
GWD-R (draft-ggf-crm-crmspec-1)  E.Stokes, IBM 
Category: TYPE N. Butler, IBM 
Common Resource Model BOF  17 February 2003 
   

crm-wg@gridforum.org   1 

 

Common Resource Model (CRM) 
 
Status of This Memo 
 
This document provides information to the Grid community regarding the OGSA Common 
Resource Model specification.  Distribution of this document is unlimited. This is a DRAFT 
document and continues to be revised. 
 

Abstract 

 
Manageable resources are exposed as Grid services in OGSA.  This specification defines a 
Common Resource Model to describe the structure of a manageable resource as an OGSA 
service.  The Common Resource Model builds upon existing resource model standards such as 
DMTF’s Common Information Model meta-model 
(http://www.dmtf.org/standards/standard_cim.php) and IETF’s Management Information Base 
(MIB) (http://www.ietf.org/RFCxxxx).  It is assumed that the reader is familiar with the Global Grid 
Forum’s Grid Service Specification (http://www.globalgridforum.org/ogsi-
wg/drafts/GS_Spec_draft15-2003-02-13.pdf) and the W3C’s XML Schema specifications 
(http://www.w3c.org/TR/xmlschema-1 and http://www/w3c.org/TR/xmlschema-2).  Concepts from 
IBM’s Solution Management work are also incorporated. 
 
 
Contents 
 
Abstract .................................................................................................................................1 
1. Notational Conventions .................................................................................................3 
2. Overview......................................................................................................................3 

2.1 Schema ....................................................................................................................4 
2.2 Manageability portTypes ............................................................................................5 

3. Model Design ...............................................................................................................6 
3.1 Structure Description .................................................................................................6 

3.1.1 Structure of a Grid Service ..................................................................................6 
3.1.2 Structure of a Resource as a Grid Service............................................................6 

4. Service Data.................................................................................................................7 
5. Base Manageable Resource Port Type ..........................................................................7 

5.1 BaseManageableResource: Service Data Declarations ................................................7 
5.2 BaseManageableResource: Operations ....................................................................11 

6. Lifecycle.....................................................................................................................11 
6.1 Lifecycle state.........................................................................................................12 
6.2 Lifecycle model .......................................................................................................12 
6.3 Current lifecycle state ..............................................................................................13 

7. Identifying and finding manageable resources ..............................................................14 
7.1 Resource groups .....................................................................................................14 
7.2 Manageable resource types .....................................................................................15 

7.2.1 Resource type properties ..................................................................................16 
7.3 Manageable resource identity...................................................................................17 
7.4 Searching for resources ...........................................................................................17 

7.4.1 Search properties .............................................................................................17 
8. Relationships and Dependencies .................................................................................18 

8.1 Relationships between resource instances ................................................................18 
8.2 Relationships between resource types ......................................................................19 
8.3 Predefined relationship types ...................................................................................19 

8.3.1 Hosts ...............................................................................................................20 



GWD-R (draft-ggf-crm-crmspec-1)  E.Stokes, IBM 
Category: TYPE N. Butler, IBM 
Common Resource Model BOF  17 February 2003 
   

crm-wg@gridforum.org   2 

8.3.2 Contains ..........................................................................................................20 
8.3.3 Federates .........................................................................................................21 
8.3.4 Aggregates.......................................................................................................21 
8.3.5 Uses ................................................................................................................21 
8.3.6 Implements ......................................................................................................22 

8.4 Dependencies .........................................................................................................22 
9. Notifications and events ..............................................................................................23 
10.  XML Attributes ............................................................................................................23 

10.1 Change control attributes ......................................................................................23 
10.1.1 Version ............................................................................................................23 
10.1.2 Deprecated ......................................................................................................24 
10.1.3 Experimental ....................................................................................................25 

10.2 Units attribute ......................................................................................................25 
10.3 Lifecycle attributes ...............................................................................................26 

10.3.1 valid .................................................................................................................27 
10.3.2 changeable ......................................................................................................28 
10.3.3 latency .............................................................................................................28 
10.3.4 volatile .............................................................................................................29 

11.  Use of XML data types for modeling.............................................................................30 
11.1 Mapping common data types to XML data types ....................................................30 

11.1.1 Array ................................................................................................................30 
11.1.2 Bit or binary ......................................................................................................31 
11.1.3 Octet................................................................................................................31 

11.2 New XML data types ............................................................................................31 
11.2.1 Counter ............................................................................................................32 
11.2.2 Gauge..............................................................................................................33 

12.  How to model manageable resources ..........................................................................34 
13.  Security Considerations ..............................................................................................34 
Appendix A.  A Common Lifecycle Model ...............................................................................34 
Appendix B.  BaseManageableResource Port Type ................................................................37 
Appendix C.  Operating System Port Type..............................................................................38 
Author Information ................................................................................................................45 
Glossary ..............................................................................................................................45 
References...........................................................................................................................46 
Acknowledgements...............................................................................................................46 
 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 3 

 

1. Notational Conventions 

 
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” 
“SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be interpreted as 
described in RFC-2119 [RFC 2119].  This is not yet done consistently. 
This specification uses namespace prefixes throughout; they are listed in Table 1. Note that the 
choice of any namespace prefix is arbitrary and not semantically significant. 

Table 1: Prefixes and Namespaces used in this specification. 

Prefix Namespace 
ogsi “http://www.gridforum.org/namespaces/2003/OGSI” 
gwsdl "http://www.gridforum.org/namespaces/2003/gridWSDLExtensions" 
crm "http://www.gridforum.org/namespaces/2003/17/crm" 
wsdl "http://www.w3.org/2002/07/wsdl"  
sd "http://www.gridforum.org/namespaces/2003/serviceData" 
http "http://www.w3.org/2002/06/wsdl/http" 
xsd "http://www.w3.org/2001/XMLSchema" 
xsi “http://www.w3.org/2001/XMLSchema-instance” 
 

 
Unresolved issues with the specification are interspersed in appropriate locations through this 
specification, are highlighted in yellow. 
 
Some of the XML in this document has not been checked with a parser yet, so may be 
syntactically incorrect. 
 
 

2. Overview 

 
In an IT system there are many entities that have some form of state (runtime state, configuration, 
etc) and on which management operations can be performed.  These are known in this 
specification as manageable resources.  Manageable resources can include any type of entity, 
ranging from hardware (such as a disk drive), to software components (such as a database or 
message queue), to complete solutions (such as a billing system), and also to transient things 
such as print jobs.   
 
The purpose of this specification is to define how to model the manageability of these 
manageable resources.  Manageability defines information that is useful for managing a resource.  
It details the aspects of a resource that support management including the instrumentation that 
allows a management tool to interact with a resource.  Management is the active process of 
monitoring, modifying, and making decisions about a resource including the capabilities that use 
manageability information to perform activities or tasks associated with managing IT resources.  
 
The CRM describes how the management interface of a manageable resource is exposed 
through Web services.  A manageable resource is a stateful object – its runtime state, 
configuration, etc – and so the web service that represents it is a stateful web service.  The CRM 
uses the OGSA grid service model for stateful services – every manageable resource is 
represented by a grid service: each resource instance has a unique identifier, its state data is 
exposed via Service Data elements and its operations are web service operations.  The interface 
to a manageable resource (its Service Dat a elements and its operations) is described using the 
Web Services Description Language (WSDL). 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 4 

The grid service that represents a manageable resource allows the resource to be managed 
throughout its runtime lifecycle, allowing it to be stopped and started, for example.  For this 
reason, this grid service is always separate from the resource, even if the resource is itself a web 
or grid service.  The grid service that represents the resource is, at least logically, created at the 
time the resource is created and removed when the resource is removed.  The CRM addresses 
only the grid services that represent the manageable resources, not other web service 
interface(s) that the resource may expose for some domain-specific functional use.  The identifier 
used in the CRM for the manageable resource is the Grid Service Handle (GSH) of the grid 
service that provides the management interface.  This is illustrated in Figure 1. 
 

 
 

Figure 1: Manageable resource 

 
This specification defines the OGSA Common Resource Model (CRM), a model of manageable 
resources as OGSA services.  The Common Resource Model uses existing resource model 
standards such as DMTF’s Common Information Model [cimschema] as a base of information 
and experience.   WSDL [wsdl], GSDL which is part of the OGSi specification [gsspec], and XSD 
schema [xmldatatypes, xmlstructures] are used to define a manageable resource as a service.   
 
There are three main aspects to manageability in OGSA CRM: 
• XML schema (XSD) for modeling resource manageability information 
• a collection of manageability portTypes 
• guidelines for modeling resources 
These are introduced in the following sections. 
 
 
2.1 Schema 
 
A resourc e’s manageability information is modeled using XML schema. Extensions in the form of 
additional data types and XML attributes are defined to allow those manageable resources to 
provide additional information to the application or management tool in order to be better 
managed.   
 
The additional data types defined are: 
• counter 
• gauge 
These are refinements of data type integer to convey the meaning of the integer data as well as 
the range of valid values.  These are described in Section 11.2. 
 
The XML attributes defined are: 

Resource 

GSH 
Grid service 
façade to a 
managed 
resource. 

Manageability 
interfaces 
Domain-specific 
interfaces 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 5 

• version 
• deprecated 
• experimental 
• units 
• valid 
• changeable 
• volatile 
• latency 
The first three attributes listed (version, deprecated and experimental) provide general and useful 
versioning capabilities 1, and are described in Section 10.1.  The fourth (units) communicates the 
unit of measure (e.g. kilobytes) of the data so it can be meaningfully be processed/displayed an 
application or management tool.  This attribute is described in Section 10.2. The last four (valid, 
changeable, volatile and latency) are for use in describing various lifecycle characteristics of a 
resource, and are described in Section10.3. 
 
 
2.2 Manageability portTypes 
 
The interface to an OGSA service is described in one or more port types.  The port type for a 
manageable resource is analogous to a class with properties and methods.  The attributes of the 
resource are expressed as service data, and its methods are expressed as operations.     
 
Port types that define part of the manageability interface for a manageable resource are called 
manageability port types.  WSDL 1.2 introduces port type inheritance, which allows one port type 
to say that it extends one or more other port types: in this way the new port type also includes all 
the service data and operations defined in the extended port types.  The complete interface for a 
manageable resource is thus defined in a single port type that extends various other port types to 
include all the management function of the resource.  While WSDL does not require that there is 
one single most derived port type, we make this restriction so that port type can be used to 
identify the type of a manageable resource.  This port type is called the manageable resource 
type. 
 
It is an objective of resource modeling according to the CRM to factor out and define port types 
for commonly used related functions that may be applied to multiple types of resource: for 
example, start, stop and restart are a set of operations that will be used frequently.  These sorts 
of port types are termed canonical port types, and using them wherever possible in the modeling 
of manageable resources allows management applications to more easily provide consistent 
management across resource types. 
  
The port type for a manageable resource may, of course, include canonical port types, for 
common functions, and its own operations, service data and port types for resource specific 
functions.  A port type that contains operational operations (such as start, stop, resume, pause) is 
an example of a canonical port type. 
 
One of the port types that a Grid service, and hence manageable resource services, must 
implement is the GridService port type.  This provides some basic service data elements and 
operations – such as FindServiceData, which allows the caller to retrieve selected pieces of 
service data. 
 
The CRM defines a single new port type, BaseManageableResource. 
 

                                                 
1 These attributes will be discussed for inclusion in the Grid services spec [gsspec] post V1.0 of 
the GS Spec, as they really have applicability beyond management and manageability in the 
CRM. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 6 

The BaseManageableResource port type contains service data elements that must be 
implemented by each and every manageable resource. This port type extends the GridService 
port type and adds service data that allows a managed resource to describe its lifecycle data, 
relationships to other resource instance and types, to which resource group type it belongs, and 
identify which service data elements are likely to be used for finding this resource. 
 
The CRM also makes use of other Grid service port types defined in the Grid Service 
Specification.  Most notably the ServiceGroup port type is used to help in the location of fine-
grained manageable resources: for details see Section 7. 
 
 

3. Model Design 
 
3.1 Structure Description 
 
This section describes the structure of a service that represents a resource.  The structure uses 
the Grid service specification as its base and then extends it to express what’s needed for a 
resource to be expressed as a service.  Concepts are borrowed from DMTF’s CIM given the 
extensive resource modeling and meta-model that exist.2  The CRM is not a strict algorithmic 
mapping for any one model.  But existing models are mappable to CRM; those existing models 
can be service implementations of CRM. 
 
The model does not address any specifics with respect to the binding and service implementation 
constructs. 
 
3.1.1 Structure of a Grid Service 
 
Below is the basic outline of a Grid Service.  Refer to the Grid Service Specification [gsspec] for 
the details. [Note:  the definition is included below for easy reference and to show the 
relationships of the wsdl/gsdl fragments discussed in the grid service specification.  There may be 
multiple bindings for a given interface (port type) and multiple service implementations for a given 
binding.  Bindings provide a variety of transport, QoS, and security opportunities upon which to 
deploy the grid service that models the resource. 
 
<Insert outline of a Grid service here – or get the Grid service spec authors to pull the fragments 
in the grid spec into the outline of a grid service for easy reference.> 
 
3.1.2 Structure of a Resource as a Grid Service 
 
The primary components of the Common Resource Model (CRM) are data types, additional XML 
attributes, service data and their associated service data descriptions, and port types. 
 
In general, a resource type is represented as a port type, managed properties of a resource are 
represented as service data of that port type, and methods of a resource are represented as 
operations of that port type. 
 
A port type may have one or more bindings for access.  A binding may have one or more service 
implementations. 
 
Resources defined using the CRM are generally coarser-grained services than that which a 
granular or normalized resource model defines.  That is, a service is fairly self-contained and is 

                                                 
2 Need to check SNMP, JMX, and CMIP to see any concepts from those models make sense to 
incorporate here. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 7 

composed of pieces of normalized resource models and contains a few relationships to other 
services.   
 
For example, a disk resource may have many discrete model parts such as a model for the 
manageability characteristics of the disk, a model for the set of disk error statistics, a model for its 
disk metrics, and a relationship model to a computing system resource.  When the disk resource 
is expressed as a service, the service is composed of (aggregate) of the manageability 
characteristics, error statistics, and metrics models and expresses a contained relationship to the 
computer system. 
 
See Section 12 for hints/tips on modeling manageable resources as grid services. 
 

4. Service Data 
 
Properties of a manageable resource are expressed as service data – this includes the 
configuration of the manageable resource.  The Grid Service specification [gsspec] defines the 
XML attributes and operations of service data (FindServiceData for get/query and SetServiceData 
for set).   
 
If an application is permitted to use the SetServiceData operation to change the value(s) of a 
property, then the service data that represents that property has the XML attribute modifiable set 
to ‘true’.  Otherwise, the service data is read-only from the point of view of SetServiceData.  The 
SetServiceData operations are used to modify to those properties specified as modifiable (there 
may also be operations specific to the manageable resource that modify that resource’s service 
data elements). 
 
FindServiceData and SetServiceData are part of the GridService port type.  Every manageable 
resource extends from the GridService port type so service data and its get/set operations are 
available for every manageable resource. 
 

5. Base Manageable Resource Port Type 
The BaseManageableResource port type contains service data elements that must be 
implemented by each and every manageable resource. This port type extends the GridService 
port type and adds service data that allows a managed resource to describe its global 
manageability information:  lifecycle data, instance and type relationships to other resources, to 
which resource group it belongs, and which service data elements are likely to be used for finding 
this resource. 
 
The BaseManageableResource port type is not instantiable by itself.  Every manageable 
resource must extend this port type to describe the aggregation of its specific manageability 
information, its GridService port type behavior, and its global manageability information.   
 
The WSDL for BaseManageableResource port type can be found in Appendix B. 
 
 
5.1 BaseManageableResource: Service Data Declarations  
 
A number of service data elements are defined in this specification, and all are part of the 
BaseManageableResource port type.   

o lifecycleModel and currentLifecycle state are related to the lifecycle management 
of the service.   

o serviceGroupType and searchProperty are provided to help in the location of 
manageable resources.   



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 8 

o relatedInstance and relatedType are used to describe relationships and 
dependencies between resource instances or resource types. 

  
• lifecycleModel 

 
Describes the lifecycle states that a resource may be in or pass through, along with any 
associated sub-states.  For details see Section 6.2. 

 
 
• currentLifecycleState 

 
Returns the current state that the resource is in, and sub-state if applicable.  For details 
see Section 6.3. 

 
 
• serviceGroupType  

 
The port type of the manageable resource that provides the ServiceGroup function for 
manageable resources of this type.  This is a static value that is set in the WSDL for the 
manageable resource type.  Its value must only be set in the most derived port type, i.e. 
the one that represents the manageable resource type.  If this value is not set, then there 
is no specific ServiceGroup for this type. 
 
Should it be possible to specify more than one serviceGroupType, indicating that a 
resource type might be found in more than one type of resource group? 

 
 
        <sd:serviceData  
                name="serviceGroupType" 
                type="xsd:QName" 
                minOccurs="0"  
                maxOccurs="1" 
                mutability=”static” /> 
 
 
• searchProperty 

 
Zero or more service data elements that are likely to be used for searching for a 
manageable resource, and are thus worth caching in the manageable resource registry.  
This is a static SDE, so values can only be specified in the port type definitions.  Values 
are likely to be specified at various points in the port type inheritance hierarchy.  For 
example a base port type might specify a property, such as IP address, that must be 
provided by all manageable resources, and that it is to be a search property for all 
manageable resources.  It would define the IP address SDE and specify this property in a 
searchProperty element. 
Note that searchProperty is a separate service data element, rather than an attribute that 
can be applied to any service data element.  This allows port types to add search 
properties that come from other port type definitions. 

 
        <sd:serviceData  
                name="searchProperty”  
                type="xsd:QName" 
                minOccurs="0"  
                maxOccurs="unbounded" 
                mutability=”static” /> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 9 

 
 
• relatedInstance 

 
Expresses the relationships that a manageable resource has with other manageable 
resources, by relating the service instances. 

 
        <sd:serviceData  
                name="relatedInstance" 
                type="crm:relatedInstance" 
                minOccurs="0"  
                maxOccurs="unbounded"  
                mutability=”mutable”/> 
 
    <xsd:complexType name="relatedInstance"> 
        <xsd:sequence> 
            <xsd:element name="relationshipType" type="xsd:string"/> 
            <xsd:choice> 
                <xsd:annotation> 
                    <xsd:documentation> 
                        The source or sink is the grid service handle of the related service instance. 
                    </xsd:documentation> 
                </xsd:annotation> 
                <xsd:element name="source" type="gsdl:serviceLocator"/> 
                <xsd:element name="sink" type="gsdl:serviceLocator"/> 
            </xsd:choice> 
            <xsd:element name="requirement" minOccurs="0" maxOccurs="unbounded"> 
                <xsd:annotation> 
                    <xsd:documentation> 
                        This optional element is used to specify a list of requirements that this 
                        service instance has upon the related service instance (identified as the  
                        source or sink). 
                    </xsd:documentation> 
                </xsd:annotation> 
                <xsd:complexType> 
                    <xsd:annotation> 
                        <xsd:documentation> 
                        <xsd:documentation> 
                            The requirement identifies the specific nature of the dependency.  The details 
                            of the schema are under discussion and will be added later: until then an  
                            extension point allows any XML content to be used. 
                        </xsd:documentation> 
                    </xsd:annotation> 
                    <xsd:sequence> 
                        <xsd:any namespace="##other" processContents="lax"/> 
                    </xsd:sequence> 
                </xsd:complexType> 
            </xsd:element> 
        </xsd:sequence> 
    </xsd:complexType> 
 
relatedInstance example 
 
A database, “myDatabase”, hosts a database table, “myTable”.   
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 10 

The relationship service data element in the service for “myDatabase” will contain an element like 
this: 
<sd:serviceDataValues> 
    … 
    <crm:relatedInstance> 
        <crm:relationshipType>hosts</crm:relationshipType> 
        <crm:sink>..GSH of myTable..</crm:sink> 
    </crm:relatedInstance> 
    … 
</sd:serviceDataValues> 
 
The relationship service data element in the service for “myTable” will contain an element like 
this: 
<sd:serviceDataValues> 
    … 
    <crm:relatedInstance> 
        <crm:relationshipType>hosts</crm:relationshipType> 
        <crm:source>..GSH of myDatabase..</crm:source> 
    </crm:relatedInstance> 
    … 
</sd:serviceDataValues 
 
 
• relatedType 

 
Expresses the relationships that exist between manageable resource (or other service) 
types.  The service type is identified by a port type that it implements.  In the case of 
manageable resources, this would be the most derived port type that describes the 
manageability interface of the resource type.  

 
        <sd:serviceData  
                name="relatedType" 
                type="crm:relatedType" 
                minOccurs="0"  
                maxOccurs="unbounded"  
                mutability=”static”/> 
 
    <xsd:complexType name="relatedType"> 
        <xsd:sequence> 
            <xsd:element name="relationshipType" type="xsd:string"/> 
            <xsd:choice> 
                <xsd:annotation> 
                    <xsd:documentation> 
                        The source or sink is qname of the related port type. 
                    </xsd:documentation> 
                </xsd:annotation> 
                <xsd:element name="source" type="xsd:QName"/> 
                <xsd:element name="sink" type="xsd:QName"/> 
            </xsd:choice> 
        </xsd:sequence> 
    </xsd:complexType> 
 
relatedType example 
 
In the database example, database tables are hosted by databases, and databases are hosted 
by database servers.  



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 11 

The GSDL definition of the Table port type would contain the following initial value of a 
relatedType SDE: 
<gwsdl:portType name=”Table”> 
    … 
    <sd:staticServiceDataValues> 
        <crm:relatedType> 
            <relationshipType>hosts<relationshipType> 
            <source>database:Database</source> 
        </crm:relatedType> 
    </sd:staticServiceDataValues> 
    … 
</gwsdl:PortType> 
 
The GSDL definition of the Database port type, would contain the following initial value of a 
relatedType SDE: 
<gwsdl:portType name=”Database”> 
    … 
    <sd:staticServiceDataValues> 
        <crm:relatedType> 
            <relationshipType>hosts<relationshipType> 
            <source>database:DatabaseServer</source> 
        </crm:relatedType> 
    </sd:staticServiceDataValues> 
    … 
</gwsdl:PortType> 
 
 
5.2 BaseManageableResource: Operations  
 
The GroupEntry portType defines no operations. The operations inherited from the GridService 
portType SHOULD be used to query the SDEs of the BaseManageableReource 
 

6. Lifecycle 
 
 Resources exist from the time they are created until they are destroyed and are in a variety of 
states in between.  Resources can be (and in most cases, are) managed differently at different 
stages of their lifetime.  Because different kinds of resources and web services will have different 
lifecycles and states, there is no one single lifecycle model that can be defined.  Instead, we 
define a generic method that allows models to be defined to match the needs of a resource.  We 
recognize that classes or types of resources will use the same model, in fact this is strongly 
encouraged where possible.  So, in Appendix A, we define one such typical model that resources 
can use.  We expect other basic lifecycle models to be defined. 
 
Lifecycle is a set of states that a resource can be in and the valid transitions between those 
states.  This specification currently only addresses describing the valid states, and not the 
transitions and the operations that effect those transitions.  The lifecycle XML attributes describe 
the meaningful lifecycle state for service data and operations.  An application or management tool 
uses the lifecycle attributes to obtain information about lifecycle state to better manage that 
service.  To incorporate the concept of lifecycle into a Grid service, the following are defined: 
• XSD that describes the structure of a lifecycleState element 
• A service data element that defines the lifecycle model used by the resource 
• A service data element that holds the current lifecycle value of the resource 
• XML attributes that describe the lifecycle characteristics of the service for use by an 

application or management tool, specifically the changeability, validity, volatility, and latency 
of the pieces comprising the service.  These attributes are defined in Section 10.3. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 12 

 
Note: the Grid Service specification definitions of lifetime declaration properties (goodFrom, 
goodUntil, and availableUntil) are insufficient for managing resources.  These three properties are 
intended to refer to the validity of values that have been cached somewhere in the system.  
These are legal to appear in values associated with CRM service data elements.  <We need to 
offer guidance on the use of these temporal attributes and also on the implications of soft-state.> 
   
 
6.1 Lifecycle state 
 
The lifecycle model of a resource type contains one or more states, and each state can have zero 
or more sub-states that provide additional information about that state.  The states and sub-states 
are described using lifecycleState elements within the lifecycleModel service data element of 
BaseManageableResource.  The definition of lifecycleState element is: 
 
<xsd:element name="lifecycleState" type="lifecycleStateType"> 
 
<xsd:complexType name="lifecycleStateType"> 
   <xsd:sequence> 
      <xsd:element name="subState" minOccurs="0" maxOccurs="unbounded"> 
         <xsd:complexType> 
            <xsd:attribute name="name" type="xsd:NCName"></xsd:attribute> 
         </xsd:complexType> 
      </xsd:element> 
   </xsd:sequence> 
   <xsd:attribute name="name" type="xsd:NCName"/> 
</xsd:complexType> 
 
Its mutability is static; the lifecycle states are defined once when the resource’s port type is 
defined and are the same for all instances of a resource. 
 
 
6.2 Lifecycle model 
 
The lifecycle model of a resource type is defined in the lifecycleModel service data element.  This 
contains the definition of the lifecycle states and sub-states.   
 
A management application needs to understand how a state model works – the possible 
transitions and the operations that go with those.  Those are currently described through the 
words of a specification and not a formal state model: for this reason it is not practical to allow 
arbitrary new states or sub-states to be added to an existing model.  This is the reason for 
introducing a lifecycleModel service data element as a container for the states, rather than just 
using a lifecycleState service data element: it is only possible to replace the entire model at once.  
Its mutability is static; the lifecycle states are defined once when the resource’s port type is 
defined and are the same for all instances of a resource. 
 
We need to consider how to specify operations associated that transition the resource from one 
state to its next expected state and/or add metadata to operations such that their relationship or 
effect on lifecycle state is well understood. 
 
The definition of lifecycleModel is: 
 
<xsd:complexType name="lifecycleModelType"> 
   <xsd:sequence> 
      <xsd:element ref="crm:lifecycleState" minOccurs="1" maxOccurs="unbounded"/> 
   </xsd:sequence> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 13 

</xsd:complexType> 
 
<sd:serviceData 
   name="lifecycleModel"  
   type="crm:lifecycleModelType"  
   minOccurs=”1”    
   maxOccurs=”1” 
   nillable=”true” 
   mutability=”static”/> 
 
So, for example, one model that a resource might use (from Appendix A) is: 
 
<sd:staticServiceDataValues> 
   <lifecycleModel> 
      <crm:lifecycleState name="down"> 
         <subState name="restartable"/> 
         <subState name="recovered"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="starting"> 
         <subState name="OK"/> 
         <subState name="error"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="up"> 
         <subState name="idle"/> 
         <subState name="busy"/> 
         <subState name="degraded"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="stopping"> 
         <subState name="OK"/>           
         <subState name="error"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="failed"> 
         <subState name="dependencyFailure"/> 
         <subState name="nonrecoverableError"/> 
      </crm:lifecycleState> 
   </lifecycleModel> 
</sd:staticServiceDataValues> 
 
 
6.3 Current lifecycle state 
 
The currentLifecycleState service data element contains the current state, and sub-state if 
applicable, that the resource is in. 
 
<sd:serviceData 
   name="currentLifecycleState"  
   type=”lifecycleStateType"  
   minOccurs=”1”    
   maxOccurs=”1” 
   mutability=”mutable”/> 
 
An example is  
<sd:staticServiceDataValues> 
   <crm:currentLifecycleState name=”Up”> 
      <subState name=”OK”/> 
   </crm:currentLifecycleState> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 14 

</sd:staticServiceDataValues> 
 
 

7. Identifying and finding manageable resources 
Manageable resources are represented by Grid services.  Each resource instance has an 
associated service instance and an associated Grid Service Handle.  The GSH provides the 
unique identifier for the resource.  It can be passed around within and between management 
applications, and used to look up the Grid Service Reference (GSR) whenever it is required to 
interact with the resource. 
 
In theory, it should be sufficient to leave identity at that: it should be possible to use any valid form 
of GSH, and use existing service data, and service data queries to find instances of resources.  
However, the number of manageable resources and the requirements to be able to search for 
specific resources suggest that additional information should be provided is provided to help in 
finding those resources. 
 
 
7.1 Resource groups 
 
An important requirement for a management system is to be able to find instances of the 
manageable resources in the system.  The number of resource instances that may exist in a 
system can range from a few thousand, for a small installation, up to many, many millions in an 
enterprise installation.  When used across the Grid, the number of resource could be even higher.  
To have a registry that holds the handles for every resource in the system would be impractical: it 
would be very large, and it would be updated frequently as resources were created and removed 
from the system.   
 
So the problem is how to locate the fine-grained resources in a system. This is not a problem that 
is limited to services that represent manageable resources, and work is underway elsewhere to 
address this, using Service Domains, supported by the OGSI notion of a ServiceGroup (see the 
OGSI spec).  This will result in some form of hierarchy or federation of registries, but this still does 
not address the fine-grained resources where it is not practical to place references in a separate 
registry. 
  
However, there is a natural grouping of resources at a local level (within one machine or a small 
group of machines) where one relatively coarse grained resource provides some form of 
container for one or more types of fine grained resource.  These “container” resources will often 
have some responsibility for management of the objects within them.  For example, a database 
server hosts databases, and the databases in turn host tables.  These groups will typically be 
defined by the boundaries of a software or hardware product, or component of a product, rather 
than spanning across products.  
   
CRM exploits this natural grouping to assist with the task of locating resources.  The container 
resource and its contained resources form a resource group.  The Grid Service Specification 
defines the ServiceGroup Grid service port type that is used to maintain information about a 
group of service instances, having an entry SDE for each member of the group.  The CRM uses 
ServiceGroups to hold information about the manageable resources within a resource group.   
 
This is illustrated in Error! Reference source not found. with an example of a database server 
that contains two databases, which each contain some database tables.  The database server is 
the container resource type and provides the ServiceGroup implementation for the databases and 
tables it contains.  There is an entry SDE in the ServiceGroup for each of the databases and 
tables.  
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 15 

ServiceGroup defines two service data elements that are relevant to resource groups, entry and 
membershipContentRule.  The entry SDE includes a content element that contains information 
about the member service.  In a resource group, the content will contain the values of the SDEs 
from the member resource that are identified by the searchProperty SDE of the type of the 
resource.    
The membershipContentRule SDE type identifies the port types that may be members of the 
ServiceGroup, along with the definition of the content associated with each port type.  In a 
resource group, the port types will include those that represent the types of manageable 
resources within the group.  In the database example, there would be membershipContentRule 
elements for each for each of db:Database and db:Table. 
 
More detail is needed in this specification describing how ServiceGroups are used for resource 
groups, in particular in defining the content model to be used.  This may result in the definition of 
a new port type that extends ServiceGroup. 
 
When a client wants to find one of the fine-grained resources, they have to perform the search in 
two steps:  
1. Find ServiceGroups that have members of the type of the fine-grained resource type.  For 

example, to find instances of db:Table, the client must first find instances of 
db:DatabaseServer.   
This can be done in one of two ways: 
1. Search for ServiceGroup services with a membershipContentRule SDE where the 

memberInterface element contains the value ‘db:Table’ 
2. Look at the ServiceGroupType SDE in the WSDL for db:Table, which will be set to 

‘db:DatabaseServer’, and then find instances of db:DatabaseServer. 
2. Use the FindServiceData operation on the ServiceGroup to find entries that match the 

required criteria – i.e. have the required values in the content.  
  

db:DatabaseServer [server1]

db:Database [databaseA]

Database [databaseB]

ServiceGroup

Entry
Entry
Entry
Entry
Entry

db:Table
[table2]

Entry

db:Table
[table1]

db:Table
[table2]

db:Table
[table1]

 

Figure 2: Resource group  

 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 16 

7.2 Manageable resource types 
 
Every manageable resource instance has a manageable resource type.  The type identifies the 
management interface of the resource, defined through a single unique port type.  This port type 
uses the WSDL 1.2 port type extension mechanism to aggregate together the individual port 
types that make up the management interface, as well as adding additional service data elements 
and operations that are specific to the resource type.  This is analogous to defining the interface 
to a Javatm object by making it implement a number of interfaces that define the individual parts of 
the overall interface.  
 
A basic manageable resource type must extend the CRM BaseManageableResource port which 
is itself an extension of the OGSA GridService port type.  Some container resource types will also 
extend the CRM ServiceGroup port type to make the resources that it contains locatable.  This is 
illustrated in Figure 3, using the earlier database example. 
 
The resource type identifier is simply the QName of the port type that defines the management 
interface for the manageable resource. 
 
A management system may use type information to reason about the management interface of 
different resource types, for example to understand which types support what operations.  If 
required, the resource type information can be gathered into a dictionary for efficiency. 
 

GridService

BaseManageableResource

OGSA port types

CRM port type

ServiceGroup

db:Table db:DatabaseServerdb:Database
 

Figure 3: Example manageable resource port types 

 
7.2.1 Resource type properties 
 
Some of the SDEs within the manageable resource port type are declared with mutability attribute 
of ‘static’, meaning that their values are set in the WSDL and are shared by all instances of the 
resource type.  These could thus be considered to be properties of the resource type.  These 
properties can be used by management systems to reason about the behavior of a manageable 
resource type, or to find types that satisfy certain criteria. 
 
What is a basic set of properties that every resource type should set? 
• Vendor? 
• Name? 
• Version? 
• Category – e.g. database – should be identified by extending a “database” port type in the 

resource port type, rather than defining a separate SDE. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 17 

 
 
7.3 Manageable resource identity 
 
Every manageable resource must be uniquely identifiable within a system.  The implementation 
of a grid service that provides management function for an underlying resource will frequently be 
based upon existing instrumentation, using CIM or JMX, for example.   
 
It is up to the implementers of each resource type to decide what URI scheme to use and what 
information the GSH contains.  For example, in the case of an implementation based on JMX, the 
writer may choose to include a JMX MBean name within an HTTP URI.  Any mapping that is 
needed between the GSH and the identity in those other management systems is the 
responsibility of the implementer. 
 
It is possible that management applications or repositories of information that they use will also 
need to perform some of these mappings.  It may be useful to define a further port type that 
resource groups could implement to map GSHs that they are aware of to other management 
systems.  This is a topic for further discussion. 
 
 
7.4 Searching for resources 
 
The criteria used to find manageable resources are likely to be some or all of the following: 
• The type of the manageable resource, in the form of the QName of a port type. 

• This may in turn have been found by looking at a number of port type WSDLs to find 
those that match required characteristics – for example find all port type that extend a 
standard “database” port type (i.e. find all database resource types)   

• Particular values of some of the properties of that resource – these may perhaps be 
expressed as XPath expressions involving the SDEs of the resource. 

• Relationships to other manageable resources. 
 
These criteria are probably not unique to locating manageable resources, and are likely to be 
generally used for finding other grid services.  When combined together these conditions could 
produce very complex queries, and it may be necessary to define a new query type for 
FindServiceData that gives additional structure to the query to allow it to be implemented 
practically.  As this query applies at the wider levels than the resource group, it will be necessary 
to work closely with those working on the wider scale problem, such as Service Domains to 
ensure that the CRM needs are included.  
 
 
7.4.1 Search properties 
 
In a large system it would be impractical to have to check against the actual values on each 
resource, and it would also be impractical to cache the value of all properties for each resource in 
the registry.  For this reason, a service data element, searchProperty, is used to list the important 
properties that can be used for finding each resource type.   
 
The values of the identified SDEs are held in the Content portion of entry SDEs within the 
ServiceGroup and are thus available for clients to use to find specific resource instances.  
 
SearchProperty is a static SDE so that management applications can introspect the WSDL to 
understand what properties are available for finding instances of the resource type. 
 
Ideally there will be a few common basic properties, plus a relatively small set of domain specific 
properties, e.g. for databases.  Individual resource types can also identify additional resource 
specific properties that will be useful in locating instances of that resource type.  The values of the 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 18 

searchProperty service data element are set in the port type definition and cannot change at 
runtime.  As port types are extended to define individual resource types, additional resource type 
specific properties may be added to the list. 
 
Is there a set of basic search properties that should be implemented by all manageable 
resources?  Name, version, ip address, …?  IP address is a strong candidate: many searches are 
likely to be looking for collocated resources – it would greatly improve these searches if the IP 
address was held in the resource group. 
 
 

8. Relationships and Dependencies 

 
Relationships exist between instances of manageable resources.3  For example, a disk can be 
contained in a computer system, and a computer system can be part of a cluster.  Relationships 
describe which resources are connected and what type of connection exists, but they do not 
describe the details of how one resource depends on another.   
  
Dependencies add additional information to the relationship to describe exactly how one resource 
depends on another – for example, a database resource might indicate that it uses a storage 
resource, and gives details of how much free space is required on that resource.   
 
Relationships and dependencies are described in the following sections. 
 
 
8.1 Relationships between resource instances 
 
Relationships between manageable resources are named by the verb that describes the 
relationship, for example “hosts”.  Relationships have an associated direction, for example the 
computer system contains the disk.  The resources at the two ends of a directional relationship 
are termed the source and the sink of the relationship.  These correspond to the subject and the 
object of the relationship verb.  In the above example, the computer system is the source and the 
disk is the sink. 
 
The relationship “A hosts B” could also be described as “B is hosted by A”, depending on the 
perspective of the person describing the relationship.  The canonical form of the relationship is “A 
hosts B” – where the transitive form of the verb is used: the relationship type is “hosts”, the 
source is A, and the sink is B.  However, this can be hard to understand and it is anticipated that 
the alternative form (where the inverse of the verb is used) will also be used in descriptive text 
and user interfaces. 
 
Relationships between resource instances are discovered through the relatedInstance service 
data element of the BaseManageableResource port type.  Note that this service data element 
only provides information about resource instances and their relationships: it does not provide 
any modeling information to describe relationships between resource types.  This service data 
element can not have a value assigned in the interface description – the information is only valid 
for real instances of the resource. 
 
The relatedInstance service data element allows a view of relationships as they are known by the 
resources at each end of the relationship.  In practice, management system may store additional 

                                                 
3 Relationships are not really specific to CRM, but are really applicable to grid or web services in 
general.  At some point, these constructs should be moved to either the grid services 
specification or the WSDL specification.  Also, we should discuss whether the proposed 
relationship types are what are needed at the WS-metamodel /OGSI level, or whether they are 
specific to CRM. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 19 

information about the relationship between two resources, and this information is not known to 
either resource involved.  In this case, a separate, independent service is provided that gives 
access to this information.  A management system that wishes to use this additional information 
must be aware that such a service exists and make use of it as required.  This additional service 
is not covered by this specification. 
 
 
8.2 Relationships between resource types 
 
Relationships can also be described between manageable resource types, allowing management 
applications to understand what relationships may exist between instances of those resource 
types.  Relationships between a type and other types are defined using the relatedType service 
data element in the BaseManageableResource port type.  
 
 
8.3 Predefined relationship types 
 
<We need to take a look at existing metamodels like UML to determine if whether we can use 
them to achieve the types of needed relationships> 
 
There is a canonical set of relationship types that may be used: 
• Hosts 
• Contains 
• Federates 
• Aggregates 
• Uses 
• Implements 
These are described in the following sections. 
 
Note that this is not an exhaustive list and further relationship types will be added over time.  It is 
important, though, that the canonical relationships are used wherever possible and new types are 
not added arbitrarily. 
 
Two of the predefined relationships, hosts and contains, are used to describe the physical 
containment of resources in the system, and have particular characteristics and implications.  The 
hosts relationship is about one resource providing the environment within which another resource 
lives and runs; the contains relationship is about how one resources is built from a set of 
contained resources. 
 
Both of these relationships imply characteristics on the lifecycle of the hosted or contained 
resource with respect to its host or container, including when the resource is created or 
destroyed, and when the resource can be running. 
 
Both of these relationships have a cardinality of one-to-many, i.e. a resource can only be hosted 
or contained by a single resource.  In addition a resource can either be hosted or contained, but 
not both. 
 
One key difference between these two relationships is the lifecycle of one resource with respect 
to another – hosts implies a relatively independent lifecycle, where the hosted resource is created 
after the host and can be deleted before the host: contains implies the same lifecycle as the 
container, where the resource is created when the container is created and deleted when the 
container is deleted. 
 
The other relationships describe various other aspects of the system.  Federates describes the 
logical structure of an application or solution.  Aggregates describes how resources are grouped 
together.  Uses describes where one resource makes use of the functions of another in order to 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 20 

perform its job.  Implements describes the way that one resource is actually implemented, and is 
useful to bridge between a logical, functional view of the system and its physical implementation. 

 
 

8.3.1 Hosts 
 
A resource A hosts another resource B if resource A provides an environment in which resource 
B is created and runs.  The life cycle of resource B is a subset of the life cycle of resource A: 
resource B can be created in resource A and can be later removed from resource A.  Resource B 
cannot exist without resource A: if resource A is removed from the system, then resource B 
must/will also be removed.  The hosts relationship also implies that the host resource, A, must be 
running in order for the hosted resource, B, to be running.  
 
For example, a database hosts the tables within it.  Tables can be created at any time within the 
database, but they cannot exist without the database: if the database is deleted then the tables 
must also be deleted.   
 
A resource can be the source of any number of hosts relationships: that is it can host any number 
of resource instances.   
 
A resource may be the sink of zero or one hosts relationships: that is it cannot be hosted by more 
than one resource.  In addition a resource may not be the sink of both a hosts relationship and a 
contains relationship. 
 
The grid services for manageable resources that can be the source of a hosts relationship (i.e. 
that hosts other resources) MUST be able to enumerate the manageable resources that they 
host, through the relatedResources service data element of the relationships port type. 
 
The informal name of the inverse perspective of this relationship is “isHostedBy”. 
 
 
8.3.2 Contains 
 
A resource may actually consist of a number of other resources and, therefore, is said to contain 
them.  The contained resource has the same lifetime as the resource that contains it.  Therefore, 
if resource A contains resource B, then when resource A in installed, so is resource B, and when 
resource A is removed, so is resource B.  The contains relationship also implies that if resource A 
is stopped, resource B will also be stopped.  It is likely that if resource B is stopped, the operation 
of resource A will be degraded. 
 
An example is a deployed J2EE application which contains various modules. When the J2EE 
application is deployed in an application server the modules are also deployed: when the 
application is removed, the modules are also removed.  While the application is running it may be 
possible to start and stop a module independently, but if the application is stopped then the 
module will also stop. 
 
A resource may be the source of any number of contains relationships: that is it can contain any 
number of other resource instances. 
 
A resource may be the sink of zero or one contains relationships: that is it cannot be contained by 
more than one resource.  In addition a resource may not be the sink of both a hosts relationship 
and a contains relationship. 
 
The grid services for manageable resources that can be the source of a contains relationship (i.e. 
that can contain other resources) MUST be able to enumerate the manageable resources that 
they contain, through the relatedResources service data element of the relationships port type. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 21 

 
The informal name of the inverse perspective of this relationship is “isContainedBy”. 
 
 
8.3.3 Federates 
 
Where a number of resources in different hosting environments are used together to form another 
resource, then that resource is said to federate the other resources.  The new resource 
introduces new management operations and possibly new function. 
 
The federated resources do not know about each other, unless some other relationship exists 
between them for some other reason.  For example, if an application includes a database and a 
message queue, then those two resources do not know about each other – only the application 
knows that they are working together as part of a larger unit. 
 
Unlike hosts and contains this relationship does not imply anything about the lifecycle of the 
federated resource, except that the resource is thought to exist.  The database in the above 
example may exist before the application is installed, and may continue to exist after the 
application is removed. 
 
A resource may be the source or the sink of any number of federates  relationships.  For example 
the database that is federated by the above application, may also be a part of another application.  
 
The informal name of the inverse perspective of this relationship is “isFederatedBy”. 
 
 
8.3.4 Aggregates 
 
Where a number of resources are grouped together for some purpose, then that resource is said 
to aggregate the other resources.  The new resource does not introduce new management 
operations or function.  These groups may be of heterogeneous or homogeneous resource types.  
They may be defined explicitly through a list of manageable resource identifiers or by a query that 
is evaluated against the manageable resource registry.  An example is a resource that represents 
all the computers in a department. 
 
The aggregated resources do not know about each other, unless some other relationship exists 
between them for some other reason. 
 
This relationship does not imply anything about the lifecycle of the aggregated resource, except 
that the resource is thought to exist. 
 
A resource may be the source or the sink of any number of aggregates  relationships.  
 
The informal name of the inverse perspective of this relationship is “isAggregatedBy”. 
 
 
8.3.5 Uses 
 
This relationship is used where one resource uses another resource in order to perform its 
functions.  For example, a user management system may use an LDAP directory to hold user 
information.  This relationship is distinct from federates  in that federates brings together various 
resources that between them provide a useful function, but is not itself making functional calls to 
those resources. With the uses relationship, the user is actually using the function of the other 
resource. 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 22 

A resource may be the source or sink of any number of uses relationships.  In addition it is also 
possible for one resource to use another and also to be used, either directly or indirectly, by that 
other resource.  For this reason it is necessary to be careful when following chains of uses 
relationships.  
 
The informal name of the inverse perspective of this relationship is “isUsedBy”. 
 
 
8.3.6 Implements 
 
This relationship is used where one resource is used to implement the function of another. For 
example, a database server may be implemented as a Windows service. The implementing 
resource unit must be running for the implemented resource to be running. The implementing 
resource may be created dynamically when the implemented resource is run, for example an 
operating system process, or it may persist between invocations.   The implementing resource is 
usually at a lower level of abstraction than the implemented resource: this relationship would 
typically be used during problem determination when looking for the source of an application 
problem. 
 
This is an unusual relationship in that there are probably few cases where one would naturally 
think of the relationship as “implements”, but rather as the inverse, “is implemented by”.  However 
the relationship is called “implements” in keeping with the practice of using transitive verbs for 
directional relationships. 
 
A resource may be the source or sink of any number of implements relationships.   
 
The informal name of the inverse perspective of this relationship is “isImplementedBy”. 
 
 
8.4 Dependencies 
 
Relationships describe which resources are connected and what type of connection exists, but 
they do not describe the details of how one resource depends on another.  For example, a 
database resource might indicate that it uses a storage resource, but this does not indicate how 
much storage is required.   
 
This dependency information is useful to management applications to allow them to monitor the 
current validity of the dependency.  For example, in the database example, a monitor could be 
put in place that will detect when the amount of free disk space falls below the minimum value 
required.  This could then be used to alert a person to the problem, or to trigger an automated 
response. 
 
Specific dependencies on a relationship are expressed as requirements on properties of the 
related resource.  Where multiple requirements apply to the same property of the same resource, 
those dependencies must be combined in some way.  For example if multiple database tables 
each require a certain amount of free space in a storage device, then the storage device should 
have the cumulative total of all of the storage requirements.  If multiple resources each express 
the maximum average processor utilization then the lowest one is the correct one to monitor 
against. 
 
Requirements on a dependency are expressed within the relatedResources service data in the 
relationships port type.  The relatedResource complex type contains an optional ‘requirement’ 
element, which may occur any number of times.  In a future version of the specification, elements 
will be defined to describe the requirements in a standard way: in the meantime the requirement 
element just contains an extension point to allow any valid XML to be inserted. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 23 

<What is needed for dependencies is for relationships that have associated properties/attributes: 
perhaps this is not limited to expressing dependencies.  The relationship types defined above 
(‘uses’,…) may need different property types for different pairs of services they associate: one 
way of doing this may be by associating another ‘entity’ to the relationship.  This needs further 
discussion and thought.> 
 
Note that these dependencies relate to the operation of resources once they have been created.  
They do not attempt to describe or model the requirements in order to be able to create the 
resource in the first place.  For example, the storage requirements for a database table are those 
required for the table to be used during normal runtime - such as to create new rows - and not a 
specification of how much free space is required to create the table in the first place - such as to 
pre-populate it with rows of data. 
 
 
 

9. Notifications and events 
 
The Grid Service specification describes a notification mechanism which allows clients to 
subscribe to receive notifications when the values of specified service data elements changes.  
Some of the details are still under discussion, for example about support for events (i.e. not 
related to the change of a SDE).  The CRM does not add anything to this notification model.  But 
it probably does need to describe how the notification model is used in the context of manageable 
resources. 
 
 

10.  XML Attributes 

 
10.1 Change control attributes 
 
There is a well-defined set of XML attributes that can provide change control information about 
port types, operations, and service data4.   
 
10.1.1 Version 
 
It is useful to define the concept and constructs for versioning because the definition of port types, 
operations, and service data will change over time, but it is desirable to leave names the same.  It 
is also desirable to be able to add new port types into namespaces.  The XML attribute ‘version’ 
is defined as a patterned value of the form majorNum.minorNum.patch 
 
The majorNum and minorNum are monotonically increasing positive numbers.  Th e patch can be 
numeric, alphabetic, or alpha-numeric.  A patch is not required to be monotonically increasing 
because patches (in terms of implementation) may either be discrete or cumulative.  The patch is 
optional, and if it is not present, it defaults to zero. 
 
<define majorNum, minorNum, and patch; also define compatibility rules within and between the 
version parts> 
 
<define how version is affected by inheritance> 
 
The XML attribute ‘version’ is defined in the CRM namespace as 

                                                 
4 The XML attributes version, deprecated, and experimental are not really specific to CRM, but 
are really applicable to grid or web services in general.  At some point, these constructs need to 
be moved to either the grid services specification or the WSDL specification. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 24 

    <xsd:simpleType name="versionType"> 
        <xsd:restriction base="xsd:string"> 
            <xsd:pattern value="(([0-9])+).(([0-9])+).([([a-z]|[A-Z]|[0-9])+])"/> 
        </xsd:restriction> 
    </xsd:simpleType> 
 
    <xsd:attribute name="version" type="xsd:versionType" scope="global"/> 
 
Example 
In this example, the version of the port type is 1.3.1d. 
    <wsdl:portType name="OperatingSystem"   
                             crm:version=”1.3.1d”> 
        … 
    </wsdl:portType>     
 
10.1.2 Deprecated 
 
The XML attribute ‘deprecated’ indicates that the construct (port type, operation, service data 
element, service data description, binding) to which it is applied is tolerated but not recommended 
and may be superceded by another.  The qname value of this attribute indicates the name of the 
replacement definition that should be used.  If there is no replacement, then the value must be set 
to the string ‘null’.  The deprecated attribute is scoped according to the following rules: 
• When applied to portType, all operations and service data for that portType are also 

deprecated. 
• When applied to a portType that extends another portType, only the operations and service 

data of extension portType are deprecated. 
• When applied to an operation, only the operation is deprecated. 
• When applied to a service data element, then that service data element is deprecated. 
• When applied to binding, only the binding is deprecated. 
 
<define how deprecated is affected by inheritance> 
 
The XML attribute ‘deprecated’ is defined in the CRM namespace as 
    <xsd:attribute name="deprecated" scope="global"> 
        <xsd:simpleType> 
            <xsd:union> 
                <xsd:simpleType> 
                    <xsd:restriction base="xsd:QName"> 
                    </xsd:restriction> 
                </xsd:simpleType> 
                <xsd:simpleType> 
                    <xsd:restriction base="xsd:string"> 
                        <xsd:enumeration value="null"/> 
                    </xsd:restriction> 
                </xsd:simpleType> 
            </xsd:union> 
        </xsd:simpleType> 
    </xsd:attribute> 
 
Example 
In this example, the portType ‘OperatingSystemPortType’ is deprecated and its replacement is 
‘newOSPortType’ in the IBM XML namespace. 
 
    <wsdl:portType name="OperatingSystemPortType" 
                             deprecated=”ibm:newOSPortType”> 
        <wsdl:documentation>Operating System port type</wsdl:documentation>  



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 25 

        … 
        (operations and service data for this port type) 
        …  
    </wsdl:port Type> 

 
10.1.3 Experimental 
 
The XML attribute ‘experimental’ indicates that the construct (port type, operation, service data 
element., service data description, binding) to which it is applied is available for experimentation 
and at some point will either become part of a formal release or removed entirely. (Removal of 
anything marked experimental would not be re-labeled deprecated).  The default value is ‘false’.  
The ‘experimental’ attribute is scoped according to the following rules: 
• When applied to portType, all operations and service data for that portType are also 

experimental. 
• When applied to a portType that extends another portType, only the operations and service 

data of extended portType are experimental. 
• When applied to an operation, only the operation is experimental. 
• When applied to a service data element, only that service data element is experimental. 
• When applied to binding, only the binding is experimental. 
 
<define how experimental is affected by inheritance> 
 
The XML attribute ‘experimental’ is defined in the CRM namespace as 
    <xsd:attribute name="experimental" type="xsd:boolean" scope="global"/> 
 
Example 
In this example, the portType ‘newOperatingSystemPortType’ is experimental. 
 
    <wsdl:portType name="newOperatingSystemPortType"  
                             crm:experimental=”true”> 
        <wsdl:documentation>Operating System port type</wsdl:documentation>  
        … 
        (operations and service data of the port type) 
        …  
    </wsdl:portType> 
 
10.2 Units attribute 
 
The XML attribute ‘units’ defines the unit of measure for the value of a XSD schema element 
used in the service data element.  Its type is the union of an enumerated list of well-known units 
and a string to allow the value of ‘units’ to be extensible. 
 
The XML attribute ‘units’ is defined as 
    <xsd:simpleType name=”crm:unitsType”> 
        <xsd:union> 
            <xsd:simpleType> 
                <xsd:restriction base="xsd:string"> 
                    <xsd:enumeration value="unit1"/> 
                    <xsd:enumeration value="unit2"/> 
                    … 
                    <xsd:enumeration value="unitn"/> 
                </xsd:restriction> 
            </xsd:simpleType> 
            <xsd:simpleType> 
                <xsd:restriction base="xsd:string" /> 
            </xsd:simpleType> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 26 

        </xsd:union> 
    </xsd:simpleType> 
 
where unit1, unit2, to unitn are well-known units of measure.  An appendix will be added later 
with the complete enumeration – based on units used in CIM and common metrics based on 
product experience.  
 
    <xsd:attribute name="units" type="crm:unitsType" scope="global"/>  
 
Example 
In this example, the value of the service data element totalVirtualMemorySize is in units of 
kilobytes. 
    <sd:serviceData name="totalVirtualMemorySize" type=" xsd:nonNegativeInteger" 
            minOccurs="0" maxOccurs="1" mutability="mutable" 
            crm:units=kilobytes 
        <wsdl:documentation> 
            Number of Kbytes of virtual memory. For example,  
            this may be calculated by adding the amount of total RAM to  
            the amount of paging space (i.e., adding the amount of  
            memory in/aggregated by the ComputerSystem to the property,  
            SizeStoredInPagingFiles. 
        </wsdl:documentation> 
    </sd:serviceData> 
 
 
 
10.3 Lifecycle attributes 
 
There are XML attributes that further describe the lifecycle characteristics of the resource for use 
by an application or management tool, specifically the changeability, validity, volatility, and 
latency of the pieces comprising the service. 
 
Taking a message queue example, not all of the service data elements of the queue have the 
same behavior over time. For example, the queue will have a service data element queueName 
which is set set when the queue is created.  Another service data element, averageTimeInQueue 
is only valid while the queue is running, and the queue may require a restart for changes to the 
service data element maximumNumberOfMessages to take effect.  
 
The value of the lifecycle XML attributes changeable and valid can be one or more 
lifecycleValueTypes representing valid combinations of lifecycleState and subState defined in the 
resources lifecycleModel SDE, or the values ‘any’ or ‘unknown’.  The ‘any’ value indicates that 
resource can be in any state for the service data / operation to be valid or changeable.  The 
‘unknown’ value indicates that the state a resource’s service data element or operation must be in 
to be valid or changeable is not known or not defined.  lifecycleValueType is a simple XML type 
that represents a lifecycleState and optional substate defined as: 
 
    <xsd:simpleType name="lifecycleValueType"> 
        <xsd:annotation> 
            <xsd:documentation>A lifecycleValue contains two parts - the  
             lifecycle state and the lifecycle sub-state.  Each of these 
             is an NCName, and the sub-state part is optional.  The 
             format is defined as follows: 
  
               lifecycleValue ::= lifecycleState (':' lifecycleSubState)?  
               lifecycleState ::= NCName 
            lifecycleSubState ::= NCName</xsd:documentation> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 27 

        </xsd:annotation> 
        <xsd:restriction base="xsd:string"> 
            <xsd:pattern value="[\i-[:]][\c-[:]]*(:[\i-[:]][\c-[:]]*)?"></xsd:pattern> 
        </xsd:restriction> 
    </xsd:simpleType> 
 
    <xsd:simpleType name="lifecycleValueListType"> 
        <xsd:list itemType="crm:lifecycleValueType"/> 
    </xsd:simpleType>  
 
The following table summarizes what/when the XML attribute can be specified (indicated by Y) 
and not specified (indicated by N).   
• The “Type” column indicates whether the attribute is used in the WSDL/GSDL that defines 

the port type – i.e. the value of the attribute does not change from one instance of the 
resource to the next.   

• The “Instance” column indicates whether this attribute can be used within the service data of 
the service, so that the value of the attribute can vary from one service data value to another 
or from one service instance to another. 

• The “Service Data” and “Operation” columns indicate whether the attribute applies to service 
data (either its definition or content) and operations respectively. 

 
 Type Instance Service 

Data 
Operation 

modifiable Y N Y N 
valid Y N Y Y 
changeable Y N Y N 
volatile Y Y Y N 
latency Y N Y Y 
 
10.3.1 valid 
 
The XML attribute ‘valid’ specifies when in the lifecycle of a resource an element defined in the 
port type is valid. The semantic meaning depends on the type of element: 
• For service data, validity indicates the lifecycle(s) in which the service data can be read and 

is meaningful.  
• For operations, validity indicates the lifecycle in which it is meaningful to invoke the operation. 
 
This attribute is defined as follows: 
    <attribute name="valid" type="crm:lifecycleValueListType" scope="global"/>  
 
Example 
In this example (from the OperatingSystem port type in Appendix C), the lastBootUpTime service 
data is meaningful and valid to be read when the OperatingSystem port type is in the down, 
starting, up, stopping, or failed state. 
        <sd:serviceData name="lastBootUpTime" type="xsd:datetime" 
            minOccurs="0" maxOccurs="1"  mutability="mutable" 
            crm:valid="down starting up stopping failed"> 
            <wsdl:documentation> 
                Time when the OperatingSystem was last booted. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 28 

10.3.2 changeable 
 
The XML attribute ‘changeable’ is used with service data to indicate when in the lifecycle of a 
resource the value(s) of its service data can be changed by an application or management tool. 
 
It differs from the XML attribute ‘valid’ in that validity indicates when the service data can be read. 
The distinction is important because service data may be modifiable only at certain times. For 
example, the persistence state of a message queue (indicating whether messages are persisted 
or not) may only be changed while the queue is down, but can be viewed at any time.  In this 
example, the changeable value would be “down” whereas the valid value would be “any”. 
 
This attribute is defined as follows: 
    <attribute name="changeable" type="crm:lifecycleValueListType" scope="global"/>  
 
Example 
In this example (from the OperatingSystem port type in Appendix C), the localDateTime service 
data can be changed by an application or management tool when the OperatingSystem port type 
is in the starting, up, stopping, or failed state. 
        <sd:serviceData name="localDateTime" type="xsd:datetime" minOccurs="0" 
            maxOccurs="1" mutability="mutable" modifiable="true" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="starting up stopping failed" 
            crm:latency="immediate”> 
            <wsdl:documentation> 
                OperatingSystem's notion of the local date and time of day. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
 
 
10.3.3 latency 
 
The XML attribute ‘latency’ is valid for modifiable service data and for operations.  Latency 
indicates when the write action or the result of the operation takes effect.  For example, 
latency=”whenStarted” indicates that the resource needs to be restarted before changes to 
configuration or an operation action takes effect. 
 
The following simpleType is defined for use with the XML attribute latency. 
 
    <simpleType name=”crm:latencyValueType”> 
        <restriction base=”string”> 
            <enumeration value=”whenStarted“/> 
            <enumeration value=“immediate“/> 
            <enumeration value=”afterResync“/> 
            <enumeration value=”delayed“/> 
        </restriction> 
    </simpleType> 
 
The enumerated values mean: 
• whenStarted – when the resource is restarted 
• immediate – now; during or upon return from executing the action 
• afterResync – resource requires a specific command to execute before new value takes 

effect, e.g. re-read of the resource’s configuration file 
• delayed – after a reasonable amount of time; volatility can be used to indicate the period until 

the change takes effect 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 29 

How do the latencyValueTypes relate to the lifecycleModel?  Perhaps the possible latency values 
should be specified as part of the model. 
 
This attribute is defined as follows: 
    <attribute name="latency" type="crm:latencyValueType" scope="global"/>  

 
Example 
In this example (from the OperatingSystem port type in Appendix C),when an application or 
management tool changes the localDateTime service data, the change takes effect immediately. 
        <sd:serviceData name="localDateTime" type="xsd:datetime" minOccurs="0" 
            maxOccurs="1" mutability="mutable" modifiable="true" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="starting up stopping failed" 
            crm:latency="immediate”> 
            <wsdl:documentation> 
                OperatingSystem's notion of the local date and time of day. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
 
10.3.4 volatile 
 
The XML attribute ‘volatile’ indicates how frequently a service data element may be changed by 
the resource as part of its normal operation.  It provides a rough guideline or hint to the 
application as to the frequency that changes may occur.  For example, a monitoring application 
that reads service data for graphing purposes would use the volatile value to determine roughly 
how often to read that service data.  Note that this attribute does not give any indication that 
changes will actually occur at this frequency – in some periods multiple changes may occur, or it 
may be much longer then this period between changes. 
 
The unit of measure of the volatility attribute is seconds.  (Note: a service data element may 
change more frequently than every second, but from a monitoring viewpoint ‘seconds’ is a 
reasonable unit of measure). The ‘units’ attribute cannot be used to indicate other units for the 
volatile attribute, because its use here would apply to the element, for example a counter or 
gauge, rather than the volatile attribute. 
 
Is it necessary to allow units to be specified for the volatile attribute?  If so, then what is the best 
approach to add this?  Perhaps make the attribute type a string (or some restriction of string) and 
allow the units to be added within the value of the volatile attribute.  Or add a second attribute that 
indicates the units e.g. volatileUnits. 
 
The volatility attribute is different from the grid service lifecycle attributes goodFrom, goodUntil, 
and availableUntil; the grid service lifecycle attributes state the validity of cached values of 
service data whereas the volatility attribute indicates the frequency of change at the resource.   
 
This attribute is defined as follows: 
    <attribute name="volatile" type="xsd:nonNegativeInteger" scope="global"/>  

 
Example 
In this example (from the OperatingSystem port type in Appendix C), the number of processes 
changes very frequently within the operating systems; volatility is set to 1 second – the minimum 
volatility change time. 
        <sd:serviceData name="numberOfProcesses" type="crm:gauge" 
            minOccurs="0" maxOccurs="1" mutability="mutable" 
            crm:valid="starting up stopping failed" 
            crm:volatile=”1”> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 30 

            <wsdl:documentation> 
                Number of process contexts currently loaded or running on 
                the OperatingSystem. 
                Although CIM defines a property for maxNumberOfProcesses, 
                it is not necessary here;  maxNumberOfProcesses is expressed 
                as the maximum value for this numberOfProcessses gauge 
            </wsdl:documentation> 
        </sd:serviceData> 
 
 
 
 
 

11.  Use of XML data types for modeling 

 
The data types defined in XML [xmldatatypes] are the basis for the data types used to model a 
resource as a service.  There are many data types from existing resource models that are low 
level and reflect implementation.  To make these useful in XML, these are modeled as an 
abstraction that can be mapped or implemented in low level constructs.  Examples are arrays and 
bits.  This chapter describes how some common data types used in existing management models 
may be mapped into existing XML data types.  This chapter also describes two additional data 
types, counter and gauge, that are useful for modeling management interfaces.  These new data 
types are derived from the basic XML set of data types. 
 
11.1 Mapping common data types to XML data types 
 
Resource models define data types.  In the OGSA Common Resource Model, XML schema is 
used, and there is a set of predefined data types.  In existing resource models, there are data 
types that one might find are not obvious how to express in XML.  And in most cases, it is not 
fruitful to just add those same data types from existing resource models in the OGSA Common 
Resource Model since those data types can be expressed using the current XML schema.  This 
section show how some of the common data types from other resource models can (and should) 
be expressed in XML. 
 
11.1.1 Array 
 
An array is used to hold multiple values in a structured manner.  In systems management, arrays 
have typically been 1-dimensional.  Multi-dimensional arrays may be useful, depending on what is 
being expressed.   
 
A 1-dimensional array can be expressed on the element construct by specifying the constraints 
minOccurs and maxOccurs.  If maxOccurs=unbounded, then the array is unbounded.  All of an 
array’s values are homogeneous, that is, they are of the same data type.  
 
Since an array is really a set of elements, another way to define a 1-dimensional array is to define 
a sequence of elements, each of the same data type.  Multi-dimensional arrays are then 
sequences or sequences.  Each value of each element is single or multi-valued, again controlled 
by use of minOccurs and maxOccurs. 
 
The author defining the array decides what significance is attached to the document order of the 
array.   
 
An array can be indexed.  You can add an attribute to the elements which allows you to find 
whatever entry you want, using the appropriate index. 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 31 

XML modeling experience will surface best practices for modeling arrays. 
 
11.1.2 Bit or binary 
 
Bit or binary is a low level implementation.  Bit or binary could be defined using hexBinary, but in 
practice they are used to combine a number of independent fields within a single string of bits.  
These fields may a single bit, giving a binary choice, or may have multiple bits, giving either a 
small selection of enumerated values, or a small number.  When modeling this in XML it is 
appropriate to describe each of the fields explicitly within a sequence using appropriate XML data 
types, for example ‘boolean’, ‘integer’ or enumerations.  In addition, it is usually appropriate to 
define enumerations in the form of text strings, rather than numeric values. 
 
For example, suppose a resource natively supplies a set of data, resourceInfo, in the form of an 8 
bit field, specifically an unsignedByte, (labeled 0-7 right to left).   
• Bits 0 and 1 display 4 states of the resource:  00=deployed, 01=installed, 10=executable, 

11=running 
• Bit 2 is unused 
• Bit 3 tells whether a particular facet of the resource is available, a boolean 
• Bit 4 is unused 
• Bits 5-7 give the 3 speeds of a resource, one bit for each speed where only one of the bits 

may be set at any given time: bit 5 when set is speed=1x, bit 6 when set is speed 2x, bit 7 
when set is speed 4x 

 
In XML, this bit or binary implementation of an unsignedByte could be defined as: 
<complexType name=”resourceInfo”> 
    <sequence> 
        <element name=”resourceState”> 
            <restriction base=”string”> 
                <enumeration value=”deployed”/> 
                <enumeration value=”installed”/> 
                <enumeration value=”executable”/> 
                <enumeration value=”running”/> 
            </restriction> 
        </element> 
        <element name=”resourceFacetEnabled” type=”boolean”/> 
        <element name=”resourceSpeed”> 
            <restriction base=”string”> 
                <enumeration value=”1x”/> 
                <enumeration value=”2x/> 
                <enumeration value=”4x/> 
            </restriction> 
        </element> 
    </sequence> 
</complexType> 
 
 
11.1.3 Octet 
 
The hexBinary data type is used to express data specified in the octet data type from other 
resource models. 
 
11.2 New XML data types 
 
The data types used in the Common Resource Model are those defined in [xmldatatypes] plus 
the derived data types defined in this section.  These derived data types are associated with the 
CRM namespace. 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 32 

 
11.2.1 Counter 
 
A ‘counter’ represents a non-negative integer that monotonically increases until it reaches a 
maximum value, when it wraps around and starts increasing again from zero.  A counter may also 
be reset to zero as needed.  Counter is a complex concrete data type.  Its minimum value is 
implicitly zero; its maximum value is specified as an XML attribute of the gauge, allowing it to take 
different values for individual instances of a resource, and even to allow the maximum value to 
change during the lifetime of the resource instance.    
If a counter element for a particular resource has an absolute maximum value that constrains the 
possible range of the counter, then this can be specified using the maxValue attribute on the 
definition of the counter in the schema for that resource.  The minimum width of the data type 
(byte, short, int, long) is an implementation detail and may be derived from the maximum value of 
the counter. 
 
The counter data type is only applied to input and output messages (of operations) and service 
data elements.  The counter data type has the implied semantic (stated in previous paragraph) 
that is implemented by the resource and useful knowledge for (management) applications when 
displaying the information represented by those data types.  Applications that need to discover 
whether a service data element represents a counter can read the XML for that service data 
element and parse for a type set to ‘counter’, or base type set to ‘counter’ for new data types 
derived from data type counter. 
 
A counter can be reset to zero by an application or management tool if it is used in a context 
where writing the value is possible.  In the Common Resource Model writing is possible if, for 
example, the service data element that contains the counter is writeable, i.e. has the ‘modifiable’ 
attribute set. 
 

11.2.1.1 Lexical representation 

A counter has a lexical representation consisting of a finite-length sequence of decimal digits 
(#x30-#x39). For example: 0, 12678967543233, 100000, 9999, 126.  

11.2.1.2 Canonical representation 

The canonical representation for a counter is defined by prohibiting certain options from the 
Lexical representation.  Specifically, leading zeroes are prohibited. 

11.2.1.3 XML definition 

    <complexType name="counter"> 
        <extension base=”nonNegativeInteger”> 
            <attribute name=maxValue type=”nonNegativeInteger” use=”required”/> 
            <attribute ref=”units”/> 
        </extension> 
    </complexType> 

11.2.1.4 Example 
A disk resource may keep statistics on the number of disk read errors.  This is a monotonically 
increasing number that can wrap to zero when the maximum specified value is reached.  This 
data can be modeled as a counter.  The width of the data type (for implementation) is chosen 
based on the maximum value.  In this example, the element  
diskReadErrors is defined in the schema to be a counter, and in the diskReadErrors element 
instance it has a current value of 453 and a maximum value of 999.  
 
    … 
    <element name=”diskReadErrors” type=”counter”/> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 33 

    … 
 
    … 
    <diskReadErrors maxValue=”999”>453</diskReadErrors> 
    … 

 
11.2.2 Gauge 
 
A ‘gauge’ represents an integer that may increase or decrease, but can never exceed a minimum 
or maximum value.  Gauge is a complex concrete data type.  The maximum and minimum values 
for the gauge are specified as attributes of the gauge, allowing them to take different values for 
individual instances of a resource, and even to allow the maximum and minimum values to 
change during the lifetime of the resource instance.  An example of the latter case is a gauge that 
represents freeVirtualMemory, where the maximum value would change if additional paging 
space was added to the resource.   
If a gauge element for a particular resource has absolute maximum and minimum values that 
constrain the possible range of the gauge, then these can be specified using the minValue and 
maxValue attributes on the definition of the gauge in the schema for the resource.  The minimum 
width of the data type (byte, short, int, long) is an implementation detail and may be derived from 
the maximum value of the gauge. 
 
The gauge data type is only applied to input and output messages (of operations) and service 
data elements.  The gauge data type has the implied semantic (stated in previous paragraph) that 
is implemented by the resource and useful knowledge for (management) applications when 
displaying the information represented by those data types.  Applications that need to discover 
whether a service data element represents a gauge can read the XML for that service data 
element and parse for a type set to ‘gauge’, or a base type set to ‘gauge’ for new data types 
derived from data type gauge. 
 
The gauge defined here allows integer values only.  Is another gauge type needed that allows 
float or double values? 

11.2.2.1 Lexical representation 

A gauge has a lexical representation consisting of a finite-length sequence of decimal digits 
(#x30-#x39). For example: 0, 12678967543233, -100000, 9999, 126, -12.  

11.2.2.2 Canonical representation 

The canonical representation for a gauge is defined by prohibiting certain options from the Lexical 
representation.  Specifically, leading zeroes are prohibited. 

11.2.2.3 XML definition 

    <complexType name="gauge"> 
        <extension base=”integer”> 
            <attribute name=minValue type=”integer” use=”required”/> 
            <attribute name=maxValue type=”integer” use=”required”/> 
            <attribute ref=”units”/> 
        </extension> 
    <complexType> 

11.2.2.4 Example 
An operating system tracks the amount of free physical memory.  For example, a machine may 
have 512 megabytes of physical memory.  The amount of free physical memory, at a point in 
time, can range from zero to 512 megabytes.  The amount free decreases when memory is 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 34 

allocated and increases when it is freed.  When no more memory can be allocated, the value 
stays pinned at zero.  This behavior is typical of a gauge, and hence is modeled as a gauge.  The 
width of the data type (for implementation) is chosen based on the maximum value.  The units 
attribute of the values (in this example, it is megabytes) is discussed in Section 10.2. 
In this example, the element freePhysicalMemory is defined in the schema as being a gauge.  In 
the example freePhysicalMemory element instance, it has a current value of 213, with maximum 
value of 512 and minimum of 0; the units of the values are in kilobytes.  
 
    … 
    <element name=”freePhysicalMemory”  type=”gauge” /> 
    … 
 
    … 
    <freePhysicalMemory minValue=”0” maxValue=”512”   
            units=”kilobytes”>213</freePhysicalMemory> 
    … 
 
Another example of a gauge is a volt meter which may have a reading range of min=-12 to 
max=+12 where the units are ‘volts’. 
 
 

12.  How to model manageable resources 
 
This will consist of a set of guidelines or hints and tips for how to go about modeling manageable 
resources.  This may be pulled out into a separate document and will no doubt grow as modeling 
progresses. 
 
 
 

13.  Security Considerations 
 
This specification defines the abstract interaction between the grid service that represents a 
manageable resource and clients of that service. While it is assumed that such interactions must 
be secured, the details of security are out of scope of this specification. Instead, security should 
be addressed in related specifications that defined how the abstract interactions are bound to 
specific communication protocols, and to specific programming environments. 

 

Appendix A.  A Common Lifecycle Model 

 
A resource or service goes through a set of states throughout its life.  For example, a queue is in 
the down state when it is created, in the up state when it can receive and process requests, and 
in the failed state if it stops unexpectedly and is no longer responding.  
 
Note that different operations will be valid in different states.  For example, ‘stop’ is not a valid 
operation if you are in a ‘down’ state.  
 
There are five lifecycle states for a resource: 
• Down – In this state the resource has been created, but cannot do useful work until it is Up.  

However, information about the resource is available in this state.  (Note that the some of the 
operations or service data elements of the service are available in this state, although the 
resource the service represents is not).  



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 35 

• Starting – This is a transient state that indicates that the resource is in the process of starting 
up.  The next state is either the Up or Failed state. 

• Up – In this state the resource is running and available to process new work. 
• Stopping – This is a transient state that indicates that the resource is in the process of 

stopping.  During this state it is unlikely that new work will be accepted.  The next state is 
either the Down or Failed state. 

• Failed – In this state the resource is not available except for managing first-failure artifacts 
that are useful for problem determination.  This state is typically entered after the resource 
crashes. The resource must be transitioned to a Down state before it can be started again. 

 
These states, and the possible transitions between them, are illustrated in Figure 4. 
 
If a manageable resource cannot define its lifecycle state, then the resource is said to be in the 
‘unknown’ state.  When a resource is in the ‘unknown’ state, the information provided by the 
lifecycle XML attributes is not useful to an application or management tool. 
 
 
 

down 

up 
/stop 

/start 

/end_of_life  

/beg_of_life  

failed 

/fail 

starting 

stopping 

/fail 

/fail 

down 

up 
/stop 

/start 

/end_of_life  

/beg_of_life  

failed 

/fail 

/administrate 

starting 

stopping 

/fail 

/fail /fail 

 
 

Figure 4: Lifecycle states 

 
Each lifecycle state has additional information about its operational state. 
 
A resource in the down state can specify these operational characteristics: 
• restartable:  resource is stopped but is restartable 
• recovered:  resource is down but is restartable.  This can occur if the resource has 

abnormally ended and recovered an error or is in maintenance. 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 36 

Maint

Stopped /start
Stopping or 

Starting Starting

/admin

Maint

Stopped /start
Stopping or 

Starting Starting

/admin

 

Figure 3.  Down sub-states 

 
A resource in the starting state can specify these operational characteristics: 
• OK:  resource expected to attain stated state soon 
• error:  resource expected to attain failed state soon 
 
A resource in the up state can specify these operational characteristics: 
• idle:  resource provides the expected service, can accept new work, but is not currently 

processing work 
• busy: resource provides the expected service, can accept new work, and is currently 

processing work 
• degraded:  resource runs but not optimally.  It may not deliver 100% of expected service, e.g. 

performance bottleneck, or it may be consuming excess system resources, it may be starved 
for resources, it may be saturated with work, it may recognize that failure is imminent, or it 
may be running maintenance with limited availability 

 

idle

busy
/relieve

/relieve

degraded

{or}{or}

/start

Up Substates

Starting Stopping or
Failed

/stop

/fail

idle

busy
/relieve

/relieve

degraded

{or}{or}

/start

Up Substates

Starting Stopping or
Failed

/stop

/fail

 
 

Figure 3.  Up sub-states 

 
A resource in the stopping state can specify these operational characteristics: 
• OK:  resource expected to attain stopped state soon 
• error:  resource expected to attain failed state soon 
 
A resource in the failed state can specify these operational characteristics: 
• dependencyFailure:  resource not restartable because of a loss of a supporting/hosting 

resource 
• nonRecoverableError:  resource not restartable because of a non-recoverable error 
 
So, the lifecycle model described above would be expressed in a resource’s port type as: 
 
<sd:staticServiceDataValues> 
   <lifecycleModel> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 37 

      <crm:lifecycleState name="down"> 
         <subState name="restartable"/> 
         <subState name="recovered"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="starting"> 
         <subState name="OK"/> 
         <subState name="error"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="up"> 
         <subState name="idle"/> 
         <subState name="busy"/> 
         <subState name="degraded"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="stopping"> 
         <subState name="OK"/>           
         <subState name="error"/> 
      </crm:lifecycleState> 
      <crm:lifecycleState name="failed"> 
         <subState name="dependencyFailure"/> 
         <subState name="nonrecoverableError"/> 
      </crm:lifecycleState> 
   </lifecycleModel> 
</sd:staticServiceDataValues> 
 
 
 

Appendix B.  BaseManageableResource Port Type 
 
This is the WSDL for the BaseManageableResource port type.  The CRM defined XML data 
types are assumed to be in a separate XML schema file. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="xxx" 
    targetNamespace="http://www.gridforum.org/namespaces/2003/17/crm" 
    xmlns:crm="http://www.gridforum.org/namespaces/2003/17/crm" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
 
    <gwsdl:portType name="BaseManageableResource" extends="gwsdl:OGSIGridService”> 
 
        <sd:serviceData 
                name="lifecycleModel"  
                type="crm:lifecycleModelType"  
                minOccurs=”1”    
                maxOccurs=”1” 
                nillable=”true” 
                mutability=”static”/> 
 
        <sd:serviceData 
                name="currentLifecycleState"  
                type=”lifecycleStateType"  
                minOccurs=”1”    
                maxOccurs=”1” 
                mutability=”mutable”/> 
 
        <sd:serviceData  



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 38 

                name="serviceGroupType" 
                type="xsd:QName" 
                minOccurs="0"  
                maxOccurs="1" 
                mutability=”static” /> 
  
        <sd:serviceData  
                name="searchProperty”  
                type="xsd:QName" 
                minOccurs="0"  
                maxOccurs="unbounded" 
                mutability=”static”/> 
 
        <sd:serviceData  
                name="relatedInstance" 
                type="crm:relatedInstance" 
                minOccurs="0"  
                maxOccurs="unbounded"  
                mutability=”mutable”/> 
 
        <sd:serviceData  
                name="relatedType" 
                type="crm:relatedType" 
                minOccurs="0"  
                maxOccurs="unbounded"  
                mutability=”static”/> 
 
    </gwsdl:portType> 
</wsdl:definitions> 
 

Appendix C.  Operating System Port Type 
 
This is the start of the port type for an operating system based on the current Grid Service 
specification and this version of the Common Resource Model specification.  It is based on the 
CIM OperatingSystem class.  It is still under construction. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions name="xxx" targetNamespace="someURI" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
    <wsdl:types> 
        <xsd:schema targetNamespace="someURI"> 
            <xsd:simpleTy pe name="OSTypeType"> 
                <xsd:union> 
                    <xsd:simpleType> 
                        <xsd:restriction base="xsd:string"> 
                            <xsd:enumeration value="Unknown"/> 
                            <xsd:enumeration value="MACOS"/> 
                            <xsd:enumeration value="ATTUNIX"/> 
                            <xsd:enumeration value="DGUX"/> 
                            <xsd:enumeration value="DECNT"/> 
                            <xsd:enumeration value="Tur64 UNIX"/> 
                            <xsd:enumeration value="OpenVMS"/> 
                            <xsd:enumeration value="HPUX"/> 
                            <xsd:enumeration value="AIX"/> 
                            <xsd:enumeration value="MVS"/> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 39 

                            <xsd:enumeration value="OS400"/> 
                            <xsd:enumeration value="OS/2"/> 
                            <xsd:enumeration value="JavaVM"/> 
                            <xsd:enumeration value="MSDOS"/> 
                            <xsd:enumeration value="WIN3x"/> 
                            <xsd:enumeration value="WIN95"/> 
                            <xsd:enumeration value="WIN98"/> 
                            <xsd:enumeration value="WINNT"/> 
                            <xsd:enumeration value="WINCE"/> 
                            <xsd:enumeration value="NCR3000"/> 
                            <xsd:enumeration value="NetWare"/> 
                            <xsd:enumeration value="OSF"/> 
                            <xsd:enumeration value="DC/OS"/> 
                            <xsd:enumeration value="Reliant UNIX"/> 
                            <xsd:enumeration value="SCO UnixWare"/> 
                            <xsd:enumeration value="SCO OpenServer"/> 
                            <xsd:enumeration value="Sequent"/> 
                            <xsd:enumeration value="IRIX"/> 
                            <xsd:enumeration value="Solaris"/> 
                            <xsd:enumeration value="SunOS"/> 
                            <xsd:enumeration value="U6000"/> 
                            <xsd:enumeration value="ASERIES"/> 
                            <xsd:enumeration value="TandenNSK"/> 
                            <xsd:enumeration value="TandemNT"/> 
                            <xsd:enumeration value="BS2000"/> 
                            <xsd:enumeration value="LINUX"/> 
                            <xsd:enumeration value="Lynx"/> 
                            <xsd:enumeration value="XENIX"/> 
                            <xsd:enumeration value="VM/ESA"/> 
                            <xsd:enumeration value="Interactive UNIX"/> 
                            <xsd:enumeration value="BSDUNIX"/> 
                            <xsd:enumeration value="FreeBSD"/> 
                            <xsd:enumeration value="NetBSD"/> 
                            <xsd:enumeration value="GNU Hurd"/> 
                            <xsd:enumeration value="OS9"/> 
                            <xsd:enumeration value="MACH Kernel"/> 
                            <xsd:enumeration value="Inferno"/> 
                            <xsd:enumeration value="QNX"/> 
                            <xsd:enumeration value="EPOC"/> 
                            <xsd:enumeration value="IxWorks"/> 
                            <xsd:enumeration value="VxWorks"/> 
                            <xsd:enumeration value="MiNT"/> 
                            <xsd:enumeration value="BeOS"/> 
                            <xsd:enumeration value="HP MPE"/> 
                            <xsd:enumeration value="NextStep"/> 
                            <xsd:enumeration value="PalmPilot"/> 
                            <xsd:enumeration value="Rhapsody"/> 
                            <xsd:enumeration value="Windows 2000"/> 
                            <xsd:enumeration value="Dedicated"/> 
                            <xsd:enumeration value="OS/390"/> 
                            <xsd:enumeration value="VSE"/> 
                            <xsd:enumeration value="TPF"/> 
                            <xsd:enumeration value="Windows (R) Me"/> 
                            <xsd:enumeration value="Caldera Open UNIX"/> 
                            <xsd:enumeration value="OpenBSD"/> 
                            <xsd:enumeration value="Not Applicable"/> 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 40 

                            <xsd:enumeration value="Windows XP"/> 
                        </xsd:restriction> 
                    </xsd:simpleType> 
                    <xsd:simpleType> 
                        <xsd:restriction base="xsd:string"/> 
                    </xsd:simpleType> 
                </xsd:union> 
            </xsd:simpleType> 
 
            <xsd:simpleType name="versionType"> 
                <xsd:restriction base="xsd:string"> 
                    <xsd:pattern  
                        value="(([0-9])+).(([0-9])+).([([a-z]|[A-Z]|[0-9])+])"/> 
                </xsd:restriction> 
            </xsd:simpleType> 
 
        </xsd:schema> 
    </wsdl:types> 
 
    <wsdl:message name="ResultResponse"> 
        <wsdl:part name="Return" type="xsd:unsignedInt"/> 
    </wsdl:message> 
 
    <wsdl:message name="shutdownRequest"></wsdl:message> 
 
    <wsdl:message name="rebootRequest"></wsdl:message> 
 
    <gwsdl:portType name="OperatingSystem" extends="crm:BaseManageableResource"> 
        <wsdl:documentation> 
            An OperatingSystem is software/firmware that makes a 
            ComputerSystem's hardware usable, and implements and/or manages the 
            resources, file systems, processes, user interfaces, services, ... 
            available on the ComputerSystem. 
        </wsdl:documentation> 
 
        <wsdl:operation name="reboot"> 
            <wsdl:input message="rebootRequest"/> 
            <wsdl:output message="ResultResponse"/> 
            <wsdl:documentation> 
                Requests a reboot of the OperatingSystem. The return 
                value should be 0 if the request was successfully executed, 1 
                if the request is not supported and some other value if an 
                error occurred. In a subclass, the set of possible return codes 
                could be specified. 
            </wsdl:documentation> 
        </wsdl:operation> 
 
        <wsdl:operation name="shutdown"> 
            <wsdl:input message="shutdownRequest"/> 
            <wsdl:output message="ResultResponse"/> 
            <wsdl:documentation> 
                Requests a shutdown of the OperatingSystem. The return 
                value should be 0 if the request was successfully executed, 1 
                if the request is not supported and some other value if an 
                error occurred. It is up to the implementation or subclass of 
                OperatingSystem to establish dependencies between the Shutdown 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 41 

                and Reboot methods, and for example, to provide more 
                sophisticated capabilities such as scheduled shutdown, reboot, 
                etc. In a subclass, the set of possible return codes could be 
                specified. 
            </wsdl:documentation> 
        </wsdl:operation> 
 
        <sd:staticServiceDataValues> 
           <lifecycleModel> 
              <crm:lifecycleState name="down"> 
                 <subState name="restartable"/> 
                 <subState name="recovered"/> 
              </crm:lifecycleState> 
              <crm:lifecycleState name="starting"> 
                 <subState name="OK"/> 
                 <subState name="error"/> 
              </crm:lifecycleState> 
              <crm:lifecycleState name="up"> 
                 <subState name="idle"/> 
                 <subState name="busy"/> 
                 <subState name="degraded"/> 
              </crm:lifecycleState> 
              <crm:lifecycleState name="stopping"> 
                 <subState name="OK"/>           
                 <subState name="error"/> 
              </crm:lifecycleState> 
              <crm:lifecycleState name="failed"> 
                 <subState name="dependencyFailure"/> 
                 <subState name="nonrecoverableError"/> 
              </crm:lifecycleState> 
           </lifecycleModel> 
        </sd:staticServiceDataValues> 
 
        <sd:staticServiceDataValues> 
          <wsdl:documentation> 
              operating systems are contained by computer systems 
          </wsdl:documentation> 
          <crm:relatedType> 
              <relationshipType>contains</relationshipType> 
              <source>crm:ComputerSystem</source> 
          </crm:relatedType> 
        </sd:staticServiceDataValues> 
 
        <sd:serviceData name="OSType" type="OSTypeType" minOccurs="0" 
            maxOccurs="1" mutability="setOnce" 
            crm:valid="down starting up stopping failed"> 
            <wsdl:documentation> 
                A string describing the manufacturer and OperatingSystem type. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="version" type="versionType" minOccurs="0" 
            maxOccurs="1" mutability="setOnce" 
            crm:valid="down starting up stopping failed"> 
            <wsdl:documentation> 
                A string describing the Operating System's version number. The 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 42 

                format of the version information is as follows: 
                majorNumber.minorNumber.revision or 
                majorNumber.minorNumber.revisionLetter 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="lastBootUpTime" type="xsd:datetime" 
            minOccurs="0" maxOccurs="1"  mutability="mutable" 
            crm:valid="down starting up stopping failed"> 
            <wsdl:documentation> 
                Time when the OperatingSystem was last booted. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="localDateTime" type="xsd:datetime" minOccurs="0" 
            maxOccurs="1" mutability="mutable" modifiable="true" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="starting up stopping failed" 
            crm:latency="immediate”> 
            <wsdl:documentation> 
                OperatingSystem's notion of the local date and time of day. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="curentTimeZone" type="xsd:short" minOccurs="0" 
            maxOccurs="1" mutability="mutable" modifiable="true" crm:units="minutes" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="starting up stopping failed" 
            crm:latency="immediate"> 
            <wsdl:documentation> 
                CurrentTimeZone indicates the number of minutes 
                the OperatingSystem is offset from Greenwich Mean Time. Either 
                the number is positive, negative or zero. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="numberOfLicensedUsers" type="unsignedInt" 
            minOccurs="0" maxOccurs="1" mutability="mutable" modifiable="true" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="up failed" 
            crm:latency="immediate"> 
            <wsdl:documentation> 
                Number of user licenses for the OperatingSystem. If 
                unlimited, enter 0. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="numberOfUsers" type="crm:gauge" minOccurs="0" 
            maxOccurs="1" mutability="mutable" 
            crm:valid="down starting up stopping failed"> 
            <wsdl:documentation> 
                Number of user sessions for which the OperatingSystem is 
                currently storing state information. 
            </wsdl:documentation> 
        </sd:serviceData> 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 43 

        <sd:serviceData name="numberOfProcesses" type="crm:gauge" 
            minOccurs="0" maxOccurs="1" mutability="mutable" 
            crm:valid="starting up stopping failed" 
            crm:volatile=”1”> 
            <wsdl:documentation> 
                Number of process contexts currently loaded or running on 
                the OperatingSystem. 
                Although CIM defi nes a property for maxNumberOfProcesses, 
                it is not necessary here;  maxNumberOfProcesses is expressed 
                as the maximum value for this numberOfProcessses gauge 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="totalSwapSpaceSize" type="unsignedLong" 
            minOccurs="0" maxOccurs="1" mutability="mutable" nillable="true" 
            modifiable="true" crm:units="kilobytes" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="down starting up stopping failed" 
            crm:latency="whenStarted"> 
            <wsdl:documentation> 
                Total swap space in Kbytes. This value may be NULL 
                (unspecified) if swap space is not distinguished from page 
                files. However, some Operating Systems distinguish these 
                concepts. For example, in UNIX, whole processes can be 'swapped 
                out' when the free page list falls and remains below a 
                specified amount. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="totalVirtualMemorySize" type="unsignedLong" 
            minOccurs="0" maxOccurs="1" mutability="mutable" crm:units="kilobytes" 
            crm:valid="down starting up stopping failed"> 
            <wsdl:documentation> 
                Number of Kbytes of virtual memory. For example, this may 
                be calculated by adding the amount of total RAM to the amount 
                of paging space (ie, adding the amount of memory in/aggregated 
                by the ComputerSystem to the property, SizeStoredInPagingFiles. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="freeVirtualMemory" type="crm:gauge" 
            minOccurs="0" maxOccurs="1" mutability="mutable" crm:units="kilobytes" 
            crm:valid="starting up stopping failed" 
            crm:volatile="1"> 
            <wsdl:documentation> 
                Number of Kbytes of virtual memory currently unused and 
                available. For example, this may be calculated by adding the 
                amount of free RAM to the amount of free paging space (ie, 
                adding the properties, FreePhysicalMemory and FreeSpace 
                InPagingFiles). 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="freePhysicalMemory" type="crm:gauge" 
            minOccurs="0" maxOccurs="1" mutability="mutable" crm:units="kilobytes" 
            crm:valid="starting up stopping failed" 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 44 

            crm:volatile="1"> 
            <wsdl:documentation> 
                Number of Kbytes of physical memory currently unused and 
                available. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="totalVisibleMemorySize" type="unsignedLong" 
            minOccurs="0" maxOccurs="1" mutability="mutable" crm:units="kilobytes" 
            crm:valid="starting up stopping failed" 
            crm:volatile="1"> 
            <wsdl:documentation> 
                The total amount of physical memory (in Kbytes) available to 
                the OperatingSystem. This value does not necessarily indicate 
                the true amount of physical memory, but what is reported to the 
                OperatingSystem as available to it. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="sizeStoredInPagingFiles" type="unsignedLong" 
            minOccurs="0" maxOccurs="1" mutability="mutable" modifiable="true" 
            crm:units="kilobytes" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="down starting up stopping failed" 
            crm:latency="whenStarted"> 
            <wsdl:documentation> 
                The total number of KBytes that can be stored in the 
                OperatingSystem's paging files. 0 indicates that there are no 
                paging files. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="freeSpaceInPagingFiles" type="crm:gauge" 
            minOccurs="0" maxOccurs="1" mutability="mutable" modifiable="true" 
            crm:units="kilobytes" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="down starting up stopping failed" 
            crm:latency="whenStarted"> 
            <wsdl:documentation> 
                The total number of KBytes that can be mapped into the 
                OperatingSystem's paging files without causing any other pages 
                to be swapped out. 0 indicates that there are no paging files. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="maxProcessMemorySize" type="unsignedLong" 
            minOccurs="0" maxOccurs="1" mutability="mutable" modifiable="true" 
            crm:units="kilobytes" 
            crm:valid="down starting up stopping failed" 
            crm:changeable="down starting up stopping failed" 
            crm:latency="afterResync"> 
            <wsdl:documentation> 
                Maximum number of Kbytes of memory that can be allocated 
                to a Process. For Operating Systems with no virtual memory, 
                this value is typically equal to the total amount of physical 
                Memory minus memory used by the BIOS and OS. For some Operating 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 45 

                Systems, this value may be infinity - in which case, 0 should 
                be entered. In other cases, this value could be a constant - 
                for example, 2G or 4G. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="distributed" type="boolean" minOccurs="0" 
            maxOccurs="1" mutability="setOnce" 
            crm:valid="down starting up stopping failed"> 
            <wsdl:documentation> 
                Boolean indicating whether the OperatingSystem is 
                distributed across several ComputerSystem nodes. If so, these 
                nodes should be grouped as a Cluster. 
            </wsdl:documentation> 
        </sd:serviceData> 
 
        <sd:serviceData name="maxProcessesPerUser" type="unsignedInt" 
            minOccurs="0" maxOccurs="1" mutability="mutable" modifiable="true"> 
            crm:valid="down starting up stopping failed" 
            crm:changeable="down starting up stopping failed" 
            crm:latency="afterResync"> 
            <wsdl:documentation> 
                A value that indicates the maximum processes that a user can 
                have associate with it. 
            </wsdl:documentation> 
        </wsdl:serviceData> 
 
    </gwsdl:portType> 
 
</wsdl:definitions> 
 
 
 

Author Information 
 
Ellen Stokes     Nick Butler 
IBM      IBM 
11400 Burnet Rd    MP188, Hursley Park, 
Austin TX  78758    Winchester, 
Email:  stokese@us.ibm.com   Hampshire, SO21 2JN 
Phone:  +1 512 838 0552   United Kingdom 

Email:  nickb@uk.ibm.com  
Phone:  +44 1962 818081 

   
 

Glossary 
 
OGSi 
 
gsdl 
 
wsdl 
 
 



GWD-R (draft-ggf-crm-crmspec-1)  17 February 2003 

crm-wg@gridforum.org 46 

 

References 

 
[cimschema] http://www.dmtf.org/standards/cim_schema_v26.php 
 
[cimspec] http://www.dmtf.org/standards/standard_cim.php 
 
[gsspec] http://www.globalgridforum.org/ogsi-wg/drafts/GS_Spec_draft03-2002-07-17.pdf 
  
[wsdl]  <insert ref for draft 1.2> 
 
[xmldatatypes]  http://www.w3c.org/TR/xmlschema-1 
 
[xmlstructures] http://www/w3c.org/TR/xmlschema-2 
 
 

Acknowledgements 

 
This is a preliminary list, in no particular order.  Apologies to anyone who has been left off – it is 
certainly not intentional! 
 
Steve Graham 
Tom Maguire 
Heather Kreger 
Revathi Subramanian 
Atul Patel 
Juergen Schneider 
Christine Draper 
Andreas Maier 
Helen Chen 
 
 
 
 



Full Copyright Notice 
 
Copyright © Global Grid Forum (2002). All Rights Reserved. 
This document and translations of it may be copied and furnished to others, and derivative 
works that comment on or otherwise explain it or assist in its implementation may be 
prepared, copied, published and distributed, in whole or in part, without restriction of any 
kind, provided that the above copyright notice and this paragraph are included on all such 
copies and derivative works. 
However, this document itself may not be modified in any way, such as by removing the 
copyright notice or references to the GGF or other organizations, except as needed for the 
purpose of developing Grid Recommendations in which case the procedures for copyrights 
defined in the GGF Document process must be followed, or as required to translate it into 
languages other than English. 
The limited permissions granted above are perpetual and will not be revoked by the GGF or 
its successors or assigns. 
This document and the information contained herein is provided on an "AS IS" basis and 
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE 
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 
PARTICULAR PURPOSE. 
 
Intellectual Property Statement 
The GGF takes no position regarding the validity or scope of any intellectual property or 
other rights that might be claimed to pertain to the implementation or use of the technology 
described in this document or the extent to which any license under such rights might or 
might not be available; neither does it represent that it has made any effort to identify any 
such rights. Copies of claims of rights made available for publication and any assurances of 
licenses to be made available, or the result of an attempt made to obtain a general license or 
permission for the use of such proprietary rights by implementers or users of this 
specification can be obtained from the GGF Secretariat. 
The GGF invites any interested party to bring to its attention any copyrights, patents or patent 
applications, or other proprietary rights which may cover technology that may be required to 
practice this recommendation. Please address the information to the GGF Executive Director 
(see contact information at GGF website). 
 


