
Call: H2020-EINFRA-2015-1 REPORT ON D5.7

REPORT ON OpenDreamKit DELIVERABLE D5.7

Take advantage of multiple cores in the matrix Fourier Algorithm component of the
FFT for integer and polynomial arithmetic,and include assembly primitives for SIMD

processor instructions (e.g. AVX, etc.), especially in the FFT butterflies.

WILLIAM HART

Due on 02/28/2017 (Month 18)
Delivered on 02/28/2017
Lead University of Kaiserslautern (UNIKL)
Progress on and finalization of this deliverable has been tracked publicly at:
https://github.com/OpenDreamKit/OpenDreamKit/issues/120

CONTENTS

Deliverable description, as taken from Github issue #120 on 2017-02-28 1
1. Report on parallelising the FFT 1
1.1. Problem statement 1
1.2. The method 2
1.3. Results 3
1.4. Testing the parallel FFT 3
2. Report on writing assembly primitives for the FFT butterflies 3
2.1. Problem statement 3
2.2. Results 4
2.3. Blog post 6

DELIVERABLE DESCRIPTION, AS TAKEN FROM GITHUB ISSUE #120 ON 2017-02-28

• WP5: High Performance Mathematical Computing
• Lead Institution: University of Kaiserslautern
• Due: 2017-02-28 (month 18)
• Nature: Demonstrator
• Task: T5.4 (#102): Singular, T5.5 (#103): MPIR
• Proposal: P. 52
• Final report

1. REPORT ON PARALLELISING THE FFT

1.1. Problem statement
Given two polynomials of length n, the time to multiply them using classical schoolboy

multiplication is O(nˆ2). But there are numerous algorithms which can do better. The
Karatsuba method already takes time O(nˆlog 2(3)). There are other methods, including
Toom-Cook which slightly improve the exponent.

676541 OpenDreamKit 1

https://github.com/OpenDreamKit/OpenDreamKit/issues/120
https://github.com/OpenDreamKit/OpenDreamKit/issues/120
https://github.com/OpenDreamKit/OpenDreamKit/issues/120
https://github.com/OpenDreamKit/OpenDreamKit/tree/master/WP5
https://github.com/OpenDreamKit/OpenDreamKit/issues/102
https://github.com/OpenDreamKit/OpenDreamKit/issues/103
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/Proposal/proposal-www.pdf
https://github.com/OpenDreamKit/OpenDreamKit/raw/master/WP5/D5.7/report-final.pdf


REPORT ON D5.7 Call: H2020-EINFRA-2015-1

The Fast Fourier technique allows multiplication of such polynomials in O(n log(n))
operations. This is a technique that goes back as far as Gauß, but has seen extensive
development since then, with over 800 papers on the method and related techniques, with
applications from signal processing to string search or polynomial and integer arithmetic.

The version of the FFT that is used in Flint and MPIR is the Schoenhage-Strassen
method. Instead of doing a convolution over the complex numbers, which would make use
of imprecise floating point numbers, which would be subject to rounding error, it makes
use of an exact ring, namely Z/pZ where p = 2ˆ(2ˆn) + 1. This technique allows exact
multiplication of polynomials and integers with nearly linear complexity.

In summary, the existing FFT in Flint is used for:
• Large integer multiplication
• Schoenhage-Strassen univariate polynomial multiplication
• Kronecker-Segmentation univariate polynomial multiplication

The purpose of this task was to parallelise the FFT in Flint.
Typically, parallelising the FFT algorithm is difficult. However, Flint makes use of a

cache-friendly implementation of the FFT which uses the Matrix Fourier Algorithm. This
breaks one very large FFT convolution up into many smaller FFT’s.

The existing FFT implementation in Flint (and MPIR) is world class and includes:
• truncated fourier transform
• use of low level GMP/MPIR assembly optimised functions
• square root of 2 trick
• Matrix Fourier Algorithm
• Nussbaumer convolution
• Chinese remainder with naive convolution

1.2. The method
In order to thread the FFT in Flint, we used OpenMP. The level at which we threaded

it was at the level of the Matrix Fourier Algorithm. This involved separating temporary
storage that is used throughout the algorithm, on a per thread level, and then adding OpenMP
primitives to the part of the Matrix Fourier Algorithm that breaks the FFT into lots of smaller
FFTs.

We also threaded the code which splits large integers into FFT coefficients. Unfortunately
it is difficult, or even impossible to fully parallelise the recombination that happens after the
FFT convolution has run, so this wasn’t attempted. However, it is a negligible portion of the
run time.

Fortunately, once the Matrix Fourier Algorithm becomes more efficient than a single large
FFT (due to its cache aware properties), the threaded version also becomes more efficient
than the single-threaded version. In fact, the tuning crossover was found to be at exactly the
same point! This is an interesting coincidence and made tuning very easy.

To maximise the benefit of threads, we combine parts of the small inward FFTs, the
relevant pointwise multiplications and parts of the outward inverse FFTs into combined
blocks that each run on a single thread without interruption. The whole FFT convolution
consists of many of these smaller blocks. This was by design rather than accident!

The algorithm in Flint also combines the truncated Fourier transform and Matrix
Fourier algorithm in such a way that the entire large FFT breaks down exactly into the
smaller threaded blocks discussed above, with no additional bits that have to be dealt with
serially. This is due to an innovation in the Flint FFT which isn’t available elsewhere.
Again, this was a design feature, not an accident. The scope of this method is exceptionally
technical and well beyond the scope of this report to describe.

676541 OpenDreamKit 2



Call: H2020-EINFRA-2015-1 REPORT ON D5.7

In fact, we were able to preserve every single one of the technical tricks mentioned above
in our parallel implementation of the FFT in Flint.

1.3. Results
The new code for the threaded Matrix Fourier algorithm has been implemented as part of

this deliverable and merged into the main Flint repository.
Here are timings of the new code in Flint on a single core, versus four and eight cores

for various sized integer multiplications on a 64 bit machine.

limbs 1 core 4 core 8 core

114525 0.066s 0.049s 0.049s
229725 0.14s 0.11s 0.11s
360237 0.32s 0.12s 0.09s
721709 0.65s 0.25s 0.19s
1245101 1.14s 0.39s 0.27s
2492333 2.33s 0.81s 0.55s
4587132 4.45s 1.52s 1.02s
9178748 9.07s 3.02s 2.06s
25947772 28.1s 9.35s 6.25s
51908220 57.9s 24.0s 13.8s
118997068 143s 48.4s 33.2s
238026828 309s 105s 65.7s
506425420 801s 241s 146s

1.4. Testing the parallel FFT
The Flint repository is available here.
To build and test the code mentioned above, you must have GMP/MPIR and MPFR installed

on your machine (refer to your system documentation for how to do this). Then do:
git clone https://github.com/wbhart/flint2
cd flint
./configure --with-mpir=/path/to/mpir \

--with-mpfr=/path/to/mpfr \
--enable-openmp

export OMP_NUM_THREADS=4
make
make check MOD=fft

Full instructions on how to build Flint are available in the Flint documentation,
available at the Flint website.

The description of the FFT interface is well beyond the scope of this documentation, but
can be found in the Flint documentation (625 pp.) There is also additional information
specific to the FFT in the Flint FFT README

2. REPORT ON WRITING ASSEMBLY PRIMITIVES FOR THE FFT BUTTERFLIES

2.1. Problem statement
For this deliverable, our task was to improve existing functions or write new ones to use

features of recent microprocessors (esp. AVX2) to speed up the Schönhage-Strassen FFT
butterflies. Such assembly primitives are provided by the MPIR library.

The main operations used in the FFT butterflies are:
• Compute a+b, a-b for given a,b

676541 OpenDreamKit 3

https://github.com/wbhart/flint2/tree/trunk/fft
https://github.com/wbhart/flint2
http://flintlib.org/
http://flintlib.org/flint-2.5.pdf
https://github.com/wbhart/flint2/tree/trunk/fft


REPORT ON D5.7 Call: H2020-EINFRA-2015-1

• Compute -(a+b), a-b for given a,b
• Bit-wise shifts by varying bit-counts
• Subtraction, and to a lesser extent addition and negation

Some of these operations already had assembly primitives available as part of the MPIR
library. However, these were not optimised for recent architectures using AVX, for example.
In this task, we also added a new assembly primitive, as described below, which is used
directly in the FFT butterflies (where most of the FFT work is actually done).

Each year or two, Intel and AMD release new CPU microarchitectures. The ones we
focused on for this deliverable were Intel Haswell and Skylake and AMD Bulldozer. These
are not the most recent architectures, but they are coming into widespread use at the present
time.

2.2. Results
The microarchitectures for which we optimized the code are mainly Intel Haswell and

Intel Skylake, and to a lesser extent AMD Bulldozer. For Bulldozer (and Piledriver) it should
be noted that the opportunities

for optimization are rather limited: the microarchitecture generally performs poorly,
especially in hyper-threading mode, and the AVX instructions in particular are so slow as to
be practically useless. The newer AMD Steamroller fares better, but we did not have access
to one.

For Haswell and Skylake, the mpn lshift1, mpn rshift1, mpn lshift, and
mpn rshift have been written anew, using AVX2 instructions which gave a large speed-
up over the previous code. The mpn add n/mpn sub n functions (which are identical,
performance-wise) have been modified from existing code and optimized according to the re-
spective micro-architecture. An mpn sumdiff n (computes a+b, a-b) has been introduced
into MPIR; this function existed for older processors but not for recent x86 64.

We are very grateful to Jens Nurmann who contributed significant amounts of code and
expertise on AVX2 programming.

2.2.1. Haswell microarchitecture. Timings in cycles per limb:

Function Old New

mpn lshift1 1.11 0.564
mpn rshift1 1.39 0.589
mpn lshift 1.85 0.568
mpn rshift 1.40 0.578
mpn add n 1.32 1.11
mpn sumdiff n 2.62(1) 2.42
mpn nsumdiff n 3.23(2) 2.64

(1) The sum of the times of mpn add n, mpn sub n.
(2) The sum of the times of mpn add n, mpn sub n, mpn neg n.
Timings for the full Schönhage-Strassen large integer multiplication (mpn mul n) in

seconds:
Limbs Old New Ratio

10000 0.002399728 0.002171788 0.91
100000 0.026374851 0.022960783 0.87
1000000 0.357847841 0.302023203 0.84

Note that these timings include the effect of code improvements made for D5.5 (#118), in
particular, better mpn mul basecase and Karatsuba code.

676541 OpenDreamKit 4

https://github.com/OpenDreamKit/OpenDreamKit/issues/118


Call: H2020-EINFRA-2015-1 REPORT ON D5.7

2.2.2. Skylake microarchitecture. Timings in cycles per limb:

Function Old New

mpn lshift1 1.01 0.601
mpn rshift1 1.52 0.601
mpn lshift 2.01 0.608
mpn rshift 1.52 0.606
mpn add n 1.22 1.04
mpn sumdiff n 2.44(1) 2.04
mpn nsumdiff n 3.06(2) 2.32

Of note here is the speed of mpn add n/mpn sub n, at essentially 1c/l for the core loop,
optimal both in terms of the data dependency chain and memory accesses, as Skylake can in
theory execute 2 read and 1 write per clock cycle. In practice, presumably the instruction
scheduler falls into a bad pattern after running at 1c/l for a while, and from then on runs the
loop only at ˜1.2c/l. Jens Nurmann found that inserting a meaningless AVX2 instruction into
the core loop (which does not otherwise use AVX2)

breaks up this bad scheduling pattern, allowing these critically important core functions
to run at the optimal speed reliably.

Timings for mpn mul n in seconds:

Limbs Old New Ratio

10000 0.002125143 0.001711500 0.81
100000 0.025231292 0.020712453 0.82
1000000 0.304166761 0.258099884 0.85

2.2.3. Bulldozer microarchitecture. Much less optimization effort was made for Bulldozer
than for Haswell and Skylake, owing to the age and poor performance of this processor.
No code was written from scratch, but among all the existing implementations for a given
function, the one that ran fastest on Bulldozer was chosen.

Among those functions that were replaced by faster versions, these three are relevant to
the FFT butterflies:

Function Old New

com n 1.28 0.723
rshift 2 1.11
lshift 2.42 1.24

Timings for mpn mul n in seconds:

Limbs Old New Ratio

10000 0.004771156 0.004764643 1.0
100000 0.054624774 0.053038739 0.97
1000000 0.651062127 0.652278285 1.0

Unfortunately, the improvements to the mpn [lr]shift functions are barely visible in the
integer multiplication benchmark on Bulldozer.

All code written for this deliverable has been committed to Alex Kruppa’s fork of
the MPIR repository at https://github.com/akruppa/mpir and merged into the
main MPIR repository at https://github.com/wbhart/mpir and will be available
in the MPIR-3.0.0 release, available at the MPIR website.

Build instructions for MPIR are as follows:

676541 OpenDreamKit 5

https://github.com/akruppa/mpir
https://github.com/wbhart/mpir
http://mpir.org/


REPORT ON D5.7 Call: H2020-EINFRA-2015-1

Download MPIR-3.0.0 from: http://mpir.org/
Note that you also need to have the latest Yasm assembler to build MPIR: http://

yasm.tortall.net/
To build Yasm, download the tarball:

./configure
make

To test MPIR, download the tarball:
./configure --enable-gmpcompat --with-yasm=/path_to_yasm/yasm
make
make check

A Haswell, Skylake, or Bulldozer CPU is required to test the changes referred to above.

2.3. Blog post
A blog post about the design of the Flint FFT and the work done for this project is available

at https://wbhart.blogspot.de/2017/02/parallelising-integer-and-polynomial.
html.

Disclaimer: this report, together with its annexes and the reports for the earlier deliverables,
is self contained for auditing and reviewing purposes. Hyperlinks to external resources are
meant as a convenience for casual readers wishing to follow our progress; such links have
been checked for correctness at the time of submission of the deliverable, but there is no
guarantee implied that they will remain valid.

676541 OpenDreamKit 6

http://mpir.org
http://yasm.tortall.net/
http://yasm.tortall.net/
https://wbhart.blogspot.de/2017/02/parallelising-integer-and-polynomial.html
https://wbhart.blogspot.de/2017/02/parallelising-integer-and-polynomial.html

	Deliverable description, as taken from Github issue #120 on 2017-02-28
	1. Report on parallelising the FFT
	1.1. Problem statement
	1.2. The method
	1.3. Results
	1.4. Testing the parallel FFT

	2. Report on writing assembly primitives for the FFT butterflies
	2.1. Problem statement
	2.2. Results
	2.3. Blog post


