
Ontogrid’s Negotiation Service
integration with

GRAAP’s WS-Agreement

Shamima Paurobally
University of Westminster

S.Paurobally@westminster.ac.uk
Michael Wooldridge, Valentina Tamma

University of Liverpool

2

Motivation

Ontogrid’s Negotiation Service has
negotiation protocols + strategies
• Would benefit from a well-defined contract

structure

WS-Agreement has a well-defined template
• Would benefit from negotiation mechanisms for a

process to reach the agreement

Next Step of post-Ontogrid: Integrate
Ontogrid’s negotiation service with WS-
Agreement?

3

Objective of this Presentation

Describe the implementation of our
negotiation service
Propose the next step: integrate with WS-
Agreement

One of the requirements of WS-Agreement:
“Must be composable with various

negotiable models: it must be possible to
design negotiation protocols which
compose with schemas defined by WS-
Agreement”

4

Aims and Objective for Negotiation in
OntoGrid

Deploy MAS cooperation techniques in
(semantic) Grid
Not the aim:
• “put agents in the Grid”

• we are non-intrusive

Area of specific attention:
• negotiation & agreement

Develop semantic grid services that enable
software components to coordinate and
negotiate to satisfy their overall goals

5

Implementation of WS-Negotiation

Prototypes implemented for:
Contract Net Protocol for task allocation
Bilateral bargaining protocol
English auction with timeouts for resource

allocation

Deployed in Apache Axis and Tomcat
(Version 1)
Reusable GT4 implementation (Version 2)
Integrated with OntoGrid architecture
Deployed in Car Repair Grid

6

Four Elements to a Negotiation

1. Messages that can be exchanged (public)
• Port-type of web service e.g. offer, bid, accept, cfp,

propose, submit_bid
2. Negotiation protocols (public)

• Sequence of invoking the methods e.g. provider cfp →
consumer propose → provider accept → consumer
inform

3. Preferences (private)
• To decide what makes a good deal e.g. reserve prices

4. Decision strategies (private)
• To evaluate and generate the content of the messages

e.g. time dependent concession

7

Architecture of the Negotiation Service

Bilateral Protocol

Negotiation
Service

GT4 Container
do_Negotiation(bidders epr)

realizes

get_result(agreement_speech_act)

auction_result(winning_bid_speech_act)

accept(agreement_speech_act)
reject(rejection_speech_act)

submit_bid(highest_bid_speech_act)
bid(counter_bid_speech_act)

offer(offer_speech_act)
cfp(call_for_proposal_speech_act)
propose(proposal_speech_act)
refuse(refusal)

Negotiation Resource

preferences strategies creates Factory Service
Negotiation

Contract Net Resource

Bilateral Resource
English Auction Resource

Contract Net Factory Service
English Auction Factory Service
Bilateral Factory Service

Contract Net Protocol

English Auction

8

English Auction for Resource
Allocation in the Grid

repeated
until auction deadline

Resource Provider

Resource Consumers1. submit_bid(issue1,… ,issuen)

2.bid(issue1,…,issuen)

3.submit_bid(highest_bid)

4. bid(issue1,… ,issuen)

result(winning_bid)

Do_negotiation

9

Element 1: Exposed Methods

Methods that can be invoked on a
negotiation-capable web service defined in
WSDL

Auctioneer Bidder

submit_bid

inform_result

get_participating

get_result

do_Negotiation

get_result

get_highest_bid
auction_deadline

10

DoNegotiation_List
<xsd:element name="doNegList">

<complexType name="doNegListType">
<sequence>
<element name="context_job" type="xsd:string"/>
<element name="AuctionDeadline" type="xsd:int"/>
<element name="RoundDeadline" type="xsd:int"/>
<xsd:element ref="tns:bidder_list"/>
<xsd:element ref="tns:NameofIssuesList"/>
</sequence>

</complexType>
</xsd:element>

Example of Name of Issues List: {price, responseTime,
statementNumber,…}

11

Methods Parameters:
Speech Act Subject

<xsd:element name="Speech_Act_Subject">
<complexType name="Speech_Act_Sub">
<sequence>

<element name="sender" type="wsa:EndpointReferenceType"/>
<element name="context_job" type="xsd:string"/>
<xsd:element ref="tns:IssuesList"/>
<element name="bid_number" type="xsd:int"/>
<element name="deadline" type="xsd:int"/>
</sequence>

</complexType>
</xsd:element>

IssuesList is a list of tuple issues {(name, value, isNegotiable),….}
Example (EPR of provider, JobID YU7,

{(price,£20,true), (response,20ms,false)}, bidNo 3, 1000ms)

12

Bidder and Auctioneer API

do_Negotiation(DoNegList doNegotiation_List)

Speech_Act_Subject
submitBid(Speech_Act_Subject highest_bid)

Speech_Act_Subject
informResult(Speech_Act_Subject winning_bid)

ResultNegBean get_result(ContextJob)

13

Element 2: English Auction Protocol

Methods that can be invoked on a web
service defined in the WSDL file

Auctioneer Bidder

submit_bid(current_highest_bid)

get_participating

get_result

do_Negotiation(Neg_list)

get_result

bid(counter_bid)

inform_result(winning_bid)

14

Business Logic of Auctioneer

do_negotiation(Do_neg_list)
Auctioneer

Factory
Initialise auctioneer resource

WS-DAIONT

Get preferences of auctioneer
from database

Decision
Strategies

Get strategy of auctioneer

Delegate
auction to
auction house

Auction House

15

Auction House (Auction Rounds)
public class AuctionHouse implements Runnable{
public void run(){

inform bidders of start of the auction;
highest_bid = empty starting bid;

while the auction deadline is not reached {
for each bidder, call submit bid(highest bid) on each bidder;

wait for round deadline;
if any bids have been submitted {

highest bid = evaluate best bid(list received bids,
auctioneerPreferences);}

else no bids have been received, break;
} //end while, auction has ended
overall winning bid = highest bid of last round;
check that overall winning bid is within reserve preferences;
inform all bids of the overall winning bid and bidder;

} }

16

Business Logic of Bidder

submit_bid(highest_bid)
Bidder
Factory

Initialise bidder resource

WS-DAIONT

Get preferences of bidder
from database

Decision
Strategies

Get strategy of bidder

Evaluate
highest bid
and generate
counter_bid

Decision Making
Algorithms

17

Element 3: Preferences Ontology
Preferences capture a user’s profile and are stored in
distributed databases in Ontogrid’s WS-DAIOnt
Preferences for each issue
• Issue Name e.g. price
• Preferred value e.g. A seller has a preferred value of £30 for price
• Prefers High or Low e.g. A seller prefers high value for price and so will

concede in a negotiation
• Reserve value (maximum or minimum value) e.g. A seller has minimum

value for price
• Is Negotiable e.g. price is negotiable, colour of a car is non negotiable
• Weight of issue (normalised)

• If weight of price issue is 0.7 and #statements is 0.3, then price is more
important

• Utility (normalised)
• e.g. how useful is £30 for price for a seller (could vary with time, resources)

18

Element 4: Decision Making Strategies

Auctioneer to evaluate bids and choose
highest bid. Calculated from:
• List of received bids
• Auctioneer preferences

Bidder to evaluate current highest bid and
generate counter bid. Calculated from:
• Current highest bid
• Bidder preferences
• Auction history
• Auction and bidder deadlines

19

Implemented Decision Strategies

Truth-Telling

Decrement

Cost Endowment

Utility evaluation

Time dependent

Utility based generation

Opponent dependent

Increasing complexity

20

Example: Utility Strategy
Evaluation of a bid:

• Evaluation of an issue

• Score of a proposal

i
i

ii
i Utility

reserve
bidValuereserveV ×

−
=

||

j
nj

jproposal VweightV ∑
≤≤

=
1

21

Example Results – Stability of Market

0

0.5

1

1.5

2

0 5 10 15 20 25 30

U
t
i
l
i
t
y

o
f

O
f
f
e
r
s

Offer Number

Convergence for Deadline = 9 seconds

Decrement strategy
Opponent strategy

Truth strategy
Time Dependent strategy

22

Next Step: Integrate with WS-Agreement

Negotiation Protocol

SpeechAct
Type

SpeechAct
Type

WS-
Agreement

WS-
Agreement

A bid is of type WS-Agreement instead of type Speech Act Subject
WS-Agreement submitBid(WS-Agreement highest_bid)
WS-Agreement informResult(WS-Agreement winning_bid)

Preferences and
Strategies

Preferences and
Strategies

23

Refactoring the SpeechAct

<complexType name= "Speech_Act_Subject">
<sequence>

<element name="sender"
type="wsa:EndpointReferenceType"/>

<element name=“deadline" type="xsd:int"/>
<element name="bid_number" type="xsd:int"/>
<element name="context_job" type="xsd:string"/>

<xsd:element ref="tns:IssuesList"/>
</sequence>

</complexType>

WS-Agreement

Context

Service Description
Term/Name

SDT +
service properties

24

2 Significant Changes

Changing from IssuesList to SDT and
service properties
• IssuesList is a list of tuple issues {(name, value,

isNegotiable),….}
• How to extract the issues from the resulting WS-

Agreement structure for the decision making

Addition of guarantee terms
• Currently no guarantee terms in our negotiation
• But could add them easily if we donot negotiate

about them

25

Possible Future Work

Translation from speech act subject to WS-
Agreement
2-part negotiation: negotiation about
resources/service and minor negotiation
about guarantee terms
• Our negotiation service has not considered

negotiation about guarantee terms. Should there
be any negotiation about them?

• Can they be quantified for decision making?
Where do the agreement and run-time
states fit in?

Thank
You

