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Pythran is a Python to C++ compiler for a subset of the Python language, with a focus
on scientific computing, which takes advantage of multi-cores and SIMD instruction units.
Given the importance of Python in the OpenDreamKit ecosystem, Pythran is one of the
promising building blocks for high performance mathematical computing.

This deliverable is about enhancing the Pythran compiler to provide better user feedback
when a type error is meet, by extracting and taking advantage of fine grain type information.
The optimizations developed in this context are a more accurate version of identifier binding
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meaningful feedback to users in case of type error, instead of internal compiler errors. These
two steps make it easier to write computation-intensive kernels to be compiled by Pythran.
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Identifier Binding Computation
DateDate Mon 18 April 2016 ByBy serge-sans-paille CategoryCategory compilation.

Foreword
This is not a Jupyter notebook, but it could have been. Instead, the content of this article is
mostly taken from the Doctest of the pythran.analyses.aliases module, and the
relevant unit tests in test_typing.py. So the reader still has a strong warranty that the
output described is the one she would get by running the commands herself.

The curious reader can verify this statement by running python -m doctest with Pythran
in its PYTHONPATH [git-version] on the article source, which is in fact what I did before
posting it :-).

Static Computation of Identifier Binding
In Python, everything is a reference, from literal to objects. Assignment creates a binding
between a reference and an identifier, thus the following sequence always hold:

>>> a = list()

>>> b = c = a

>>> d = b

>>> d is a

True

In some sense, assignement creates aliasing between identifiers, as any change made to the
value referenced by the identifier b impacts the value referenced by identifer c (and a and d):

>>> a.append(1)

>>> len(b) == len(c) == len(d) == len(a) == 1

True

In the context of Pythran, the static knowledge of the different values of an identifier may be
bound to, is critical. First there is no reason to trust an identifier, as shown by the following
code:

>>> id = len

>>> id([1])

1

Nothing prevents this to happen in Python [0], so Pythran takes great care in not confusing



identifiers and values. And The ill-named Alias Analysis is the tool we use to solve this
problem. In the particular case above, this analysis tells us that the identifier id in the call
expression id([1]) always has the value __builtin__.len. This can be used, for
instance, to state that this call has no side effect.

Where is Identifier Binding Used in Pythran
Identifier binding is used by all Pythran analyses that interact with function calls, when they
need to know something about the function property, or when they want to verify that all the
possibles (function) values taken by an identifier share the same property. For instance:

Conversion from calls with named arguments to call without named arguments, as in
zeros(10, dtype=int)

1. 

Conversion from iterator to generator, e.g. turning range into xrange (Python2
inside :-/)

2. 

Constant folding (it needs to make sure it manipulates pure functions)3. 
…4. 

But the single more important use of identifier binding is in fact, typing. This is likely to evolve,
but current (clumsy) typing system in Pythran attaches some kind of typing properties to
functions. For instance for the following function:

>>> def foo(x, y): x.append(y)

Pythran computes a property that states

> if functions foo is called with an argument of type A as first argument and an argument
of type B as second argument, > then the type of the first argument is the combination of
its actual type A and an abstract type Container of B

So in case we make the following call:

>>> a = b = []

>>> foo(a, 1)

then the type of a is first computed to be empty list and calling foo combines this information
with the fact that a must be capable of holding integers, to conclude a has the type list of
integers.

Identifier binding is used twice in the process. Once to prove that the identifier foo is bound
to the value foo, and once to track which values the identifier a was bound to; here to
compute that the type information gathered for a also impacts b, even if b was not used in the
function call, as they share the same value.

Computing an Overset of the Bound Values
Pythran cannot track any possible values bound to a variable. In the following example:

>>> for i in range(1000):



... pass

identifier i can be bound to a great deal of values, and we cannot track them individually.
Instead Pythran only keep tracks of values that are bound to an identifier. All the others are
hidden between the terms of <unbound-value>.

So let's start to write some simple equations [1], with a few test cases demonstrated as
Python code which needs some initialization:

>>> import ast

>>> from pythran.analyses.aliases import *

>>> from pythran import passmanager

>>> pm = passmanager.PassManager('demo')

Here, we basically inject the aliases namespace into current namespace for convenience,
then create an instance of the object in charge of applying passes and gathering analysis
results.

Bool Op Expression
(A.k.a ``or`` and ``and``)

Resulting node may alias to either operands:

>>> module = ast.parse('def foo(a, b): return a or b')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.BoolOp)

(a or b) => ['a', 'b']

This code snippet requires a few explanations:

First, it parses a code snippet and turns it into an Abstract Syntax
Tree (AST).

1. 

Second, it computes the alias information at every point of the program.
result is a dictionary that maps nodes from the AST to set of
identifiers (remember that for Pythran, a node can only alias to
bounded values. These values are represented by the first identifier
they are bound to).

2. 

Finally, it pretty prints the result of the analysis, using a filter to
only dump the part we are interested in. In that case it dumps a
textual representation of the alias set of the ast.BoolOp nodes,
which turns out to be ['a', 'b'].

3. 

Unary Operator Expression
Resulting node does not alias to anything

>>> module = ast.parse('def foo(a): return -a')



>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.UnaryOp)

(- a) => ['<unbound-value>']

As stated previously, values not bound to an identifier are only represented as <unbound-
value>.

If Expression
Resulting node alias to either branch

>>> module = ast.parse('def foo(a, b, c): return a if c else b')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.IfExp)

(a if c else b) => ['a', 'b']

Dict Expression
A dict is abstracted as an unordered container of its values

>>> module = ast.parse('def foo(a, b): return {0: a, 1: b}')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Dict)

{0: a, 1: b} => ['|a|', '|b|']

where the |id| notation means something that may contain id.

Set Expression
A set is abstracted as an unordered container of its elements

>>> module = ast.parse('def foo(a, b): return {a, b}')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Set)

{a, b} => ['|a|', '|b|']

Tuple Expression
A tuple is abstracted as an ordered container of its values

>>> module = ast.parse('def foo(a, b): return a, b')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Tuple)

(a, b) => ['|[0]=a|', '|[1]=b|']

where the |[i]=id| notation means something that may contain id at index i.

Call Expression
Resulting node alias to the return_alias of called function, if the function is already known by
Pythran (i.e. it's an Intrinsic) or if Pythran already computed it's return_alias behavior.



>>> fun = '''

... def f(a): return a

... def foo(b): c = f(b)'''

>>> module = ast.parse(fun)

The f function create aliasing between the returned value and its first argument.

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Call)

f(b) => ['b']

This also works with intrinsics, e.g. dict.setdefault which may create alias between its
third argument and the return value.

>>> fun = 'def foo(a, d): __builtin__.dict.setdefault(d, 0, a)'

>>> module = ast.parse(fun)

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Call)

__builtin__.dict.setdefault(d, 0, a) => ['<unbound-value>', 'a']

Note that complex cases can arise, when one of the formal parameter is already known to
alias to various values:

>>> fun = '''

... def f(a, b): return a and b

... def foo(A, B, C, D): return f(A or B, C or D)'''

>>> module = ast.parse(fun)

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Call)

f((A or B), (C or D)) => ['A', 'B', 'C', 'D']

Subscript Expression
The resulting node alias only stores the subscript relationship if we don't know anything about
the subscripted node.

>>> module = ast.parse('def foo(a): return a[0]')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Subscript)

a[0] => ['a[0]']

If we know something about the container, e.g. in case of a list, we can use this information to
get more accurate informations:

>>> module = ast.parse('def foo(a, b, c): return [a, b][c]')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Subscript)



[a, b][c] => ['a', 'b']

Moreover, in case of a tuple indexed by a constant value, we can further refine the aliasing
information:

>>> fun = '''

... def f(a, b): return a, b

... def foo(a, b): return f(a, b)[0]'''

>>> module = ast.parse(fun)

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Subscript)

f(a, b)[0] => ['a']

Nothing is done for slices, even if the indices are known :-/

>>> module = ast.parse('def foo(a, b, c): return [a, b, c][1:]')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Subscript)

[a, b, c][1:] => ['<unbound-value>']

List Comprehension
A comprehension is not abstracted in any way

>>> module = ast.parse('def foo(a, b): return [a for i in b]')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.ListComp)

[a for i in b] => ['<unbound-value>']

Return Statement
A side effect of computing aliases on a Return is that it updates the return_alias field of
current function

>>> module = ast.parse('def foo(a, b): return a')

>>> result = pm.gather(Aliases, module)

>>> module.body[0].return_alias # doctest: +ELLIPSIS

<function merge_return_aliases at...>

This field is a function that takes as many nodes as the function argument count as input and
returns an expression based on these arguments if the function happens to create aliasing
between its input and output. In our case:

>>> f = module.body[0].return_alias

>>> Aliases.dump(f([ast.Name('A', ast.Load()), ast.Num(1)]))

['A']

This also works if the relationship between input and output is more complex:



>>> module = ast.parse('def foo(a, b): return a or b[0]')

>>> result = pm.gather(Aliases, module)

>>> f = module.body[0].return_alias

>>> List = ast.List([ast.Name('L0', ast.Load())], ast.Load())

>>> Aliases.dump(f([ast.Name('B', ast.Load()), List]))

['B', '[L0][0]']

Which actually means that when called with two arguments B and the single-element list
[L[0]], foo may returns either the first argument, or the first element of the second
argument.

Assign Statement
Assignment creates aliasing between lhs and rhs

>>> module = ast.parse('def foo(a): c = a ; d = e = c ; {c, d, e}')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Set)

{c, d, e} => ['|a|', '|a|', '|a|']

Everyone points to the formal parameter a o/

For Statement
For loop creates aliasing between the target and the content of the iterator

>>> module = ast.parse('''

... def foo(a):

...    for i in a:

...        {i}''')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Set)

{i} => ['|i|']

Not very useful, unless we know something about the iterated container

>>> module = ast.parse('''

... def foo(a, b):

...     for i in [a, b]:

...           {i}''')

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Set)

{i} => ['|a|', '|b|']

If Statement
After an if statement, the values from both branches are merged, potentially creating more
aliasing:

>>> fun = '''



... def foo(a, b):

...     if a: c=a

...     else: c=b

...     return {c}'''

>>> module = ast.parse(fun)

>>> result = pm.gather(Aliases, module)

>>> Aliases.dump(result, filter=ast.Set)

{c} => ['|a|', '|b|']

Illustration: Typing
Thanks to the above analysis, Pythran is capable of computing some rather difficult
informations! In the following:

def typing_aliasing_and_variable_subscript_combiner(i):

a=[list.append,

lambda x,y: x.extend([y])

]

b = []

a[i](b, i)

return b

Pythran knows that b is a list of elements of the same type as i.

And in the following:

def typing_and_function_dict(a):

funcs = {

'zero' : lambda x: x.add(0),

'one' : lambda x: x.add(1),

}

s = set()

funcs[a](s)

return s

Pythran knows that s is a set of integers :-)

Illustration: Dead Code Elimination
Consider the following sequence:

>>> fun = '''

... def useless0(x): return x + 1

... def useless1(x): return x - 1

... def useful(i):

...     funcs = useless0, useless1

...     funcs[i%2](i)

...     return i'''

Pythran can prove that both useless0 and useless1 don't have side effects. Thanks to the



binded value analysis, it can also prove that whatever the index, funcs[something] either
points to useless0 or useless1. And in either cases, the function has no side effect, which
means we can remove the whole instruction:

>>> from pythran.optimizations import DeadCodeElimination

>>> from pythran.backend import Python

>>> module = ast.parse(fun)

>>> _, module = pm.apply(DeadCodeElimination, module)

>>> print pm.dump(Python, module)

def useless0(x):

    return (x + 1)

def useless1(x):

    return (x - 1)

def useful(i):

    funcs = (useless0, useless1)

    pass

    return i

Other optimizations will take care of removing the useless assignment to funcs :-)
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from pythran import typing
DateDate Sat 10 December 2016 ByBy serge-sans-paille CategoryCategory compilation.

Pythran is currently part of OpenDreamKit, a project that aims at improving the open source
computational mathematics ecosystem.

The goal of Pythran is indeed to improve some Python kernel computations, but there's
something that actually makes Pythran difficult to use for new comers. What is it? Let's have
a look at the following Python code, inspired by a stack overflow thread:

#pythran export create_grid(float [])

import numpy as np

def create_grid(x):

N = x.shape[0]

z = np.zeros((N, N))

z[:,:,0] = x.reshape(-1,1)

z[:,:,1] = x

fast_grid = z.reshape(N*N, 3)

return fast_grid

An attempt to compile it with Pythran would return a very long C++ template instantiation
trace, with very little clue concerning the origin of the problem.

> pythran create_grid.py

In file included from /tmp/tmpP0xYa2.cpp:10:

In file included from ./pythran/pythonic/include/types/ndarray.hpp:12:

In file included from ./pythran/pythonic/include/utils/broadcast_copy.h

pp:4:

./pythran/pythonic/include/types/tuple.hpp:122:25: error: array is too 

large (18446744073709551615 elements)

      value_type buffer[N ? N : 1];

                        ^~~~~~~~~

./pythran/pythonic/include/types/numpy_iexpr.hpp:57:26: note: in instan

tiation of template class 'pythonic::types::array<long, 184467440737095

51615>' requested here

      array<long, value> _shape;

                         ^

[...]

                                    ^

./pythran/pythonic/include/utils/seq.hpp:19:19: note: use -ftemplate-de



pth=N to increase recursive template instantiation depth

    struct gens : gens<N - 1, N - 1, S...> {

                  ^

3 errors generated.

CRITICAL Cover me Jack. Jack? Jaaaaack!!!!

E: ('error: Command "clang++-3.8 -DNDEBUG -g -fwrapv -O2 -Wall -fno-str

ict-aliasing -g -O2 -fPIC -DUSE_GMP -DENABLE_PYTHON_MODULE -D__PYTHRAN_

_=2 -I./pythran -I./pythran/pythonic/patch -I/home/serge/.venvs/pythran

/local/lib/python2.7/site-packages/numpy/core/include -I/usr/include/py

thon2.7 -c /tmp/tmpP0xYa2.cpp -o /tmp/tmpM2Eiso/tmp/tmpP0xYa2.o -std=c+

+11 -fno-math-errno -w -fwhole-program -fvisibility=hidden" failed with

 exit status 1',)

What we now have is a slightly friendlier message:

> pythran create_grid.py

CRITICAL You shall not pass!

E: Dimension mismatch when slicing `Array[2d, float]` (create_grid.py, 

line 7)

Indeed, the correct declaration for z was z = np.zeros((N, N, 3)).

A Quick Glance at Pythran Typing System
As you probably know, Python uses a dynamic type system, often called duck typing: what
matters is not the type of an object, but its structure, i.e. the available methods and fields: If it
walks like a duck and talks like a duck, then it's a duck. That's a kind of structural typing.

On the opposite side C++ uses a static type system, and if you adhere to OOP [1] you may
require an object to derive from the Duck class to be considered a duck; That's a kind of
nominal typing.

Pythran uses a trick to make both world meet: ad-hoc polymorphism, as supported in C++
through template meta programing. Upon a template instantiation, there's no type name
verification, only a check that given methods and attributes make sense in the current
context. And that's exactly what we need to get closer to Python typing!

This all is very nice, except in the case of a bad typing. Consider this trivial Python code:

def twice(s):

return s * 2

integer, for instance str, list, int. The C++ equivalent would be (taking into account
move semantics):

template<typename T>

auto twice(T&& s) {

return std::forward<T>(s) * 2;

}



In Python's case, type checking is done at runtime, during a lookup in s for a __mul__ magic
method. In C++ it's done at compile time, when performing instantiation of twice for a given
type value of T. What lacked was a human-readable error message to warn about the coming
winter. And that's exactly the topic of this post ;-)

A Few Words About MyPy
Type hints, as introduced by PEP484, make it possible to leverage on arbitrary function
annotations introduced by PEP 3107 to specify the expected type of a function parameter and
its resulting return type. No check occur at runtime, but a third party compiler, say MyPy can
take advantage of these hints to perform an ahead-of-time check. And that's great.

Note

In this post, we use the type annotation introduced by PEP484 and used in MyPy to describe
types. int is an integer, List[str] is a list of string and so on.

So, did we trade #pythran export twice(str) for def twice(s: str):? No. Did
we consider the option? Yes. First there's the issue of MyPy only running on Python3. It can
process Python2 code, but it runs on Python3. We've been struggling so much to keep
Python2.7 compatibility in addition to the recent addition of broader Python3 support. We're
not going to leave it apart without good reasons.

Note

It also turns out that the typing module has a different internal API between Python2 and
Python3. This makes it quite difficult to use for my purpose. What a joy to discover this when
you think you're done with all your tests :-/

No, the main problem is this MyPy issue that basically states that Numpy does not fit into the
model:

Of course, the best behavior would be to provide a stub for Numpy, but some features in
Numpy make it difficult to provide a good stub

Meanwhile, someone that did not read this issue wrote A Numpy stub for MyPy. It turns out
that it' **is** a pain, mostly due to the flexibility of many Numpy methods.

Additionally, Pythran currently infers type inter-procedurally, while MyPy requires type
annotation on every functions, to keep the problem within reasonable bounds.

But wait. MyPy author did his PhD on the subject, and he now works hand in hand with
Guildo van Rossum on the subject. Is there any chance for us to do a better job? Let's be
honest. There is not.

What can we do in such a situation? Take advantage of some extra assumptions Pythran can
afford. We focus on scientific computing, all existing types are known (no user-defined types
in Pythran) and we only need to handle small size kernels, so we can spend some extra
computing resources in the process.

A Variant of Hindley-Milner for Pythran
Hindley-Milner (HM) is a relatively easy to understand type system that supports parametric
polymorphism. A simple implementation has been written in Python, but not for Python, even



not for the subset supported by Pythran.

The main issue comes with overloaded functions. Consider the map function: it has a varying
number of parameters, and for a given number of parameters, two possible overloads exist
(the first argument being None or a Callable). Some extra stuff are not as critical but also
important: it's not possible to infer implicit option types (the one that comes with usage of
None). Ocaml uses Some as a counterpart of None to handle this issue. but there's no such
hint in Python (and we don't want to introduce one).

Still, the whole subject of typing is reaaaaaalllllly difficult, and I wanted to stick as close as
possible to Hindley-Milner because of its simplicity. So what got introduced is the concept of
MultiType, which is the type of an object that can hold several types at the same time. So
that's not exactly a UnionType which is the type of an object that can be of one type among
many. The difference exists because of the situation described by the following code:

def foo(l, m=1):

pass

foo(1)

foo(2, 3)

In that case foo really has two types, namely Callable[[Any], None] and
Callalble[[Any, Any], None]. That's what MultiType represents.

Handling Overloading
So we handle overloading through a unique object that has a specific type, a MultiType
that is just a list of possible types.

Abusing from Multiype can quickly make the combinatorics of the type possibilities go wild,
so we had to make a decision. Consider the following code:

def foo(x, y):

return x in y

The in operator could be implemented as a MultiType, enumerating the possible valid
signature (remember we know of all possible types in Pythran):

Callable[[List[T0], T0], bool], a function that takes a list of T0 and a T0 and
returns a boolean,
Callable[[str, str], bool], a function that takes two strings and returns a
boolean,

And so on, including for numpy arrays, but we'll comme back to this later and assume for now
we only have these two types. So what is the type of foo? From the x in y expression, HM
tells us that x can be a list of T0, and in that case y must be of type T0, or x is a string and
so must be y. And in both cases, a boolean is returned.

We could consider both alternatives, follow the two type paths and in the end, compute the
signature of foo as a MultiType holding the outcome of all paths. But that could mean a
lot! What we do is an over-approximation: what is the common structure between List[T0]



and str? Both are iterable, therefeore x must be iterable. Nothing good comes from T0 and
str, and bool compared to bool results in a bool, so in the end foo takes an iterable and
any value, and returns a boolean. That's not as strict as it could be, but that's definitively
enough. However our type system is no longer sound (it does not reject all bad program).

In order to make it easier to perform this approximation, we chose a dedicated representation
for containers. In our type system (oh, it's named tog by the way, so in the tog type system),
containers are roughly described as a tuple of (name, sized, key, value, iter):

a List[T0] is considered as (List, Sized, int, T0, T0)
a Set[T0] is considered as (Set, Sized, NoKey, T0, T0)
a Dict[T0, T1] is considered as (Dict, Sized, T0, T1, T0)
a str is considered as (Str, Sized, int, Str, Str)
a Generator[T0] is considered as (Generator, NoSized, NoKey, T0, T0)

As a consequence, an Iterable[T0], to be compatible with the over-approximation
defined above, is a (Any, Any, Any, Any, T0).

Handling Option Types
When HM runs on the following Python code:

def foo(a):

if a:

n = 1

range(n)

return n

else:

return None

It runs into some troubles. The return from the True branch sets the return type of foo to
int but the one from the False branch sets it to None. How could we make this unification
valid? Option types are generally described as a parametric type, Optional[T0]. To be
able to unify int and None, we would instead need to unify Optional[int] and None,
thus marking n as Optional[int], which does not work, because range expects an int.

The solution we have adopted is to make type inference control-flow sensitive. When meeting
an if, we generate a new copy of the variable environment for each branch, and we merge
(not unify) the environments.

Likewise, if the condition is explicitely a check for None, as in:

if a is None:

stuff()

else:

return stuff(a)

the environment in the True branch holds the None type for a, and the int type in the
False branch. This could be improved, as we support only a few patterns as the condition
expression, there is something more generic to be done there.



This even led to improvement in our test base, as the following code was no longer correct:

def foo(x):

v = x.get(1)

return v + 1

Type inference computes that v is of type Optional[T0], which is not compatible with v +
1 and a PythranTypeError is raised. A compatible way to write this would be:

def foo(x):

v = x.get(1)

if v is None:

pass # or do stuff

else:

return v + 1

Handling Type Promotion
It's not uncommon to find this kind of code:

l = []

l.append(0)

l.append(3.14)

And there's nothing wrong with this in Python, but is this a type error for Pythran? In classical
HM systems, that's a type error: [] is of type List[TO], list.append is of type
Callable[[List[T0], T0], None] so unification sets T0 to int after first append,
and fails upon the second append because unification between an int and a float fails.

Looking back in Python typing history, it seems that shedskin made the decision to consider
it's not an error (see the blogpost announce on the topic. Several test cases of Pythran test
suite would fail with a stricter typing, so let's try to achieve the same behavior as Shedskin,
within HM.

The trick here is to consider a scalar as a tuple of four elements [0], one per scalar type we
want to support. And then apply the following rule: the actual type of the scalar is the type of
the first non variable type, starting from the lower index. Under that assumption,

a bool is a (T0, T1, T2, bool)
an int is a (T0, T1, int, T2)
a float is a (T0, float, T1, T2)
a complex is a (complex, T0, T1, T2)

When unifying an int with a float, regular unification yields (T0, float, int, T2)
which is a float according to the previous definition.

If we want to enforce an int, say as argument of range, then we can define strict_int
as (no-complex, no-float, int, T0) which still allows up-casting from bool to int
but prevents up-casting from int to float.

Note



numpy introduces many sized type for integers, floating point numbers and complex
numbers, with a set of rules to handle conversion between one and the other. As these
conversions are generally possible in numpy (i.e. they dont raise a TypeError), we just use
four scalar types: bool`, ``int, complex and float. long is merged into int, which
also makes the Python2/3 compatibility easier.

Handling NDArray Type
numpy.ndarray is the corner stone of the numpy package. And it's super-flexible, allowing
all kinds of broadcasting, reshaping, up-casting etc. Even if Pythran is far from supporting all
of its features, it does support a wide set. The good news is that Pythran supports a lower
version of ndarray, where the number of dimensions of an array does not change: it cannot
be reshaped in place. For instance the C++ type returned by numpy.ones((10, 10)) is
types::ndarray<double /*dtype*/, 2 /*nbdim*/>.

We've extended the typing module to provide NDArray. For Pythran, the Python
equivalent of the above C++ type is NDArray[float, :, :].

And as we want it to be compatible with the way we defined an Iterable, an NDArray is
actually a:

List[T0] is considered as (List, Sized, int, T0, T0)
Dict[T0, T1] is considered as (Dict, Sized, T0, T1, T0)
...
NDArray[complex, :] is considered as (Array, Sized, T0, complex,
complex)

NDArray[complex, :, :] is considered as (Array, Sized, T0, complex,
NDArray[complex, :])

NDArray[complex, :, :, :] is considered as (Array, Sized, T0,
complex, NDArray[complex, :, :])

That's a recursive definition, and that's pretty useful when used with our MultiType
resolution. If we need to merge an NDArray[complex, :, :] and an
NDArray[complex, :, :, :], we end up with (Array, Sized, T0, complex,
(Array, Sized, T1, complex, T1)) which actually means an array of complex with
at least two dimensions.

Testing the Brew
Let's be honest: the tog type system is more the result of tinkering than great research. Type
systems is a complex field and I did my best to apply what I learned during my bibliography
on the subject, but it still falls short in various places. So instead of a formal proof, here is
some testing results :-).

First, the whole test suite passes without much modifications. It helped to spot a few errors in
the tests, mostly code that was incorrect with respect to option types. We also updated the
way we specify tests input type to rely on PEP484. A typical Pythran unit-test now looks like:

def test_shadow_import2(self):

self.run_test(



'''def shadow_import2(s):

               for set in s : set.add(1)''',

[{1},{2}],

shadow_import2=[List[Set[int]]]

)

where the List[Set[int]] expression describes the type for which the code must be
instantiated.

The following code sample is adapted from the MyPy example page. It requires a type
comment to be correctly typed, while Pythran correctly type checks it without annotation.

def wc(content):

d = {}

for word in content.split():

d[word] = d.get(word, 0) + 1

# Use list comprehension

l = [(freq, word) for word, freq in d.items()]

return sorted(l)

If we turn the 1 into "1", we get the following error:

> pythran wc.py

CRITICAL You shall not pass!

E: Invalid operand for `+`: `int` and `str` (wc.py, line 5)

And if we remove the 0, d.get(word) may return None and the error message becomes:

> pythran wc.py

CRITICAL You shall not pass!

E: Invalid operand for `+`: `Option[T0]` and `int` (wc.py, line 5)

Great!

Considering Numpy functions, we don't model all of them in tog, but we can still detect
several interesting errors. For instance on a gaussian kernel (error-safe version from
stackexchange):

import numpy as np

def vectorized_RBF_kernel(X, sigma):

X2 = np.sum(np.multiply(X, X), 1) # sum colums of the matrix

K0 = X2 + X2.T - 2 * X * X.T

K = np.power(np.exp(-1.0 / sigma**2), K0)

return K



def badcall(s):

return vectorized_RBF_kernel(2, s)

Pythran correctly catches the error on vectorized_RBF_kernel call:

> pythran gaussian.py

CRITICAL You shall not pass!

E: Invalid argument type for function call to `Callable[[int, T3], ...]

`, tried Callable[[Array[1 d+, T0], T1], Array[1 d+, T2]] (gaussian.py,

 line 9)

Conclusion
I'm still not satisfied with the tog engine: it's relatively slow, not as accurate as I'd like it to be,
and it's just a type checker: another (simpler) type engine is used to generate the actual C++
code. That's a lot of not very enthusiastic concluding remarks, but... I'm French :-)

On the good side, I happened to learn a lot about typing and about Python, while developing
this. And Pythran is in a much better shape now, much more usable, easier to maintain too,
so that was worth the effort :-)
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[0][0]
That could be more actually, for instance to distinguish single precision float from double
prcesion float, the float32 and float64 from numpy. But four types is enough for the
envisonned type checking.

[1][1] The OOP style in C++ is not enforced by the Standard Library as much as it is in the Java
SDK though.
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