

ElasticHosts
Flexible servers in the cloud

Richard Davies
CEO, ElasticHosts Ltd

February 2009

Cloud infrastructure
API standardization

ElasticHosts
Flexible servers in the cloud

Background

ElasticHosts
• Second European cloud infrastructure provider,

public beta launched November 2008

• First public cloud based upon KVM, the native Linux
virtualization platform

• API released1 December 2008

Need for
standardized

API

• Stimulate ecosystem (e.g. CohesiveFT, RightScale)
by enabling identical code to run against all clouds

• Counter customer concerns about vendor lock-in to
a specific cloud

1See http://www.elastichosts.com/products/api

ElasticHosts
Flexible servers in the cloud

Ambitions for API standardization

Swift progress
• Amazon EC2 the de-facto standard today;

new standard must swiftly gain momentum to
survive

• Practical approach needed to rapidly agree on core
functionality (e.g. starting a server);
only 15-20 calls are needed!

Great design
• Learn from real-world experience (e.g. EC2 added

Elastic IPs, Elastic Block Store; we can build in)

• Agree simple semantics and simple syntax enabling
cloud vendors and ecosystem to implement swiftly
and developers to quickly learn and use the API

ElasticHosts
Flexible servers in the cloud

The case for great API design

Amazon EC2 ElasticHosts GoGrid

Total calls in API 38 20 15

Starting a server
with static IP and
persistent drive

3 calls with ~1000
bytes of data

1 call with ~100
bytes of data

1 call with ~100
bytes of data

API documentation 300 pages 1 page overview 20 pages

Amazon EC2, ElasticHosts and GoGrid APIs offer similar functionality.
ElasticHosts and GoGrid demonstrate the power of a cleaner, simpler approach:

Sources: http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-dg.pdf, http://www.elastichosts.com/products/api, http://wiki.gogrid.com/wiki/index.php/Api

Clean, simple APIs that developers
can quickly learn and use

ElasticHosts
Flexible servers in the cloud

Design principles: Simple semantics

Few powerful
orthogonal
commands

• Each call adds overhead, both in code and response times

• Produce a few powerful calls which do the work of many
smaller ones – e.g. a single call for “start server”, rather
than many to configure each aspect of the server

No artificial
abstractions

• Hide internal implementation details wherever possible.

• Virtual server hardware should be specified in the well-
known language of physical hardware – e.g. MHz of CPU
cores, GB of RAM, GB of IDE hard drives

Immediate
response where

possible

• Almost all API commands should be synchronous, and
should complete within seconds of all input data arriving

The API must be very fast for developers to learn and use. They should be able to
get started with minimal documentation and a few examples.

Summarized from: http://www.elastichosts.com/blog/2009/01/01/designing-a-great-http-api/

ElasticHosts
Flexible servers in the cloud

Design principles: Simple syntax

Choice of syntax

• Commands should be available in XML, JSON and text
“skins” for ease of use by all users

Use of internet
standards

• Reuse standard HTTP mechanisms wherever possible:
for security (SSL/TLS), authentication (basic auth), error
codes (status codes), choice of “skins” (content-
type/accept), etc.

The API must be easy to call from a range of standard tools – e.g. from a single
command at the Unix shell using the curl command line HTTP tool

Summarized from: http://www.elastichosts.com/blog/2009/01/01/designing-a-great-http-api/

