
GWD-I B. Long, University of Westminster
Category: Informational V. Getov, University of Westminster
Service Management Frameworks – RG June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 1

A Generic Model for the OGSA Platform

Status of This Memo

This memo provides information to the Grid community interested in OGSA platforms. It does not
define any standards or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract

A simple architecture for an OGSA Platform model is described that provides a single
system image (SSI) for Grid users, compilers, applications and services over a
heterogeneous environment without excessively sacrificing flexibility.

Contents

Abstract.. 1
1. Introduction ... 2
2. Background... 2
3. Environment Binding... 2

3.1 Binding via identity substitution... 3
3.2 The Quanta Language .. 3

4. A Generic OGSA Integrated Platform Model.. 4
4.1 Namespace Management... 4
4.2 The Execution Environment.. 5
4.3 Binding: Specialized binaries for each machine and user interface type 5
4.4 Architecture and the user experience ... 6

5. Examples of models for various host environments... 7
6. Conclusions .. 7
7. Security Considerations.. 8
Author Information ... 8
Intellectual Property Statement ... 8
Full Copyright Notice ... 8
References .. 9

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 2

1. Introduction
The draft specification for an Open Grid Services Architecture (OGSA)[7] platform
specifies that Grid services are built and managed according to the Open Grid
Services Infrastructure (OGSI)[4] specification, and it describes a number of
platform interfaces which applications may use to find and manage data, policies,
security information, etc. Lastly, it is proposed in the OGSA Platform draft that
XSD[14] models of common resources be used to standardize the use and
management of common resources.

The draft specification does not express how, on an arbitrary host, in a
heterogeneous environment, tasks can be run, binaries that access local resources
can be created and executed, and how a user interface can be accessed, perhaps on
a non-local host. Some of this functionality is implemented in the Globus Toolkit[6,
16]. This document outlines a solution in which an abstract modeling language is
used as an intermediate language to respond to changes in an environment by
choosing from among a variety of solutions such as building a specialized binary to
take advantage of new hardware or working with a different user interface paradigm.
The described solution provides a single system image (SSI)[15] for both service and
application binaries by having languages compile to the intermediate language.

2. Background
Quanta is a light-weight core language for describing objects and classes, and
systems of objects and classes; an engine can then be used to make inferences
about the objects and classes in order to instantiate objects or query and manipulate
them. By extending the engine’s namespace to include other namespaces or outside
objects, Quanta and the engine can be used to manipulate and query such systems
as easily as internal objects. A variety of methods for accomplishing a task can be
represented allowing the engine to determine an optimal method. Lastly, a Quanta
engine can be made to translate sequences, conditionals and repetitions into code
providing the ability to produce a C file or a binary specialized for a particular
environment. It can be used as an intermediate language by compiling, for example,
C++ or Java byte code to Quanta. The Quanta language and engine are described in
[12].

3. Environment Binding
Since many of the resources and services upon which an application or service relies
during execution vary in format from environment to environment, a generic
platform must be able to identify any environment-specific functionality and make an
appropriate substitution of identical functionality at build time, load time, or even
during execution. To accommodate such specialization, we mention three types of
binding common to most environments.

• Binding to local resources. High speed local resources such as graphics
hardware, FireWire ports, or cards on the local bus can be utilized more
efficiently if the binding to them is not through a Grid Service on the local
host.

• Binding to build and run binaries or perform calculations. The binaries

used to perform tasks may vary over environments as well as over the

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 3

method of executing the task. On a low level, binaries must be built per
environment to bind to the local operating system or processor type. For
example, an operation to process a block of data may be implemented as a
loop on one machine but a parallel operation on another.

• Binding to a user interface platform. Applications or services that must

interface with users on a heterogeneous system must be bound to a local user
interface platform such as the Windows GUI, Java Swing, or a Web-based UI.
If the user is not at the local machine, as is common with distributed gaming,
programs may be bound to a user interface proxy.

3.1 Binding via identity substitution
The method being described to bind programs to an environment is to represent
situations that may vary over environments and, at the appropriate time, substitute
an environment-specific situation that provides equivalent functionality. In the
simplest case, such a situation may be of a call to a function or an assignment
operation. More complex binding operations, such as binding to custom processing
hardware or specializing the creation of a binary, may require substitutions through
sequences, conditionals, or repetitions. With the addition of nested substitutions, the
creation of complex compositions of services, local resources, and user interface
components may be automated.

3.2 The Quanta Language
Quanta models classes, objects, and systems of objects in such a way that the
effects of using a modeled system can be inferred. Objects classified can be digital or
analog, physical, or abstract. A Quanta Engine can use the models to infer what use
of resources on the local system or on a network can be substituted to meet given
binding requirements. The engine then makes the required substitutions. Because
the engine can make substitutions involving the von Neumann structures of
sequences, conditionals, and repetitions of information manipulations, entire
algorithms can be reworked as needed to take advantage of new resources and
accomplish a task or instantiate an object. The following are some of the major
components of the Quanta language:

• Numeric, string, and Boolean literals
• Names / functions
• Identity assertions
• Informatic membership, union, difference, intersection and complement
• Block, repetition, and conditional constructions
• A connection to the local system, e.g., ability to make certain system calls.

Using identity assertions, any construction of the above components can be
hierarchically mapped to any other one. For example, a function can be mapped to
an algorithm or to a system call, while a repetition or sequence can be mapped to
the results of running a parallel processor using a given algorithm.

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 4

4. A Generic OGSA Integrated Platform Model
The generic Grid platform model being described has three aspects: namespace
management, the execution environment, and binary-to-environment binding. While
the platform is executing on a local host platform, it is running in the context of one
or more virtual organizations (VO)[5]. In addition to any VOs with which the platform
engine associates due to membership or affiliations of the owner, a global VO will
exist and operate in much the same way that P2P services such as Kazaa operate,
yet without the purpose of mass file sharing.

4.1 Namespace Management
The platform engine running on its local host will maintain a hierarchical namespace.
The local namespace will include references and Quanta descriptions of such items as
the following:

• Local hardware available
• Local file systems and objects/services
• References to local users, their local settings and objects
• Local settings

In addition, each VO of which the system is a member will provide resources to the
namespace. In particular, the global Grid VO will provide a global namespace
managed by the peer-to-peer cooperation of all the systems in the VO. By storing
files and other objects in their global grid namespace folder, users and VOs will be
able to access and manage their information globally, even if their own machines are
currently down.

Other entities referenced in the namespace are running processes and version
information through Quanta descriptions.

A global VO provides a global
public namespace

It can be used to refer to
public knowledge
(datasets, objects,
class definitions, etc.)

It could provide public
services such as IM,
DNS, or authentication.

Users and VOs can create
folders under their control
for distributed storage for
files, streams, email, etc.

Local objects can
remain separate

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 5

4.2 The Execution Environment
A process begins executing when it is created in the namespace and its “executing”
property is set to true. Other properties express whether it is running on the local
machine, a remote machine, or on multiple machines from one or more VOs.

To support the widest variety of situations and preferences, there are three
executions modes under this proposed generic platform model. In the Direct Model
mode, the algorithms to be executed or the queries to be run are specified as Quanta
models. The Quanta engine decides how best to execute them, whether to do so
itself, build specialized binaries and execute them on remote machines, or execute
pre-specified processes or Java code[8] on remote machines via GRAM[9, 13].
Perhaps a particular task will be divided into parts and executed on different
machines by all three methods. In Intermediate mode, programs written in
traditional languages such as C++, Perl, or .Net CLR can be compiled to Quanta as
an intermediate language. The Quanta code can then be executed in Direct Model
mode. Lastly, in Immediate mode, binaries and Java code built by other means can
be executed directly using GRAM.

4.3 Binding: Specialized binaries for each machine and user interface type
The heterogeneous nature of Grid computing requires generalizing over both
hardware and user interface types. By using an intermediate language which can
model hardware, user interface types, and applications, the Generic platform engine

The Generic OGSA Platform Execution Model: Three Modes

Direct Model Mode
Binary

Byte
Code

Pgmr. writes Quanta code
Quanta subtasks are built

And managed on an appropriate
system as Grid Services.

Binary only

J2EE / .NET

Generic OGSA
Grid Platform

Intermediate Language Mode

C, Java,
C#, .NET
Perl, Etc.

Pgmr. writes source code

Quanta
Code

Compiled to Quanta as an Intermediate Lang.

Immediate Mode Binary
or Byte
Code Executable Grid Service is instantiated

Quanta
Code

Quanta
Object

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 6

may build specialized binaries for each new situation. There need not be a “Grid user
interface”; rather, each situation can be mapped to the location, available UI
platforms, and preferences of the user.

4.4 Architecture and the user experience
In addition to the standard OGSA services, the generic platform running on a
machine offers a number of services to both users and other such running platforms
if they are in a shared VO. The system will retain policies about which users are
offered which services, as well as which machines or VOs can request them. When a
user is identified at one of the connection points the platform is monitoring, perhaps
at the local machine or by a web interface, services will be offered and delivered by
finding or building a binary that instantiates the requested application with the user
interface required. Some aspects of the task may be done through interpretation
rather than building a binary.

By offering and expecting certain services from peers, a VO or a union of VOs will be
made to have a single system image. This SSI can carry out tasks or offer services
independent of any particular machine. Thus, once a user starts an application, it
may not be apparent which machine or machines are actually carrying out the
computations or storing the information. Because messages from users are marked
as originating from a user in the namespace, not from a machine, the users can
switch machines in the middle of an application and have the UI follow them and
even adjust for heterogeneity.

The decentralized nature of such a process, together with the existence of a global
VO, makes possible applications such as Grid-based DNS, public authentication, or
decentralized IM to run outside the context of a hosting organization. It also makes a
high degree of cooperation possible; for example, while a cell phone may be able to
broadcast video over TCP/IP to one or two viewers, if it were broadcast to a folder in
the global VO (perhaps the folder represents a URI), the VO could ensure that the

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 7

broadcast was replicated at strategic points and could serve the video at almost any
scale.

5. Examples of models for various host environments
The models that populate the system’s namespace are held and communicated in
Quanta documents. Based on their use and lifetime, four categories of documents
can be identified. Below are examples of documents that might exist in a finished
product; they are in no way prescriptive and may be altered considerably in the final
platform.

Library documents are static and available on all platform hosts. They include models
of mathematical classes, identities and functions. Other library documents may
describe typical computer hardware, data structures and algorithms. Objects such as
queues, strings and streams, as well as memory, network nodes and common CPUs
may be described. Also, documents may describe Grid concepts such as the OGSA
protocols, OGSI and other API’s and utilities. For example, a Quanta document might
map names and functionality to LDAP[10] or UDDI[17] documents to facilitate the
use of such services. Those document maps would be built on a lower Quanta
document mapping the names implied by XML[14], XSL[14] and intermediates such
as SOAP[1].

Local system documents give the engine enough information to identify local users,
use local hardware, understand policies, offer services, and log on to and participate
in VOs including the global VO. Such documents might describe local hardware, local
users, and have descriptions of services to be offered, and to whom they should be
offered.

Host environment documents may describe particular types of hosting environment
such as MS Windows, Java or SUN environments. Documents detailing how to
compile and build binaries or C programs are an example, as well as one detailing
the execution environment; how to run and interact with processes. Also, any local
user interface types can be detailed.

Lastly, a number of Quanta and WSDL[2] documents will be exchanged when an
engine connects to any VOs, including the global VO. Such documents might include
models expressing network topology, authentication information, collective
namespace negotiation, or the locations of GIIS [3] servers.

6. Conclusions
The problem of performing an action in a heterogeneous environment must be
solved by identifying identicals, whether code, objects, functions or otherwise, and
making a substitution that is compatible with the host environment. This substitution
can be done by the programmer with conditionals, or at build-time, load-time or
runtime. Since the logic of substituting identicals is the same whatever the problem
or time, rather than creating a special tool for each situation, Quanta can be used to
specify which situations can be substituted for and what substitutions are valid. The
Quanta engine, when coded to be an OGSA platform, can be made to find optimum
substitutions and make them, whether at code-time, run-time, or in-between, in the
context of the Global Grid. Such a system would facilitate the use of new and legacy
code in many languages, provide an extensible, global namespace, and change the

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 8

perspective for Grid-based applications and services from that of “running on a local
host while accessing distributed resources” to “running on the Grid.”

7. Security Considerations

As with any platform, security is a primary concern. With a Quanta based OGSA platform the
greatest security threat is that a rogue Quanta document with false information may be introduced
to the engine. For example, one can imagine a definition for a square-root function that actually
causes harm to local data. Such a threat is analogous to introducing harmful binary code to a
Windows operating system in such a way that it executes. Unlike binary code, however, Quanta
documents contain names for every entity they directly access or modify. One step in establishing
trust of a document is to scan for what objects the document refers to and verify that it abides by
policies defined, for example, by black lists, or white lists.

In addition to establishing the trustworthiness of documents, care should be taken to ensure that
any platform engines use secure protocols such as HTTPS and utilize security mechanisms such
as Kerberos or PKI. Work should proceed with the results of the OGSI security working group
under consideration.

Author Information

Bruce Long
School of Computer Science
University of Westminster
Watford Rd, Northwick Park
Harrow, London HA1 3TP, U.K.
B.D.Long@westminster.ac.uk

Vladimir Getov
School of Computer Science
University of Westminster
Watford Rd, Northwick Park
Harrow, London HA1 3TP, U.K.
V.S.Getov@westminster.ac.uk

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (date). All Rights Reserved.

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 9

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

References

1. D. Box, et al, “Simple Object Access Protocol (SOAP)”, W3C, http://www.w3.org/TR/SOAP/, (May

8, 2000).
2. E, Christensen, “Web Services Description Language (WSDL)”, W3C, (March 15, 2001).
3. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid Information Services for Distributed

Resource Sharing,” Proc. 10th IEEE International Symposium on High-Performance Distributed
Computing (HPDC-10), IEEE Press, http://www.globus.org/research/papers/MDS-HPDC.pdf (2001)

4. K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, D. Snelling, S. Tuecke, and P. Vanderbilt,
“Open Grid Services Infrastructure (OGSI),” Open Grid Service Infrastructure WG, Global Grid
Forum, http://www.ggf.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-26_2003-03-13.pdf (March 13,
2003).

5. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” Intl J. Supercomputer Applications, vol. 15, no. 3,
http://www.globus.org/research/papers/anatomy.pdf (2001).

6. I. Foster and C. Kesselman, “The Globus Toolkit,” The Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C. Kesselman, ed., Morgan Kaufmann Publishers, San Francisco,
California, 1999, pp. 259-278.

7. I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke, “The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration,” Open Grid Service Infrastructure WG,
Global Grid Forum, http://www.globus.org/research/papers/ogsa.pdf, (June 22, 2002).

8. V. Getov, G. von Laszewski, M. Philippsen, I. Foster. “Multi-Paradigm Communications in Java for
Grid Computing,” Communications of the ACM, vol. 44, no. 10, 118-125, (October 2001).

9. The Globus Project, “GRAM: Grid Resource Allocation and Management,”
http://www.globus.org/about/events/US_tutorial/slides/Dev-06-ResourceManagement1.pdf (2002).

10. J. Hodges, “An LDAP Roadmap & FAQ,” http://www.kingsmountain.com/ldapRoadmap.shtml,
(December 6, 2001)

11. K. Kennedy, “Compilers, Languages, and Libraries,” The Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C. Kesselman, ed., Morgan Kaufmann Publishers, San Francisco,
California, 1999, pp. 181.-204

12. B. Long, “Quanta: a Language for Modeling and Manipulating Information Structures,”
http://perun.hscs.wmin.ac.uk/pages/bruce/ (December 2002).

13. S. Martin, “GT3 GRAM Overview,” http://wwwunix.globus.org/ogsa/docs/alpha/gram/
gt3_gram_overview.htm (January 8, 2003).

GWD-I June 6, 2003

B.D.Long@westminster.ac.uk, V.S.Getov@westminster.ac.uk 10

14. L. Quin, “Extensible Markup Language (XML), W3C,” http://www.w3.org/XML/, (February 26,
2003).

15. B. Rajkumar, T. Cortes, and H. Jin, “Single System Image (SSI),” The International Journal of High
Performance Computing Applications, vol. 15, no. 2, summer 2001, pp. 124-135.

16. The Globus Project, “Status and Plans for Globus Toolkit 3.0,” http://www.globus.org/
toolkit/gt3-factsheet.html (February 19, 2003).

17. UDDI.org, Universal Description, Discovery and Integration, “UDDI Technical White Paper,”
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf (September 6, 2000).

