Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
463 lines (353 sloc) 13.1 KB
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::basicThermo
Description
Abstract base-class for fluid and solid thermodynamic properties
SourceFiles
basicThermo.C
\*---------------------------------------------------------------------------*/
#ifndef basicThermo_H
#define basicThermo_H
#include "volFields.H"
#include "typeInfo.H"
#include "IOdictionary.H"
#include "autoPtr.H"
#include "wordIOList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class basicThermo Declaration
\*---------------------------------------------------------------------------*/
class basicThermo
:
public IOdictionary
{
protected:
// Protected data
//- Phase-name
const word& phaseName_;
// Fields
//- Pressure [Pa]
volScalarField& p_;
//- Temperature [K]
volScalarField T_;
//- Laminar thermal diffusuvity [kg/m/s]
volScalarField alpha_;
//- Should the dpdt term be included in the enthalpy equation
Switch dpdt_;
// Protected Member Functions
//- Construct as copy (not implemented)
basicThermo(const basicThermo&);
volScalarField& lookupOrConstruct
(
const fvMesh& mesh,
const char* name
) const;
//- Return the enthalpy/internal energy field boundary types
// by interrogating the temperature field boundary types
wordList heBoundaryTypes();
//- Return the enthalpy/internal energy field boundary base types
// by interrogating the temperature field boundary types
wordList heBoundaryBaseTypes();
public:
//- Runtime type information
TypeName("basicThermo");
//- Declare run-time constructor selection table
declareRunTimeSelectionTable
(
autoPtr,
basicThermo,
fvMesh,
(const fvMesh& mesh, const word& phaseName),
(mesh, phaseName)
);
// Constructors
//- Construct from mesh and phase name
basicThermo
(
const fvMesh&,
const word& phaseName
);
//- Construct from mesh, dictionary and phase name
basicThermo
(
const fvMesh&,
const dictionary&,
const word& phaseName
);
// Selectors
//- Generic lookup for each of the related thermodynamics packages
template<class Thermo, class Table>
static typename Table::iterator lookupThermo
(
const dictionary& thermoDict,
Table* tablePtr
);
//- Generic New for each of the related thermodynamics packages
template<class Thermo>
static autoPtr<Thermo> New
(
const fvMesh&,
const word& phaseName=word::null
);
//- Generic New for each of the related thermodynamics packages
template<class Thermo>
static autoPtr<Thermo> New
(
const fvMesh&,
const dictionary&,
const word& phaseName=word::null
);
//- Specialisation of the Generic New for basicThermo
static autoPtr<basicThermo> New
(
const fvMesh&,
const word& phaseName=word::null
);
//- Destructor
virtual ~basicThermo();
// Member functions
static const word dictName;
static word phasePropertyName
(
const word& name,
const word& phaseName
)
{
return IOobject::groupName(name, phaseName);
}
word phasePropertyName(const word& name) const
{
return basicThermo::phasePropertyName(name, phaseName_);
}
static const basicThermo& lookupThermo(const fvPatchScalarField& pf);
//- Check that the thermodynamics package is consistent
// with energy forms supported by the application
void validate
(
const string& app,
const word&
) const;
//- Check that the thermodynamics package is consistent
// with energy forms supported by the application
void validate
(
const string& app,
const word&,
const word&
) const;
//- Check that the thermodynamics package is consistent
// with energy forms supported by the application
void validate
(
const string& app,
const word&,
const word&,
const word&
) const;
//- Check that the thermodynamics package is consistent
// with energy forms supported by the application
void validate
(
const string& app,
const word&,
const word&,
const word&,
const word&
) const;
//- Split name of thermo package into a list of the components names
static wordList splitThermoName
(
const word& thermoName,
const int nCmpt
);
//- Update properties
virtual void correct() = 0;
//- Return true if the equation of state is incompressible
// i.e. rho != f(p)
virtual bool incompressible() const = 0;
//- Return true if the equation of state is isochoric
// i.e. rho = const
virtual bool isochoric() const = 0;
//- Should the dpdt term be included in the enthalpy equation
Switch dpdt() const
{
return dpdt_;
}
// Access to thermodynamic state variables
//- Pressure [Pa]
// Non-const access allowed for transport equations
virtual volScalarField& p();
//- Pressure [Pa]
virtual const volScalarField& p() const;
//- Density [kg/m^3]
virtual tmp<volScalarField> rho() const = 0;
//- Density for patch [kg/m^3]
virtual tmp<scalarField> rho(const label patchi) const = 0;
//- Enthalpy/Internal energy [J/kg]
// Non-const access allowed for transport equations
virtual volScalarField& he() = 0;
//- Enthalpy/Internal energy [J/kg]
virtual const volScalarField& he() const = 0;
//- Enthalpy/Internal energy
// for given pressure and temperature [J/kg]
virtual tmp<volScalarField> he
(
const volScalarField& p,
const volScalarField& T
) const = 0;
//- Enthalpy/Internal energy for cell-set [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const labelList& cells
) const = 0;
//- Enthalpy/Internal energy for patch [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const label patchi
) const = 0;
//- Chemical enthalpy [J/kg]
virtual tmp<volScalarField> hc() const = 0;
//- Temperature from enthalpy/internal energy for cell-set
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0, // starting temperature
const labelList& cells
) const = 0;
//- Temperature from enthalpy/internal energy for patch
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0, // starting temperature
const label patchi
) const = 0;
// Fields derived from thermodynamic state variables
//- Temperature [K]
virtual const volScalarField& T() const;
//- Temperature [K]
// Non-const access allowed for transport equations
virtual volScalarField& T();
//- Heat capacity at constant pressure [J/kg/K]
virtual tmp<volScalarField> Cp() const = 0;
//- Heat capacity at constant pressure for patch [J/kg/K]
virtual tmp<scalarField> Cp
(
const scalarField& p,
const scalarField& T,
const label patchi
) const = 0;
//- Heat capacity at constant volume [J/kg/K]
virtual tmp<volScalarField> Cv() const = 0;
//- Heat capacity at constant volume for patch [J/kg/K]
virtual tmp<scalarField> Cv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const = 0;
//- Gamma = Cp/Cv []
virtual tmp<volScalarField> gamma() const = 0;
//- Gamma = Cp/Cv for patch []
virtual tmp<scalarField> gamma
(
const scalarField& p,
const scalarField& T,
const label patchi
) const = 0;
//- Heat capacity at constant pressure/volume [J/kg/K]
virtual tmp<volScalarField> Cpv() const = 0;
//- Heat capacity at constant pressure/volume for patch [J/kg/K]
virtual tmp<scalarField> Cpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const = 0;
//- Heat capacity ratio []
virtual tmp<volScalarField> CpByCpv() const = 0;
//- Heat capacity ratio for patch []
virtual tmp<scalarField> CpByCpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const = 0;
// Access to transport state variables
//- Thermal diffusivity for enthalpy of mixture [kg/m/s]
virtual const volScalarField& alpha() const;
//- Thermal diffusivity for enthalpy of mixture for patch [kg/m/s]
virtual const scalarField& alpha
(
const label patchi
) const;
// Fields derived from transport state variables
//- Thermal diffusivity for temperature of mixture [J/m/s/K]
virtual tmp<volScalarField> kappa() const = 0;
//- Thermal diffusivity for temperature
// of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappa
(
const label patchi
) const = 0;
//- Effective thermal diffusivity for temperature
// of mixture [J/m/s/K]
virtual tmp<volScalarField> kappaEff
(
const volScalarField&
) const = 0;
//- Effective thermal diffusivity for temperature
// of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappaEff
(
const scalarField& alphat,
const label patchi
) const = 0;
//- Effective thermal diffusivity of mixture [kg/m/s]
virtual tmp<volScalarField> alphaEff
(
const volScalarField& alphat
) const = 0;
//- Effective thermal diffusivity of mixture for patch [kg/m/s]
virtual tmp<scalarField> alphaEff
(
const scalarField& alphat,
const label patchi
) const = 0;
//- Read thermophysical properties dictionary
virtual bool read();
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "basicThermoTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //
You can’t perform that action at this time.