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A B S T R A C T

Canopy cover (or vegetation cover) maps serve in irrigation management mainly to determine the primary
evapotranspiration (ET) coefficient, as radiation interception and evaporative surface area are directly related to
canopy cover. Crop size and development with time depends on water supply; therefore, crop canopy maps are
tools for the detection of the spatial uniformity of irrigation systems. Several aerial scan campaigns were de-
ployed in the Upper Galilee of Israel in the 2017 and 2018 growing seasons to follow up and evaluate the
irrigation uniformity and crop coefficients of peanuts and cotton by RGB scans of a Phantom 4 multirotor
unmanned aerial vehicle (UAV) and DJI Mavic-Pro UAV equipped with RGB and near-infrared (NIR) sensors.
Foliage intensity and coverage were enhanced by a green-red vegetation index (GRVI), which is a normalized
difference vegetation index (NDVI)-like process where the green channel replaced the NIR. The results de-
monstrated that the GRVI is suitable for the purpose of determining the vegetation cover. Furthermore, the GRVI
yielded better results than the NDVI in recognizing phenological crop changes (especially senescence) and in
detecting heterogeneity in field irrigation. Therefore, this research proves the applicability of a low-cost digital
camera mounted on an easily accessible UAV for crop cover and actual, in-field, ET coefficients determination
and irrigation uniformity evaluation.

1. Introduction

A lot of work has been done investigating plants’ spectral re-
flectance in the visible and near-infrared part of the electromagnetic
spectrum at different phenological stages. Understanding the single
leaf’s spectral response and the processes that occur on this level allows
to apply this knowledge to the canopy level (Hatfield et al., 2008).
Spectral indexes allow for better information extraction from remotely
sensed data because they reduce the effects of soil, view angle, and
topography, while enhancing the focus on the desired extracted feature
(e.g., the vegetation indexes enhance the visibility of the vegetation)
(Hunt et al., 2012). Multitude of vegetation indexes (VI) were in-
troduced in order to evaluate plant’s vigor and stress. While multiple
VIs that use the ratio between the red and near-infrared (NIR) spectral
wavebands (e.g., normalized difference vegetation index (NDVI), ratio
vegetation index (RVI), soil adjusted vegetation index (SAVI)) (Huete,
1988; Jordan, 1969; Rouse et al., 1973; Tucker, 1979) are successful in
reducing atmospheric radiance and transmittance (Hunt et al., 2011;
Tucker, 1979), the red wavelengths are strongly absorbed by chlor-
ophyll and therefore are less sensitive to changes in chlorophyll content

(Gitelson et al., 1996, 2005; Hunt et al., 2011; Yoder and Waring,
1994). As the leaf area index (LAI) increases, apparent canopy chlor-
ophyll content also increases regardless of the single-level leaf chlor-
ophyll content, therefore these VIs are much more affected by LAI than
by changes in chlorophyll at the canopy scale (Daughtry et al., 2000;
Eitel et al., 2009; Hunt et al., 2011). Since chlorophyll is vital for the
photosynthesis process, changes in chlorophyll levels can be linked to
photosynthetic productivity, developmental (phenological) stages, and
plant stress. Chlorophyll levels also correlate to green vegetation ni-
trogen levels – nitrogen shortage reduces leaf chlorophyll content, thus
decreasing plant spectral absorption especially in the blue and red
wavelengths, therefore increasing reflectance in these wavelengths
(Gitelson et al., 2005; Haboudane et al., 2004; Hatfield et al., 2008;
Hunt et al., 2012; Yoder and Waring, 1994). Nitrogen is a vital plant
nutrient, most important for crop growth and yield.

On the other hand, the green wavelengths are more sensitive to high
chlorophyll levels, since they are less absorbed by chlorophyll a and b,
unlike the blue, red, and NIR wavelengths (Gitelson et al., 1996, 2005;
Hunt et al., 2011; Yoder and Waring, 1994). Therefore, VIs using the
green wavelength are capable of detecting changes in chlorophyll
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contents at the leaf and canopy scale and are suitable to monitor plants’
developmental stages and stress.

Gitelson et al. (Gitelson et al., 2002) found that the NIR reflectance
band is less sensitive for determining the vegetation cover (or vegeta-
tion fraction—VF) for VF > 60% and showed that a VI using the
green–red–blue wavelengths have a linear relationship to VF, with an
accuracy level of up to 90%. They showed that in wheat, when VF is
between 50 and 100%, the green wavelength is most sensitive to
changes in the vegetation cover (while the blue, red, and NIR wave-
lengths are insensitive to changes in the vegetation cover).

Adamsen et al. (Adamsen et al., 1999) measured “Greenness” of
wheat plants throughout the cropping season using a digital camera, a
hand-held radiometer, and chlorophyll meter. They found that the
green to red (G/R) spectral wavelengths ratio index is sensitive to the
amount of greenness of the plant: it is less than 1 in the beginning and
at the end of the growing season, and above 1 at midseason (Adamsen
et al., 1999; Kanemasu, 1974). The G/R index obtained from an un-
calibrated digital camera was more sensitive to plant senescence than
the chlorophyll meter, and on par with the NDVI index obtained from
the hand-held radiometer, thus proving that moderate cost digital
cameras can be used to monitor crop senescence (Adamsen et al.,
1999). Kanemasu (Kanemasu, 1974) concluded that the G/R ratio may
serve as a benchmark for crop growth, phenological stages, and for
indicating the VF.

Another VI that is based on the G/R ratio is the green-red vegetation
index (GRVI) that is defined according to Eq. (1):

= +GRVI (ρgreen–ρred)/(ρgreen ρred) (1)

Motohka et al. (Motohka et al., 2010) evaluated the use of the GRVI
as a phenological indicator. They concluded that the GRVI index can
differentiate between green vegetation (index above 0), water and snow
(index around 0), and soils (index below 0). Furthermore, they de-
monstrated that the GRVI (unlike the NDVI) is sensitive to leaf color
change (leaf greening and autumn coloring). They suggested using the
threshold of GRVI= 0 as a site-specific threshold for monitoring phe-
nological changes and the GRVI index as an indicator for plant dis-
turbances, and comparing between different ecosystem types (Motohka
et al., 2010).

Remote sensing for crop management aims at providing spatial and
spectral information for crop classification, crop condition, yield fore-
cast, and weed/disease detection and management. Current satellite-
based remotely sensed products can cover large areas, but they are
limited by both their temporal (revisit time – 2 and 5 days for Venus
and Sentinel-2 satellites, respectively) and spatial (pixel size – 5–10m
for Venus and Sentinel-2, respectively) resolutions, when compared to
unmanned aerial vehicle (UAV). One of satellite imaging’s challenges is
dealing with pixels that have multiple objects with different spectral
signatures (e.g., plants and soil). Such pixels are called mixed-pixels.
UAV, imaging high spatial resolution, produces mixed-free pixels,
therefore making vegetation detection and differentiation an easier
task. Similarly, high spatial resolution allows for a precise estimation of
the vegetation cover fraction.

A basic method for irrigation scheduling is factoring the potential
evapotranspiration (PET), computed from measured radiation, wind
speed, air temperature, and relative humidity, with a crop-specific
coefficient (Kc)) as widely accepted and formulated by the FAO #56
publication (Testa et al., 2011). Crop coefficients are provided by di-
verse methods, such as empirical conclusions from field experiments,
degree-day-based seasonal functions, experts’ recommendations, and
the FAO #56 publication Kc library, or by field-specific measurements.
According to the Penman-Monteith equation, solar radiation comprise
about 85% of the evapotranspiration (ET) driving energy received by
the crop canopy (Testa et al., 2011), and intercepted solar radiation is
directly proportional to the light interception (LI) (Green et al., 2003;
Johnson et al., 2000; Meron et al., 1989). Further, since LI is directly
proportional to crop canopy cover, Kc can be fitted to the field- and

plot-specific dimension by measuring crop cover. Therefore, VF can be
used as Kc. Aerial survey-derived VFs are directly proportional to cover,
(Meron et al., 2006) thus digital aerial photography provides an effi-
cient method for Kc determination (Campillo et al., 2008).

Precision irrigation can be defined as matching water application to
crops’ need in space, time and amount. Variable rate water application
to achieve that is feasible with solid set systems using modern con-
trollers and in variable rate center pivot or lateral move irrigation
machines, all available in the open market. However, such application
needs spatial and temporal crop water status information in sufficient
resolution and accuracy, attainable mainly by aerial sensing and ima-
gery (Haghverdi et al., 2015; Nahry et al., 2011; Zhang et al., 2011).
Digital aerial photography became affordable and popularized with the
appearance in the open market of low cost, high performance small
sized unmanned aerial vehicles (UAV) carrying high resolution digital
cameras, in contrast with the former less accessible human flown aerial
photography. Testing of these new enabling technologies for precision
irrigation information acquisition is obviously needed. Such a tech-
nology is presented herein.

The main objectives of this study were to test the ability of an in-
expensive RGB camera mounted on an inexpensive UAV to determine
vegetation cover and vigor of the canopy at a large-scale whole-field
resolution and to investigate whether vegetation cover and vigor pat-
terns can be utilized as indicators for irrigation water uniformity, and as
such, feedback information for precision water application at variable
rate irrigation (VRI) systems. Another objective of this study was to
compare the efficiency of an RGB- based VI with that of the well-known
NDVI, both in UAV-based high spatial resolution cameras and via sa-
tellite imaging.

2. Materials and methods

2.1. UAV imaging system

DJI Phantom 4 quadcopter UAV was used as the flying platform.
The UAV is equipped with a built-in RGB camera with a 4000×3000
pixel 4 K resolution CMOS sensor, a 20mm (35mm eq.) lens with field
of view (FOV) of 94°, in a 3-axis stabilized gimbal (https://www.dji.
com/phantom-4/info). The UAV was flown using Pix4D Capture pre-
programmed flightpath control. The Parrot Sequoia multispectral
sensor was used in order to compare NDVI with GRVI. The Parrot
Sequoia sensor consists of five downward-looking image sensors: a
Visible 16 MegaPixel (MP) (RGB) with a definition of 4608× 3456
pixels and four 1.2 MP: Green (550 nm), Red (660 nm), Red Edge
(735 nm), and Near-infrared (790 nm) bands, 1280× 960 pixels
(https://www.parrot.com/business-solutions-us/parrot-professional/
parrot-sequoia#parrot-sequoia-pix4d-precise-data-brings-accurate-
analysis). The sensor was mounted on a DJI Mavic-Pro small-size,
foldable-rotor quadcopter UAV. Sensors were factory pre-calibrated.
Parrot Sequoia sensor was recalibrated before each campaign using a
white balance reference target. Phantom 4 RGB sensor’s white balance
setting was set to sunny. No other color or style enhancements were
made to the obtained images.

2.2. Flight campaigns

Flight campaigns were conducted in three test sites: the Gadot
center pivot test site (33°2′22.91″ N, 35°38′0.43″ E), the Havat Gadash
field crops experimental farm (33°10′56.24″ N, 35°35′5.78″ E), and the
Hagoshrim lateral move test site (33°11′57.75″ N, 35°38′19.15″ E), all
three located in the Upper Galilee region in the northern part of Israel.
The area has a Mediterranean climate, characterized by wet, mild
winters with mean minimum and maximum temperatures of 7 and
14 °C, respectively, and hot, dry summers with mean minimum and
maximum temperatures of 19 and 32 °C respectively. Annual winter
rainfall is in the range of 400–600mm, while summer crops utilize
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80–120mm of winter soil water storage for the initial growth periods.
At the Havat Gadash, peanuts cv Hanoch were sown on 1 May 2017

and irrigated uniformly by an experimental lateral move, starting on 8
May (Table 1). PET was calculated according to the Penman–Monteith
formula, based on meteorological field data. Kc was calculated as cu-
mulative irrigation divided by cumulative ET. Four differential irriga-
tion treatments were performed starting on 19 July (Fig. 1). The Kc
(70%) treatment yielded the highest crop weight per area (5.86 ton/
hectare; more than 0.7 ton/hectare compared to the rest of the treat-
ments), implying optimal water application and water use, and was
selected for ground truth validation – comparing field measured Kc
with aerial imagery calculation of VF. Experimental plots were four
12×25m plots, side by side in four replicates (Fig. 1). Seven flight
campaigns were conducted at midday, at 10–50m altitude and pixel
spatial resolution of 0.006–0.02m (Table 2). Crop cover did not reach
full cover during the first two campaigns (25 June, 17 July). Full cover
is reached when there are less than 20% pixels that are classified as bare
soil.

The field at the Gadot center pivot test site was cultivated with
cotton crop, sown on 4 April 2017. The field was irrigated at eight-day
intervals beginning from 3 June. Two flight campaigns were conducted
on 5 July and 24 August, when the crop had already reached full cover.

Table 1
Cumulative evapotranspiration (ET), irrigation water applied, and crop-specific coefficients (Kc) in the peanut irrigation experiment, Havat Gadash 2017.
Highlighted Kcs’ correlate to Havat Gadash flight campaign dates (Table 2).

Date Cumulative ET (mm)* Irrigation (mm) Cumulative Irrigation (mm) * Kc **

Uniform irrigation 08/05/2017 43 30 30 0.70
04/06/2017 213 40 70 0.33
13/06/2017 272 40 110 0.40
29/06/2017 384 45 155 0.40
06/07/2017 431 45 200 0.46
12/07/2017 474 45 245 0.52

0.7 Kc Irrigation 19/07/2017 43 37 37 0.86
27/07/2017 96 37 74 0.77
03/08/2017 143 37 111 0.78
10/08/2017 186 37 148 0.80
19/08/2017 240 37 185 0.77
30/08/2017 308 37 222 0.72
10/09/2017 369 37 259 0.70
24/09/2017 434 40 299 0.69

* Cumulative amounts recalculated for the two experimental stages.
** Kc calculated as cumulative irrigation divided by cumulative ET.

Fig. 1. Havat Gadash peanut field with the layout of the four irrigation treatments indicated. Image was taken on the September 11, 2017 flight campaign.

Table 2
Havat Gadash flight campaigns’ information.

Date Time Elevation (m) Spatial
resolution
(m)

Days
from
sowing

GRVI calculated
vegetation
fraction - VF
(%)

Havat Gadash
25/06/2017 10:55 10 0.0066 55 46
17/07/2017 10:30 10 0.0066 77 87
03/08/2017 10:30 50 0.022 94 99
07/09/2017 13:15 15 0.0075 129 94
11/09/2017 10:30 50 0.022 133 95
19/09/2017 14:10 15 0.0075 141 89
27/09/2017 16:00 10 0.0066 149 87
Gadot Test Site
05/07/2017 11:00 50 0.022 92 100
24/08/2017 10:00 50 0.002 142 100
Hagoshrim Test Site
17/06/2018 13:00 100 0.043 98 100
26/06/2018 13:00 100 0.043 107 100
NDVI vs. GRVI (DJI Mavic-Pro)
10/10/2017 11:35 40 0.0095

(RGB)
0.0373
(NIR)

163 N/A
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The flights were conducted at midday, at 50m altitude and pixel spatial
resolution of 0.02m (Table 2). The field at the Hagoshrim lateral move
test site was cultivated with cotton crop, sown on 1 1 March 2018. The
field was irrigated at five-day intervals beginning from 24 May. Two
flight campaigns were conducted on 17 and 26 June, when the crop had
already reached full cover. The flights were conducted at midday, at
100m altitude and pixel spatial resolution of 0.043m (Table 2).

Flight courses were created with the Pix4Dcapture software, which
was also used to automatically pilot the DJI Phantom 4 UAV according
to the flight path. An overlap percentage of 70–80% was chosen in
order to ease the task of mosaicking.

In order to compare NDVI and GRVI, a flight campaign using the DJI
Mavic-Pro UAV was conducted in the peanut field at the Havat Gadash
experimental farm on October 10, 2017, twelve days before the end of
the growing season (Table 2). The Parrot Sequoia multispectral sensor
was used to create the NDVI, while the RGB camera was used to create
the GRVI.

2.3. Data processing

The images collected in each flight campaign were mosaicked and
georeferenced using the Pix4Dmapper software. The ArcGIS 10.5 geo-
referencing tools were used for fine adjustments.

VF was calculated using ArcGIS 10.5, calculating the histogram of
the GRVI products. Pixels with GRVI values greater than 0 were clas-
sified as vegetation, according to Motohka et al. (2010).

Sentinel-2 Level-2 A atmospherically corrected images of the Gadot
test site from 29 August 2017 were acquired courtesy of the Copernicus
Open Access Hub. Venus satellite Level-1 radiometrically corrected and
top-of-atmosphere reflectance images of the Hagoshrim test site from
17 June 2018 were acquired courtesy of CNES (French government
space agency) ISA (Israeli space agency) and the scientific center at the
Ben-Gurion University, Israel. Several VIs were created and compared
to the UAV images, in order to check whether it is possible to use
Sentinel-2 and Venus satellite imaging (with spatial resolution of 10
and 5m, respectively) to determine irrigation uniformity issues. The
following VIs were checked: NDVI (Tucker, 1979), green normalized
difference vegetation index (GNDVI) (Gitelson et al., 1996), and GRVI
(Motohka et al., 2010; Tucker, 1979). UAV images were compared to
similar date satellites images for the sake of proper comparison (same
day as Venus, and 4 days apart from Sentinel-2 imagery).

All images taken with the DJI Phantom-4 UAV built in camera
equipped with a gimbal assuring vertical nadir direction, were acquired
close to midday (when the sun is close to zenith), taking images of flat
agricultural surfaces, thus limiting bidirectional reflectance distribution
function (BRDF) complication. Furthermore, at the height of UAV
image acquisition (10–100m) and for the purpose of analyzing RGB
color space no special calibration or atmospheric correction was ap-
plied beyond the standard factory calibration.

3. Results

3.1. Havat Gadash experimental farm campaign

The RGB images (Fig. 2A,C) have high spatial resolution (0.0066m,
see Table 2), allowing the differentiation of crop from soil. Negative
GRVI values were classified as non-vegetation (i.e. soil), and positive
GRVI values were classified as vegetation. The VFs determined ac-
cording to the GRVI images' histograms were 46% and 87% (Fig. 3A,B
respectively): whereas, the VF can be determined as 1 minus the in-
tersection value of the cumulative GRVI graph with the Y axis in Fig. 3,
The field calculated Kc for the campaign dates (Table 1: highlighted
Kcs) of 40% and 86% were in-par with the image calculated VFs of 46%
and 87%, respectively, validating the VF calculations.

The GRVI images revealed crop phenological stages: whereas 9% of
the pixels’ GRVI values in the image taken 55 days from sowing were

below zero and outside of the “soil curve” pixels group (Fig. 3A), only
3% of the pixels’ GRVI were below zero and outside of the “soil curve”
pixels group in the later image at 77 days from sowing (Fig. 3B). These
pixels that don’t belong to either the soil or vegetation classified groups,
were classified as non-vegetation pixels (due to their negative GRVI
value), but could also be classified as vegetation in early phenological
stages with G/R ratio values less than 1 (negative GRVI value yields G/
R ratio below 1)—indicative of the beginning of the growing season.
Furthermore, the “vegetation curve” in the later image is further away
from the Y-axis compared to the chronologically earlier image
(Fig. 3A,B) with higher positive GRVI values, indicative of healthy and
vital vegetation suitable to the midseason phenological stage.

As can be seen in Table 2 – crop cover reaches almost 100% (full
cover) by the third flight campaign, but in later campaign there is a
drop in VF. The reason behind this is due to pest damage (wild boars;
see Fig. 1, bottom left corner). Images are not shown.

3.2. Comparison between NDVI and GRVI

Since there were two different sensors measuring the NDVI and the
GRVI (Section 2.3), the spatial resolution of the NDVI was lower (pixel
size of 0.0373m) than that of the GRVI (0.0095m), thus enabling

Fig. 2. RGB (A + C) and green-red vegetation index (GRVI) (B + D) images of
the peanut field in Havat Gadash experimental farm on 25 June (A + B, 55 days
from sowing) and on 17 July (C + D, 77 days from sowing) (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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sharper GRVI imagery. The image was taken toward the end of the
season, depicting plants in different stages of senescence. The RGB
image was classified into specific classes (bare soil, dead vegetation,
light green vegetation, dark green vegetation) using supervised classi-
fication aided by Image-Pro software (http://www.mediacy.com/
imagepro) “Smart Segmentation” algorithm (Fig. 4B). Table 3 pre-
sents the total area for each defined class, for the classified RGB, GRVI
and NDVI images. As seen in Table 3, the GRVI classification is more
similar to the RGB classification, especially in detecting light and dark
green vegetation, differentiating between healthy (dark green) and
stressed (i.e. in senescence) plants (light green). As can be seen in Fig. 4,
the GRVI captured plant senescence better than the NDVI: changes in
plant color from green to yellow are depicted more accurately in the
GRVI image than in the NDVI image. Greener vegetation (depicted in
the RGB image Fig. 4A,B) has higher GRVI values (Fig. 4C). On the
other hand, the NDVI image (Fig. 4D) did not capture the color dif-
ferences between plants that are visible in the RGB image (Fig. 4A,B).
The NDVI values are very high for most pixels (0.81-0.92, Fig. 4D),
indicating saturation of the NDVI values, probably due to high LAI
values (Daughtry et al., 2000; Eitel et al., 2009; Hunt et al., 2011). It is
probable that the differences in pixel resolution are also responsible for
the accuracy differences. Regardless, for the purpose of vegetation
classification and vigor analysis, the use of RGB VI is preferable to that

of the NDVI.

3.3. Gadot test site campaign

The images of the Gadot pivot irrigated cotton crop were taken after
the crop had reached full canopy cover (Fig. 5A,C). A closer look at the
GRVI images reveals “sector” lines, indicating differences in plant vigor
(Fig. 5B,D). The “sector” patterns are indicative of ununiformed irri-
gation, due to intermittent pivot movement: the “greener” areas prob-
ably received more irrigation, due to lower pivot speed. This could have
resulted from physical obstacles, uneven ground, malfunctioning pivot
control, etc. Whereas these “sectors” are noticeably visible in the GRVI
image, it is impossible to notice them in the RGB image. Therefore,
using the GRVI in this case is crucial in order to detect irrigation uni-
formity, irrigation malfunctions, and other subtle disturbances.

3.4. Sentinel-2 satellite VI of the Gadot test site

The NDVI and GNDVI images are pretty similar, showing high va-
lues homogenously throughout the whole field, except for the middle
left corner (Fig. 6A,B). The GRVI image is more heterogeneous, showing
patches of low values that are correlated to the UAV high-resolution
GRVI image’s patches (Figs. 5D and 6 C), indicative of the field’s

Fig. 3. Histogram of the GRVI images of the peanut field in Havat Gadash experimental farm on 25 June (A, 55 days from sowing) and on 17 July (B, 77 days from
sowing). Cumulative values are presented on major Y-axis and histogram value are presented on secondary Y-axis.
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heterogeneous plant vigor and ununiformed irrigation. The GRVI is
therefore better at presenting the real crop vigor situation. Whereas the
saturation of red reflectance at intermediate to high chlorophyll values
is well known (Gitelson et al., 2005; Kanemasu, 1974) and is typical of
NDVI, it is surprising to see that the GNDVI was also saturated and did
not show field’s heterogeneity.

3.5. Hagoshrim test site campgain

The images of the irrigated cotton at the Hagoshrim lateral move
irrigation system were taken after the crop had reached full canopy
cover albeit it is possible to see within the field bare soil lines that were
created due to the pivot’s wheels movement (Fig. 7C). A closer look at
the GRVI images reveals lines, indicating differences in plant vigor
(Fig. 7A,B). These patterns are indicators for ununiformed irrigation.
There are both horizontal and vertical lines (Fig. 7A,B). The horizontal
lines are indicative of intermittent pivot movement: Similar to the
Gadot test site, the denser biomass (greener) areas probably received
more irrigation, due to lower pivot speed. The vertical lines are in-
dicative of differences in the amount of water delivered by the different
sprinklers on board the pivot, and/or differences in the amount of
overlap of irrigation between neighboring sprinklers. The heterogeneity
in field’s plant vigor enhances as a function of time, indicative of an
irrigation machine related persistent operation malfunction that is

responsible for the ununiformed irrigation. On the practical level, such
maps can be shown to the operator (and in fact has been shown) in
order to readjust lateral water distribution of the machine, and to
identify and remove obstacles in machine movement along the travel
path.

3.6. Venus satellite VI of the Hagoshrim test site

Similarly to the findings of the Sentinel-2 satellite at the Gadot
campaign (Fig. 6), the NDVI and GNDVI images of Venus satellite
(Fig. 8A,B) are pretty similar, showing lower values of field variability,
when compared to the GRVI image (Fig. 8C). The vertical lines can be
seen in all images, albeit most clearly in the GRVI image. Horizontal
lines cannot be identified in any of the compared VI. The GRVI image is
more heterogeneous, showing patches of low values that are correlated
to the UAV high-resolution GRVI image’s patches (Figs. 7A and 8 C).
Therefore once more confirming that the GRVI is better than NDVI and
GNDVI at presenting the real crop vigor situation.

4. Discussion

Evaluating crop cover during the beginning of the growing season
with the aid of UAVs as described in this research can support and
validate farmer’s irrigation decision making process. Field irrigation

Fig. 4. RGB (A); classified RGB (B); GRVI (C) and normalized difference vegetation index (NDVI) (D) zoom-in images of the peanut field at Havat Gadash experi-
mental farm.

Table 3
Land cover classes and total area for RGB, GRVI and NDVI images of the peanut field at Havat Gadash experimental farm.

Class # pixels RGB Total area (%) RGB # pixels GRVI Total area (%) GRVI # pixels NDVI Total area (%) NDVI

Bare soil 147,886 4% 106,035 3% 62,628 1%
Dead vegetation 38,912 1% 283,692 7% 74,555 2%
Light green vegetation 1,930,192 52% 2,173,767 56.5% 407,763 11%
Dark green vegetation 1,628,823 43% 1,290,563 33.5% 3,309,329 86%
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depends on crop cover ratio, therefore up until the crop reaches full
cover, it is necessary to re-evaluate crop cover at short time intervals in
order to optimize irrigation water quantities. The technique proposed in
this research offers an affordable and accurate solution. We propose
conducting a UAV flight campaign a day before the scheduled irrigation
in order to determine the current field’s crop cover ratio, thus aiding the
farmer in determining crop specific coefficient. An aerial survey should
be conducted for every irrigation zone. In case the zone is very big, it is
possible to sample only some parts of the whole area, based on the
field’s inherent heterogeneity (e.g. soil texture, soil type, soil water
content, apparent soil electrical conductivity), and previous flight

campaigns wherein crop cover heterogeneity was observed. Such
sampling is beyond the scope of this paper, however it should be noted
that the proposed techniques for crop cover estimation and crop het-
erogeneity detection can be integrated into other existing techniques
that aim to improve the design of irrigation systems (Fortes et al.,
2015). VRI systems can use crop cover ratio findings and heterogeneity
in plant vigor in order to construct irrigation maps according to plants’
water demands and to better prescribe variable irrigation rates ac-
cording to plant size and cover ratio.

Even though much better, more accurate (and more expensive)
sensors exist in the open market, we argue that for the purpose of

Fig. 5. RGB (A + C) and GRVI (B + D) images of the cotton field in Gadot test site on 5 July (A + B) and on 24 August (C + D).

Fig. 6. NDVI (A); green normalized difference vegetation index (GNDVI) (B); and GRVI (C) vegetation indexes based on a Sentinel-2 imagery of the cotton field in
Gadot test site from 29/08/2017 (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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determining crop cover ratio, utilizing affordable CMOS sensors such as
were used in this research is adequate. Very high spatial resolution is
paramount: it cancels the problem of mixed-pixels, and allows to obtain
pure pixels of vegetation and bare soil, thus enabling to distinguish
between bare soil and vegetation.

It is possible to differentiate soil from crop cover using raw RGB
images (Fig. 2A,C). However, in order to quantify the ratio of crop
cover to bare soil, it is necessary to classify these classes. Such a clas-
sification from RGB image is very complex, since there are 2563 options
of color combinations for each pixel. Converting the RGB image into a
vegetation index simplifies the classification task tremendously. As
Motohka et al. (Motohka et al., 2010) concluded, the GRVI is very
suitable for such a task, wherein GRVI index values of above zero can be
classified as green vegetation (Figs. 2B,D, 3). Furthermore, as shown in
the results, the GRVI was sensitive to differences in crop’s plant vigor,
as expressed in chlorophyll composition and intensity, and in the
number of pixels with negative, close to zero GRVI values at various
phenological stages (Figs. 2,3), thus it could potentially be used in some
crops as an indicator in determining phenological stages, and as a
benchmark for phenological stages transitioning, such as senescence in
groundnuts in this study. The GRVI also proved to be superior to the
NDVI in detecting plant vigor, senescence, and irrigation uniformity
(Figs. 4–6).

Detecting irrigation water uniformity is crucial for the purpose of
optimizing water use and crop yields. Our results demonstrate that
specifically in pivot irrigation, it is possible to detect heterogeneity in
plant vigor that are caused due to abnormal pivot movement. The

“sectors” that are perpendicular to the pivot’s advancement direction,
or horizontal lines in lateral moves, are indicative for slower pivot
speed and over irrigation (Figs. 5,7); denser vegetation lines formed at
the direction of the machine’s advancement (vertical lines) are in-
dicative of inherent problems in the sprinkler system calibration:
overwatering / under-watering; distance between sprinklers; sprinklers’
overlap due to the height of the sprinkler from the ground (Fig. 7). High
spatial resolution UAV images are superior to the lower resolution sa-
tellite imaging in finding the “fine” lines that demarcate the field’s
heterogeneity (Figs. 5–8): whereas some of the lines were identified by
the satellites’ GRVI, it gave a rough idea towards understanding dif-
ferences of plant vigor within the field’s scale. In order to further
analyze the intricacies of the field’s heterogeneity it is necessary to get a
closer look via UAV or other higher spatial resolution devices. Still, it
was proven that satellite imaging can provide valuable information on
large spatial scales regarding the field’s plant vigor heterogeneity that
can be further investigated on finer scales upon demand.

5. Conclusions

In this study, the ability of a high-resolution RGB imaging to de-
termine vegetation cover and vigor at the canopy scale at whole-field
resolution was evaluated, using an RGB VI, namely, the GRVI. It was
concluded that the GRVI is suitable for determining vegetation cover,
distinguishing between vegetation and other land covers (such as soil
and dead vegetation, Fig. 2). The VF can be accurately measured and
used by the farmer “on the spot” in order to directly define the Kc. It

Fig. 7. GRVI (A+B) and RGB (C) images of the cotton field in Hagoshrim test site on 17 June (A) and on 26 June (B+C). Dashed arrows point to vertical vegetation
lines; solid arrows point to horizontal vegetation lines.
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was also shown that the GRVI can be used to distinguish a plant’s
phenological stages. In fact, detecting early season and senescence is
easy with GRVI: a GRVI lower than 0 indicates low plant’s vigor,
whereas a GRVI greater than zero, indicates strong plant vigor, corre-
sponding to the mid-season plant phenological stage (Figs. 2–4). It was
also concluded that the GRVI is better than the NDVI and GNDVI in
detecting subtle disturbances in mid-season (Fig. 6). High-resolution
RGB imaging can be utilized to monitor the uniformity of irrigation
water application and to detect heterogeneity in field irrigation (Fig. 5).
Since both the camera and the UAV used in this research are in-
expensive and available and the current auto-pilot UAV guiding tech-
nologies ease the use of UAVs, the presented tools should be available
for “on-the-spot” farming decision-making processes involving preci-
sion irrigation and irrigation management.
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