
Call: H2020-EINFRA-2015-1 REPORT ON D3.3

REPORT ON OpenDreamKit DELIVERABLE D3.3

Support for the SCSCP interface protocol in all relevant components (SAGE, GAP,
etc.) distribution

LUCA DE FEO, ALEXANDER KONOVALOV, STEVE LINTON, TOM WIESING

Due on 02/28/2017 (Month 18)
Delivered on 02/28/2017
Lead University of St Andrews (USTAN)
Progress on and finalization of this deliverable has been tracked publicly at:
https://github.com/OpenDreamKit/OpenDreamKit/issues/62

DELIVERABLE DESCRIPTION, AS TAKEN FROM GITHUB ISSUE #62 ON 2017-02-28

• WP3: Component Architecture
• Lead Institution: University of St Andrews
• Due: 2016-08-31 (month 12)
• Nature: Other
• Task: T3.2 (#51)
• Proposal: p.43
• Final report: due 2017-02-28

SCSCP stands for the Symbolic Computation Software Composability Protocol - the
remote procedure call framework by which different software components (primarily mathe-
matical software systems) may offer computational services to a variety of possible clients
using the OpenMath encoding both for the data and protocol instructions (see the SCSCP
specification for further details).

SCSCP has been developed in the EU FP6 project 026133 SCIEnce - Symbolic Computa-
tion Infrastructure for Europe. In the duration of the project (2006-2011) and subsequent
years, several native CAS implementations of SCSCP client and server, and also APIs for
Java, C and C++ had appeared (see the complete list here). However, there were no Python
OpenMath SCSCP implementations (except a prototype quality client supporting only lists
of integers) and that hindered further extension of the SCSCP framework.

In this deliverable, we have extended support for SCSCP to other relevant systems involved
in the project. This builds foundation to D3.9 “Semantic-aware Sage interface to GAP” (#68)
and other activities outlined in our paper “Interoperability in the OpenDreamKit Project: The
Math-in-the-Middle Approach” (Intelligent Computer Mathematics. CICM 2016. Lecture
Notes in Computer Science, vol 9791. Springer). More specifically, we have achieved the
ability to communicate using SCSCP protocol to the following systems/languages:

• X Python (both versions 2 and 3): via pure pip-installable packages
• X openmath

– PyPI: https://pypi.python.org/pypi/openmath
– GitHub: https://github.com/OpenMath/py-openmath

• X scscp
– PyPI: https://pypi.python.org/pypi/scscp

676541 OpenDreamKit 1

http://www.symbolic-computing.org/
https://github.com/OpenDreamKit/OpenDreamKit/issues/62
https://github.com/OpenDreamKit/OpenDreamKit/issues/62
https://github.com/OpenDreamKit/OpenDreamKit/tree/master/WP3
https://github.com/OpenDreamKit/OpenDreamKit/issues/51
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/Proposal/proposal-www.pdf
http://www.openmath.org/
http://www.symbolic-computing.org/scscp
http://www.symbolic-computing.org/scscp
http://www.symbolic-computing.org/
http://www.symbolic-computing.org/
http://www.symbolic-computing.org/
https://github.com/OpenDreamKit/OpenDreamKit/issues/68
https://dx.doi.org/10.1007/978-3-319-42547-4_9
https://dx.doi.org/10.1007/978-3-319-42547-4_9
https://pypi.python.org/pypi/openmath
https://github.com/OpenMath/py-openmath
https://pypi.python.org/pypi/scscp

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

– GitHub: https://github.com/OpenMath/py-scscp
• X SageMath: via Python packages listed above
• X LMFDB: via Python packages listed above
• X PARI:
• X support via D4.1 “Python/Cython bindings for PARI and its integration in Sage”

(#83)
• [] later via D4.10 “Second version of the PARI Python/Cython bindings” (#84)
• X GAP: via (updated versions of) GAP packages:
• X OpenMath

– Website: https://gap-packages.github.io/openmath/
– GitHub: https://github.com/gap-packages/openmath

• X SCSCP
– Website: https://gap-packages.github.io/scscp/
– GitHub: https://github.com/gap-packages/scscp

• X Singular: via GAP and/or SageMath
• X MMT/MathHub: OpenMath and SCSCP client/server implementations in Scala

Remarks:
• Relevant tickets in Sage: https://trac.sagemath.org/ticket/19970

and http://trac.sagemath.org/ticket/19971
• In view of the new DFG-funded project “Symbolic Tools in Mathematics and

Their Application” which will develop the OSCAR system, based on Julia, it’s
desirable to implement OpenMath and SCSCP in Julia and later use Singular
through it (see the blog post https://wbhart.blogspot.co.uk/2016/
11/new-computer-algebra-system-oscar_20.html)

676541 OpenDreamKit 2

https://github.com/OpenMath/py-scscp
https://github.com/OpenDreamKit/OpenDreamKit/issues/83
https://github.com/OpenDreamKit/OpenDreamKit/issues/84
https://gap-packages.github.io/openmath/
https://github.com/gap-packages/openmath
https://gap-packages.github.io/scscp/
https://github.com/gap-packages/scscp
https://trac.sagemath.org/ticket/19970
http://trac.sagemath.org/ticket/19971
https://wbhart.blogspot.co.uk/2016/11/new-computer-algebra-system-oscar_20.html
https://wbhart.blogspot.co.uk/2016/11/new-computer-algebra-system-oscar_20.html

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

CONTENTS

Deliverable description, as taken from Github issue #62 on 2017-02-28 1
1. Introduction 4
2. Systems 4
2.1. Python and SAGE 4
2.2. GAP 5
2.3. PARI/GP 6
2.4. SINGULAR 6
2.5. MMT/MathHub 7
3. Examples and use cases 7
3.1. Examples involving applications from Python ecosystem 7
3.2. GAP SCSCP server in Docker container 8
3.3. The database of numbers of isomorphism types of finite groups 8
3.4. Parallel search in the GAP Small Groups Library using SCSCP 8
4. Conclusions and future work 9
Appendix A. README file for the Python openmath package 10
Appendix B. README file for the Python scscp package 13
Appendix C. Example: SCSCP client in Python2 connecting to GAP server 16
Appendix D. Example: SCSCP client in Python3 connecting to GAP server 20
Appendix E. Example: SCSCP client in SAGE connecting to GAP server 23
Appendix F. Example: SCSCP client in Python3 calculates Groöbner basis with

SINGULAR 25
Appendix G. Example: SCSCP client in GAP connecting to Python 3 server 34
Appendix H. Documentation for the GAP Docker container 38
Appendix I. Documentation for the GAP SCSCP server for the number of isomorphism

types of groups of order n 42
Appendix J. Parallel search in the GAP Small Groups Library with SCSCP 48
Appendix K. Example: SCSCP Client in Scala connecting to GAP server 51
Appendix L. Example: SCSCP Client in MMT connecting to GAP server 53

676541 OpenDreamKit 3

https://github.com/OpenDreamKit/OpenDreamKit/issues/62

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

1. INTRODUCTION

SCSCP stands for the Symbolic Computation Software Composability Protocol – a re-
mote procedure call framework by which different software components (primarily mathematical
software systems) may offer computational services to a variety of possible clients, such as, for
example:

• a computer algebra system (CAS) running on the same computer system or remotely;
• another instance of the same CAS (in a parallel computing context);
• a simplistic SCSCP client (e.g. C/C++/Python/etc. program) with a minimal SCSCP

support needed for a particular application;
• an internet application providing user interface to the computational services;
• a Web server which passes on the same services as Web services to other applications;
• Cloud middleware

using the OpenMath encoding (see http://www.openmath.org/) both for the data and
protocol instructions.

SCSCP has been developed in the EU FP6 project 026133 “SCIEnce – Symbolic Compu-
tation Infrastructure for Europe” (http://www.symbolic-computing.org/). Within
the duration of that project (2006-2011) and over subsequent years, native implementations of
SCSCP client and server have been developed in several CAS such as GAP, KANT, Macaulay2,
Maple, Mathematica, MuPAD and TRIP; furthermore, APIs for Java, C and C++ were devel-
oped to facilitate SCSCP implementations in other applications (see the full list and links at
http://www.symbolic-computing.org/). However, there were no Python implemen-
tations of OpenMath and SCSCP (except a prototype quality client supporting only lists of
integers) and that hindered further extension of the SCSCP framework.

In this report we give an overview of work under task T3.2 to support SCSCP in all relevant
components, necessary to be able to build interfaces between different systems.

2. SYSTEMS

Under task T3.2, our goal is to make SCSCP-compliant all relevant components. Since SCSCP
is a protocol in which both data and instructions are encoded in OpenMath, its implementation is
typically split into two components:

• OpenMath support to be able to parse and generate OpenMath code and encode/decode
mathematical objects

• client and server functionality needed to establish connection and exchange with proce-
dure calls and their results.

In order to achieve maximal impact on the Python ecosystem, instead of implementing SCSCP
directly in SAGE, our approach was to provide independent Python libraries, which may be
used not only in SAGE but also in a number of other Python applications including scientific
computing libraries such as e.g. SciPy, NumPy, SymPy etc.

2.1. Python and SAGE
OpenMath and SCSCP support in Python is provided by two libraries, openmath and scscp,

which are available from the package repository PyPI at
• https://pypi.python.org/pypi/openmath/
• https://pypi.python.org/pypi/scscp/

and may be installed using the standard pip installer both under Python 2 and Python 3. The
development repositories and issue trackers for these packages are hosted on GitHub at

• https://github.com/OpenMath/py-openmath
• https://github.com/OpenMath/py-scscp

676541 OpenDreamKit 4

http://www.openmath.org/
http://www.symbolic-computing.org/
http://www.symbolic-computing.org/
https://pypi.python.org/pypi/openmath/
https://pypi.python.org/pypi/scscp/
https://github.com/OpenMath/py-openmath
https://github.com/OpenMath/py-scscp

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

The openmath package contains
• An object representation of the OpenMath standard,
• XML serialisers and deserialisers,
• An extendable mechanism for automatic conversions between Python and OpenMath

objects.
We give details on the two latter components in the appendices.

The scscp package offers network components for implementing the SCSCP network protocol
at various levels of abstraction. Among other components, it contains in particular

• An SCSCP base client,
• An SCSCP base server,
• A command line tool to interrogate SCSCP server, with automatic discovery of remote

procedures, and automatic conversion between Python and OpenMath.
• A minimalistic demo server, and other examples illustrating how to use the package

inside SAGE.
Both packages can easily be installed inside SAGE from PyPi. Although the client and server

modules target generic Python code, they can easily be adapted to work seamlessly inside SAGE,
as the included examples show. Since SAGE does not have extensive support for OpenMath yet,
we have decided not to include these packages in SAGE by default for the moment. We will
reevaluate this decision according to the progress made in WP6 in the next reporting period.

Appendices A and B contain README files for Python packages openmath and scscp
respectively. Further appendices contain examples of using these packages for communication
between different systems:

• from Python 2 to GAP (Appendix C)
• from Python 3 to GAP (Appendix D),
• from SAGE to GAP (Appendix E),
• from SymPy Python 3 library to SINGULAR via GAP (Appendix F)
• from GAP to NumPy Python 3 library (Appendix G)

All of these examples were prepared in the form of Jupyter notebooks, and could be reproduced
using the original .ipynb files in the project repository.

2.2. GAP
OpenMath and SCSCP support in GAP is provided by two similarly named GAP packages,

OpenMath and SCSCP. These packages are included in the standard GAP distribution and are
also available from their websites:

• https://gap-packages.github.io/openmath/
• https://gap-packages.github.io/scscp/

The development repositories and issue trackers for these packages are hosted on GitHub:
• https://github.com/gap-packages/openmath
• https://github.com/gap-packages/scscp

Both packages have an extensive (20 and 54 pages respectively) documentation which is included
in their distribution and is also available online:

• https://gap-packages.github.io/openmath/doc/chap0.html
• https://gap-packages.github.io/scscp/doc/chap0.html

The GAP package OpenMath provides an OpenMath phrasebook for GAP. It can import and
export mathematical objects encoded in OpenMath for the purpose of exchanging them with
other OpenMath-enabled applications. It supports both XML and binary OpenMath encodings,
and allows users to extend it to support private OpenMath content dictionaries in case when

676541 OpenDreamKit 5

https://gap-packages.github.io/openmath/
https://gap-packages.github.io/scscp/
https://github.com/gap-packages/openmath
https://github.com/gap-packages/scscp
https://gap-packages.github.io/openmath/doc/chap0.html
https://gap-packages.github.io/scscp/doc/chap0.html

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

the official OpenMath content dictionaries do not exist or provide too verbose and inefficient
encoding.

The SCSCP package implements both an SCSCP client and a server. The client is capa-
ble of establishing the connection with the specified server at the specified port; sending the
procedure call message to the server in both blocking and non-blocking modes; and fetch-
ing response in the form of the procedure completed or procedure terminated
message.

The server reads all declarations from the specification file and starts to listen to the specified
port (by default port 26133). Upon receiving and incoming connection, it starts the “receive-
evaluate-return” loop: receive the procedure call message; evaluate the result (or produce
a side-effect); return the result in the form of the procedure completed message, or returns
an error in the form of procedure terminated message.

The ability to issue concurrent non-blocking procedure calls permitted to build a framework
for distributed parallel computations using the “master-worker” skeleton.

The SCSCP package had been established under the EU FP6 Programme project 026133
“SCIEnce – Symbolic Computation Infrastructure for Europe”, and OpenMath project had been
created with the support of the EU ESPRIT project EP 24969 “Accessing and Using Mathematical
Information Electronically” and then had a major redevelopment under the SCIEnce project.
However, they were not in active development after the SCIEnce project had finished.

Under OpenDreamKit, during the reported period we have prepared new versions of both
packages and migrated their development repositories and websites to host them under the GAP
packages virtual organisation on GitHub (see https://gap-packages.github.io/).
Their new versions have now passed integration tests for the redistribution with GAP and will
appear in the next GAP release. Major changes were upgrades and compatibility fixes for next
GAP releases, improvements to improve the security and robustness when running public SCSCP
servers, and fixes for problems discovered while testing Python packages for OpenMath and
SCSCP.

Several examples of using GAP SCSCP client and server are given in the next section and
Appendices. In addition to already mentioned examples of GAP SCSCP server called from
Python application shown in Appendices C-G, we also demonstrate several use cases for the
GAP SCSCP package in Appendices H, I and J.

2.3. PARI/GP
Given that the goal of PARI is to be a small, fast and lightweight library and interpreter, we

have come to the conclusion that adding support for SCSCP directly to it is inadequate.
Instead, the Python library mentioned above, combined with the CyPari interface built in D4.1:

“Python/Cython bindings for PARI and its integration in Sage”, will enable building fast and
reliable SCSCP client and servers for PARI through the Python platform.

Both CyPari, and the packages built for this deliverable are not mature enough to showcase
such applications, but we may be able to do so by the time D4.10: “Second version of the PARI
Python/Cython bindings” is completed.

2.4. SINGULAR
Both GAP and SAGE have very flexible interfaces to SINGULAR which permit to provide

access SINGULAR functionality via SCSCP from these systems, for example, as shown in
Appendix F which describes how one could call it from the SymPy Python 3 library through a
GAP SCSCP server.

Given that the perspective for SINGULAR has evolved in the meantime, and with the launch
of the DFG-funded project “Symbolische Werkzeuge in der Mathematik und ihre Anwendung”
(“Symbolic Tools in Mathematics and their Application”) SINGULAR may later switch to Julia
as a high level language for SINGULAR and other involved systems), we have come to the

676541 OpenDreamKit 6

https://gap-packages.github.io/
https://github.com/OpenDreamKit/OpenDreamKit/issues/83
https://github.com/OpenDreamKit/OpenDreamKit/issues/83
https://github.com/OpenDreamKit/OpenDreamKit/issues/84
https://github.com/OpenDreamKit/OpenDreamKit/issues/84

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

conclusion that at this stage implementing a Singular-specific SCSCP client/server would be
premature. Instead, it may be useful to establish an implementation of SCSCP in Julia, to be
used uniformly by SINGULAR and other systems.

2.5. MMT/MathHub
MMT supports both OpenMath syntax and the SCSCP protocol. A separate SCSCP func-

tionality for MathHub is not necessary, as it is already powered by MMT and thus any SCSCP
communication can easily go via MMT instead.

Unlike with other systems MMT Terms are already OpenMath objects with a few custom
extensions. As such, the translation from an MMT to an OpenMath object is just dropping
the extra information provided by these extensions and the backward translation is simply the
identity.

We have added a data structure that represents these “pure” (i.e. standards-conformant) Open-
Math objects to MMT, the source code of which can be found at https://github.com/
UniFormal/MMT/tree/177a9fc3415856c426110a7e763c7d7843de4d5f/src/
mmt-odk/src/info/kwarc/mmt/odk/OpenMath. It in particular implements the trans-
lation procedure above as well as serialising and deserialising OpenMath from XML.

On top of this, we have also implemented a custom SCSCP Client as well as Server inside of
MMT. They are written in Scala.

The client functionality allows MMT to first encode an MMT term (i.e. any object) as an
OpenMath object, then have any SCSCP server perform a computation on this object, and
finally receive the response and translate it back into an MMT term. Furthermore, the server
functionality allows MMT to expose computational functionality to other systems. In this
situation, it again receives an OpenMath object, translates it as an MMT object, performs some
computation, and returns the result as an OpenMath object.

Having SCSCP functionality implemented in Scala has the advantage that we can directly and
easily embed it into our existing codebase. However, as we had to implement it from scratch,
there are certain corner cases that we have not been able to take into account so far. Furthermore
it might be difficult to have to maintain this implementation and update in the future. Thus we
are considering to migrate away from our own implementation and instead simply write a Scala
wrapper around the pre-existing Java Implementation.

Appendices K and L show two examples of the implemented SCSCP Client functionality. The
first one shows how the Scala implementation of the SCSCP Client can connect to an external
server, the second one again shows such a connection, but this time starts out within MMT, goes
through the procedure described above and then receives a result as an MMT term.

3. EXAMPLES AND USE CASES

In this section we give a brief overview of Appendices C-J and mention several highlights
illustrating flexibility of our setup.

3.1. Examples involving applications from Python ecosystem
Appendices C-F show various examples of interactions between Python, SAGE, GAP and

SINGULAR. All these examples are produced using Jupyter notebooks and may be reproduced
by re-running the original .ipynb files contained in the project repository on GitHub.

In Appendix C an SCSCP client in Python2 communicates with the GAP SCSCP server. One
of the highlights is creating remote objects on the GAP server and manipulating with them using
remote references without retrieving actual objects.

Appendix D demonstrates SCSCP client in Python3 connecting to the GAP SCSCP server.
Python 2 supports matrices, but it does not support matrix groups. When it needs to find the
catalogue number of the group generated by given matrices, it sends those generators to the GAP
server.

676541 OpenDreamKit 7

https://github.com/UniFormal/MMT/tree/177a9fc3415856c426110a7e763c7d7843de4d5f/src/mmt-odk/src/info/kwarc/mmt/odk/OpenMath
https://github.com/UniFormal/MMT/tree/177a9fc3415856c426110a7e763c7d7843de4d5f/src/mmt-odk/src/info/kwarc/mmt/odk/OpenMath
https://github.com/UniFormal/MMT/tree/177a9fc3415856c426110a7e763c7d7843de4d5f/src/mmt-odk/src/info/kwarc/mmt/odk/OpenMath

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

Appendix E shows SCSCP client in SAGE connecting to GAP server. There SAGE retrieves a
group of order 512 represented in a private OpenMath dictionary, which only can be processed
by GAP. However, it can be used as an argument in next procedure calls in order to investigate
properties of this group.

Appendix F describes accessing SINGULAR from Python3 via a GAP SCSCP server. We
show an example of calculating a Gröbner basis when remote procedure call to SINGULAR
takes 6 seconds where as the same calculation with SymPy library in Python is taking 2 minutes.
Besides the PDF version of the Jupyter notebook, we show the server configuration file for the
GAP SCSCP server.

Finally, in Appendix G we show how SCSCP client in GAP communicates with the Python
3 server to operate with matrices and polynomials using the NumPy library. For example,
the calculation of the rank and determinant of an integer matrix also has a well-performing
implementation in GAP, but it may be interesting to run it in Python to check the reproducibility
of the result. The other example in this Appendix uses NumPy to calculate floating-point
approximations of complex roots of a polynomial, and such functionality is not available in GAP
at all.

3.2. GAP SCSCP server in Docker container
A very efficient and secure way to run a public GAP SCSCP server is to run it in the GAP

Docker container. We have established a pipeline of GAP Docker containers under Task T3.1
(see https://hub.docker.com/u/gapsystem/) to serve different use cases, and the
one which is most suited for the SCSCP server is the gapsystem/gap-docker container
available at https://hub.docker.com/r/gapsystem/gap-docker/ and providing
the most complete installation of the GAP system and all of the more than 130 packages currently
redistributed with GAP, with satisfied dependencies on the external software libraries.

If the SCSCP server configuration file myserver.g is contained, for example, in the direc-
tory path, then one could mount that directory as /scscp/ on the container and start the GAP
SCSCP server as follows:

docker run --rm -i -t --net="host" -v path:/scscp gapsystem/gap-docker gap /scscp/myserver.g

A copy of the page https://hub.docker.com/r/gapsystem/gap-docker/with
detailed instructions on using the GAP Docker container is provided in Appendix H.

3.3. The database of numbers of isomorphism types of finite groups
One of SCSCP use cases is accessing large and/or frequently updated databases, which should

be rather accessed online that redistributed as add-ons for mathematical software packages. This
is particularly relevant to work on mathematical databases under WP6.

Appendix I contains a description of a proof-of-concept example how such access may be
organised to provide a crowdsourced database of numbers of isomorphism types of finite groups
(see https://github.com/alex-konovalov/gnu). Using SCSCP, contributors may
be able to get the latest information of known and unknown entries from the server, which runs
in the GAP Docker container (see 3.2).

3.4. Parallel search in the GAP Small Groups Library using SCSCP
Appendix J contains a quick start guide for setting up the environment for parallel search in

the GAP Small Groups Library. This guide and supplementary files could be found at https:
//github.com/alex-konovalov/scscp-demo. The example used in this guide is
based on the GAP Software Carpentry lesson (http://alex-konovalov.github.io/
gap-lesson/). This material was included in the programme of two CoDiMa training
schools in Computational Discrete Mathematics held in the UK in 2015 and 2016 (http:
//www.codima.ac.uk/schools/).

676541 OpenDreamKit 8

https://hub.docker.com/u/gapsystem/
https://hub.docker.com/r/gapsystem/gap-docker/
https://hub.docker.com/r/gapsystem/gap-docker/
https://github.com/alex-konovalov/gnu
https://github.com/alex-konovalov/scscp-demo
https://github.com/alex-konovalov/scscp-demo
http://alex-konovalov.github.io/gap-lesson/
http://alex-konovalov.github.io/gap-lesson/
http://www.codima.ac.uk/schools/
http://www.codima.ac.uk/schools/

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

4. CONCLUSIONS AND FUTURE WORK

SCSCP implementation forms the 1st step of Task T3.2 “Interfaces between systems” and
in particular builds foundation for D3.9 “Semantic-aware SAGE interface to GAP”, as well
as feeding into many activities under Workpackage 6. While undertaking this work, we have
identified a number of new activities which may flow from it, either within Workpackage 2
(dissemination) or as part of other projects beyond OpenDreamKit, increasing the impact of the
project.

First, due to establishing pure Python packages for OpenMath and SCSCP instead of imple-
menting them directly in SAGE, we are now able to reach out to wider Python communities, in
particular to users and developers of NumPy, SciPy, SymPy and other scientific libraries that
may need to provide or consume computational services via SCSCP. Also, we would like to
establish similar implementations for other languages which may be used as interface languages
to various scientific libraries. We plan to start this with the Julia language due to its importance
for the new DFG-funded project “Symbolic Tools in Mathematics and Their Application” which
will develop the OSCAR system, based on Julia. Finally, to ensure that the SCSCP standard will
be properly maintained in the future, we plan to publish the stable SCSCP specification through
the OpenMath society and license it for general use under the terms of the “W3C Software and
document notice and license”.

676541 OpenDreamKit 9

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

APPENDIX A. README FILE FOR THE PYTHON OPENMATH PACKAGE

676541 OpenDreamKit 10

py‑openmath / README.rst

This repository Pull requests Issues GistSearch

OpenMath / py‑openmath

 Code Issues 3 Pull requests 0 Projects 0 Wiki Pulse Graphs

 master Branch: Find file Copy path

2 contributors

9d34b8e 11 hours ago defeo Big improvements to convert module

 112 lines (81 sloc) 3.08 KB

pyopenmath

buildbuild passingpassing

Python OpenMath 2.0 implementation.

Description

OpenMath is an extensible standard for representing the semantics of mathematical objects.

Installation

pip install openmath

Usage

This package provides an object implementation of OpenMath, and XML parsing/serialization.

See py‑scscp for an example of use.

XML Serialization

The modules encoder and decoder provide XML de‑serialization for OpenMath objects.

>>> from openmath import encoder, decoder, openmath as om
>>> xml = encoder.encode_xml(om.OMString('hello world')); xml
<Element {http://www.openmath.org/OpenMath}OMSTR at 0x7fcb3cd82708>
>>> b = encoder.encode_bytes(om.OMString('hello world')); b
b'<OMSTR xmlns="http://www.openmath.org/OpenMath">hello world</OMSTR>'
>>> decoder.decode_xml(xml)
OMString('hello world', id=None)
>>> decoder.decode_bytes(b, snippet=True)
OMString('hello world', id=None)

Conversions between Python and OpenMath

This package provides facilities for easy conversions from Python to OpenMath and back. The module convert

contains two functions, to_python() and to_openmath() , that do the conversion as their names suggest, or raise a

 ValueError if no conversion is known.

This module only implements conversions for basic Python types:

bools,

Raw Blame History

2 14 Unwatch Unstar Fork

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 11

ints,

floats,

complex numbers,

strings,

bytes,

lists (recursively),

sets (recursively).

Furthermore, any object that defines an __openmath__(self) method will have that method called by to_python .

Finally, this module contains a mechanism for registering converters.

>>> from fractions import Fraction
>>> from openmath import convert, openmath as om
>>> def to_om_rat(obj):
... return om.OMApplication(om.OMSymbol('rational', cd='nums1'),
... list(map(convert.to_openmath, [obj.numerator, obj.denominator])))
...
>>> def to_py_rat(obj):
... return Fraction(convert.to_python(obj.arguments[0]), convert.to_python(obj.arguments[1]))
...
>>> convert.register(Fraction, to_om_rat, 'nums1', 'rational', to_py_rat)
>>> omobj = convert.to_openmath(Fraction(5, 6)); omobj
OMApplication(OMSymbol('rational', 'nums1', id=None, cdbase=None), [OMInteger(5, id=None), OMInteger(6, id=None)], id=None, cdbase=None)
>>> convert.to_python(omobj)
Fraction(5, 6)

Contributing

The source code of this project can be found on GitHub. Please use GitHub issues and pull requests to contribute to

this project.

Credits

This work is supported by OpenDreamKit.

License

This work is licensed under the MIT License, for details see the LICENSE file.

Contact GitHub API Training Shop Blog About© 2017 GitHub, Inc. Terms Privacy Security Status Help

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 12

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

APPENDIX B. README FILE FOR THE PYTHON SCSCP PACKAGE

676541 OpenDreamKit 13

py‑scscp / README.rst

This repository Pull requests Issues GistSearch

OpenMath / py‑scscp

 Code Issues 1 Pull requests 0 Projects 0 Wiki Pulse Graphs

 master Branch: Find file Copy path

1 contributor

5ba9f51 11 hours ago defeo Moved examples in own dir, added example for SageMath

 111 lines (75 sloc) 2.98 KB

SCSCP

buildbuild passingpassing

SCSCP 1.3 implementation for Python.

Description

The Symbolic Computation Software Composability Protocol (SCSCP) is a network protocol for software systems to

exchange mathematical objects. Think RPC (Remote Procedure Call) for CAS (Computer Algebra Systems).

Installation

pip install scscp

Usage

This package provides a command‑line SCSCP client and a base class that an SCSCP server may extend. An example

implementation of an SCSCP server is also provided.

Server

The module scscp.server provides a class SCSCPServer that an SCSCP server may extend. Lower level classes are

also available, for more details see the API docs.

This source distribution also contains an example server examples/demo_server.py , capable of performing very basic

arithmetic operations. To run the demo server, simply run:

python examples/demo_server.py

Client

The module scscp.client provides a class SCSCPClient that an SCSCP client may extend. Lower level classes are also

available, for more details see the API docs.

The package also contains a synchronous command‑line client scscp.SCSCPCLI to query SCSCP servers. To connect

to a server running on, e.g., localhost, type

>>> from scscp import SCSCPCLI
>>> c = SCSCPCLI('localhost')

The client automatically queries the server for the available functions, and populates the heads attribute:

Raw Blame History

2 24 Unwatch Unstar Fork

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 14

>>> c.heads
{'arith1': ['minus', 'abs', 'power', 'divide', 'unary_minus', 'plus', 'times'], 'scscp2': ['get_allowed_heads', 'get_service_description', 'is_allowed_head'], 'scscp1': []}

Functions on the server can be queried via the syntax c.heads.<cd>.<func>(args) where <cd> is the name of the

OpenMath content dictionary, <func> is the name of the function, and args is the list of arguments.

Integers, floats, complex numbers, booleans, strings, lists and binary data are automatically converted to and from

Python native types.

>>> c.heads.arith1.power([2, 100])
1267650600228229401496703205376

The client also understands OpenMath data via the openmath package, which can be used to express more complex

data.

>>> from openmath import openmath as om
>>> c.heads.arith1.power([om.OMInteger(2), om.OMInteger(100)])
1267650600228229401496703205376

To disconnect the client, simply use the quit() method.

>>> c.quit()

Contributing

The source code of this project can be found on GitHub. Please use GitHub issues and pull requests to contribute to

this project.

Credits

This work is supported by OpenDreamKit.

License

This work is licensed under the MIT License, for details see the LICENSE file.

Contact GitHub API Training Shop Blog About© 2017 GitHub, Inc. Terms Privacy Security Status Help

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 15

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

APPENDIX C. EXAMPLE: SCSCP CLIENT IN PYTHON2 CONNECTING TO GAP SERVER

676541 OpenDreamKit 16

Example of SCSCP client in Python2 connecting to GAP
server

In [1]: from scscp import SCSCPCLI

Establishing connection with the demo SCSCP server

In [2]: c = SCSCPCLI('scscp.gap-system.org')

Ask for the list of supported procedures

In [3]: c.heads

A simplest "ping-pong" test which sends an object to the server and gets it back

In [4]: c.heads.scscp_transient_1.Identity([1])

Examples of some procedure calls

In [5]: c.heads.scscp_transient_1.Factorial([10])

In [6]: c.heads.scscp_transient_1.IsPrimeInt([2**16+1])

In the next example, we calculate the symmetric group of degree 3

In [7]: g = c.heads.scscp_transient_1.SymmetricGroup([3])

This group does not map to an object defined in Python, so it is stored in its internal representation

Out[3]: {'scscp_transient_1': ['SCSCPStartTracing', 'Addition', 'IO_UnpickleSt
ringAndPickleItBack', 'NrConjugacyClasses', 'ConwayPolynomial', 'Small
Group', 'GroupIdentification', 'AutomorphismGroup', 'IdGroup512ByCod
e', 'Phi', 'Factorial', 'GnuExplained', 'MathieuGroup', 'TransitiveGro
up', 'PrimitiveGroup', 'Multiplication', 'NextUnknownGnu', 'Identity',
'IsPrimeInt', 'Gnu', 'Determinant', 'LatticeSubgroups', 'Length', 'Mat
rixMultiplication', 'SCSCPStopTracing', 'AlternatingGroup', 'Symmetric
Group', 'IdGroup', 'SylowSubgroup', 'GnuWishlist', 'Size']}

Out[4]: 1

Out[5]: 3628800

Out[6]: True

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 17

In [8]: g

But we can use it as an argument in SCSCP procedure calls, for example, to find its order and the
catalogue number in the GAP Small Groups Library

In [9]: c.heads.scscp_transient_1.Size([g])

In [10]: c.heads.scscp_transient_1.NrConjugacyClasses([g])

In [11]: c.heads.scscp_transient_1.IdGroup([g])

However, this is not very efficient:

OpenMath encoding for an object may be quite verbose
Sending it to the GAP server will create a new object instead of using the existing one
There may be situations when GAP may not be able to convert the result into OpenMath

For such scenarious, SCSCP specification defines remote objects

Create a remote copy of the alternating group of degree 5 and ask to return a reference

In [12]: g=c.heads.scscp_transient_1.AlternatingGroup([5],cookie=True)

In [13]: g

The reference could be used as an arguments of the procedure call
While the client does not "know" what this groups is, it can certainly "understand" various numerical
properties of this group

In [14]: c.heads.scscp_transient_1.Size([g])

Out[8]: OMApplication(OMSymbol('group', 'permgp1', id=None, cdbase=None), [OMS
ymbol('right_compose', 'permutation1', id=None, cdbase=None), OMApplic
ation(OMSymbol('permutation', 'permut1', id=None, cdbase=None), [OMInt
eger(2, id=None), OMInteger(3, id=None), OMInteger(1, id=None)], id=No
ne, cdbase=None), OMApplication(OMSymbol('permutation', 'permut1', id=
None, cdbase=None), [OMInteger(2, id=None), OMInteger(1, id=None)], id
=None, cdbase=None)], id=None, cdbase=None)

Out[9]: 6

Out[10]: 3

Out[11]: [6, 1]

Out[13]: OMReference('scscp://chrystal.mcs.st-andrews.ac.uk:26133/TEMPVarSCSCPJ
XmNfISQ', id=None)

Out[14]: 60

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 18

Now we will create an automorphism group of the given group and receive another reference

In [15]: a = c.heads.scscp_transient_1.AutomorphismGroup([g],cookie=True)

In [16]: a

And then we are able to investigate various numerical properties of that group

In [17]: c.heads.scscp_transient_1.Size([a])

In [18]: c.heads.scscp_transient_1.NrConjugacyClasses([a])

In [19]: c.heads.scscp_transient_1.IdGroup([a])

Close the connection

In [20]: c.quit()

Out[16]: OMReference('scscp://chrystal.mcs.st-andrews.ac.uk:26133/TEMPVarSCSCPT
XMaSBJM', id=None)

Out[17]: 120

Out[18]: 7

Out[19]: [120, 34]

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 19

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

APPENDIX D. EXAMPLE: SCSCP CLIENT IN PYTHON3 CONNECTING TO GAP SERVER

676541 OpenDreamKit 20

Example of SCSCP client in Python3 connecting to
GAP server
In [1]:

from scscp import SCSCPCLI

Establishing connection

In [2]:

c = SCSCPCLI('scscp.gap-system.org')

Ask for the list of supported procedures

In [3]:

c.heads

A simplest test

In [4]:

c.heads.scscp_transient_1.Identity([1])

Determinant of a matrix

In [5]:

c.heads.scscp_transient_1.Determinant([[[1,2],[3,4]]])

Number of groups of order 10000

Out[3]:

{'scscp_transient_1': ['IdGroup512ByCode', 'IO_UnpickleStringAndPick
leItBack', 'IdGroup', 'ConwayPolynomial', 'Factorial', 'GroupIdentif
ication', 'Multiplication', 'Determinant', 'Phi', 'SCSCPStopTracin
g', 'AlternatingGroup', 'TransitiveGroup', 'Size', 'Identity', 'Auto
morphismGroup', 'SCSCPStartTracing', 'SymmetricGroup', 'MathieuGrou
p', 'Length', 'GnuExplained', 'NextUnknownGnu', 'Addition', 'GnuWish
list', 'IsPrimeInt', 'PrimitiveGroup', 'LatticeSubgroups', 'SmallGro
up', 'MatrixMultiplication', 'NrConjugacyClasses', 'SylowSubgroup',
 'Gnu']}

Out[4]:

1

Out[5]:

-2

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 21

In [6]:

c.heads.scscp_transient_1.Gnu([10000])

What is the catalogue number of the group generated by matrices a and b

In [7]:

a = [[0,-1], [1,-1]]

In [8]:

b = [[-1, 1], [0,1]]

In [9]:

c.heads.scscp_transient_1.GroupIdentification([[a,b]])

Close the connection

In [10]:

c.quit()

Out[6]:

4728

Out[9]:

[6, 1]

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 22

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

APPENDIX E. EXAMPLE: SCSCP CLIENT IN SAGE CONNECTING TO GAP SERVER

676541 OpenDreamKit 23

Example of SCSCP client in SageMath connecting to GAP
server

In [1]: from scscp import SCSCPCLI

Establish connection

In [2]: c = SCSCPCLI('scscp.gap-system.org')

In [3]: c.heads

The simplest example

In [4]: c.heads.scscp_transient_1.Identity([int(1)])

Working with GAP Small Groups Library

In [5]: g=c.heads.scscp_transient_1.SmallGroup([int(512),int(13)])

In [6]: g

In [7]: c.heads.scscp_transient_1.NrConjugacyClasses([g])

In [8]: c.heads.scscp_transient_1.NrConjugacyClasses([c.heads.scscp_transient_1.SmallGro
up([int(512),int(13)])])

Close connection

In [9]: c.quit()

Out[3]: {'scscp_transient_1': ['SCSCPStartTracing', 'Addition', 'IO_UnpickleStringAndPic
kleItBack', 'NrConjugacyClasses', 'ConwayPolynomial', 'SmallGroup', 'GroupIdenti
fication', 'AutomorphismGroup', 'IdGroup512ByCode', 'Phi', 'Factorial', 'GnuExpl
ained', 'MathieuGroup', 'TransitiveGroup', 'PrimitiveGroup', 'Multiplication', '
NextUnknownGnu', 'Identity', 'IsPrimeInt', 'Gnu', 'Determinant', 'LatticeSubgrou
ps', 'Length', 'MatrixMultiplication', 'SCSCPStopTracing', 'AlternatingGroup', '
SymmetricGroup', 'IdGroup', 'SylowSubgroup', 'GnuWishlist', 'Size']}

Out[4]: 1

Out[6]: OMApplication(OMSymbol('pcgroup_by_pcgscode', 'pcgroup1', id=None, cdbase=None),
[OMInteger(11440848857153616162393958740184979285302778717L, id=None), OMInteger
(512, id=None)], id=None, cdbase=None)

Out[7]: 92

Out[8]: 92

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 24

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

APPENDIX F. EXAMPLE: SCSCP CLIENT IN PYTHON3 CALCULATES GROÖBNER BASIS
WITH SINGULAR

676541 OpenDreamKit 25

Example: SCSCP client in Python3 calculates Groebner
basis with Singular

Python users needing an implementation of the Groebner basis algorithm may use SymPy
(http://www.sympy.org/ (http://www.sympy.org/)) - a symbolic computation library that, among other features,
contains a polynomial manupulation module.

In this example we demonstrate an alternative and much faster approach, which first uses SymPy to create
multivariate polynomials, and calls GAP SCSCP server to pass them to Singular.

Because SymPy is presently unable to encode/decode polynomias in OpenMath, this requires desigining
remote procedures and their calls to pass external representations of these polynomials in the form of lists of
integers, which both systems support, demonstrating the flexibilty of our approach.

In [1]: import sympy

In [2]: from sympy.polys import ring, ZZ, QQ

In [3]: from scscp import SCSCPCLI

Create a multivariate polynomial

In [4]: R, x, y, z = ring("x, y, z", ZZ)

In [5]: f = x*y*z+y**2*z+x**2*z+1

In [6]: f

Presently SymPy does not implement OpenMath support for polynomials, so we will be passing their
external representation instead. The following lists describe monomials and corresponding
coefficients.

In [7]: coeffs = f.coeffs()

In [8]: coeffs

In [9]: mons = [list(x) for x in f.monoms()]

In [10]: mons

Out[6]: x**2*z + x*y*z + y**2*z + 1

Out[8]: [1, 1, 1, 1]

Out[10]: [[2, 0, 1], [1, 1, 1], [0, 2, 1], [0, 0, 0]]

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 26

We will need the following two functions for conversion between SymPy polynomials and their
external representations

In [11]: def ext_rep_poly(f):
 return [f.coeffs(), [list(x) for x in f.monoms()]]

In [12]: from numpy import prod
def construct_poly(R,extrep):
 g = R.gens
 coeffs = extrep[0]
 mons = extrep[1]
 return sum ([coeffs[m]*prod([g[i]**mons[m][i] for i in
range(len(g))]) for m in range(len(mons))])

Obviously, the following condition should always hold

In [13]: g = construct_poly(R,ext_rep_poly(f))

In [14]: f == g

Similar functions for conversion between GAP polynomials and their external representation (as
produced by SymPy) have been defined on the GAP SCSCP server. Let's test that we can send
polynomials back and forth using the "Ping-Pong" test which encodes and decodes each polynomial
twice - on the SymPy's side and on the GAP's side.

In [15]: c = SCSCPCLI('localhost')

In [16]: f == construct_poly(R, c.heads.scscp_transient_1.PingPongPoly([ext_rep_
poly(f)]))

In [17]: c.quit()

Now we show a small example of a Groebner basis computation with SymPy

In [18]: R, x0, x1, x2, x3 = ring("x0, x1, x2, x3", ZZ)

In [19]: f1=x0+x1+x2+x3
f2=x0*x1+x1*x2+x0*x3+x2*x3
f3=x0*x1*x2+x0*x1*x3+x0*x2*x3+x1*x2*x3
f4=x0*x1*x2*x3-1

Out[14]: True

Out[16]: True

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 27

In [20]: time(sympy.polys.groebnertools.groebner([f1,f2,f3,f4],R))

To calculate it remotely, first we start new SCSCP session

In [21]: c = SCSCPCLI('localhost')

Just another check for passing polynomials around

In [22]: all(t == construct_poly(R, c.heads.scscp_transient_1.PingPongPoly([ext
_rep_poly(t)])) for t in [f1,f2,f3,f4])

Now call the remote procedure GroebnerBasisWithSingular with polynomials from the example
above

In [23]: bas = c.heads.scscp_transient_1.GroebnerBasisWithSingular([[ext_rep_p
oly(x) for x in [f1,f2,f3,f4]]])

The result came in external representation, so we have to convert it to SymPy polynomials

In [24]: [construct_poly(R,t) for t in bas]

Finally, close SCSCP session

In [25]: c.quit()

Now we present an example when remote calculation with Singular is much faster than local
calculation with SimPy

In [26]: R, x0, x1, x2, x3, x4 = ring("x0, x1, x2, x3, x4", ZZ)

CPU times: user 9.42 ms, sys: 473 µs, total: 9.89 ms
Wall time: 9.64 ms

Out[20]: [x0 + x1 + x2 + x3,
 x1**2 + 2*x1*x3 + x3**2,
 x1*x2 - x1*x3 + x2**2*x3**4 + x2*x3 - 2*x3**2,
 x1*x3**4 - x1 + x3**5 - x3,
 x2**3*x3**2 + x2**2*x3**3 - x2 - x3,
 x2**2*x3**6 - x2**2*x3**2 - x3**4 + 1]

Out[22]: True

Out[24]: [x0 + x1 + x2 + x3,
 x1**2 + 2*x1*x3 + x3**2,
 x1*x2**2 - x1*x3**2 + x2**2*x3 - x3**3,
 x1*x2*x3**2 - x1*x3**3 + x2**2*x3**2 + x2*x3**3 - x3**4 - 1,
 x1*x3**4 - x1 + x3**5 - x3,
 x2**3*x3**2 + x2**2*x3**3 - x2 - x3,
 x1*x2 - x1*x3 + x2**2*x3**4 + x2*x3 - 2*x3**2]

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 28

In [27]: f1=x0+x1+x2+x3+x4
f2=x0*x1+x1*x2+x2*x3+x0*x4+x3*x4
f3=x0*x1*x2+x1*x2*x3+x0*x1*x4+x0*x3*x4+x2*x3*x4
f4=x0*x1*x2*x3+x0*x1*x2*x4+x0*x1*x3*x4+x0*x2*x3*x4+x1*x2*x3*x4
f5=x0*x1*x2*x3*x4-1

Local calculation with SymPy takes about 2 minutes

In [28]: time(sympy.polys.groebnertools.groebner([f1,f2,f3,f4,f5],R))

But remote calculation with Singular takes about 6 seconds

In [29]: c = SCSCPCLI('localhost')

In [30]: all(t == construct_poly(R, c.heads.scscp_transient_1.PingPongPoly([ext
_rep_poly(t)])) for t in [f1,f2,f3,f4,f5])

CPU times: user 1min 56s, sys: 915 ms, total: 1min 57s
Wall time: 1min 59s

Out[28]: [x0 + x1 + x2 + x3 + x4,
 275*x1**2 + 825*x1*x4 + 550*x3**6*x4 + 1650*x3**5*x4**2 + 275*x3**4*x
4**3 - 550*x3**3*x4**4 + 275*x3**2 - 566*x3*x4**11 - 69003*x3*x4**6 +
 69019*x3*x4 - 1467*x4**12 - 178981*x4**7 + 179073*x4**2,
 275*x1*x2 - 275*x1*x4 + 275*x2**2 + 550*x2*x4 - 330*x3**6*x4 - 1045*x
3**5*x4**2 - 275*x3**4*x4**3 + 275*x3**3*x4**4 - 550*x3**2 + 334*x3*x4
11 + 40722*x3*x46 - 40726*x3*x4 + 867*x4**12 + 105776*x4**7 - 1058
73*x4**2,
 275*x1*x3 - 275*x1*x4 - 110*x3**6*x4 - 440*x3**5*x4**2 - 275*x3**4*x4
3 + 275*x33*x4**4 + 124*x3*x4**11 + 15092*x3*x4**6 - 15106*x3*x4 +
346*x4**12 + 42218*x4**7 - 42124*x4**2,
 55*x1*x4**5 - 55*x1 + x4**11 + 143*x4**6 - 144*x4,
 275*x2**3 + 550*x2**2*x4 - 550*x2*x4**2 + 275*x3**6*x4**2 + 550*x3**5
*x4**3 - 550*x3**4*x4**4 + 550*x3**2*x4 - 232*x3*x4**12 - 28336*x3*x4*
*7 + 28018*x3*x4**2 - 568*x4**13 - 69289*x4**8 + 69307*x4**3,
 275*x2*x3 - 275*x2*x4 + 440*x3**6*x4 + 1210*x3**5*x4**2 - 275*x3**3*x
4**4 + 275*x3**2 - 442*x3*x4**11 - 53911*x3*x4**6 + 53913*x3*x4 - 1121
*x4**12 - 136763*x4**7 + 136674*x4**2,
 55*x2*x4**5 - 55*x2 + x4**11 + 143*x4**6 - 144*x4,
 55*x3**7 + 165*x3**6*x4 + 55*x3**5*x4**2 - 55*x3**2 - 398*x3*x4**11 -
48554*x3*x4**6 + 48787*x3*x4 - 1042*x4**12 - 127116*x4**7 + 128103*x4*
*2,
 55*x3**2*x4**5 - 55*x3**2 - 2*x3*x4**11 - 231*x3*x4**6 + 233*x3*x4 -
 8*x4**12 - 979*x4**7 + 987*x4**2,
 x4**15 + 122*x4**10 - 122*x4**5 - 1]

Out[30]: True

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 29

In [31]: time([construct_poly(R,t) for t in \
 c.heads.scscp_transient_1.GroebnerBasisWithSingular([[ext_rep_
poly(x) for x in [f1,f2,f3,f4,f5]]])])

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 30

In [32]: c.quit()

CPU times: user 5.85 s, sys: 21.9 ms, total: 5.87 s
Wall time: 6.01 s

Out[31]: [x0 + x1 + x2 + x3 + x4,
 x1**2 + x1*x3 + 2*x1*x4 - x2*x3 + x2*x4 + x4**2,
 x1*x2*x3 - 2*x1*x3**2 - 2*x1*x3*x4 + 3*x1*x4**2 + x2**3 + 3*x2**2*x4
 - x2*x3**2 - 2*x2*x3*x4 + 3*x2*x4**2 - x3**3 - 3*x3**2*x4 - 2*x3*x4**
2 + 2*x4**3,
 x1*x2**2 - x1*x2*x3 + x1*x3*x4 - x1*x4**2 + x2**2*x3 - x2**2*x4 + x2*
x3*x4 - 2*x2*x4**2 + x3**2*x4 + x3*x4**2 - x4**3,
 14*x1*x2*x3*x4 - x1*x2*x4**2 - 27*x1*x3**2*x4 - 10*x1*x3*x4**2 + 24*x
1*x4**3 + 6*x2**2*x3*x4 + 7*x2**2*x4**2 + 2*x2*x3**2*x4 - 9*x2*x3*x4**
2 + 33*x2*x4**3 + x3**4 - 15*x3**3*x4 - 33*x3**2*x4**2 - 14*x3*x4**3 +
22*x4**4,
 32*x1*x2*x3*x4 - 24*x1*x2*x4**2 - 40*x1*x3**2*x4 - 12*x1*x3*x4**2 + 4
4*x1*x4**3 + 11*x2**2*x3*x4 - 3*x2**2*x4**2 + 19*x2*x3**3 + 10*x2*x3**
2*x4 - 45*x2*x3*x4**2 + 32*x2*x4**3 + 5*x3**4 + x3**3*x4 - 32*x3**2*x4
2 - 32*x3*x43 + 34*x4**4,
 3*x1*x2*x3*x4 - 4*x1*x2*x4**2 + x1*x3**3 - 2*x1*x3**2*x4 - 2*x1*x3*x4
2 + 4*x1*x43 + x2**2*x3*x4 - 2*x2**2*x4**2 + 3*x2*x3**3 + 3*x2*x3*
*2*x4 - 7*x2*x3*x4**2 - x2*x4**3 + x3**4 + 3*x3**3*x4 + x3**2*x4**2 -
 4*x3*x4**3 + 2*x4**4,
 -x1*x2*x3*x4 + 2*x1*x2*x4**2 - 2*x1*x3**3 + 2*x1*x3*x4**2 - x1*x4**3
 + x2**2*x3**2 - x2**2*x3*x4 + x2**2*x4**2 - x2*x3**3 - 2*x2*x3**2*x4
 + 3*x2*x3*x4**2 + 2*x2*x4**3 - x3**4 - 2*x3**3*x4 - 2*x3**2*x4**2 + 2
*x3*x4**3,
 x1*x2*x3**2 + x1*x2*x3*x4 - x1*x2*x4**2 - x1*x3**2*x4 - x1*x3*x4**2 +
x1*x4**3 + x2**2*x3*x4 + x2*x3**2*x4 + x2*x4**3 - x3**3*x4 - 2*x3**2*x
4**2 - x3*x4**3 + x4**4,
 2*x1*x2*x3*x4**2 - x1*x2*x4**3 - 2*x1*x3*x4**3 + x1*x4**4 + x2**2*x3*
x4**2 + 2*x2*x3**2*x4**2 - x2*x3*x4**3 + x2*x4**4 - x3**2*x4**3 - 2*x3
*x4**4 + x4**5 - 1,
 x1*x4**5 - x1 - x2*x4**5 + x2,
 -20*x1*x2*x4**4 + 5*x1*x3*x4**4 + 15*x1 - 20*x2**2*x4**4 + 15*x2*x3**
2*x4**3 - 25*x2*x3*x4**4 - 23*x2*x4**5 - 7*x2 + 10*x3**3*x4**3 + 30*x3
2*x44 - 3*x3*x4**5 + 3*x3 - 4*x4**6 + 24*x4,
 -3*x1*x2*x4**4 + 11*x1*x3**2*x4**3 - 2*x1*x3*x4**4 - 6*x1 - 3*x2**2*x
4**4 + 5*x2*x3**2*x4**3 - x2*x3*x4**4 - 15*x2*x4**5 + 5*x2 + 7*x3**3*x
4**3 + 10*x3**2*x4**4 - x3*x4**5 + x3 - 5*x4**6 - 3*x4,
 2*x2*x3*x4**5 - 2*x2*x3 + 8*x2*x4**6 - 8*x2*x4 + x3**2*x4**5 - x3**2
 + x3*x4**6 - x3*x4 + 3*x4**7 - 3*x4**2,
 3*x2**2*x4**5 - 3*x2**2 - 2*x2*x3*x4**5 + 2*x2*x3 + x2*x4**6 - x2*x4
 - x3**2*x4**5 + x3**2 - x3*x4**6 + x3*x4,
 -9*x1*x2*x4**5 - x1*x2 + 11*x1*x3*x4**5 - x1*x3 - 3*x1*x4**6 + 3*x1*x
4 - 6*x2**2*x4**5 - 4*x2**2 - 5*x2*x3*x4**5 - 9*x2*x4**6 - 6*x2*x4 + 5
*x3**3*x4**4 + 14*x3**2*x4**5 + x3**2 + 5*x3*x4**6 - 5*x3*x4 - 3*x4**7
+ 13*x4**2,
 42*x1*x2*x3 - 76*x1*x2*x4 - 165*x1*x3**2 + 13*x1*x3*x4 + 186*x1*x4**2
+ 21*x2**2*x3 - 55*x2**2*x4 + 42*x2*x3**2 - 131*x2*x3*x4 + 21*x2*x4**2
- 55*x3**3 - 21*x3**2*x4 - 42*x3*x4**2 + x4**8 + 219*x4**3,
 -110*x1*x2*x3 + 29*x1*x2*x4 + 52*x1*x3**2 - 34*x1*x3*x4 + 63*x1*x4**2
- 55*x2**2*x3 - 26*x2**2*x4 + 60*x2*x3**2 - 102*x2*x3*x4 - 120*x2*x4**
2 + 39*x3**3 + 120*x3**2*x4 + x3*x4**7 + 109*x3*x4**2 - 26*x4**3,
 -112*x1*x2*x3 + 33*x1*x2*x4 + 61*x1*x3**2 - 35*x1*x3*x4 + 53*x1*x4**2
- 56*x2**2*x3 - 23*x2**2*x4 + 58*x2*x3**2 - 95*x2*x3*x4 + 8*x2*x4**7 -
129*x2*x4**2 + 42*x3**3 + 121*x3**2*x4 + x3*x4**7 + 111*x3*x4**2 + 3*x
4**8 - 41*x4**3,
 36*x1*x2*x3 - 11*x1*x2*x4 - 37*x1*x3**2 - 7*x1*x3*x4 + 19*x1*x4**2 +
 8*x2**3 + 14*x2**2*x3 + 27*x2**2*x4 - 20*x2*x3**2 + x2*x3*x4 + 53*x2*
x4**2 - 20*x3**3 + x3**2*x4**6 - 54*x3**2*x4 - 44*x3*x4**2 + 34*x4**3]

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 31

GAP SCSCP server for the example of calling Singular from Python SCSCP client

LogTo(); # to close the log file in case it was opened earlier
LoadPackage("singular");
LoadPackage("scscp");

create polynomial from its external representation
AssemblePolynomial := function(extrep)
local fam, rep, coeffs, mons, i, term, j, p;
fam := RationalFunctionsFamily(FamilyObj(1));
rep := [];
coeffs := extrep[1];
mons := extrep[2];
for i in [1..Length(coeffs)] do
 term:=[];
 for j in [1..Length(mons[i])] do
 if mons[i][j]>0 then
 Append(term,[j,mons[i][j]]);
 fi;
 od;
 Append(rep, [term, coeffs[i]]);
od;
p:=PolynomialByExtRep(fam,rep);
return p;
end;

produce external representation of a polynomial
DisassemblePolynomial:=function(f)
local rep, coeffs, mons, deg, t, r, i, term, mon, j;
rep := ExtRepPolynomialRatFun(f);
coeffs := [];
mons := [];
deg := Maximum(List(Filtered(rep{[1,3..Length(rep)-1]}, t -> Length(t)>0),
 r -> Maximum(r{[1,3..Length(r)-1]})));
for i in [1,3..Length(rep)-1] do
 term := rep[i];
 mon := ListWithIdenticalEntries(deg,0);
 for j in [1,3..Length(term)-1] do
 mon[term[j]]:=term[j+1];
 od;
 Add(mons, mon);
 Add(coeffs, rep[i+1]);
od;
return [coeffs,mons];
end;

This is the main purpose of this server
GroebnerBasisWithSingular:=function(extreps)
it accepts external representations of polynomials
local R, r, I, B;
create polynomial ring of appropriate rank
R:=PolynomialRing(Rationals, Maximum(List(extreps, r -> Length(r[2]))));
convert arguments to polynomials and get an ideal they generate
I:=Ideal(R, List(extreps, AssemblePolynomial));
call local instance of Singular
B:=GroebnerBasis(I);
return result in the form of external representations
return List(B,DisassemblePolynomial);
end;

Procedures that the GAP SCSCP server provides

Useful for simple tests
InstallSCSCPprocedure("Identity", x -> x,
 "Identity procedure for tests", 1, 1);

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 32

Clearly, f = AssemblePolynomial(DisassemblePolynomial(f))
PingPongPoly := x -> DisassemblePolynomial(AssemblePolynomial (x));
InstallSCSCPprocedure("PingPongPoly", PingPongPoly,
 "Decode/encode polynomial and send it back", 1, 1);

Setting up calculation and calling Singular
InstallSCSCPprocedure("GroebnerBasisWithSingular", GroebnerBasisWithSingular,
 "Groebner Basis with Singular", 1, 1);

Start GAP SCSCP server
RunSCSCPserver(SCSCPserverAddress, SCSCPserverPort : OMignoreMatrices);

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 33

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

APPENDIX G. EXAMPLE: SCSCP CLIENT IN GAP CONNECTING TO PYTHON 3 SERVER

676541 OpenDreamKit 34

Example of GAP SCSCP client connecting to Python 3
SCSCP server

In this example GAP SCSCP client communicates with the Python 3 SCSCP server. The Python code is based
on https://github.com/OpenMath/py-scscp/blob/master/demo_server.py (https://github.com/OpenMath/py-
scscp/blob/master/demo_server.py)

Simple calls

In [1]: EvaluateBySCSCP("plus",[2,2],"localhost",26133:cd:="arith1").object

In [2]: EvaluateBySCSCP("plus",[[1,2],[3,4]],"localhost",26133:cd:="arith1").obj
ect

In Python, addition of lists and strings is their concatenation

In [3]: EvaluateBySCSCP("plus",["abc","def"],"localhost",26133:cd:="arith1").obj
ect

Using NumPy linear algebra tools

In the next example, we extend Python server to offer some procedures from the NumPy package for scientific
computing (http://www.numpy.org/ (http://www.numpy.org/)). To do that, we need only to add several more
lines to the Python script to run the server:

import numpy

CD_SCSCP_TRANSIENT1 = {
 'numpy.linalg.det' : numpy.linalg.det,
 'numpy.linalg.matrix_rank' : lambda x: int(numpy.linalg.matrix_rank
(x)),
}

Compute determinant and rank of a random 5x5 matrix

4

[1, 2, 3, 4]

"abcdef"

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 35

In [4]: m:=RandomMat(5,5);

In [5]: EvaluateBySCSCP("numpy.linalg.det",[m],"localhost",26133:OMignoreMatrice
s).object;

In [6]: EvaluateBySCSCP("numpy.linalg.matrix_rank",[m],"localhost",26133:OMignor
eMatrices).object;

Let's try with matrices of larger dimensions

In [7]: EvaluateBySCSCP("numpy.linalg.det",
[RandomMat(50,50)],"localhost",26133:OMignoreMatrices).object;

In [8]: EvaluateBySCSCP("numpy.linalg.matrix_rank",[RandomMat(50,50)],"localhos
t",26133:OMignoreMatrices).object;

Using NumPy to calculate complex roots of polynomials

Similarly, on the Python server we export another function that calculates (complext) roots of univariate
polynomials and returns a list of their real and imaginary parts:

def polyroots(coeffs):
 f = numpy.polynomial.polynomial.Polynomial(coeffs)
 r = f.roots()
 return [[x.real,x.imag] for x in r]

create polynomials with integer roots

In [9]: x:=X(Rationals,"x");

In [10]: f:=(x-10)*(x-1)*(x+5);

calculate roots with GAP

[[1, 0, -1, -1, -1], [1, -1, 1, -2, -1], [-2, 0, -1, 2, -2], [
 -1, 2, -3, -1, 3], [0, -2, 1, -4, 0]]

-36.

5

-7.67794e+49

50

<object>

<object>

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 36

In [11]: RootsOfUPol(f);

check that Python results agree

In [12]: coeffs:=CoefficientsOfUnivariatePolynomial(f)

In [13]: EvaluateBySCSCP("polyroots",[coeffs],"localhost",26133:OMignoreMatrice
s).object;

But GAP can not compute (approximations of) complex roots of another polynomial

In [14]: RootsOfUPol(1+2*x+3*x^2);

However, Python with the help of NumPy is capable of doing this

In [15]: coeffs := CoefficientsOfUnivariatePolynomial(1+2*x+3*x^2)

In [16]: EvaluateBySCSCP("polyroots",[coeffs],"localhost",26133:OMignoreMatrice
s).object;

[10, 1, -5]

[50, -45, -6, 1]

[[-5., 0.], [1., 0.], [10., 0.]]

[]

[1, 2, 3]

[[-0.333333, -0.471405], [-0.333333, 0.471405]]

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 37

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

APPENDIX H. DOCUMENTATION FOR THE GAP DOCKER CONTAINER

676541 OpenDreamKit 38

PUBLIC | AUTOMATED BUILD

gapsystem (/u/gapsystem/)/gap-docker (/r/gapsystem/gap-
docker/) 
Last pushed: a month ago

Short Description

Docker container for GAP system (http://www.gap-system.org) and all packages
redistributed with GAP.

Full Description

Docker container for GAP and packages
We have a prebuilt Docker image for GAP and packages at
https://registry.hub.docker.com/u/gapsystem/gap-docker/
(https://registry.hub.docker.com/u/gapsystem/gap-docker/).

If you have installed Docker, first you need to download the GAP container using

docker pull gapsystem/gap‐docker

(the same command is needed if you need to pull the new GAP container to get a
new GAP release). After that, you can start the GAP container by typing the
following in a terminal:

docker run ‐‐rm ‐i ‐t gapsystem/gap‐docker

Note that you may have to run docker with sudo , particularly if you are on Ubuntu.

Once the GAP container is started, you can call gap inside it to start a new GAP session:

 (/)

Repo Info (/r/gapsystem/gap-docker/)

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 39

gap@11d9377db2bd:~$ gap
 ********* GAP 4.8.2, 20‐Feb‐2016, build of 2016‐03‐01 01:08:48 (UTC)
 * GAP * http://www.gap‐system.org
 ********* Architecture: x86_64‐pc‐linux‐gnu‐gcc‐default64
 Libs used: gmp, readline
 Loading the library and packages ...
 Components: trans 1.0, prim 2.1, small* 1.0, id* 1.0
 Packages: AClib 1.2, Alnuth 3.0.0, AtlasRep 1.5.0, AutPGrp 1.6,
 Browse 1.8.6, CRISP 1.4.1, Cryst 4.1.12, CrystCat 1.1.6,
 CTblLib 1.2.2, FactInt 1.5.3, FGA 1.3.0, GAPDoc 1.5.1, IO 4.4.5,
 IRREDSOL 1.2.4, LAGUNA 3.7.0, Polenta 1.3.5, Polycyclic 2.11,
 RadiRoot 2.7, ResClasses 4.1.2, Sophus 1.23, SpinSym 1.5,
 TomLib 1.2.5
 Try '?help' for help. See also '?copyright' and '?authors'
gap>

When you leave GAP, you will still be logged in to the container and will need to type
exit to close it.

Alternatively, you can just type

docker run ‐‐rm ‐i ‐t gapsystem/gap‐docker gap

to start GAP immediately (and return to the host filesystem after the end of the GAP
session). You can put this command in a shell script and make it a default or optional way
to start GAP on your system. GAP command line options can be appended after gap , for
example docker run ‐‐rm ‐i ‐t gapsystem/gap‐docker gap ‐A .

However, note that you will not be able to read a file from your local directory into GAP
just by supplying the filename in the command line. Instead, this requires using the option
‐v to mount a local directory. For example, if the current directory contains the

subdirectory examples with the file examples/useful.g , then the option ‐v
$PWD/examples:/data will mount examples as /data on the Docker container. That
is, to start GAP and read the file examples/useful.g into it, type:

docker run ‐v $PWD/examples:/data ‐t ‐i gapsystem/gap‐docker gap /data/useful.g

Note that the path to useful.g is the path in the container, and not in the GAP system.

If you need network access (for example, for packages downloading external data like
AtlasRep), call docker with the option ‐‐net="host" , e.g.:

docker run ‐‐rm ‐i ‐t ‐‐net="host" gapsystem/gap‐docker

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 40

Combining these options, the following command mounts the directory
pkg/scscp/example from the GAP distribution as a directory /scscp on the container

and starts the GAP SCSCP server using the configuration file
gap4rXpY/pkg/scscp/example/myserver.g :

docker run ‐‐rm ‐i ‐t ‐‐net="host" ‐v ~/gap4rXpY/pkg/scscp/example:/scscp gapsystem/gap‐docker gap /scscp/myserver.g

At the moment, almost all packages are in working order. External software needed by
some packages at the moment includes:

Ubuntu packages libmpfr-dev libmpfi-dev libmpc-dev libfplll-dev (needed by the float
package)
Polymake 2.14 (and dependencies, listed on polymake.org)
Singular (git version of the day)
4ti2 1.6.3
PARI/GP.

Work is in progress to configure the remaining packages that have non-standard
installation procedures or dependencies on external components: Carat, ITC, Linboxing,
ParGAP and XGAP.

Docker Pull Command 

docker pull gapsystem/gap-docker

Owner

gapsystem

Source Repository

 gap-system/gap-docker (https://github.com/gap-system/gap-docker)

Comments (0)

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 41

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

APPENDIX I. DOCUMENTATION FOR THE GAP SCSCP SERVER FOR THE NUMBER OF
ISOMORPHISM TYPES OF GROUPS OF ORDER n

676541 OpenDreamKit 42

gnu / README.md

This repository Pull requests Issues GistSearch

alex‑konovalov / gnu

 Code Issues 46 Pull requests 2 Projects 0 Wiki Pulse Graphs Settings

 master Branch: Find file Copy path

1 contributor

c6ca395 on Jun 6, 2016 alex‑konovalov typo

 364 lines (300 sloc) 16.4 KB

gnu

Crowdsourcing project for the database of numbers of isomorphism types of finite
groups

What is gnu(n) ?

For an integer n, the number of isomorphism types of finite groups of order n is denoted by gnu(n), where "gnu"

stands for the "Group NUmber". The problem of the determination of all groups of a given order up to isomorphism is

very interesting and challenging. For example, the sequence (https://oeis.org/A000001) in OEIS is the number of

groups of order n, with the first unknown entry being gnu(2048). Known values of gnu(n) for 0 < n < 2048 are

summarised in "Counting groups: gnus, moas and other exotica" by John H. Conway, Heiko Dietrich and Eamonn A.

O’Brien (https://www.math.auckland.ac.nz/~obrien/research/gnu.pdf) which also discusses some properties of gnu(n)

and related functions. Both OEIS and the latter paper derive most of the entries of the gnu(n) table from the GAP

Small Groups Library (http://www.gap‑system.org/Packages/sgl.html) by Hans Ulrich Besche, Bettina Eick and

Eamonn O'Brien. The group numbers in the SmallGroups library are to a large extent cross‑checked, being computed

using different approaches and also compared with theoretical results, where available (see [Hans Ulrich Besche,

Bettina Eick and Eamonn O'Brien. A MILLENNIUM PROJECT: CONSTRUCTING SMALL GROUPS. Int. J. Algebra

Comput. 12, 623 (2002), http://dx.doi.org/10.1142/S0218196702001115], in particular 4.1. Reliability of the data).

What is known for n > 2048 ?

For n > 2048, the calculation of gnu(n) is highly irregular. Certain orders, including some infinite series (groups of

order p^n for n<=6; groups of order q^n*p where q divides 2^8, 3^6, 5^5 or 7^4 and p is a an arbitrary prime not equal

to q; groups of squarefree order; groups or order which is a product of at most three primes) are covered by the GAP

Small Groups Library (http://www.gap‑system.org/Packages/sgl.html) so the gnu(n) is returned by NrSmallGroups(n) .

The recently submitted GAP package SglPPow (http://www.gap‑system.org/Packages/sglppow.html) by Michael

Vaughan‑Lee and Bettina Eick adds access to groups of order p^7 for p > 11 and to groups of order 3^8 (it should be

loaded with LoadPackage("sglppow") . For groups of cube‑free order, the Cubefee package (http://www.gap‑

system.org/Packages/cubefree.html) by Heiko Dietrich calculates gnu(n) with NumberCFGroups(n) .

How to calculate gnu(n) for arbitrary n ?

For groups of other orders one could try the GAP package GrpConst by Hans Ulrich Besche and Bettina Eick

(http://www.gap‑system.org/Packages/grpconst.html) to construct all groups of a given order using

 ConstructAllGroups(n) . As documented at http://www.gap‑system.org/Manuals/pkg/grpconst/htm/CHAP003.htm, this

function usually returns a list of groups, in which case gnu(n) is the length of this list. However, sometimes this list

contains sublists. In this case, one has to check each such sublist contains groups which are pairwise non‑

isomorphic, or remove duplicates.

The runtime and memory requirements of ConstructAllGroups depend very much on n and may vary from minimalistic

to practically unfeasible. The website of AG Algebra und Diskrete Mathematik (TU Braunschweig) provides the table

containing gnu(n) for many n < 50000: http://www.icm.tu‑bs.de/ag_algebra/software/small/number.html. These

numbers were taken from the Small Groups Library or calculated with the GrpConst package. There is no information

in the table for 1082 orders for which the computation have not yet been completed.

Raw Blame History

7 22 Unwatch Star Fork

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 43

Goals of this package

As we see, currently there is no uniform access to the calculation of gnu(n) in GAP even in the case when it is

feasible, since one has to call different functions in a different way, dependently on n. Even finding all known gnu(n)

for a list of integers with NrSmallGroups is not straightforward, since GAP enters a break loop when the library of

groups of order n is not available. Also, these data are accessible only from within the working GAP installation. Next,

users who calculate new values of gnu(n) have no easy ways to share their data with others and record provenance

details, i.e. who calculated them and when, using which hardware and which versions of GAP and relevant packages,

and how much memory and runtime were needed. These missing details hinder verification of the results, while it will

be useful to have them easily available to cross‑check calculations using different approaches, to check the

correctness and performance of new implementations that may emerge in the future, and to check that future

versions of GAP do not break these calculations. Also, they may be useful for researchers who wants to calculate all

groups of a given order with ConstructAllGroups and are interested to know in advance how much time it may take

and whether someone else had already attempted this calculation.

The Gnu package addresses these problems by:

Providing uniform access to the calculation of gnu(n) using a single function.

Offering both the ability to install package locally and to access it remotely without its local installation.

Providing remote data via SCSCP (Symbolic Computation Software Composability Protocol) to make them

accessible to any SCSCP‑compliant software (see the list at http://www.symbolic‑computing.org).

Using GitHub‑based development model and storing in the revision history the provenance details such as

runtime requirements, details of the software and hardware, etc.

Local installation

To use the package locally, first you have to install the GAP system using the source distribution from

http://www.gap‑system.org/Releases/. Please ensure that you build packages as described there as well. After that,

the Gnu package could be installed in the same way like other GAP packages that do not require compilation. It is

suggested to install it as a custom package in the .gap/pkg subdirectory of your home directory instead of placing it

into the gap4rN/pkg directory of your GAP installation. Since the package is regularly updated with new data, you may

use git to clone it and subsequently pull changes from the main repository. To do this, change to the .gap/pkg

directory and call

git clone https://github.com/alex‐konovalov/gnu.git

This will create the directory gnu . Later when you will need to pull changes, change to that directory and call

git pull

Alternatively, if you do not use git, you may download a zip‑archive from https://github.com/alex‑

konovalov/gnu/archive/master.zip and later update it manually by downloading new zip‑archive and unpacking it to

replace the previous installation of the Gnu package.

After loading the package with LoadPackage("gnu"); you should be able to use it as follows:

gap> Gnu(10000);
4728
gap> GnuExplained(10000);
[4728, "precomputed using GrpConst package"]
gap> NextUnknownGnu(10000);
10080
gap> GnuWishlist([2000..3000]);
[2048, 2240, 2496, 2560, 2592, 2688, 2880, 2916]
gap> List([105,128,2004,10000,2304,3^8,7^2*5^2*11*19,50000],Gnu);
[2, 2328, 10, 4728, 15756130, 1396077, 8, false]

You may see some more examples of explanations how the values of gnu(n) were obtained in the following example:

gap> List([105,128,2004,10000,2304,3^8,7^2*5^2*11*19,50000],GnuExplained);
[[2, "using NrSmallGroups and the GAP Small Groups Library"],
 [2328, "using NrSmallGroups and the GAP Small Groups Library"],
 [10, "using NrSmallGroups and the GAP Small Groups Library"],
 [4728, "precomputed using GrpConst package"],

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 44

 [15756130, "http://dx.doi.org/10.1016/j.jalgebra.2013.09.028"],
 [1396077, "using NrSmallGroups from SglPPow 1.1"],
 [8, "using NumberCFGroups from CubeFree 1.15"],
 [false, "not stored in gnu50000 and no library of groups of size 50000"]]

Remote connection

It is also possible to access the data without local installation by accessing the dedicated GAP SCSCP server that

runs in a Docker container in the Microsoft Azure cloud. This server is periodically restarted to pick up database

updates. To access it from GAP, first you need to load the SCSCP package:

gap> LoadPackage("scscp");

Note that SCSCP package requires the IO package, and the IO package needs compilation on UNIX systems (for

Windows, the GAP distributions comes with compiled binaries for the IO package).

After that, download and read (or copy and paste) the following file into GAP: https://raw.githubusercontent.com/alex‑

konovalov/gnu/master/lib/gnuclient.g

Now you are able to use remote counterparts of the commands shown in the previous section:

gap> GnuFromServer(50016);
1208
gap> GnuExplainedFromServer(50080);
[1434, "precomputed using GrpConst package"]
gap> NextUnknownGnuFromServer(50080);
50112
gap> GnuWishlistFromServer([50000..50100]);
[50000, 50048]

If you have locally installed package, then the functions mentioned in this section will become available after its

loading.

Note that the server is restarted periodically and may not contain the latest additions to the database. You may check

when the server had been started and which version of the package it uses using the GetServiceDescription function

from the SCSCP package:

gap> GetServiceDescription("scscp.gap‐system.org",26133);
rec(
 description := "GAP SCSCP server for numbers of isomorphism types of finite \
groups. Gnu package version given by commit https://github.com/alex‐konovalov/\
gnu/commit/6630e86ec7b1633b0afaeb7e35e8045561bb8e60. Server started on Sat Jun\
 4 20:46:10 UTC 2016", service_name := "gnu(n) SCSCP service",
 version := "GAP 4.8.3; CubeFree 1.15; Gnu 6630e86ec7b1633b0afaeb7e35e8045561\
bb8e60; GrpConst 2.5; SCSCP 2.1.4; SglPPow 1.1")

To access the GAP SCSCP server from other SCSCP‑compliant systems, follow their documentation for SCSCP client

functionality and use the server name scscp.gap‑system.org and port number 26133 similarly to the calls in

https://github.com/alex‑konovalov/gnu/blob/master/lib/gnuclient.g

Accessing provenance information

Using git, you can search in the version control history to find the details about the computation. For example, you

can find the commit which adds gnu(4000) with the following command

git log ‐‐grep="gnu(4000)"

which will produce the following output:

commit dd9ae55743fe465389324bc44e54197bea146dc7
Author: Alexander Konovalov <alexk@mcs.st‐andrews.ac.uk>
Date: Sat May 21 15:33:01 2016 +0100

 gnu(4000)=6108

 GAP 4.8.3

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 45

 GrpConst 2.5
 Runtime: 975884 ms
 Isomorphic groups eliminated

 Submitted by @gnufinder. Validated by @alex‐konovalov on
 Ubuntu 16.04 on Azure cloud standard DS3 v2 instance (4 cores, 14 GB RAM)

 Closes #59.

Contributing to the database

You can help to the development of this database with the following contributions:

submitting new values of gnu(n)

recording information about partial results to be pursued further (for example, when you run ConstructAllGroups

but were unable to check non‑isomorphism, or the computation was not completed after several days)

verifying existing entries (possibly using other hardware, operating systems, new releases of GAP and related

packages)

improving the functionality of this package

You can submit new values of gnu(n) as new issues or pull requests to the GitHub repository https://github.com/alex‑

konovalov/gnu (you will have to create a GitHub account if you don't have one yet).

The template for the new issue/pull request will ask you to check that you provide the following details:

Version of GAP and critical packages: GrpConst, Cubefree, etc.

Brief description of the computer used for the calculation (operating system, processor, RAM)

Runtime required for the calculation

GAP commands used for the calculation

Confirm that the output r of ConstructAllGroups is a list of groups (ForAll(r,IsGroup) should return true), or

otherwise confirm that if the output contained lists of groups, then those groups were also shown to be pairwise

non‑isomorphic.

This information will be used to re‑run your calculations and add gnu(n) to the database only after they will be

verified.

Group orders that are currently not included in the database can be determined using NextUnknownGnu , GnuWishlist

and their remote procedure call counterparts NextUnknownGnuFromServer and GnuWishlistFromServer as shown above. It

may be also useful to look at currently open issues and pull requests since they may contain newly reported results

awaiting to be added to the database after their validation. Yo do not need to worry that you may be duplicating

someone's else computation, because in this case DUPLICATION IS REPLICATION and by checking that you can

reproduce the same result with your GAP installation on your computer you will help to improve the quality of the

software used in the experiment.

To submit partial results, please create new issues in this repository and tell what you have tried and at which step

the calculation stopped. It will be useful to know, for example, about time‑consuming cases that did not finish after

substantial amount of time, or run out of memory, or where only the first step of the calculation had been completed,

but checking the non‑isomorphism has not been done.

You can also help with validating new submissions or rechecking existing ones, and with improving mathematical

functionality of the package or its infrastructural part.

You may automatically generate almost all the text to submit using the function GnuByConstructAllGroups from the

 grpconst.g script located at https://raw.githubusercontent.com/alex‑konovalov/gnu/master/lib/grpconst.g, and also

included in the lib directory of the package. For example (note the double semicolon usage to suppress the output

of the returned list):

gap> r:=GnuByConstructAllGroups(50024);;
**
Constructing all groups of order 50024
**
#I computing groups of order [2, 2, 2, 13, 13, 37]:

#I compute Frattini factors:
#I compute ff groups with socle 2 and size 2
#I compute ff groups with socle 4 and size 8
#I compute ff groups with socle 8 and size 8

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 46

#I compute ff groups with socle 13 and size 52
#I compute ff groups with socle 26 and size 104
...
...
...
#I extend candidate number 121 of 123 with size 50024
#I extend candidate number 122 of 123 with size 50024
#I extend candidate number 123 of 123 with size 50024
#I found 187 extensions

**
gnu(50024)=197

GAP 4.8.3
GrpConst 2.5
Runtime: 26335 ms
Isomorphic groups eliminated

In case this value is new, add the next line to data/gnudata.g
GNU_SAVE(50024, 197, WITH_GC);

**
gap>

In this case, instead of filling in the template you can copy and paste the last block of lines from the output into the

description of an issue or a pull request with the added call to GNU_SAVE , and will only need to add the description of

the computer used for the computation. In some cases, when ConstructAllGroups returns a list with sublists, the

message will also contain report about further isomorphism checks. The function GnuByConstructAllGroups also

returns a record with the output of ConstructAllGroups and timings in case it may require further analysis.

Finally, if you are submitting new values of gnu(n) as GitHub issues, please submit strictly one issue per group order.

If you are submitting new values of gnu(n) in a pull request, you may submit one value (in which case the simplest way

to submit a pull request is to edit the file https://github.com/alex‑konovalov/gnu/blob/master/data/gnudata.g via the

GitHub's web‑interface) or multiple values, in which case each of them should be in an individual commit with the

appropriate commit message looking like the summary produced by GnuByConstructAllGroups (see

https://github.com/alex‑konovalov/gnu/pull/58 for an example). Note however that it may take longer time to review

such pull request.

Further details and formatting rules could be found in CONTRIBUTING.md: https://github.com/alex‑

konovalov/gnu/blob/master/CONTRIBUTING.md

Please take a look, and it will be great if you could be involved!

Alexander Konovalov

May 2016

Acknowledgements

We acknowledge financial support from the OpenDreamKit Horizon 2020 European Research Infrastructures project

(#676541). We also acknowledge computational resources that were made available via the Microsoft Azure for

Research award.

Contact GitHub API Training Shop Blog About© 2017 GitHub, Inc. Terms Privacy Security Status Help

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 47

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

APPENDIX J. PARALLEL SEARCH IN THE GAP SMALL GROUPS LIBRARY WITH SCSCP

676541 OpenDreamKit 48

scscp‑demo / README.md

This repository Pull requests Issues GistSearch

alex‑konovalov / scscp‑demo

 Code Issues 0 Pull requests 0 Projects 0 Wiki Pulse Graphs Settings

 master Branch: Find file Copy path

1 contributor

c900a8a a minute ago alex‑konovalov Update README.md

 80 lines (60 sloc) 3 KB

Distributed calculations with the SCSCP package

This directory contains:

 avgord.g ‑ file from the GAP Software Carpentry lesson

 gapd.sh ‑ script to start one GAP SCSCP server

 gapfarm.sh ‑ script to start a farm of GAP SCSCP servers

 myserver.g ‑ configuration file for GAP SCSCP server

 parsearch.g ‑ GAP code for the function ParSearchForGroupExamples to perform parallel search in the GAP

Small Groups Library. It takes four arguments: the order to check, the number of the first and the last group and

the chunksize. This file also sets InfoLevel and the list of SCSCP servers to use.

Setting up

1. Install GAP.

2. Check that the IO package is built: if LoadPackage("io"); returns fail , you have to compile it. Otherwise the

SCSCP package will not be loaded.

3. Edit the path to bin/gap.sh file in the line 51 of gapd.sh . If you need to specify any command line options for GAP

SCSCP servers, do this here.

4. Leave as many calls to gapd.sh in the gapfarm.sh script as the number of cores on your computer. Remove or

comment out other calls of gapd.sh

5. Update the line setting up SCSCPservers in parsearch.g making port numbers in the list [26101 .. 26102]

matching those in gapfarm.sh .

6. Call ./gapfarm.sh to start the "farm" of GAP SCSCP servers.

7. Start GAP with gap avgord.g parsearch.g

8. You should be able to call ParSearchForGroupExamples which takes four arguments: the order to check, the number

of the first and the last group and the chunksize, for example:

Raw Blame History

2 02 Unwatch Star Fork

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 49

gap> n:=96;ParSearchForGroupExamples(n,1,NrSmallGroups(n),30);
96
#I 1/8:master ‐‐> localhost:26101 : [96, 1, 30]
#I 2/8:master ‐‐> localhost:26102 : [96, 31, 60]
#I localhost:26102 ‐‐> 2/8:master : []
#I 3/8:master ‐‐> localhost:26102 : [96, 61, 90]
#I localhost:26101 ‐‐> 1/8:master : []
#I 4/8:master ‐‐> localhost:26101 : [96, 91, 120]
#I localhost:26102 ‐‐> 3/8:master : []
#I 5/8:master ‐‐> localhost:26102 : [96, 121, 150]
#I localhost:26101 ‐‐> 4/8:master : []
#I 6/8:master ‐‐> localhost:26101 : [96, 151, 180]
#I localhost:26102 ‐‐> 5/8:master : []
#I 7/8:master ‐‐> localhost:26102 : [96, 181, 210]
#I localhost:26101 ‐‐> 6/8:master : []
#I 8/8:master ‐‐> localhost:26101 : [96, 211, 231]
#I localhost:26101 ‐‐> 8/8:master : []
#I localhost:26102 ‐‐> 7/8:master : []
[[], [], [], [], [], [], [], []]

And here is another group with integer average order of its elements:

gap> n:=1785;ParSearchForGroupExamples(n,1,NrSmallGroups(n),1);
1785
#I 1/2:master ‐‐> localhost:26101 : [1785, 1, 1]
#I 2/2:master ‐‐> localhost:26102 : [1785, 2, 2]
#I localhost:26101 ‐‐> 1/2:master : [1785, 1]
#I localhost:26102 ‐‐> 2/2:master : []
[[1785, 1], []]

(Of course, no parallelisation is needed to check groups of order 1785, but it is needed to check whether there are

other groups with such property among those available in the Small Groups Library).

Contact GitHub API Training Shop Blog About© 2017 GitHub, Inc. Terms Privacy Security Status Help

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 50

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

APPENDIX K. EXAMPLE: SCSCP CLIENT IN SCALA CONNECTING TO GAP SERVER

676541 OpenDreamKit 51

// import the SCSCPClient and OpenMath libraries
import ​info.kwarc.mmt.odk.SCSCP.Client.SCSCPClient
import ​info.kwarc.mmt.odk.OpenMath._

// establish a connection
val ​client = ​SCSCPClient​ (​"scscp.gap-system.org"​)

// get a list of supported symbols
/**
 * List(OMSymbol(Size,scscp_transient_1,None,None),
 * OMSymbol(Length,scscp_transient_1,None,None),
 * OMSymbol(LatticeSubgroups,scscp_transient_1,None,None),
 * OMSymbol(NrConjugacyClasses,scscp_transient_1,None,None),
 * OMSymbol(AutomorphismGroup,scscp_transient_1,None,None),
 * OMSymbol(Multiplication,scscp_transient_1,None,None),
 * OMSymbol(Addition,scscp_transient_1,None,None),
 * OMSymbol(IdGroup,scscp_transient_1,None,None),
 * ...,
 * OMSymbol(NextUnknownGnu,scscp_transient_1,None,None))
 */
println​ (client.getAllowedHeads)

// We make a simple example: Apply the identity function to an integer 1
val ​identitySymbol = ​OMSymbol​ (​"Identity"​,​"scscp_transient_1"​, None, None)
val ​identityExpression = ​OMApplication​ (identitySymbol, ​List​ (​OMInteger​ (​1​, None)), None, None)
/**
 * OMInteger(1,None)
 */
println​ (client(identityExpression).fetch().get)

// We also try to compute 1 + 1
val ​additionSymbol = ​OMSymbol​ (​"Addition"​, ​"scscp_transient_1"​, None, None)
val ​additionExpression = ​OMApplication​ (additionSymbol, ​OMInteger​ (​1​, None) :: ​OMInteger​ (​1​, None) :: ​Nil​ , None,
None)

/**
 * OMInteger(2,None)
 */
println​ (client(additionExpression).fetch().get)

// and close the connection
client.quit()

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 52

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

APPENDIX L. EXAMPLE: SCSCP CLIENT IN MMT CONNECTING TO GAP SERVER

676541 OpenDreamKit 53

// import mmt terms
import ​ info.kwarc.mmt.api.Path
import ​ info.kwarc.mmt.api.uom.OMLiteral._
import ​ info.kwarc.mmt.api.objects._

// create a group inside of MMT
val ​ mmt_term = OMA(
 OMS(Path.parseS(​ "http://www.gap-system.org?pcgroup1?pcgroup_by_pcgscode"​)),
 ​ List​ (
 ​ OMI​ (​ BigInt​ (​ "11440848857153616162393958740184979285302778717"​)),
 ​ OMI​ (​ 512​)
)
)

/**
 * (http://www.gap-system.org?pcgroup1?pcgroup_by_pcgscode
11440848857153616162393958740184979285302778717 512)
 */
println(mmt_term)

// encode it into an OpenMath term (for GAP in this case)
import ​ info.kwarc.mmt.odk.OpenMath.Coding.GAPEncoding
val ​ om_term = GAPEncoding.decodeExpression(mmt_term)

/**
 * OMApplication(
 * OMSymbol(pcgroup_by_pcgscode,pcgroup1,None,None),
 * List(
 * OMInteger(11440848857153616162393958740184979285302778717,None),
 * OMInteger(512,None)
 *),None,None)
 */
println(om_term)

// prepare a computation for GAP
// here we compute the nr of conjugacy classes
import ​ info.kwarc.mmt.odk.OpenMath._
val ​ NrConjugacyClasses = OMSymbol(​ "NrConjugacyClasses"​ , ​ "scscp_transient_1"​ , None, None)
val ​ computation = OMApplication(NrConjugacyClasses, ​ List​ (om_term), None, None)

// fetch the resulting expression from GAP
val ​ client = SCSCPClient(​ "scscp.gap-system.org"​)
val ​ om_result = client(computation).fetchExpression()
client.quit()

/**
 * OMInteger(92,None)
 */

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

676541 OpenDreamKit 54

println(om_result)

// and turn the result back into an MMT term
val ​ mmt_result = GAPEncoding.encode(om_result)

/**
 * 92
 */
println(mmt_result)

Call: H2020-EINFRA-2015-1 REPORT ON D3.3

676541 OpenDreamKit 55

REPORT ON D3.3 Call: H2020-EINFRA-2015-1

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.

676541 OpenDreamKit 56

	Deliverable description, as taken from Github issue #62 on 2017-02-28
	1. Introduction
	2. Systems
	2.1. Python and Sage
	2.2. GAP
	2.3. PARI/GP
	2.4. Singular
	2.5. MMT/MathHub

	3. Examples and use cases
	3.1. Examples involving applications from Python ecosystem
	3.2. GAP SCSCP server in Docker container
	3.3. The database of numbers of isomorphism types of finite groups
	3.4. Parallel search in the GAP Small Groups Library using SCSCP

	4. Conclusions and future work
	Appendix A. README file for the Python openmath package
	Appendix B. README file for the Python scscp package
	Appendix C. Example: SCSCP client in Python2 connecting to GAP server
	Appendix D. Example: SCSCP client in Python3 connecting to GAP server
	Appendix E. Example: SCSCP client in Sage connecting to GAP server
	Appendix F. Example: SCSCP client in Python3 calculates Groöbner basis with Singular
	Appendix G. Example: SCSCP client in GAP connecting to Python 3 server
	Appendix H. Documentation for the GAP Docker container
	Appendix I. Documentation for the GAP SCSCP server for the number of isomorphism types of groups of order n
	Appendix J. Parallel search in the GAP Small Groups Library with SCSCP
	Appendix K. Example: SCSCP Client in Scala connecting to GAP server
	Appendix L. Example: SCSCP Client in MMT connecting to GAP server

