i T X %

| w#2 3
ReaADME

| 26 %

A

F 3

UNE:

KA,

Rig o AL o £FELHK
&5 o BEALF




BE T

« ##F T E: Word or LaTeXo

cHHEEIFNE: BT R BT AR, T 58 Mk
. MAE, FilF, REKHRLETR.

c L—RARAA: BiFHF TR, HALTFE TR IF
& (Je KZF B AR, TH., D, RAEBFE), 2AER T X
BREGIFE CTHIER I F=RiBEL),

#EFRAR

s TAR—PAFG PR mAS, RTHER A AR,

s TR FGARL, WAHAANNEESEET.

R EPHEIRMEEINA HIRY, WEBFHF LI,
“ig g7 BT e B AR S A R B AR, £ A
BiE T Ko PTA 3T R A5 69 5 S #1 B AF 64T

RIAE

s BEAMFE. BE, e, EX, HELE, UBRELTL
R FHZOREANE (el FiE. EZHA),

cFHEMX: FEF, FHEZL, FHES I, BBSEL
Bl BFFTARRIE; FLMw “F © AR(F)BE”,
H\E LT ETHRE, ASTELIRTTRE; F5 5 T
AR WA AL MO BILPI A TEE LR,

JG B

s BT F TR AR T R A, R AT
HaEh “Bi7” XT3,

c HER T ARG, FE T FALFAH PDF, REF1~2 J,

HAEE
cHMRARZHFEZRGFEN XA, B E%RE LA,
Word/Latex XA RFAELT 2 #. 1.8 LR B Mk 4K
)7

c EIFRAZRAEG AL K, A Y Y, B
tT#H, —BEITEFLR, HREFEY!

AR

Word or Latex? L F
%9 ] Word, X %
89 F Latex. Latex #HE
MEEK. TP
1% ) H A4

BREZ? KA“F 1
=11, 1117 8995 X,
REMELAR, T
#FFEAHEK, ~ER
% B %,

EREMAEBRDG? K
. AHFAGWKH R
B HERR B4 T AR
B, FHRA LA
fak@EHE, FK
EMH L,

=% ¥R+ PDF 4
Word =T f¢ F & L 4%
X R, EEMAE
Ao

JofT 15 B F A F 2
B, DR, BAKET
BN HFW, TG
. %%, iHAE PDF
A XA, A 5
1%,



Change costs
as a function
of time in

development

Cost of change
using conventional
software processes

Cost of change
using agile processes

Development cost

A e
Idealized cost of change
using agile process

-------------
-

-

o=

Development schedule progress

TF R A

Development cost

English 2
English 3

ceee

.o

3L 2
13X 3

......

BIS-1 [ v SRl

F 7

MR P PDF o # B 3
WANEAR, ATRY
T TE. MERA
Fo B b 83 B L
(EAR), LN T

WE. 7EHNEAE.

AL
mBATF L, HK

TAHARR, FELH
BeAy o Lo

Present

<< interface >>
Architecture

OwnedObject
+getOwner().Person

7Y

* owner
Person

Verify Security
Properties

Horse

-name:String

+getName|():String

Mastor Time Bar | 250.0ne <] »| Painter: | 245 18 na  Intervat | 482ne  Star |

SavEane
2502 e
=

[ ZET T 251 G579 ne
Pt SO0

o
o

2 | I3 | i |

C

Ficure4.16 A D flip-flop timing diagram illustrating its normal operation with a negative
hold time.

B |
i e il

HART
°A%@¢i?#ﬂ
F-B A, NI
ﬁ.«fi—&&ﬁ REES
L (AEESE, K
EEF), REFA

S

B EXRAARAE
St a9 B/ %

c C HMAAE. BT
AE. WA RE,



Methodology Description

Usage scenario How to change a student’s grade

Security problem | Unauthorized grade change

Threat model Inaccurate grades

Security policy Only the instructor who taught the course can change a student’s
grade.

Security 1. Instructor assigns a new grade for one of his or her student.

mechanisms 2. Department chairperson validates the grade change.
3. Afulltime staff (not a temporary helper) enters the new grade in

the secure university database system.

Architecture Create a grade-change form with spaces allocated for student name,
student ID number, course number and semester taken, reason
for changing the grade, and signature spaces for instructor and
chairperson. Also, a completed form is either mailed using the secure
on-campus mail system or hand-delivered to student records office.

Verification Confidentiality: The grade-change forms are only handled by faculty
and staff and thus remain confidential to other students.
Integrity: The chairperson’s signature authenticates a completed
grade-change form.
Availability: Depends on instructor’s decision to change a student's grade.

Evaluation The cost of grade-change forms, the time required to complete and
process a grade-change form, etc.

Taste 11.1  Developing a Paper-Based Security Mechanism to Change Students' Grades

RI-1 REH b SCRIE
Jii%: ik
F1_1 F2_1
51 2 512 2

............

F 7
MR PDF ¥ 2% & i
HENEFEAS, RTIRY
AT E. BEEAA
Fak P H) L F N K
nEHEE,

RPN 4
mEBAETFL, HR
T HME T LKA

Properties SHA-1 | SHA-256 | SHA-384 | SHA-512
Size of hash value (bits) 160 256 384 512
Block size 512 512 1024 1024
Message size (plaintext | < 2% < 2% z 2 < 21%
or ciphertext)

Number of steps 80 64 80 80

TasLe 11.8  Properties of Secure Hash Algorithms

BART

s AR POHHERE
Z R No

o XFF A 00 kA,
AR E Ik
£y L - LAt
g

AR NC]



Also, a matrix that is both left and right stochastic is known as doubly stochastic (Problem 5.16). Note
that due to this matrix constraint, we still have that

K K K K
DSHE@ =" cudm® =Y cuidm()
k=1

k=1 meNi k=1 m=1

K
= Jn(8) = J(0).

m=1

That is, summing all local costs, the global one results.
Let us focus on minimizing (5.85). The gradient descent scheme results in

9:) :8:\,'-’” e Z t'mk( m_z_ﬁ“ﬂfn)‘

meNy

Thus the LMS recursion for the linear DFE, in its complex-valued formulation, becomes,

H
dy =w,_u,

dp = Sp—r+17| in the trgining mode, or

dn =T [:1’,,] in the dekision directed mode,

€n =drr _Eirz

*
Wy =Wy—1 + Hllent,,

where T[-] denotes the thresholding operation.

Three experiments were carried out. The first involved the distributed LMS in its adapt-then-
combine (ATC) form and the second one the combine-then-adapt (CTA) version. In the third exper-
iment, the LMS algorithm was'mmmdgpeildently for each node, without cooperation. In all cases, the
step size.was.chosenequal toj u = 0.01.Figure 5.26 shows the average (over all nodes) MSD(n) :

I % f=1 [|8k(n) — 9,)||2I obtainedToreatt one of the experiments. It is readily seen that cooperation
infproVes The “perToridnce significantly, both in terms of convergence as well as in steady-state
error floor. Moreover, as stated in Section 5.13.3, the ATC performs slightly better than the CTA
version.

#|ix 7 &
FEITHAN (X
) : AR P PDF o &
B4 NFA, R
G ZAT T & #iF
X P 8 SLF LA A
x (WA, 7 kB
B A WEHFNALN
Ko

BEPHAX EX
1E): 230E RIENF
L, THRERFEN.

AL
mBATF L, HK
RN KB LT
H}]O

% WA

c BT R-FETIRE

© ATEPAE R — B R 9 A — R T R

- SR T Ak R~ R T
Ab #2323

- BlARE . B, HRAMS T, RER .
- BB RIFA, RBIRAE.

HIART

do AR AE,
T —n XA EZ I A
BAMA, FdF
FB PR Sy F BT
TSR 89 KD o



template <typename Y, typename X>

1

1 ¥ serial_sample(

3 size_t n,

4 Y table[],

5 X %

6 )

7 |/.f Compute integer part of sample position

8 = TT00T AT

9 # Look up samples at i and i+1

10 # for out of bound indices, use (0 on left and table ([n—1] on right
1 Y y0 =1 < X(0) ? Y(0)

12 : tablel[i < X(n) ? size_t(i) : n-11;

13 Y vyl = i+1 < X(0) ? Y(0)

14 : table[i+] < X{n) ? size_t(i+l) : n-1]:
15 & Linearly interpolate between samples

16 return yO0+(yl—y0)*(x—1i);

17}

1o template <typename X, typename Y=
o Y serial_integrate(

21 size_t n, #numberof samples in table

n Y tablel[]. #cumulative samples

b1} xa, # lower bound of function domain

M X by / upper bound of function domain

% X x0, # lower bound of integral

b X %1 # upper bound of integral

R |

% # Compute scale for convering x00 and xI to table indices

» X scale = X(n-1)/(b-a):

n # Look up interpolated values of indefinite  integral

a Y y0 = serial_sample(n, table, scale=(x0—a));
ko) Y yl1 = serial_sample(n, table, scalex(xl-a)});
kx} # Compute integral

) return yl—y0;

s}

LISTING 5.20

Serial implementation of integrated table lookup in C++. Two linearly interpolated samples of the table are

taken and interpolated. Out-of-bounds indices are handled as if the original function (not the integral) is zero

Algorithm 6.1 .[(The RLS algorithm)]

¢ | Initialize

c O0_,=0 any other value is also possible.
s P yg= )\_11; A > (0 a user-defined variable.
* Select 8; close to 1.

e Forn=01,... Do

* €ep=Yn— 93_1xn

* Zp=Py1x,

. . Zn

Kn . ,B+Iﬂ1n

0, =0,_1+Kyey

* Pnzﬁ_lpn—l_'ﬁ_lanI
¢« End For

#]iF 7k
MR PDF & & B H#
HNEAE, RTYG
T T E. HEME
}\o

i KA B IR (5
o R FE T
A, e P —H
F R, %
CES L L IR
Fo

iR FE
it F L, HEMR
PR BAX AL F 4] 1E o

BIART

A7 245 b 4 KD R
A 4 — 9 15 KA,
) EA 1 B 3R AT 24
REET A



Ri& e A « 5 F LMK

AI dependency }’elationship represents another connection between classes
and is indicated by a dashed line (with optional arrows at the ends and with op-
tional labels). One class depends on another if changes to the second class might
require changes to the first class. An association from one class to another auto-
matically indicates a dependency. No dashed line is needed between classes if
there is already an association between them. However, for a transient relation-
ship (i.e., a class that does not maintain any long-term connection to another
class but does use that class occasionally) we should draw a dashed line from
the first class to the second. For example, in Figure A1.2, thlass
uses the Date class whenever its getCurrentAge() method is invoked, and so the
dependency is labeled “uses.”

1 Essentials of Information Theory

1.1 Basic concepts. The Kraft inequality.s encoding

1.2 Entropy: an introduction
1.3 s first coding theorem. The entropy rate of a

Markov source

1.4  Channels of information transmission. Decoding rules.
Shannon’s second coding theorem

1.5 Differential entropy and its properties

1.6  Additional problems for Chapter 1

Cooper, Edgett, and Kleinschmidt describe a wide range of product portfolio management
methods, including financial analysis, scoring techniques, and visual mapping methods.

Cooper, Robert G., Scott I. Edgett, and Elko J. Kleinschmidt, Portfolio Management
Jor New Products, second edition, Basic Books, New York, 2001.

Fine relates product planning and competitive strategy to the decisions of supply-chain
design and strategic partnerships with suppliers.
Fine, Charles H., Clockspeed: Winning Control in the Age of Temporary Advantage,
Perseus Books, Reading, MA, 1998.

McGrath emphasizes planning of product platforms and strategy for technology-based
products.
McGrath, Michael E., Product Strategy for High-Technology Companies, McGraw-
Hill, New York, 1995.

&7 &
Ri&E: BB F RNFHER
BREARER I AER
3B, Xl BBARE,
FE T,
FET hE 2 KB R
B 5l AL L0 E R
R EX =

EE: BEAPLA X
s, KiERRE 5,

NP E S S
Tt

AL: FETRFEHT,
RELEPH—K. 2L
P#EFFHRABIFOA
4, EHTRE,

BE LK LAEE
TR FEN. 125F
SCAK P F 4 89 MR L
M T E R #IE



Index

Page numbers followed by *f™ indicates figures and “s” indicates tables.

A

Absolute speedup, 56
Acoustic wave equation, 266
Advanced Vector Extensions (AVX), 45
affinity_partitioner,352
Algorithm strategy patterns, 80
programming, 19, 20
Algorithm’s span, 4. 5
Algorithmic skeletons, 1, 20
Aliased inputs, 87
Aliasing, 96
Amdahl's Law, 5, 52, 59-60, 64, 254
A0S, see Array of structures
Application programming interface (API), 25, 32,
346
ArBB, see Array Building Blocks
Avrithmetic intensity, 50, 74, 204, 250, 265
impact of caches on, 267-270
of SAXPY, 125
raising with space—time tiling, 270-272
Array Building Blocks (ArBB), 23, 25, 27, 97, 115-116
automatic fusion in, 153-154
dot product in, 161-162
using elemental functions, 129-130
features of, 34-35

Asymptotic speedup and efficiency, 67
atomic, 356358

Atomic operations, 73, 112, 349, 356-357
Atomic scatter pattern, 183-184, 183f
Attached devices, 48—49
auto_partitioner, 352
Auto-vectorization, 349

Automatic fusion in ArBB, 153-154
Autoparallelization, 14

Autotuning, 50

AVX, see Advanced Vector Extensions

B

Bandwidth, 10, 46, 99, 139, 179, 190, 204, 227, 319

Barriers, 33, 88, 115

Basic Linear Algebra Subprograms (BLAS), 124, 125
column-major layout, 315

Big O notation, 66

Big Omega notation, 66

Big Theta notation, 66

Bilateral filtering, 200

Bin pattern, 189, 189f

Binary search, 302

bindex_type, 309

Binomial lattice recurrence, 246, 246f

“...a groundbreaker, it presents real-life algorithms and the issues and solutions to get them to profit from the coming multi/many

core evolution.”

Programming is now parallel programming. Multicore

processors are now standard, and all developers need to learn

the fundamentals of parallel algorithm design. However, much

as structured programming revolutionized traditional serial
programming decades ago, a new kind of structured programming,
based on patterns, is relevant to parallel programming today.

This book explains how to design and implement maintainable

and efficient parallel programs using a pattern-based approach.

It presents both theory and practice, drawing on multiple
programming madels in detailed, concrete examples that will help
you learn and apply efficient patterns in your applications.

Most of the many included examples use two of the most popular
and cutting-edge programming models for parallel programming

— MICHELE DELSOL,

in C++: Threading Building Blocks and Cilk Plus. These portable
programming models enable easy integration into existing

applications, preserve investments in existing code, and speed
the development of parallel applications. In short, this book:

+  (ffers structure and insight that you can apply to a variety
of parallel programming models

Develops a composable, structured, scalable, and
machine-independent approach to parallel computing

Includes detailed examples in both Cilk Plus and the latest
Threading Building Blocks, which support a wide variety
of computers

&7 &

EEl: RIIWARER

E A

* dgame (i#Fxk), 7

« Game of Thrones
(GoT, B 78935
%), 291

« A Song of Ice and
Fire (k5 kz
%), W Game of
Thrones, 577

e

s B HREAHIAL
HEIFERF

o KA oM BARE
& XEE, P F
R LR,

o Aok dees WA IS
X %, HEmB
¥ N B —ARE
JZ A A,

EALF: 2 THK.
Pyo KT8 EAE
FHEREMEF, AT O
HHHFIE. RERA
BHEgE, FHEEAAN
Fo ML TR
H P EAR R S AL

E



	目录
	README
	图
	表
	公式
	代码
	术语· 人名· 参考文献
	索引· 宣传文字

