contact GitHub API Training Shop Blog About© 2017 GitHub, Inc. Terms Privacy Security Status Help

https://github.com/computationalmodelling/nbval

Call: H2020-EINFRA-2015-1 REPORT ON D4.8

APPENDIX B. NBVAL’S DOCUMENTATION

676541 OpenDreamKit 17

documentation

February 27, 2017

1 IPython Notebook Validation for py.test - Documentation

One of the powerful uses of the IPython notebook is for documentation purposes, here we use
a notebook to demonstrate the behaviour and usage of the IPython Notebook Validation plugin
for py.test. The IPython notebook format .ipynb stores outputs as well as inputs. Validating the
notebook means to rerun the notebook and make sure that it is generating the same output as has
been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipynb
file. These outputs will be used as references for the tests (i.e. the outputs from the last time
you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately without stor-
ing the information, the outputs generated will be compared against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as expected and
that changes to underlying source code, haven’t affected the results of an IPython notebook. For
example, for documentation purposes - such as this.

1.0.1 Command line usage

The py.test program doesn’t usually collect notebooks for testing; by passing the --nbval flag at
the command line, the IPython Notebook Validation plugin will collect and test notebook cells,
comparing their outputs with those saved in the file.

$ py.test --nbval my_notebook.ipynb

There is also an option --nbval-lax, which collects notebooks and runs them, failing if there
is an error. This mode does not check the output of cells unless they are marked with a special
#NBVAL_CHECK_OUTPUT comment.

$ py.test --nbval-lax my_notebook.ipynb

1.0.2 REGEX Output sanitizing

Since all output is captured by the IPython notebook, some pesky messages and prompts (with
time-stamped messages, for example) may fail tests always, which might be expected. The plugin
allows the user to specify a sanitizing file at the command prompt using the following flag:

1

$ py.test --nbval my_notebook.ipynb --sanitize-with my_sanitize_file

This sanitize file contains a number of REGEX replacements. It is recommended, when remov-
ing output for the tests, that you replace the removed output with some sort of marker, this helps
with debugging. The following file is written to the folder of this notebook and can be used to
santize its outputs:

In [1]: %%writefile doc_sanitize.cfg
[regex1]
regex: \d{1,2}/\d{1,2}/\d{2,4}
replace: DATE-STAMP

[regex2]
regex: \d{2}:\d{2}:\d{2}
replace: TIME-STAMP

Writing doc_sanitize.cfg

The first replacement finds dates in the given format replaces them with the label ‘DATE-
STAMP’, likewise for strings that look like time. These will prevent the tests from failing due to
time differences.

1.0.3 Validate this notebook

You can validate this notebook yourself, as shown below; the outputs that you see here are stored
in the ipynb file. If your system produces different outputs, the testing process will fail. Just use
the following commands:

$ cd /path/to/this/notebook
$ py.test --nbval documentation.ipynb --sanitize-with doc_sanitize.cfg

1.0.4 Examples of plugin behaviour

The following examples demonstrate how the plugin behaves during testing. Test this notebook
yourself to see the validation in action!

These two imports produce no output as standard, if any warnings are printed out the cell will
fail. Under normal operating conditions they will pass.

In [2]: import numpy as np
import time

If python doesn’t consistently print 7, then something has gone terribly wrong. Deterministic
cells are expected to pass everytime

In [3]: print(5+2)

7

2

Random outputs will always fail.

In [4]: print([np.random.rand() for i in range(4)])
print([np.random.rand() for i in range(4)])

[0.36133679016382714, 0.5043774697891126, 0.23281910875007927, 0.2713065513128683]
[0.5512421277985322, 0.02592706358897756, 0.05036036771084684, 0.7515926759190724]

Inconsistent number of lines of output will cause an error to be thrown.

In [5]: for i in range(np.random.randint(1, 8)):
print(1)

1
1
1

Because the time and date will change with each run, we would expect this cell to fail every-
time. Using the sanitize file doc_sanitize.cfg (created above) you can clean up these outputs.

In [6]: print('The time is: ' + time.strftime('%H:%M:%S'))
print("Today's date is: " + time.strftime('%d/%m/%y'))

The time is: 15:28:30
Today's date is: 21/12/16

1.0.5 Avoid output comparison for specific cells

In case we want to avoid the testing process in specific input cells, we can write the comment **
#NBVAL_IGNORE_OUTPUT ** at the beginning of the them:

In [7]: # NBVAL_IGNORE_OUTPUT
print('This is not going to be tested')
print(np.random.randint(1, 20000))

This is not going to be tested
12544

There’s also a counterpart, to ensure the output is tested even when using --nbval-lax :

In [8]: # NBVAL_CHECK_OUTPUT
print("This will be tested")
print(6 * 7)

This will be tested
42

3

1.0.6 Skipping specific cells

If, for some reason, a cell should not be executed during testing, the comment # NBVAL_SKIP
can be used:

NBVAL_SKIP
print("Entering infinite loop...")
while True:

pass

1.0.7 Checking exceptions

Sometimes, we might want to allow a notebook cell to raise an exception, and check that the trace-
back is as we expect. By annotating the cell with the comment ** # NBVAL_RAISES_EXCEPTION
** you can indicate that the cell is expected to raise an exception. The full traceback is not com-
pared, but rather just that the raised exception is the same as the stored exception.

In [3]: # NBVAL_RAISES_EXCEPTION
print("This exception will be tested")
raise RuntimeError("Foo")

This exception will be tested

RuntimeError Traceback (most recent call last)

<ipython-input-1-b97c0d501d6a> in <module>()
1 print("This exception will be tested")

----> 2 raise RuntimeError("Foo")

RuntimeError: Foo

This composes with the per-cell checking comments, so if you would like to avoid exceptions
creating a test failure, but do not want to check the traceback, use # NBVAL_IGNORE_OUTPUT

In [3]: # NBVAL_RAISES_EXCEPTION
print("If the raised exception doesn't match the stored exception, we get a failure")
raise SyntaxError("Foo")

If the raised exception doesn't match the stored exception, we get a failure

4

RuntimeError Traceback (most recent call last)

<ipython-input-3-32dcc1c70a4e> in <module>()
1 # NBVAL_RAISES_EXCEPTION
2 print("If the raised exception doesn't match the stored exception, we get a failure")

----> 3 raise RuntimeError("Foo")

RuntimeError: Foo

In [2]: # NBVAL_IGNORE_OUTPUT
NBVAL_RAISES_EXCEPTION
print("This exception will not be checked, but will not cause a failure.")
raise RuntimeError("Bar")

This exception will not be checked, but will not cause a failure.

RuntimeError Traceback (most recent call last)

<ipython-input-2-bbee3f9e7de1> in <module>()
2 # NBVAL_RAISES_EXCEPTION
3 print("This exception will not be checked, but will not cause a failure.")

----> 4 raise RuntimeError("Bar")

RuntimeError: Bar

1.0.8 Using tags instead of comments

If you do not want to put nbval comment annotations in your notebook, or your source language
is not compatible with such annotations, you can use cell tags instead. Cell tags are strings that are
added to the cell metadata under the label “tags”, and can be added and remove using the “Tags”
toolbar from Notebook version 5. The tags that Nbval recognizes are the same as the comment
names, except lowercase, and with dashes (‘-’) instead of underscores (’_’).

1.0.9 Figures

In [9]: import matplotlib.pyplot as plt
%matplotlib inline

Currently, only the matplotlib text output of the Figure is compared, but it is possible to modify
the plugin to allow comparison of the image whole string.

5

In [10]: plt.imshow(np.array([[i + j for i in range(3)]
for j in range(3)]),

interpolation='None'
)

Out[10]: <matplotlib.image.AxesImage at 0x7f2cb3374198>

In []:

6

REPORT ON D4.8 Call: H2020-EINFRA-2015-1

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.

676541 OpenDreamKit 24

	Deliverable description, as taken from Github issue #98 on 2017-02-27
	1. Background
	1.1. Jupyter notebook
	1.2. Testing
	1.3. Testing and validation of Jupyter Notebooks

	2. Validating notebooks with nbval
	2.1. Introduction
	2.2. Example 1
	2.3. Example 2
	2.4. Installation
	2.5. Documentation
	2.6. Testing and continuous integration
	2.7. Support
	2.8. License

	3. Design
	3.1. Overview
	3.2. Implementation
	3.3. Changing outputs
	3.4. Exceptional behaviour
	3.5. Choice of kernel
	3.6. Numbering of cells

	4. nbval and reproducibility
	5. nbval and nbdime
	6. Usage reports
	7. Future work
	Appendix A. NBVal's home page
	Appendix B. NBVal's documentation

