
lable at ScienceDirect

Renewable Energy 80 (2015) 664e673
Contents lists avai
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
On the design and tuning of linear model predictive control for wind
turbines

Achin Jain a, *, Georg Schildbach b, Lorenzo Fagiano c, Manfred Morari d

a Department of Mechanical and Process Engineering, ETH Zurich, Switzerland
b Model Predictive Control Laboratory, University of California Berkeley, USA
c ABB Switzerland Ltd., Corporate Research, Baden-Daettwil, Switzerland
d Automatic Control Laboratory, ETH Zurich, Switzerland
a r t i c l e i n f o

Article history:
Received 19 August 2014
Accepted 23 February 2015
Available online

Keywords:
Wind energy
Wind turbines
Model predictive control
Sensitivity analysis
Control system tuning
* Corresponding author.
E-mail addresses: ajain@student.ethz.ch (A. Jai

(G. Schildbach), lorenzo.fagiano@ch.abb.com (L. Fagi
ch (M. Morari).

http://dx.doi.org/10.1016/j.renene.2015.02.057
0960-1481/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

This paper presents a study on the design of linear model predictive control (MPC) for wind turbines,
with a focus on the controller's tuning tradeoffs. A continuously linearized MPC approach is described
and applied to control a 3-bladed, horizontal axis, variable speed wind turbine. The tuning involves a
multiobjective cost function so that the performance can be optimized with respect to five defined
measures: power variation, pitch usage, tower displacement, drivetrain twist and frequency of violating
the nominal power limit. A tuning approach based on the computation of sensitivity tables is proposed
and tested via numerical simulations using a nonlinear turbine model. The paper further compares the
performance of the MPC controller with that of a conventional one.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In the wake of increasing demands of wind energy, today the
focus of research lies in maximizing the power output per unit
investment. This would make wind energy more competitive with
other sources of renewable energy. The production cost per unit of
power decreases with an increase in size of the wind turbines,
however the structure becomes more and more flexible. Thus, it is
important to reduce the tower displacement and drivetrain twist
in order to reduce the fatigue loads, hence eventually increasing
the life span of the wind turbine. To achieve the best performance,
the task of a controller becomes twofold: maximizing power
output from the available wind and minimizing the fatigue of the
turbine.

The classical method to control wind turbines makes use of
several proportional-integral-derivative (PID) controllers. Some of
them are effective in different regions of operation [1,2] and others
are used for switching between these regions [3]. The gains of these
controllers must be selected by considering aspects like power
output, pitch actuation effort, tower fore-aft vibration and
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drivetrain twist. Another recent research focuses on individual
pitch control (IPC) which uses different PID controllers for each
blade. With the knowledge of local asymmetrical loading on tur-
bines, it has been shown that the loads can be significantly reduced
using IPC [4,5].

Controllers based on PID offer good performance but are not
optimal. The current day research is focused more towards Gain
Scheduled Linear Quadratic Regulator (LQR) [6,7], Feedback
Linearization [8,9], H2 & H∞ Control [10e12], l1 Control [13],
Sliding Mode Control [14] and Model Predictive Control (MPC)
[15e23], most of which are based on optimization principles.
The fundamental advantage that optimization-based strategies
offer is that the problem objective can be defined explicitly by
putting weights on the relevant quantities we aim to limit, for
instance: loads on tower, high speed shaft twist, power output
from turbine etc.

In particular, MPC is a natural choice for a control algorithm for
wind turbines because it is effective at handling multivariable
systems with input and state constraints. Another potential
advantage that MPC offers is its ability to predict behavior in future
using a plant's model. Thus, it can use feedforward information to
optimize the inputs while also considering the future states. If a
prediction of the disturbances (wind) is also known through an
estimationmodel [24], it further improves the controller's ability to
reject these disturbances.
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Fig. 1. Power coefficient, Cp.
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Several variants of MPC have been proposed for the problem of
wind turbine control. In one of the earliest studies [16], linear MPC
(LMPC) was successfully implemented on an onshore and an
offshore wind turbine model. To account for the nonlinearities,
which [16] did not, in Ref. [17] a scheduledMPC (SMPC) is designed,
where the controller switches from one linear model to another
depending on the operating point. Both SMPC and LMPC showed
better speed control and load reduction in comparison to a baseline
controller, at an expense of higher pitch usage. However, SMPC
could perform better over LMPC only in speed control. In Ref. [18] it
has been further illustrated that the performance of LMPC,
continuously linearized MPC (CLMPC) and nonlinear MPC (NMPC)
are comparable and not much better than a well-tuned PID
controller. Thus, the linearized wind model very well captures the
nonlinearities in the wind turbine. It is also seen that under perfect
predictions of the wind speed, all the variants of MPC perform very
well in load mitigation and speed control avoiding an increase of
pitch activity when the turbine operates in the above rated region.
The results for the perfect wind speed measurement are, however,
not realistic. A more practical approach employs LIDAR to measure
wind speed before the wind actually reaches the wind turbine [25].
In Ref. [19], Laks shows that even distorted measurements with
LIDAR are better than having no preview at all. This result is also
validated by Soltani [20] where mean wind speed estimated from
LIDARmeasurements is used as previewwith LMPC. It exhibits load
reduction and lower power fluctuation over a PID controller in
extreme wind conditions. Koerber [21], Schlipf [22] and Spencer
[23] have also shown that, in above rated conditions, MPC with
knowledge of future wind condition helps to reduce loads signifi-
cantly but the effect is most prominent when the wind is changing
rapidly. While the literature discussed till this point deals with
loads on the tower, [26] has demonstrated the use of MPC in
reducing the blade fatigue loads.

From the above studies, it is evident that SMPC or CLMPC are
sufficient to capture the nonlinear behavior of the wind turbine.
The knowledge of future wind definitely gives MPC an edge over
other control strategies, but the accuracy with which it can be
measured and the cost surrounding measurement equipments
remain issues that must still be resolved. On the other hand, while
several publications indicated that MPC can be beneficial for wind
turbine control, none of them discusses its tuning procedure.
Indeed, tuning of MPC is a crucial part of the design and it might be
a non-trivial task when multiple competing objectives are present,
like in wind turbine control, such that a tradeoff between different
performance measures has to be defined. To fill this gap in the
literature, this paper discusses a tuning procedure for a continu-
ously linearized model predictive controller by forming a mean-
ingful objective function which explicitly accounts for 5 different
performance indices. For the reasons discussed above, the paper
primarily focuses on MPC without wind preview.

This paper is organized as follows. In section 2, a nonlinearmodel
of the wind turbine is derived. In section 3, the simulation envi-
ronment for MPC including the wind model, the performance
indices and a baseline controller for comparison is described. In the
following sections, the formulation of the model predictive
controller is discussed together with a systematic approach to tune
the control parameters. In section 6, qualitative and quantitative
comparisons ofMPCwith a baseline controller are presented. Finally,
the paper concludes with a discussion on the achieved results.

2. Model of the wind turbine

For the sake of this study, we consider a 3-blade horizontal axis
pitch-regulated wind turbine. In particular, the parameters of the
NREL 5 MW wind turbine [27], adapted from Ref. [16], are
considered (see Appendix). The turbine model comprises the dy-
namics of 5 essential subsystems, as described in the following.

2.1. Aerodynamics

The momentum of the wind is transferred to the rotor by means
of an aerodynamic torque, given by the relation

Tr ¼ Pr
ur

; (1)

where ur is the rotor speed and Pr is the equivalent power gener-
ated during the interaction of wind and turbine blades. Pr is a
function of the wind speed vw, blade radius R, air density r, and
coefficient of performance Cp:

Pr ¼ 1
2
rpR2v3wCp: (2)

Cp is the ratio of power extracted by the wind turbine to power
carried by the wind and is a function of blade pitch angle q and tip
speed ratio l. The tip speed ratio is defined as

l ¼ vw
urR

: (3)

The wind also exerts a thrust force Ft on the rotor and turbine
which depends on the thrust coefficient Ct,

Ft ¼ 1
2
rpR2v2wCt : (4)

Cp and Ct are typically known from measurements. Their
dependence on q and l is shown in Fig. 1 and Fig. 2.

2.2. Rotor mechanics

The transmission of power from rotor to generator is illustrated
in Fig. 3. The wind produces an aerodynamic torque Tr on the rotor.
The inertia of rotor and generator sides is represented by Jr and Jg,
respectively. The low speed shaft is modeled as a flexible shaft with
damping coefficient Ds and spring constant Ks. The shaft experi-
ences twist d due to varying torques on both ends. The gearbox
couples the two rotating masses modeled as discs. Td,r and Td,g are
the torques across the transmissionwhose gear ratio is indicated by
Ng. The gearbox is assumed to have perfect mechanical efficiency. Tg
is the resulting generator torque:

Td;g ¼ Td;r
Ng

: (5)



Fig. 2. Thrust coefficient, Ct.

Fig. 3. Turbine mechanics [28].
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Applying Newton laws of mechanics yields the following
equations:

_uJr ¼ Tr � Td;r ; (6)

_uJg ¼ Td;g � Tg: (7)

The governing equations for the drivetrain twist are:

Td;r ¼ Ds _dþ Ksd; (8)

d ¼ Ur � Ug

N
; (9)

_d ¼ ur � ug

N
: (10)

Ur and Ug represent angular position of the rotor and generator
shaft, while ur and ug represent the corresponding angular
velocities.
2.3. Tower dynamics

Due to the variability of the thrust force Ft, the tower exhibits
fore and aft motion whose displacement x is modeled assuming a
spring-mass-damper system:

Mt€xþ Dt _xþ Ktx ¼ Ft : (11)

Mt, Dt and Kt are the mass, damping constant and spring constant of
the tower, respectively. The motion of the tower changes the rela-
tive wind speed vrw at the rotor by the velocity of tower _x:
vrw ¼ vw � _x: (12)

2.4. Generator dynamics

The generator is modeled as a first order system with time
constant tT:

_Tg ¼ � 1
tT

Tg þ 1
tT

Tg;ref : (13)

Here, Tg,ref is the demanded torque and Tg is the output torque. The
losses in transmission have been assumed to be zero. Therefore, the
power output Pe is given by

Pe ¼ Tgug: (14)

2.5. Pitch actuation

The pitch is controlled collectively. The pitch actuator is
assumed to follow second order dynamics:

€qþ 2zun _qþ u2
nq ¼ u2

nqref : (15)

Here, qref and q are the demanded and actual pitch angles, respec-
tively, z denotes the damping of pitch actuator and un denotes the
natural frequency of the actuator.

2.6. Steady state solution

Overall, the model has eight states x :¼ ur;ug ; d; x; _x; q; _q; Tg
� �T

,
two controllable inputs u: ¼ [qref,Tg,ref]T and one uncontrollable
input (disturbance), vw. The state space representation of the
nonlinear model is given by the following nonlinear ordinary dif-
ferential equations:

_ur ¼
Pr
�
ur ; q; v

r
w
�

urJr
� urDs

Jr
þ ugDs

JrNg
� dKs

Jr
;

_ug ¼ urDs

JgNg
� ugDs

JgN2
g

þ dKs

JgNg
� Tg

Jg
;

_d ¼ ur � ug

Ng
;

€x ¼ �Kt

Mt
x� Dt

Mt
_xþ 1

Mt
Ft
�
ur; q; v

r
w
�
;

€q ¼ �u2
nq� 2zun _qþ u2

nqref ;

_Tg ¼ � 1
tT

Tg þ 1
tT

Tg;ref :

(16)

The nonlinear model (16) can be written in a compact form as:

_x ¼ f ðx;u; vwÞ: (17)

A steady state solution ð _x ¼ 0Þ for this model can be calculated
as a function of wind speed vw; such solutions will be used in
section 4.1 to linearize the model. Fig. 4 shows the optimal trajec-
tory (i.e. the one that maximizes the generated power) for power
output, rotor speed, tower displacement and pitch angle under
steady state conditions. Tower displacement velocity and pitch rate
are zero under steady state operation.

As it is well-known [2], the turbine operating range is usually
divided in two subregions, the so-called Region 2 and Region 3.
Region 2 is characterized by low wind speeds and below rated
operation (here, between cut-in speed of 3m/s and about 11m/s, see
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Fig. 4). The objective in this region is to extract as much power as
possible by selecting optimal Cp. It can be seen in Fig. 4 that for a
constant tip speed, Cp is maximum for q ¼ 0 deg. So, the optimal
pitch angle q ¼ 0 deg is selected throughout this region, and only
torque control is required. For the sake of simplicity, we do not
consider explicitly the so-called Region 2 1

2, which is defined in be-
tween the Regions 2 and 3, where the wind turbine achieves the
rated speed but still the power output is lower than the rated value.
However, since in Region 2 1

2 the control objective and the control
input are the same as in Region 2, i.e. power maximization and
torque, respectively, the sameMPC tuning as in Region 2 can be used.

Region 3 is characterized by high wind speeds, in this case
greater than 11m/s. In these conditions the operation can no longer
continue at constant pitch angle, since themechanical power needs
to be limited in order not to exceed the generator's rated power.
Thus, as the wind speed increases, the pitch angle must be
increased so that the angle of attack, and hence the lift on the
blades, decreases. The aim in this region is thus power limitation.

3. Performance criteria and baseline controller

3.1. Wind model

Wind speed profiles were generated using a dynamic wind
simulator, based on [15]. With a specified mean wind speed, wind
direction, and turbulence level, the simulator provides a statistical
windmodel that closely approximates thewind profiles that a rotor
would experience in reality.

We used the simulator to generate several cases with different
mean wind speeds perpendicular to the face of rotor, both in Re-
gions 2 and 3 for tuning ourMPC control parameters. As regards the
Fig. 4. Optimal trajectory under steady state conditions with vw [m/s] on x-axis.
estimation of the effective rotor wind speed, required by the
considered MPC strategy, a comprehensive review on this problem
and on the related approaches that exploit available measurements
can be found in Ref. [24].
3.2. Performance criteria

We consider five indices to evaluate the performance of the
controller:
3.2.1. Average power output/power variation (W)
For Region 2, an important performance criterion is the mean

power output over a given time interval T,

AP ¼
X
t¼1

T PeðtÞ
T

: (18)

The higher the value of AP, the better the controller's
performance.

In Region 3, the performance criterion of interest is the root
mean square value of the deviation of the generated power from
the rated power output

PV ¼

0
BBB@
PT

t¼1
�
PeðtÞ � Pe;nom

�2
T

1
CCCA

1
2

: (19)

The lower the value of PV, the better the controller's
performance.
3.2.2. Tower displacement (m)
It is desirable to minimize the displacements of the tower xðtÞ

from its steady state position ~xðtÞ due to a changing wind speed.
This quantity is taken as a measure of the tower fatigue caused by
changing loads:

TD ¼
PT

t¼1
��xðt þ 1Þ � ~xðtÞ��

T
: (20)
3.2.3. Pitch usage (deg/s)
Rapid changes in pitch are undesirable, since they cause fatigue

in the pitch actuator. Also, higher pitch activity can provoke vi-
brations in the structure if the resonance frequencies of the tower
are excited [6]. Hence, the average pitch angle deviation during the
considered time is computed:

PU ¼
PT

t¼1

���qref ðt þ 1Þ � qref ðtÞ
���

T
: (21)

The lower PU, the better the controller's performance. This ap-
plies only to Region 3, since in Region 2 the pitch is always fixed.
3.2.4. Drivetrain twist rate (rad/s)
As another measure of loads, the following criterion is consid-

ered to account for the fatigue on the drivetrain shaft:

DT ¼
PT

t¼1jdðt þ 1Þ � dðtÞj
T

: (22)

This is also equivalent to considering the variability of the
generator's torque, since the latter is closely related to drivetrain
twist, see (8).
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3.2.5. Frequency of power exceeding nominal
Only meaningful in Region 3, this criterion quantifies howmany

times the power exceeds the rated value:

PEN ¼
XT
t¼1

cðtÞ; (23)

cðtÞ ¼
�
1; if PeðtÞ> Pe;nom;
0; if PeðtÞ � Pe;nom:

(24)

Clearly, it is not possible to obtain the best of every criterion,
since for example a lower power variation usually implies a higher
pitch usage. There is always a compromise which can be set by
tuning the controller. The choice of the control approach influences
what are the achievable tradeoffs (within the limits of what is
physically possible) and how easy it is to tune the control law.

3.3. Baseline controller

To have a term of comparison for the MPC controller, a baseline
controller is considered. The latter is a discrete-time controller with
sampling time Ts, which is the same as that used by the MPC law. In
particular, Ts is chosen such that the sampling frequency is greater
than the frequency of the fastest pole of the linearized model
(eigenvalue lmax of A in (29)), in the considered case 14.15 rad/s.
Thus, Ts ¼ 0.1 s has been chosen here.

3.3.1. Region 2
The conventional controller used in Region 2 is torque-based

control which tries to always operate the turbine at the most effi-
cient power coefficient, C�

p . l
* is the corresponding tip speed ratio

[2]:

Tg;ref ¼
0:5rpR5l�3C�

pu
2
r

Ng
; qref ¼ 0: (25)

3.3.2. Region 3
In Region 3, a PID controller is used. The pitch angle is controlled

using proportional-integral-derivative action on error in rotor
speed tracking:

qref ðtÞ ¼ KpueðtÞ þ Ki

Zt

0

ueðtÞdtþ Kd
dueðtÞ
dt

; (26)

ueðtÞ ¼ urðtÞ � ur;nom: (27)

The parameters Kp, Ki and Kd are designed using a similar
methodology as in Ref. [29]. The generator torque is controlled by a
feedback of the generator speed:

Tg;ref ðtÞ ¼
Pe;nom
ugðtÞ : (28)

The control signals of the PID controller are limited according to
the input constraints that are present (discussed in section 4.3).

Equations (26e28) form the controller's structure. The values of
Kp, Ki and Kd depend on the wind speed and can be designed by
evaluating performance given by the five criteria introduced above,
for a wide range of gains. For a particular wind scenario with mean
wind speed of 15 m/s, Fig. 5 shows the dependence of performance
on Kp and Kd. As a matter of fact, the integral gain does not have
much influence on the performance, so that the value Ki ¼ 1 was
chosen such that the controller stabilizes the system for a wide
range of Kp and Kd. The values for the latter have been selected
(marked by * in Fig. 5) to achieve similarly good performance across
all measures with slightly higher weight on power variation.
4. Design and tuning of linear model predictive control

The central idea behind using MPC [30] is to solve a finite time
horizon optimal control problem in discrete time. The ability of
MPC to handle actuator and state constraints, especially in MIMO
systems, provides a potential advantage over traditional PID con-
trollers. In this section, a linear MPC formulation for a wind turbine
is derived, by defining the model, the cost function and the con-
straints. Once these ingredients have been set, the MPC law is
implemented through a receding horizon strategy, where at the
current time step only the first term of the solution sequence is
applied to the plant, and at the next time step the whole optimal
control problem is solved again, once the updated state variables
have been measured.
4.1. Linearization

The turbine model (16) is continuously linearized at the current
estimated wind speed ~vw to account for the nonlinear system
behavior. The linearization makes LMPC computationally more
tractable than NMPC. ~x and ~u represent corresponding steady state
and steady input, respectively. Linearization of (17) can be
expressed as

_x ¼ A ~vwð Þbx þ B ~vwð Þbu þ Bd ~vwð Þbvw; (29)

where

bx ¼ x� ~x; bu ¼ u� ~u; bvw ¼ vw � ~vw; (30)

Að~vwÞ ¼ vf
vx

����
ð~x;~u;~vwÞ

; Bð~vwÞ ¼ vf
vu

����
ð~x;~u;~vwÞ

; Bdð~vwÞ ¼
vf
vvw

����
ð~x;~u;~vwÞ

:

(31)

The linear model is then discretized with sampling time Ts by an
explicit Euler method.
4.2. Cost function

The optimization is carried out with a quadratic cost function
which is optimized at each time step:

J ¼ min
u

bxNPbxTN þ
X
t¼0

N�1 bxTt Qbxt þ buT
t Rbut : (32)

Q and R are diagonal, positive definite weight matrices that
penalize the deviations from the steady state ~xt and steady input ~ut ,
respectively, over a horizon lengthNwhich can be tuned for desired
performance. For a finite horizon problem, a terminal cost bxNPbxTN ,
P_0 can be chosen such that feasibility is ensured at all times [30].
4.3. Constraints

The optimization is subject to constraints concerning both the
states and the inputs. In particular, input constraints arise from
actuator limitations: there is a limit on howmuch and how fast the
blades can pitch. Similarly, the generator has a limitation on the
maximum and minimum torque it can provide:



Fig. 5. Performance of a conventional PID controller in Region 3 as a function of Kp and Kd for Ki ¼ 1.
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qmin � q � qmax; (33)

_qmin � _q � _qmax; (34)

Tg;min � Tg � Tg;max: (35)

The strength of rotor assembly dictates the maximum rotational
speed it can bear, and the minimum speed is dictated by the
generator:

ur � ur;max; (36)

ug � ug;min: (37)

The input and state constraints mentioned above are hard
constraints on the turbine operation. Theymust be followed strictly
to avoid any damage to the wind turbine system. There are also soft
constraints. For instance, when operating in Region 3, power
should not vary much above the nominal power Pe,nom because
overcurrents/overvoltages can lead to thermal stresses [28]. So,
imposing a power constraint is a reasonable approach to the
problem:

ugTg � Pe;nom: (38)

This constraint is a bilinear relation between two of the states
which cannot be implemented as such in a linear optimization
problem. So, the power constraint was linearized according to
Fig. 6. This linearization is chosen such that it is tangent to the
constant nominal power curve at nominal set point (ug,nom,Tnom),
which is a slightly conservative approximation. The area marked by
dashed lines denotes the feasible region. The linear approximation
(solid gray line in Fig. 6) is

u2
g;nomTg þ Pe;nomug � 2Pe;nomug;nom: (39)
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While in Region 3, (39) plays an important role; in Region 2 it
always remains inactive.

5. Tuning procedure

The typical way to design the objective function is to look for the
weights Q and R on states and inputs, respectively, that achieve a
satisfactory performance, via a trial-and-error procedure. Such a
procedure can be time-consuming and non-trivial, especially when
many different aspects have to be balanced. We propose here a
systematic approach to tune the MPC law, such that the procedure
is easier and the interpretation of weights becomes more mean-
ingful. This is done in two steps:

1) Modifying the cost function to account explicitly for power maxi-
mization, and setting zero-terms in the weight matrix

In Region 2, the aim is power maximization and in Region 3,
power limitation. So, maximizing power in both regions super-
imposed with the power constraint (39) is an approach suitable for
both regions. In the light of the above argument, the objective
function can be augmented with a power maximization term, xTt Sxt
(compare equation (32)):

J ¼ min
u

bxNPbxTN þ
XN�1

t¼0

bxTt Qbxt þ buT
t Rbut � xTt Sxt ; (40)

where S is a positive semi-definite matrix, nonzero only for the
terms corresponding to the product of ug and Tg in the state vector.
This new term has a negative sign since the aim is to maximize
power; moreover, since the generated power is a concave function
of the state, the cost function J (40) is still convex. To this end, note
that the new term accounts for the whole state x (and not only its
deviation bx from the linearization point ~x).

5.1. Region 3

Table 1 presents the sensitivity of the four performance mea-
sures for awind profile in Region 3, if the objective function is based
on (32). Unlike all the performance criteria listed in Table 1, the
frequency of power exceeding the nominal value shows bidirec-
tional behavior, in the sense that if it increases with increase in
some weight, it might decrease when the same weight is further
increased. So, it has been excluded in evaluating the sensitivity
Fig. 6. Linearized power constraint with region of feasibility.
table. Nevertheless, this indicator provides useful insight while
comparing PID with MPC. All the cost weights in (32) were initially
set to 1

~x
2 or 1

~u
2 to normalize the contribution of each state and input

to the cost function. This choice is referred to as “base weights”
here. The weights were then increased ([) or decreased (Y) by a
factor a (10 in this case) one at a time, and Table 1 shows howmuch
a performance measure changed when a specific weight was
modified with respect to the base value. As a matter of fact,
changing the weights on ur, ug, _xt and Tg did not change the per-
formance significantly in any of the criteria. So, these terms are
excluded from the cost function. The effect of input weights is not
shown in the table for space limitations but the same behavior as
the corresponding states has been observed. Excluding the redun-
dant states from the cost function, (40) can be redefined with 4
states, 2 inputs and 1 power maximization term:

Q ¼ diag
�
0;0; qd; qx;0; qq; q _q;0

�
; (41)

R ¼ diag
�
rqref ; rTg;ref

	
: (42)

The sensitivity analysis with this objective function is shown in
Table 2. The weights which are the most favorable for performance
are highlighted in bold and the most unfavorable in italic.

2) Finding appropriate weights for non-zero terms in the cost function

Once all the nonzeroweight terms are identified, the next step is
iterating between sensitivity tables defined at new set points, in
order to find suitable values for such weights. For instance, Table 2
is calculated with respect to the base values. To reduce the pitch
usage, the weight on _qmay be increased or qmay be decreased by a
factor a. This forms a new base and a new sensitivity table can be
calculated for it by again increasing and decreasing each weight by
a. The local validity of the sensitivity table makes it necessary to
recompute it again after a change has been made.

Table 2 also illustrates the trade-off between different perfor-
mance measures. If the weight on the pitch rate is increased, pitch
usage is reduced but power variation and tower displacement both
increase. This effect can be explained by the fact that higher pitch
rate weight restricts the actuator from quickly adjusting the pitch
with the changing wind speed.

Table 2 has been calculated for meanwind speed of 15m/s. Next,
we analyze the correlation of this sensitivity table with another one
calculated for different mean wind speed (18 m/s) in Table 3. A
correlation matrix was calculated by dividing the corresponding
sensitivity values from the two tables. The sensitivity values are
very highly correlated for all the performance measures across all
the weights. A negative correlation is observed only when the
corresponding sensitivity values are very small, which is irrelevant
anyways.
5.2. Region 2

In Region 2, only 3 performance measures are relevant: PA, TD
and DT, because power output is always below nominal limit and
the pitch is always fixed. A similar analysis (Table 4) in this region
reveals that the sensitivity of these three measures on the weights
is very low as compared to Region 3. Now, the contribution of tower
displacement and tower velocity to performance becomes insig-
nificant and therefore, x and _x can be removed from the objective
function. The weights on ur and ug have similar effects and can be
assigned an equal weight. Again, after removing the redundant
terms from the cost function, the Q and Rmatrices can be rewritten
as:



Table 1
Sensitivity of performance measures on state weights with J(32) and base at steady state in Region 3.

Criteria ur ug d x _x q _q Tg

[ Y [ Y [ Y [ Y [ Y [ Y [ Y [ Y

PV 5.26 0.00 5.05 0.00 1.06 0.25 22.22 0.00 1.95 �0.01 2.54 0.03 0.49 3.42 1.63 0.15
PU 0.05 0.00 0.05 0.00 0.05 0.00 22.38 �0.25 4.17 �0.04 13.82 �0.17 �0.98 3.20 0.05 0.00
TD 0.03 0.00 0.03 0.00 �0.07 0.00 �0.48 0.02 �0.03 0.00 �0.46 0.01 0.04 �0.41 0.03 0.00
DT 0.00 0.00 0.00 0.00 �0.04 0.01 2.24 0.00 0.07 0.00 0.03 0.00 0.00 �0.01 0.00 0.00

Table 2
Sensitivity of performance measures on state weights with J(40) and base at steady state in Region 3.

Criteria Pe d x q _q

[ Y [ Y [ Y [ Y [ Y

PV �0.02 0.00 0.04 0.00 �0.25 0.04 ¡0.42 0.68 0.82 ¡0.43
PU 0.00 0.00 0.00 0.00 0.59 �0.06 0.26 �0.10 ¡0.21 0.39
TD 0.00 0.00 0.00 0.00 �0.07 0.01 ¡0.09 0.09 0.11 ¡0.11
DT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3
Correlation of sensitivity between different wind scenarios, mean speed of 15 (m/s) and 18 (m/s).

Criteria Pe d x q _q

[ Y [ Y [ Y [ Y [ Y

PV 0.58 0.59 0.52 0.50 0.99 1.07 0.75 0.35 0.39 0.81
PU 1.42 1.41 24.33 14.58 1.86 1.88 0.77 0.71 1.16 1.31
TD �2.52 �2.34 �3.12 �4.25 1.72 1.42 0.63 0.06 0.19 0.98
DT 0.20 �0.13 1.21 1.18 1.88 1.76 �0.36 �0.87 1.00 1.03

Table 4
Sensitivity of performance measures on state weights with J(32) and base at steady state in Region 2.

Criteria ur ug d x _x Tg

[ Y [ Y [ Y [ Y [ Y [ Y

AP 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TD �0.009 0.001 �0.009 0.001 �0.003 0.001 �0.001 0.000 0.000 0.000 0.004 �0.002
DT �0.022 0.002 �0.022 0.002 0.074 �0.021 �0.003 0.000 0.002 0.000 0.042 �0.021
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Q ¼ diag
�
qu; qu; qd;0;0;0;0; qTg

	
; (43)

R ¼ diag
�
0; rTg;ref

	
: (44)

As seen before, the inclusion of the generated power in the cost
function helps to increase the power output. This is taken into ac-
count for further computations in section 6.

6. Results

In order to evaluate the performance of the MPC law tuned with
the described approach, two simulation scenarios have been
considered. The first one has mean wind speed of 8 m/s and tur-
bulence of 7% which lies completely in Region 2 and the other one,
lying in Region 3, has meanwind speed of 15 m/s and turbulence of
3%. The direction of the wind in both the scenarios is perpendicular
Table 5
Performance comparison of MPC and PID in Region 2.

AP [kW] TD [m] DT [rad/s]

Torque based 1763.8 0.0041 2.1e-5
MPC (Initial) 1719.8 0.0194 1.8e-4
MPC (Final) 1763.4 0.0040 1.7e-4
to the surface of the rotor. Both the cases were simulated for 600 s
with a time horizon of 2 s in MPC. As a matter of fact, the length of
the prediction horizon has a small effect on the obtained perfor-
mancewhenwind preview is not considered. Still, the use of MPC is
advantageous due to the capability of handling constraints effec-
tively and explicitly in the control design. The convex optimization
problem was solved using Gurobi [31]. As shown by several con-
tributions in the literature, the real-time implementation of the
controller can be achieved reliably in practice, either by optimizing
on-line [32,33] or by pre-computing off-line the corresponding
explicit controller [34].

6.1. Region 2

The comparison of performance between MPC and that of the
torque-based control in Table 5 shows that it is indeed difficult to
outperform the latter, especially without preview. This result is also
Table 6
Performance comparison of MPC and PID in Region 3.

PV [W] PU [deg/s] TD [m] DT [rad/s] PEN [�]

PID 1407 0.53 0.0067 7.95e-5 2976
MPC (init.) 1863 1.07 0.0082 8.14e-5 958
MPC (final) 735 1.35 0.0066 8.14e-5 1936



Table 7
Sensitivity of performance measures on state weights with base at final tuning in Region 3.

Criteria Pe d x q _q

[ Y [ Y [ Y [ Y [ Y

PV �0.01 0.00 0.01 0.00 �0.37 0.06 �0.61 0.68 0.86 ¡0.63
PU 0.00 0.00 0.00 0.00 0.55 �0.06 0.26 �0.11 ¡0.22 0.39
TD 0.00 0.00 �0.01 0.00 �0.13 0.02 �0.20 0.11 0.15 ¡0.22
DT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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supported by Refs. [22,23]. This can be attributed to the fact that all
the constraints in below rated conditions are inactive, and it is only
in the presence of constraints that MPC is most effective. For MPC,
the data in Tables 5 and 6 represent the absolute values of the
performance indices calculated with base values and with tuned
values for the cost weights, the latter obtained obtained after
several iterations of the procedure described in section 5. With
initial tuning, the baseline controller performs better in all the
considered criteria. The final, tuned weights are such that a
reasonable comparison can be made with the baseline controller,
but there always exists a room for trade off between different
performance measures.

The comparison was done for mean wind speed of 8 m/s.
Quantitatively, both power output and tower displacement are
more or less the same but the drivetrain twist rate is much larger
with MPC (with tuned weights). Sensitivity on weights for the final
tuning parameters can be used to further investigate the possibility
of finding a different trade-off with MPC.

6.2. Region 3

Table 6 compares the performance of MPC against a PID
controller which was tuned for a particular wind profile with
mean wind speed of 15 m/s. With the base weight values, i.e. the
initial tuning settings, MPC performed worse in 4 out of 5 criteria.
Table 2 has then been used to tune MPC with the objective of
reducing power variation. From the Table, one can see that the
sensitivities of power variation with respect to increasing the
weight on the pitch angle and decreasing the weight on the pitch
rate are the most negative. Hence, we choose to increase the
weight on the pitch angle. In subsequent steps, the weights on the
power term and pitch angle were further increased to reach the
final tuning where MPC performs better in 3 out of 5 criteria. In
particular, the comparison shows that MPC performs much better
in reducing the power variation and limiting the frequency of
exceeding nominal power with final tuning. MPC can achieve
almost half power variation while exceeding the nominal power
only two-third times of PID (total simulation time steps are 600 s/
Ts). Tower displacement in both the cases is very much compa-
rable. The benefits with MPC come at an expense of higher pitch
usage. Drivetrain displacement is very small in both cases but
nonetheless, the PID controller performs slightly better in this
criterion.

Table 7 shows the sensitivity of changing the weights for the
final tuning. It suggests that a decrease in the pitch usage is possible
by decreasing theweight on pitch angle or increasing theweight on
pitch rate, but both of these would have an adverse effect on power
variation as well as tower displacement. Also, Fig. 5-(a) suggests
that the power variation that MPC is able to achieve seems unat-
tainable with PID for any combination of gains. This shows the
trade-off between different measures and it is an indication of the
fact that MPC cannot outperform PID in all the measures simulta-
neously. However, the pitch usage with MPC is still much lower
than the limits imposed by the pitch actuator.
7. Conclusions

The paper presented an approach for designing and tuning
linear MPC for wind turbines. The performance of MPC can be very
sensitive to cost weights which were selected by trading off five
underlying criteria: Power Output/Power Variation, Tower
Displacement, Pitch Usage, Drivetrain Twist Rate and Frequency of
violating nominal power limit. These factors are very much related
and there is always a compromise between them. It has been
observed that even without preview, a well-tuned MPC, by means
of multiobjective optimization, can outperform a conventional
controller like PID in above rated conditions. However, in below
rated conditions, MPC does not prove to be beneficial over the
baseline torque-based control. Overall, the presented study in-
dicates that a relatively systematic procedure can be set-up to
properly tune the MPC controller, and that MPC can yield a higher
flexibility than conventional controllers when the power output
needs to be limited to a certain value. Considering the trend of
modulating and controlling the power output of wind farms in
order to meet grid stability requirements, this feature may prove to
be crucially important in the next future.
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Appendix. Model parameters

r ¼ 1:225
h
kg

.
m3

i

Pe;nom ¼ 5e6 ½W�

Ng ¼ 97 ½ � �

ur;nom ¼ 1:26 ½rad=s�

ug;nom ¼ 122:91 ½rad=s�

ug;min ¼ 70:16 ½rad=s�

Jr ¼ 5:9154e7
h
kgm2

i

Jg ¼ 500
h
kgm2

i

Ks ¼ 8:7354e8 ½Nm=rad�
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Ds ¼ 8:3478e7
h
kgm2

.
rad

.
s
i

R ¼ 63 ½m�

H ¼ 90 ½m�

Mt ¼ 4:2278e5 ½kg�

Kt ¼ 1:6547e6 ½Nm=rad�

Dt ¼ 2:0213e3
h
kgm2

.
rad

.
s
i

un ¼ 0:88 ½rad=s�

z ¼ 0:9 ½ � �

tT ¼ 0:1 ½s�

qmin ¼ 0 ½deg�

qmax ¼ 25 ½deg�

_qmin ¼ �8 ½deg=s�

_qmax ¼ 8 ½deg=s�
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