
GWD-I Markus Lorch (Editor), Virginia Tech
Category Informational Bob Cowles (Co-Editor), Stanford Linear Accelerator Center
GGF Working Group on Rich Baker, Brookhaven National Laboratory
Authorization Frameworks and Mechanisms Leon Gommans, University of Amsterdam
 Paul Madsen, Entrust
 Andrew McNab, University of Manchester

Lavanya Ramakrishnan, CNIDR/MCNC
Krishna Sankar, Cisco Systems Inc.

Dane Skow, Fermi National Accelerator Laboratory
Mary R. Thompson, Lawrence Berkeley National Laboratory

 Date 2003-02-17
Revised 2004-01-23

mlorch@vt.edu 1

GGF DOCUMENT SUBMISSION CHECKLIST (include as front page of submission)
 COMPLETED (X) - Date
1. Author name(s), institution(s),
and contact information (X) – 2003-09-19

2. Date (original and, where
applicable, latest revision date) (X) – 2003-12-25

3. Title, table of contents, clearly
numbered sections (X) – 2003-12-25

4. Security Considerations section (X) – 2003-12-25
5. GGF Copyright statement inserted
(See below) (X) – 2003-06-06

6. GGF Intellectual Property
statement inserted. (See below)
NOTE that authors should read the
statement.

(X) – 2003-06-06

7. Document format -
The GGF document format to be used for
both GWD's and GFD's is available in
MSWord, RTF, and PDF formats. (note
that font type is not part of the
requirement, however authors should
avoid font sizes smaller than 10pt).

(X) – 2003-06-06

**

Deleted: 3

Deleted: 12

Deleted: 5

GWD-I Markus Lorch (Editor), Virginia Tech
Category Informational Bob Cowles (Co-Editor), Stanford Linear Accelerator Center
GGF Working Group on Rich Baker, Brookhaven National Laboratory
Authorization Frameworks and Mechanisms Leon Gommans, University of Amsterdam
 Paul Madsen, Entrust
 Andrew McNab, University of Manchester

Lavanya Ramakrishnan, CNIDR/MCNC
Krishna Sankar, Cisco Systems Inc.

Dane Skow, Fermi National Accelerator Laboratory
Mary R. Thompson, Lawrence Berkeley National Laboratory

 Date 2003-02-17
Revised 2004-01-23

mlorch@vt.edu 2

Conceptual Grid Authorization Framework and Classification

Status of This Memo

This memo provides information to the Grid community with focus on Grid security and
authorization. Distribution is unlimited.

Copyright Notice

Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract

This informational document provides an introduction to the topic of authorization in distributed
systems with a special focus on the needs and requirements of Grid environments. It specifies a
conceptual grid authorization framework and classifies existing and proposed authorization
mechanisms with regard to this framework. The framework is intended as the basis for future API
design and standardization work.

Deleted: 3

Deleted: 12

Deleted: 5

GWD-I 2004-01-23

mlorch@vt.edu 3

Contents

Abstract... 2
1. Introduction. ... 5
2. Authorization Framework concepts .. 5

2.1 The basic entities involved in an authorization.. 6
2.2 Authorization sequences... 7

2.2.1 The authorization push sequence. ... 8
2.2.2 The authorization pull sequence. ... 9
2.2.3 The authorization agent sequence... 9
2.2.4 Hybrid authorization sequence models. ... 9

2.3 Domain Considerations... 9
2.4 Contractual and Trust relationships. ... 10
2.5 Authorization Policy and Authorization Attributes.. 10

3. Authorization Architecture .. 10
3.1 Overview... 10
3.2 Authorization functions.. 11
3.3 Flow of authorization information .. 12
3.4 Authorization information message format and exchange protocols 12

3.4.1 Attributes ... 12
3.4.2 Authorization Requests and Responses .. 12
3.4.3 Policies .. 12

4. Framework Components .. 15
4.1 Trust Management.. 15

4.1.1 Trust Authorities... 15
4.1.2 Defining trust relationships... 15

4.2 Privilege Management .. 15
4.2.1 Attribute Authorities ... 16
4.2.2 Privilege assignment.. 17
4.2.3 Attribute management ... 17

4.3 Policy Management .. 18
4.4 Authorization Context.. 19
4.5 Authorization Server ... 19
4.6 Enforcement Mechanisms .. 20

4.6.1 Application dependent enforcement mechanisms.. 20
4.6.2 Application independent enforcement mechanisms... 21

5. Classification of Existing AuthZ Mechanisms, Modules and Systems............................... 22
5.1 Akenti Authorization Service ... 22

5.1.1 Model and Architecture overview... 22
5.1.2 Attribute Assertion and Policy Assertion functions ... 22
5.1.3 Flow of authorization information ... 22
5.1.4 Trust Management... 22
5.1.5 Enforcement Mechanisms ... 23

5.2 Cardea.. 23
5.2.1 Authorization information ... 23
5.2.2 Initiating and enforcing the authorization decision ... 23

5.3 CAS .. 23
5.4 PRIMA .. 24

5.4.1 Authorization sequence ... 24
5.4.2 Enforcement Mechanisms ... 25
5.4.3 Decision Function .. 25
5.4.4 Attribute Assertion and Policy Assertion Function.. 25

5.5 PERMIS Authorization Infrastructure .. 25
5.5.1 Authorization Framework... 25
5.5.2 Flow of Authorization Information .. 26
5.5.3 Policy Issues.. 26

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: 14

Deleted: 14

Deleted: 14

Deleted: 14

Deleted: 14

Deleted: 15

Deleted: 16

Deleted: 16

Deleted: 17

Deleted: 18

Deleted: 18

Deleted: 19

Deleted: 19

Deleted: 20

Deleted: 21

Deleted: 21

Deleted: 21

Deleted: 21

Deleted: 21

Deleted: 21

Deleted: 22

Deleted: 22

Deleted: 22

Deleted: 22

Deleted: 22

Deleted: 23

Deleted: 23

Deleted: 24

Deleted: 24

Deleted: 24

Deleted: 24

Deleted: 24

Deleted: 25

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 4

5.5.4 Trust Management... 26
5.6 The EU DataGrid Security Architecture... 27

5.6.1 VOMS Attribute Authorities .. 27
5.6.2 Authorization Decision Functions... 27

6. Related Standards.. 27
7. Security Considerations.. 29
Author Information .. 30
Acknowledgements... 30
Glossary.. 30
Intellectual Property Statement ... 31
Full Copyright Notice... 31
References ... 32
Appendix A: Two-domain authorization models taxonomy.. 34

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: 25

Deleted: 26

Deleted: 26

Deleted: 26

Deleted: 26

Deleted: 28

Deleted: 29

Deleted: 29

Deleted: 29

Deleted: 30

Deleted: 30

Deleted: 31

Deleted: 33

GWD-I 2004-01-23

mlorch@vt.edu 5

1. Introduction.

This document provides informational content to the Grid community. It introduces the basic
concepts and models of authorization, specifies a conceptual grid authorization framework and
classifies existing and proposed authorization mechanisms with regard to this framework.
The authors made an attempt to capture common assumptions and best practices, however, the
reader should keep in mind that no standards are defined and statements made in this document
are non-normative.

Authorization may be perceived as a rather fuzzy term that can imply many things. This is
induced by the fact that an authorization may be issued, transported, presented, verified,
delegated, revoked etc. For example, an authorization may be represented by:
• a set of attributes that describes a user characteristic or privilege (privilege management),
• a set of policies as the bases for a decision to grant access to a resource (access control)
• digitaly signed documents that assert access rights to a resource.
Many processes and entities may be involved in authorization. This document considers the
various authorization concepts and their relationships and describes a framework that is expected
to be general and abstract enough to allow for a classification of any type of authorization system.
Abstract entities and functions are defined and fundamental communication sequences for
authorization requests and decisions are shown. The mapping of existing authorization systems
to the concepts introduced in this framework and an overview of related standards and protocols
concludes the document.

This document will refer to other documents when concepts are considered that are not
specifically concerned with authorization. For example, several security related concepts such as
authenticity, integrity, confidentiality etc. will be positioned in this document but will only be briefly
explained.

The remainder of this document is organized as follows: Section 2 introduces the authorization
framework concepts by enumerating the basic entities, authorization sequences and related
topics. Section 3 specifies an overall authorization architecture and section 4 elaborates on
general authorization framework components. A classification of existing authorization
mechanisms, modules and systems developed for or used in Grid environment is provided in
section 5 and section 6 concludes the body of this document with a section on related
authorization standards. Appendix A provides a detailed taxonomy on two-domain authorization
schemes introduced in section 2.3.

2. Authorization Framework concepts

This section will explain various basic concepts involved in authorization and place these
concepts in a framework. The Authorization Framework presented in RFC2904 and the Generic
AAA Architecture presented in RFC2903 of the IRTF AAA Architecture Research Group and the
Access Control Framework described in the ISO recommendation, ISO/IEC 10181-3:1996
Information technology -- Open Systems Interconnection -- Security frameworks for open
systems: Access control framework have influenced our framework.

When reading this document one must consider the fact that the term authorization may mean
one of following:

1) the process of issuing a proof of right
2) the proof of right (or reference to it) itself (i.e. an authorization token)
3) the process of making an authorization decision by checking a proof of right, e.g. by

rendering user attributes against access control policies

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: l

GWD-I 2004-01-23

mlorch@vt.edu 6

An authorization decision can be made at a number of places:

• At the entrance of a service point (authorization may mean access control in this case).
• At a (central) point outside the service point.

To avoid this confusion one should always make a reference to the context.

2.1 The basic entities involved in an authorization.

In principle authorization decisions are made based on authorization information provided by
authorities. These authorities must have a direct or a delegated relationship with either the
authorization subject (e.g. user or organization member to which the authorization is issued), or
with the resource that is the target of the request that prompted the authorization (e.g. owner or
administrator of a resource), or with both. These relationships may be implemented using a trust
mechanism based on some cryptographic method (i.e. by using some asymmetric or symmetric
key mechanism) or may be implemented completely off-line (i.e. by some other trusted delivery
mechanism).

This observation brings us to the definition of the three basic high level entities involved in
authorization. This terminology will be more refined during the course of the document.

Subject: An entity (e. g. a person or process) that can request, receive, own, transfer, present or

delegate an electronic authorization as to exercise a certain right. Informally, a subject is any
user of a service or resource. The subject may be identified as an individual user or as a
member of a group of users. A Subject may also be a process that acts on behalf of a user
and as such holds access rights that were delegated to it from the user. The subject may
define a set of policies that determine how its authorization is used.

Resource: A component of the system that provides or hosts services and may enforce access

to these services based on a set of rules and policies defined by entities that are authoritative
for the particular resource. Typical resources in Grid environments might be a computer
providing compute cycles or data storage through a set of services it offers. Access to
resources may be enforced by a Resource itself or by some entity (a policy enforcement
point, gateway) that is located between a resource and the requestor and thus protecting the
resource from being accessed in an unauthorized fashion.

Authority: An administrative entity that is capable of and authoritative for issuing, validating and

revoking an electronic means of proof such that the named subject (a.k.a. holder) of the
issued electronic means is authorized to exercise a certain right or assert a certain attribute.
Right(s) may be implicitly or explicitly present in the electronic proof. A set of policies may
determine how authorizations are issued, verified, etc. based on the contractual relationships
the Authority has established.

There are currently three general types of authorities in common use. Attribute Authorities,
which issue attribute assertions that a given subject has one or more attribute/value pairs.
Policy Authorities, which issue authorization policies with respect to resources and services
offered by these resources. These authorization policies contain assertions that a given
subject has a certain right with respect to a given service. Identity Authorities (e.g. the
Certification Authorities (CAs) of a Public-Key Infrastructure (PKI)) which issue certificates
that assert a mapping of cryptographic tokens to subject identities. Identity Authorities are out
of the scope of this document since they enable authentication rather than authorization.

Authorization is frequently split into three distinct processes:
1) defining an authorization policy at a high-level by a person or organization.
2) implementing the high level policy into a certain executable form

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 7

3) evaluating the executable policy by a process which subsequently decides to issue a
specific authorization to a subject or take a specific action.

Each of these three entities may implement a set of policies that determine the handling of an
authorization. The policy handling function may be implemented as a hard coded piece of
logic or it may be implemented by means of a flexible policy language. At this level we do not
make more detailed assumptions.

The component performing the evaluation of the executable policy by computing an
authorization decision on behalf of the authorities is sometimes referred to as an
Authorization Server.

The term Authorization Server is however considered a rather vague term. Typically an
authorization server may make or do (a combination of):

a. An Authorization Decision. Sometimes the term Authorization Decision Server is
used in this case. Authorization Decisions are typically the outcome of an evaluation
of a policy,

b. An Authorization Lookup. A lookup of some entity’s rights that are represented in
some form and returned. These rights may form the basis of a new Authorization
Decision taken elsewhere by another Authorization Server or they represent the
outcome of a previously made (cached) Authorization Decision

c. The signing of a record of an Authorization as to assert its authority.
d. The delegation or proxy of an authorization decision to another Authorization Server.

One must therefore be careful with the handling of the term Authorization Server and be
specific about a particular function of an authorization server.

Each of these three entities may implement a set of policies that determine the handling of an
authorization. The policy handling function may be implemented as a hard coded piece of logic or
by means of a flexible policy language. At this level we do not make more detailed assumptions.

2.2 Authorization sequences

Figure 1 of RFC2904 recognizes a number of basic entities that are referred to as:

1. User
2. User Home Organization
3. Service Provider
4. AAA (Authentication, Authorization, Accounting) server

These terms can be mapped conceptually onto the entities defined above as follows:

1. User ⇒ Subject
2. Service Provider ⇒ Resource
3. AAA server ⇒ a server acting on behalf of the Authorization Authority

Considering the above mapping, the authorization sequences defined in chapter 3 of RFC2904
can now be recognized as sequences between our three generic entities.

Deleted: 3

Deleted: 12

Deleted: 25

Deleted:

Deleted:

Deleted:

GWD-I 2004-01-23

mlorch@vt.edu 8

Subject

Authorization
Authority

Resource

1

2

3

4

Figure 2.1 Authorization Push Sequence

Subject

Authorization
Authority

Resource

1

4

2 3

Figure 2.2 Authorization Pull Sequence

Subject

Authorization
Agent

Resource

1

2 3
4

Authorization
Authority

Figure 2.3 Authorization Agent Sequence

2.2.1 The authorization push sequence.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 9

With the push sequence, the Subject first requests an authorization from an Authority (e.g. via an
authorization server) The Authority may or may not honor the Subject’s request. It then may issue
and return some message or secured message (token or certificate) that acts as a proof of right
(Authorization Assertion). This assertion should have a validity time window associated with it.
The assertion may subsequently be used by the Subject to request a specific service by
contacting the Resource. The Resource will accept or reject the authorization assertion and will
report this back to the requesting Subject. Examples of such sequences are found in many
ticketing systems such as Kerberos or Keynote.

2.2.2 The authorization pull sequence.

With the pull sequence, the Subject will contact the Resource directly with a request. In order to
admit or deny the service request, the Resource must contact its Authorization Authority. The
Authorization Authority will perform an authorization decision and return a message that obtains
the result of an authorization. The Resource will subsequently grant or deny the service to the
Subject by returning a result message. Examples of such systems are found in the network world
with systems using the RSVP or RADIUS protocol where requests typically are carried “in-band”.
In the Grid environment this sequence is implemented in the PERMIS and Akenti authorization
systems.

2.2.3 The authorization agent sequence.

Using the agent sequence, the Subject will contact a higher level agent with a request to obtain a
service authorization. This agent will make an authorization decision based the rules established
by the authorization authority and if successful it will contact the Resource to provision a certain
state as to enable the service. After receiving successful feedback from the service, the agent will
report success to the requesting Subject. This model is relevant to Grid users when requesting a
certain QoS from the Grid system (e.g. resource reservation through a scheduler). The Subject
then interacts directly with the Resource to access the service.

2.2.4 Hybrid authorization sequence models.

The three basic sequences of 2.2 are fundamental. They do not cover all possible authorization
situations. Sometimes, when studying a certain sequence, one may find that the framework
model does not entirely match one of the above sequences. An example is the combination of the
pull and push models where even though the subject has previously requested authorization from
its administrative domain authority for a specific access and provides this authorization with his
access request to the resource (push) the resource may query an authority in its local
administrative domain to make sure the access complies with local policies (pull). These hybrid
sequences can be decomposed into assemblies of the three basic sequences.

2.3 Domain Considerations

An administrative domain is a definition of the scope of authority. In many distributed
authorization scenarios there are at least two administrative domains: that of the Subject and that
of the Resource. In Grid environments we frequently see scenarios where there are separate
domains for identity, subject attribute, resource policy, and community policy authorities. In a
simple Grid use case the Subject is in one administrative domain, its home domain, and the
Resource is in another (the home domain of the resource). In more advanced scenarios a
community or virtual organization (VO) domain is present. A VO domain can provide Authorities
that perform privilege management for all the members of a VO. A typical Grid scenario is one
where a Subject needs to use services from several domains. Sometimes this is accomplished by
a Resource in one domain using a Resource in another domain on behalf of the Subject. Grid
Service Providers may provide resources to users in multiple VO or home domains. For a more

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 10

thorough discussion of multiple domain scenarios the reader is referred to appendix A which
provides a taxonomy for the two-domain authorization scenario.

2.4 Contractual and Trust relationships.

Contractual relationships (often involving legal agreements) between the domains of the different
Subjects, Authorities and Resources are frequently necessary to enable the acceptance and
issuing of authorizations. Establishing these contractual relationships can be performed online or
off-line. Once in place, they can be used as a basis for establishing trust relationships, which
govern how entities of differing domains honor each other’s authorizations. These trust
relationships may be parallel or orthogonal to the contractual relationships. E.g. a contract may
provide that all involved parties should trust an independent 3rd party. Mapping of these
relationships are sometimes useful to illustrate the differences. RFC2904 recognizes this in
chapter 2.

2.5 Authorization Policy and Authorization Attributes.

Authorization information such as policies, attributes, identities and environmental parameters
(e.g. time) are utilized and combined when making authorization decisions. Every entity may use
policies to determine how a request or response should be handled. Many policies use the
concepts of conditions and actions which have to be evaluated with respect to the actual request,
the requesting subject’s identity and the attributes this subject holds. Conditions and actions may
cause message exchanges and as policies may have a certain degree of flexibility, the
exchanges may not be entirely predictable. Policies may also be expressed in strings (s-
expressions) that are compared and if one string (the request) is more specific than another (the
policy) then the request is granted. Policies may also be hidden in the implementation of the
authorization mechanisms, so that certain sequences may not be possible in a given interaction.
In the general security context the term policy may cover things outside of the authorization
domain, such as standards for message security, user identification, and document encryption
requirements. When policy is mentioned in this document without further specification we refer to
authorization policy which defines rules for resource access.
Authorization Attributes are statements bound to an entity. Term Attribute always refers to
Authorization Attributes in this document unless specified otherwise. Attributes can be grouped
into descriptive and privilege attributes. Descriptive attributes associate a characteristic with an
entity, while privilege attributes define directly applicable access rights of an entity with respect to
a resource. Descriptive attributes are used to convey characteristics of the entity they are bound
to, are typically agnostic to the resource and request or action and have to be rendered against
policies to yield access rights. Often descriptive attributes are named after the entity with which
they are associated (e.g. subject or resource attributes).

3. Authorization Architecture

3.1 Overview

An authorization architecture consists of a set of entities and functional components that allow
authorization decisions to be made and enforced based on attributes, parameters and policies
that define authorization conditions. The basic entities involved have been introduced in section
2. We will now investigate in more detail the overall architecture and focus on the information
exchanged among entities and functional components. Figure 3.1 provides and overview of such
an authorization system based on the pull scenario as described in section 2. It also shows
various authorities that may be involved in issuing and determining authorization parameters,
attributes and policies.

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: A

GWD-I 2004-01-23

mlorch@vt.edu 11

Similar diagrams could be drawn for the push and agent scenarios. In the agent and push
scenario the service request is send to the authorization server, which may either have an
enforcement component that drives the resource by issuing commands to the resource (agent) or
the enforcement function may issue a token to the subject (push). The resource may either have
an enforcement function that will check the validity of the token (push) or the source of the
request (agent). In the push and agent sequences, subjects may also put requests to authorities
that will provision the repository of the decision function. In these cases the subject is allowed to
perform a certain degree of self-provisioning.

Fig. 3.1 Authorization Architecture based on the pull sequence.

3.2 Authorization functions

There are two access control functions defined by ISO-1011813:
Access Control Decision Function (ADF): Makes authorization decisions about a subject’s

access to a service. It is equivalent to the Policy Decision Point (PDP) defined in RFC2904.
It is normally part of an Authorization server and is independent of the Resource or
Application. However, it may be co-located with the Access Control Enforcement Function.

Access Control Enforcement Function (AEF): Mediates access to a resource or service. It is
equivalent to the Policy Enforcement Point (PEP) defined in RFC2904. It is most often
either integrated into or located in front of the Resource it protects.

Authorization functions are embedded inside one or more administrative domains and may
appear in a variety of combinations:

1. All authorization functions are combined in a single domain
2. The subject and resource functions are combined, the authority functions are

independent
3. The subject and authority functions are combined, the resource functions are

independent
4. The authority and resource functions are combined, the subject functions are

independent
5. All entities are independent

Except for combination one, contracts typically govern the relationship and roles between the
administrative domains. Specific interfaces or messages are needed to implement trusted and
reliable communication of authorization decisions between administrative domains.

Deleted: 3

Deleted: 12

Deleted: 25

Resources

assign
attributes to subjects

Subjects

Attribute Authorities

Ennvironment Authorities

Authorization Servers
(Decision Functions)

define policies
for resources and sites

Enforcement
Functions

Resource Authorities / Service Provider

Policy Authorities

define environmental
parameters

define resource
specific policies

1. service request

6. service response

2. authorization
 request

3. authorization
response

4. service request

5. service response

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Deleted: Access Control Decision
Function (ADF): Make decisions
about a subject’s access to a service.
It is equivalent to the Policy Decision
Point (PDP) defined in RFC2904. It is
normally part of an Authorization
server, but can also be part of the
Resource.¶

Deleted: We additionally define two
authority authorization functions to
describe privilege management:¶
Attribute Assertion Function:
issuing of an attribute assertion.. ¶
Policy Assertion Function: issuing
of an authorization policy assertion. ¶
¶

Deleted: 1

Deleted:

GWD-I 2004-01-23

mlorch@vt.edu 12

3.3 Flow of authorization information

Figure 3.1 simplifies the information flow in an authorization system based on the pull model.
Attributes, parameters and policies, issued by the corresponding authorities, are made available
to the authorization servers. The authorization servers use this information to make authorization
decisions upon request by the enforcement functions.

We can define different information flow paths for authorization attributes which are also reflected
in RFC3281 (Internet Attribute Certificate Profile for Authorization):

Attribute acquisition:

1. Attribute authorities provide attributes to the subjects (subject acquisition)
2. Attribute authorities provide attributes directly to the authorization

servers/decision functions (server acquisition)
3. Attribute authorities provide attributes to repositories

Attribute application:

1. Subjects provide (a subset of) their attributes to the decision function via the
enforcement function at the time of request possibly following an attribute
negotiation phase (attribute push).

2. Attributes are retrieved by decision functions on demand from a repository
(attribute pull)

Policies are typically stored in a repository or provisioned directly to the decision functions by the
policy authorities.

3.4 Authorization information message format and exchange protocols

3.4.1 Attributes

Attributes need to be reliably bound to the holding entities (holder/recipient) as well as the issuing
authority. Attributes must be protected to provide for integrity, issuer authoritativeness and issuer
non-repudiation. This can either be accomplished by enclosing them in a digitally signed
container (e.g. via an X.509 Attribute Certificate or a signed SAML Attribute Assertion) or by
issuing them over a secured channel between authenticated and trusted entities and only storing
attributes in trusted and secured repositories.

3.4.2 Authorization Requests and Responses

Authorization requests and responses are similar to Attributes in that it is necessary to provide for
a secure binding. An authorization request must be securely bound to a subject and the subject’s
service request. The authorization response must be securely bound to a request, and when
required also to the response originator. In the pull and agent sequence models a
request/response protocol (e.g. SAML-P) over a secured channel between the enforcement and
the decision function or a digitally signed container (e.g. X.509 Attribute Certificate or SAML
Authorization Assertion) may provide this functionality. If the push model is deployed a secured
container has to be used as no direct connections between enforcement and decision functions
are present. If enforcement and decision functions are co-located, a programming interface
([AZN-API], [GAA-API], [PERMIS]) can be used instead.

3.4.3 Policies

Policies have similar requirements to Attributes as it is imperative to securely establish the
authority of the issuer and to protect the integrity of a policy. Again a secure container or secured

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: an

Deleted: is

GWD-I 2004-01-23

mlorch@vt.edu 13

connections between trusted end-points are required when policies need to be transferred or
retrieved.

The policy subsystem consists of mechanisms for expressing, exchanging and processing
different access control and authorization policies. Figure 3-2 shows the conceptual policy layers.

Figure 3-2 Components of a policy system – conceptual policy layers

3.4.3.1 Policy expression
The policy expression is usually done by a policy language which contains the vocabularies to
express various policy artifacts. If the policy language is extensible, then domain specific
vocabularies and characteristics can be incorporated in the future without requiring fundamental
changes. A variety of language pimitives, including XML or s-expressions can be used as the
basis for a policy language.

3.4.3.2 Policy Exchange
To exchange policies a substrate consisting of messages and protocols is required. The
participating end points need to agree on a common policy expression language, which is a good
motivation for the use of standardized policy languages. The exchange need not be a point-to-
point one-on-one communication. There could be publish and subscribe mechanisms with
associated event capturing systems.

Policy exchange also includes the exchange of metadata around policy. For example, creation
time, policy validity, policy issuer, also supported channel policies like encryption, trust anchors,
and related information.

3.4.3.3 Policy processing
The policy processing engines are likely to be proprietary to the various systems. Existing policy
systems, including those based on artificial intelligence and neural net paradigms, can be
effectively used so long as they understand the policy expression and exchange mechanisms.

3.4.3.4 Object systems vs. wire formats
Object systems provide API compatibility between different implementations while common wire
formats make it possible for heterogeneous systems to talk to each other and interoperate. For
example, two dissimilar policy systems can interoperate so long as they use common policy
expression language and exchange the policy artifacts using common wire formats.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 14

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 15

4. Framework Components

4.1 Trust Management

4.1.1 Trust Authorities

Figure 3.1 shows four types of authorities issuing assertions about policy and attributes in a
general authorization architecture. Trust management defines these authorities and specifies
what they should be trusted to do. An authority may be an individual or a group of people
functioning in an administrative role, but in the architectural context, an authority is represented
by some computational object, such as the owner of a file, a secure server or a public/private key
pair.

Policy and resource authorities both issue policy about resources, but the policy authority
operates at a higher level and may issue access control policy for a whole site or VO. It is the root
of trust (sometimes called Source of Authority, SOA), and will be responsible for defining the
domain's trust relationships. Attribute authorities assign attributes to subjects and may belong to
the subject's domain or to a VO. Environmental authorities may define things about the resource
environment, such as disk usage, or machine load, or about the distributed environment such as
the security of the connection or the Internet Protocol (IP) addresses of the client and server. Not
shown in figure 3.1, but still present, are the authorities that establish the identities of all the
entities.

In traditional systems an authority can just be a trusted file. If access control information is in the
right place it is trusted by the ADF. For example, entities are defined by entries in the
/etc/password file. It can also be a trusted server, such as a Kerberos authentication server, or
the NIS with which the ADF has a secured connection. In PKI based systems, the authority is
likely to be represented by a public/private key pair and present its assertions in signed
documents or over a secured connection. At the base of a PKI system is the acceptance by all
the participating entities of one of more CAs to verify identities

4.1.2 Defining trust relationships

Once a VO or resource domain knows how to represent various authorities, it needs to define
which ones are to be trusted and for what purposes. Who defines these trust relationships is
determined by the risk management strategy being used. For example, the Resource may want
the sole say on what authorities it will trust, or it may accept the decisions of a VO policy
authority. In some models, the user may provide a pointer to the attribute authority that defines
his attributes and the Resource may accept it or not. The AEFs need to know which ADFs to trust
for authorization decisions. In many cases these functions are collocated or have long-lived
secure connections, but in some cases the AEF could trust a signed authorization decision
assertion if it trusted the key that signed it.

Another item that comes under the category of trust management is policy about who can create
proxies which have all or some of the rights of the delegating entity and who can delegate rights
to other entities.

4.2 Privilege Management

The term privilege in common usage refers to the definition, acquisition, delegation and
management of authorization attributes and privileges. In our discussion of privilege
management, we deal with privileges (as expressed in privilege attributes) and with descriptive
attributes for which we assume there exist matching policies with which those attributes are
interpreted. The policies that are required to explicitly control privileges will be mentioned in this
section.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 16

Privileges can be considered a type of attribute, where an attribute is any characteristic
associated with a subject that either implicitly or explicitly defines the subject’s allowed actions on
some resource. Attributes that explicitly allow some access on a resource are called privilege
attributes,. Descriptive attributes, such as roles (for role based access control), clearance level
(for mandatory access control), or group membership, may be used by an authorization server
interpreting an access policy to grant the user specific actions, and thus implicitly grant access
rights. Descriptive attributes add a layer of indirection to the assignment of privileges (see 4.2.2
Privilege Assignment). Typically, privilege attributes are obtained by a subject before an access
to a resource and are pushed with a request. Descriptive attributes may also be presented with
the request as in the push model, but are often kept as part of the resource policy or in some
attribute repository that the authorization server can query in a pull sequence.

While attributes can be bound to any entity involved in the authorization process, the most
common use is to bind attributes to subjects (subject attributes). The binding of attributes to
resources (i.e. clearance level of a resource)

Privilege management covers the definition, assignment, storage, presentation, delegation and
revocation of both privilege and descriptive attributes. For the management of privilege and
descriptive attributes there are three distinct phases: granting the privilege, using the privilege,
removing the privilege. For privilege attributes there are two primary actors: the authority
granting/removing the privilege, and the subject requesting/using the privilege. For descriptive
attributes a third actor, the policy authority, is required to associate authorization semantics in the
access control policies with the descriptive attribute.

4.2.1 Attribute Authorities

An attribute is granted to some entity (frequently a subject or a resource) by an authority for the
relevant home domain of the entity. This authority must maintain a method of determining
whether requests for an attribute come from an entity covered by its scope. Sources of authority,
their delegates and the domains that will accept the attributes must have a common
understanding of the authority’s scope. This should be expressed in a privilege management
policy, which, among others, defines which authority may grant what attributes with what values
to what entities.

A attribute authority may run on behalf of a number of authorities, such as a real or a virtual
organization. For it to be able to grant privileges to a specific resource, it will have had authority
delegated to it (possibly via intermediaries) by the resource owner (the start of authority for the
resource). This delegation of authority will enable the authorization server running in the resource
domain to make access decisions based on a combination of the privileges that the accessing
entity holds and presents and the applicable resource access control policy.

A method of querying the privilege management policy in order to determine the appropriate
source of authority for a given attribute is required. In the push sequence, the subject will request
the attribute in advance of the request, while in the pull sequence the authorization function will
look for a subject’s attribute in order to satisfy an access constraint. When the subject is
gathering attributes, it may know the desired end result, but not necessarily the particular
attribute(s) or privilege(s) required to achieve that result (say a file transfer from resource A to B).
The discovery of the required attribute(s) or privilege(s) is a necessary prerequisite for this step.

The Source of Authority may delegate portions of its authority to various agents. In general, this
delegation creates a tree where the restricted authority is expressed in some policy, the
delegation can be revoked by the granting authority, and queries for relevant sources of authority
are cognizant of the delegation.

Deleted: 3

Deleted: 12

Deleted: 25

Deleted:

GWD-I 2004-01-23

mlorch@vt.edu 17

4.2.2 Privilege assignment

Privilege assignment describes the process of defining who is allowed which access rights.
Privileges can be assigned by issuing a policy component describing direct access rights of a
subject. This discretionary approach can either be achieved by embedding the policy component
describing the privilege into a resource access-control policy, or by issuing privilege attributes that
contain the privilege specification bound to subjects and is especially common in small or ad-hoc
environments where the number of subjects is manageable. Either way, the policy rule defining
such a privilege typically consists of the three-tuple {subject, resource, action}.

A more scalable alternative is to bind access rights to the presence of descriptive subject
attribute(s) (i.e. roles, group membership) via a policy and issue the respective attribute(s) to a
subject. The policy rule describing such a privilege typically consist of a three-tuple {attribute,
resource, action} and the attribute is a two-tuple {subject, attribute}. This method is referred to as
a role-based assignment and is more flexible than the discretionary approach. It separates the
assignment of privileges into the resource specific definition of access rights (by a policy
authority) from the resource agnostic assignment of attributes to subjects (by an attribute
authority) and thus allows for the distribution of these tasks to separate authorities. Further more
the grouping of subjects into roles enables more scalable management than the direct
assignment of rights to subjects allows for. Hierarchical role schemes extend this concept even
more by allowing for access right inheritance from less privileged to more privileged roles.

Privilege assignment also includes the process of suspending and/or removing a privilege from
an individual or group of individuals.

4.2.3 Attribute management

Attribute assertions are proofs of the right to assert a descriptive attribute or privilege attribute. As
such they have a number of common characteristics: holder (subject), issuing authority, scope of
validity, at least one attribute/value pair, and period of validity. The list of attributes one has is
generated from the list of valid attribute assertions one possesses.

Possession of an attribute may allow the subject to act as a source of authority for that attribute
within its own domain. It may delegate an attribute (limited by the privilege management policy for
the authorities) to its own proxy or to another subject. Therefore, the subject may need access to
the appropriate tools to delegate and revoke its delegated attributes. The subject may define
additional policy for the delegation, create a delegation attribute, or both. The methods of
delegation must be described by the attribute authority.

4.2.3.1 Attribute Schema

Attributes need to be understood by relying parties in often multiple administrative domains (see
section 2.3 Domain Considerations). As such a common schema for the syntax of the attributes is
required. In addition the authorities and relying parties may need to agree on semantics of the
attributes in order to perform uniform handling and evaluation of attributes by the various
resources and authorization servers that may be present in the authorization infrastructure.

4.2.3.2 Attribute Repositories

Attribute assertions must be stored pending their use. The storage location is called an attribute
repository. This repository may be under the local control of the subject or a shared facility.
Subjects require access to the attribute repository if the attribute push sequence is to be used.

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: tokens

GWD-I 2004-01-23

mlorch@vt.edu 18

Depending on the privacy considerations the subject may need to be able to define attribute
release policies in order to have control over which entity may gain access to what subset of its
attributes.

4.2.3.3 Attribute Assertions

The attribute authority may choose to issue attributes in a variety of ways. If the attribute authority
and the identity authority are the same entity, then attributes may be embedded directly into
identity tokens (e.g. identity certificates), however, this binds the lifetime of the identity and the
lifetime of the attributes together. A separation of concerns by issuing separate tokens for
attributes and identities is often a better approach. If separate tokens are used an attribute
assertion typically consists of (a set of) attributes, a holder (typically the subject), an issuer, a
validity period and possibly other conditions on the validity of the assertion, and a digital
signature. In assertions that are only use internally on trusted channels and storage locations the
issuer may be implicit and the digital signature optional.
Attribute assertion targeting refers to a method of binding subject attributes also to specific
resources. With this mechanism an attribute authority can steer at which resources the holder can
use its attributes. Depending on privacy requirements attributes may be bound to objects other
than entity names (e.g. a public key) and attributes may be encrypted.
Attributes are asserted to the ADF by some protocol. This protocol may simply present the signed
attribute assertions, or it may combine all of a user’s attributes into a message format that it has
defined. In the latter case, all the original information of the individual assertions such as issuer
and validity is typically required for the authorization server to trust the attributes. Tools to assert
the appropriate set of attributes are needed by the subject and all its delegates if the attribute
push sequence is followed.

4.3 Policy Management

Policy is a very broad term that needs to be constrained in our context to mean access control
policy. Security policy may cover things outside of the authorization domain, such as standards
for message security, user identification, document encryption requirements, etc. We will limit the
policy that we are interested in to information about resource access. For example, what actions
are allowed by what users to what resources under what conditions? It must be possible to refer
to collections of resources, actions and subjects (users) in order to have a reasonably compact
policy statement.

As noted under the section on Trust Management, policy is issued by policy authorities. The
creation of policy frequently involves a human entity and is done in advance of the use of a
resource. An ADF could query a policy authority in real time, but more typically policy will be kept
in some sort of repository. This could take the form of an access-control list (ACL), a data base or
a collection of signed assertions. A policy repository is a natural solution for policy about static
resources. Creating policy for dynamically created objects is more challenging. Sometimes it is
appropriate to control access to a whole class of objects by a static policy and then just create
objects within these classes. Sometimes the creator of the object may want to simultaneously
create access policy for it. In this case the object creator needs write access to some trusted
repository.

Some of the issues that are addressed by policy management is who can create, modify and
delete policy for each resource, how quickly policy can be revoked, and where does the ADF find
the policy, i.e. who/what does it trust. An additional challenge raised by distributed policy
management, is how does an ADF know it has found all the relevant policy for making an access
decision. One solution to this problem is to make policy only additive, so that a user starts out
with no rights and accumulates them as he satisfies policy. However, this solution limits the sort

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: .

GWD-I 2004-01-23

mlorch@vt.edu 19

of policy that can be written, especially the sort that explicitly denies access to certain individuals
even though they may be a member of some group that has access.

One of the issues that needs to be addressed in policy management is how to clearly display the
current policy to the resource owner or to anyone trying to add to the policy. Current Web site
access rules where policy can come from several places in a configuration file and from files in a
whole set of hierarchical directories, is an example of how hard it an be to figure out the access
policy for a particular resource.

4.4 Authorization Context

The Authorization Context consists of those properties of the Authorization Request which are
neither provided via Authorization Attributes nor included in Authorization Policies (specified by or
for specific resources or sites), but which are relevant to the decisions made by the Authorization
server.

This includes information about the time, location, transport, and authentication of the Service
Request, and may include an indication of the quality and trustworthiness of this information.

For example, a statement of the time a service request was received may also include a
statement of how accurately time is established (by local hardware clock or using coordinated
network time servers, for example) and also how trustworthy this statement is (for example, if the
time is established using a network time server, has this been done with a secured protocol.)

Since many authorization credentials are associated with authentication credentials, the
Authorization Context may also include the authenticated identity requesting the service and
some statement of the strength of this authentication, in terms of numerical features (e.g. key
length), protocol (e.g. PKI vs. Kerberos) and management policies (e.g. the conditions met by a
Certification Authority's practice statement.)

Similar information also applies to the transport channels used to deliver the Service Request, in
terms of protocols and key lengths, for example. All of the quality and trustworthiness information
in the Authorization Context may be referred to directly by requirements written into Authorization
Policies, which treat aspects of the context as opaque symbols (for example, that authentication
must be by PKI certificates with a certain key length.) However, this may also benefit from a
generalized way of imposing requirements on the context, including measures of quality and
trustworthiness so that contexts may be evaluated numerically, rather than by simply enumerating
all possible satisfactory properties.

4.5 Authorization Server

As shown in Figure 3.1, an Authorization Server is an entity that evaluates authorization requests
and issues responses, taking into account relevant attributes, policies and environmental
parameters. Although actual policy statements and authorization algorithms may be very
application dependent, some general properties can be outlined, and the implications in terms of
the policy language and algorithms can be inferred.

An authorization algorithm takes some or all of the following as inputs:
• Nature of request (i.e. read file, submit job, read sensor). All valid request types must be

capable of being expressed in the policy language.
• Attributes of requestor (including delegated attributes). All attributes that will be used in an

authorization decision must be expressible in the policy language.
• Attributes of resources required to fulfill request. It is not the function of the Authorization

Server to figure out what resources are required, so if resource attributes are required by the
authorization algorithm, then the required information must be supplied with the authorization
request.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 20

• Context (see section 4.4)
• Environmental factors such as system load, network load, file system available space,

usage history, user quota etc. If environmental factors are to be taken into account in an
authorization decision, there must exist an appropriate method to obtain the required
information on a time scale that is relevant both in terms of promptness and information
accuracy. The incorporation of environmental factors may be heavily application dependent,
and may involve tradeoff/optimization between information accuracy and prompt decisions.
The primary implications for the authorization server are that there may exist dependencies
on static and dynamic environmental parameters and that the policy language must allow
expression of these parameters.

• Policy statements. For each type of request, the policy statement must specify the criteria
for issuing the appropriate authorization responses. In general, the authorization algorithm
will compare the request and any attributes/environmental factors against the policy
statement for that request type.

The output of the authorization algorithm is the authorization response. In many applications, a
binary ALLOW/DENY response may be sufficient, but application specific languages may be
developed to specify the allowed forms of response. For example, this could include conditions
(i.e. validity time) tied to a response, a priority level or a denial that includes information about the
reason. The advantages of elaborate authorization responses have to be carefully weighed
against their disadvantages. I.e. a condition specified in a response requires additional decision
making logic in the enforcement mechanisms and possible reasons given for negative responses
may allow an attacker to gather security data and reconstruct access policies.

4.6 Enforcement Mechanisms

Enforcement of fine-grained access rights is the limitation of operations performed on resources
on behalf of a subject to those permitted by an authoritative entity.

In many traditional enforcement scenarios, enforcement mechanisms focus on users who’s
authorization to access an application has to be enforced. The access of the application or
service to the underlying resource (e.g. through the operating system) is of secondary concern as
usually the applications are trusted software components and their system access is statically
configured at the time of application deployment. In the grid context we face a different scenario.
Grid applications and services can be user provided software components that are staged to the
compute resources in a grid and are not necessarily trusted by the resource owners. The
resources act as hosting environments for these services, which often are transient, mobile and
have to be able to migrate to a different resource if e.g. performance criteria can no longer be
met. Thus, depending on the service characteristics, it may not be possible to establish static
trust relationship between the service application and the underlying resource (hosting
environment) in advance. Rather it is important to control not only the access of a subject to a
service but also the access of a service to its current service hosting environment.

Enforcement functions can either receive the set of authorized operations with the service request
(push scenario), or by querying an ADF (pull scenario). For this interaction a set of authorization
request/response protocols (e.g. SAML-P) , which can be used to facilitate communication if ADF
and AEF are remote to each other, as well as a number of programming interfaces (AZN-API,
GAA-API, PERMIS), which can be used if ADF and AEF are collocated, are available.

Enforcement mechanisms can be characterized in two different groups: application dependent
mechanisms and application independent mechanisms.

4.6.1 Application dependent enforcement mechanisms

Application dependent enforcement mechanisms are often directly integrated in the application or
service and perform enforcement functions before the application attempts to access underlying

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 21

operating system resource. This approach allows for the enforcement of very fine grained access
control policies which be tailored to the specific application. Further more enforcement can be
highly efficient and the service often degrades gracefully and can provide helpful information to
the user if a lack of authorization prevents successful completion of tasks. A drawback of
integrating enforcement functionality into the application code is the need for trusted services
and the duplication of security code possibly present in the underlying middleware or operating
system. The need for trusted code is an obstacle to executable staging and migration of services.
It may also be very difficult to adapt existing legacy applications to use authorization APIs or
protocols and enforce their access to resources.

For the advantages mentioned application dependent enforcement mechanisms are often favored
in new service implementations and mostly applicable when services are stationary. For example
CAS, Akenti, and PERMIS leverage application dependent enforcement mechanisms.

4.6.2 Application independent enforcement mechanisms

Application independent enforcement mechanisms are separate from the service or application
and take the approach of running the service in a very constrained execution environment. This
permits the running of untrusted services, supports code migration and executable staging. It has
drawbacks with respect to the granularity of operations that can be enforced and possible
performance overhead imposed on the system as application semantics are typically unknown.
Frequently the required close integration of such mechanisms into the operating system poses
portability issues. In general two different ways to implement a constrained execution
environment are prevalent:

• Operating system security functions enforced by the kernel are utilized to limit access to

resources (e.g. file permissions, file system access control lists, network firewall rules, quota
settings). This approach enforces access rules without performance implications and the
implementation is often portable to a fair number of resource operating systems if
standardized or generally adopted interfaces (e.g. POSIX standards) are used for the
interaction. A drawback is the limitation of enforceable policies to those rules that can be
translated into a security function supported by the operating system. This approach is
followed for example in the PRIMA system.

• Resource access by the application is intercepted and evaluated before passed on to the
operating system. Sometimes referred to as "sandboxing", this approach allows for the
enforcement of arbitrarily fine grained access control rules but bears the danger of significant
performance impacts due to the interception of system calls. Another drawback is the limited
portability as low-level operating system interfaces are used to intercept system calls. The
Virtual Execution Environment (VXE) and Janus are typical sandboxing systems that perform
system call interception. SlashGrid is also a system that layers between the application and
the operating system through a virtual file system layer.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 22

5. Classification of Existing AuthZ Mechanisms, Modules and Systems

Currently there are various existing authorization systems and mechanisms that are used by
various grid and other applications to address the authorization concerns. We discuss a selection
of existing authorization systems in this section in relation to the authorization framework
mechanisms addressed in the earlier sections.

5.1 Akenti Authorization Service

5.1.1 Model and Architecture overview

Akenti provides an access control decision function and can be used in both a push or pull model.
At the most fundamental level it takes the identity of the requester and the name of the resource
and returns the access rights of that user in a signed capability certificate, aka an authorization
assertion. In the pull model the user makes an authenticated connection to the resource, which
then calls Akenti, passing along the user and resource name. In a push model, the requester
calls Akenti though a possibly unsecured connection with its name and the name of the resource.
Akenti returns a signed authorization assertion that contains the name of the requester, the
name of the resource and the access rights. The requester passes that assertion though an
authenticated connection to the resource, which checks to see that the name in the assertion
matches the authenticated name and verifies the signature on the assertion. Akenti expects all
principals to be identified by X509 public key certificates. Its ADF interface can be passed
attribute assertions and desired rights to limit the scope of the attribute search.

5.1.2 Attribute Assertion and Policy Assertion functions

Akenti provides both attribute and policy assertion functions. It allows the stakeholders to create
signed XML certificates (aka assertions) containing attribute assertions and policy assertions (aka
policy certificates and use conditions). These can be stored in a distributed fashion and contain
enough information for the Akenti ADF to find them. These assertions are stored and passed
between the parties as signed XML formatted certificates that contain a unique certificate id and
version, the signature algorithm, the certificate type, begin and end validity times and the identity
of the issuer.

5.1.3 Flow of authorization information

The stakeholders store the certificates they have created in attribute and policy repositories that
can be accessed with via http, ldap or file system requests. The communication between a
requester and the Akenti ADF is via SOAP protocol carrying simple query and reply messages.
An AEF can either link in the Akenti ADF libraries or communicate with an Akenti server via
SOAP messages.

5.1.4 Trust Management

Akenti expects all trust relationships to be explicitly stated as part of the authorization policies. It
expects all principals to be identified by X.509 public key certificates and uses the public keys to
verify all policy and attribute assertions at the time of the access decision. The root policy for a
resource domain contains the X.509 certificates and publishing directories for all the trusted CAs,
and a list of the stakeholders for the domain. The stakeholders are the only entities that can issue
use conditions for the resources. The use conditions state the required attributes and values
needed to access the resource and who may issue attributes with those values. Whenever a use
condition or attribute assertion is used, Akenti checks that it was issued by an acceptable party
and verifies the signature to guarantee the integrity of the assertion.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 23

5.1.5 Enforcement Mechanisms

Akenti is basically a decision function and leaves the enforcement to the resource management.
It does supply an API to help the AEF evaluate run-time conditions. The authorization assertion
returned by Akenti may include run-time conditions such as time limitations or load factor limits
that the AEF needs to evaluate. Akenti does provide an evaluation framework API that can be
used to combine such conditions if the AEF supplies functions to evaluate the individual
conditions.

5.2 Cardea

Cardea [CARDEA] is a distributed authorization system, developed as part of the NASA
Information Power Grid, which dynamically evaluates authorization requests according to a set of
relevant characteristics of the resource and requester rather than considering specific local
identities. Potentially accessed resources within an administrative domain are protected by local
access control policies, specified with the XACML syntax, in terms of requester and resource
characteristics. The information needed to complete an authorization decision is assessed and
collected during the decision process itself. This information is assembled appropriately, either
by the requester, an agent, a policy enforcement point (PEP), or a SAML policy decision point
(PDP) and presented to an XACML PDP for evaluation. Once obtained, the SAML PDP then
returns the final authorization decision for the access request together with any relevant details to
the initial requester.

5.2.1 Authorization information

Any characteristic of the subject, the requested resource, the desired action or the current
environment may be considered in the authorization decision. The model adopted by Cardea
represents these attributes as SAML assertions that are passed between components. Each
component is free to use the assertion data in any capacity it needs, such as transforming it to a
different native internal format. However, when communicating the data between components, all
characteristics are represented in this common format, regardless of the source or guarantor.

5.2.2 Initiating and enforcing the authorization decision

Cardea leverages the XACML model for authorization evaluation and SAML for obtaining
assertion data used during the evaluation process. Cardea assumes that the SAML PDP that
accepts the initial request is responsible for providing the final authorization decision details to the
PEP. The SAML PDP depends upon the content of the initial request to determine the correct
XACML PDP to evaluate the request. Then, the flow of communication between entities is
specified by these relevant standards.

5.3 CAS

The Community Authorization Service (CAS) [CAS02, CAS03] allows for a separation of
concerns between site policies and VO policies. Specifically, sites can delegate management of a
subset of their policy space to the VO. CAS functions as a "push-model" authorization service, as
shown in Figure 4. In this section we give a brief overview of how CAS is used in normal
operation.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 24

PolicyCAS
Server

Resource

SAML
Query

SAML
Statement

(1)

(2)

(3)

Figure 4: CAS Architecture. Steps are described in the text.

 The steps in the Figure are:
1. The client, shown at left, sends a signed SAML AuthorizationDecisionQuery request to

the CAS server, at right, indicating which resources they wish to access and which
actions they desire to invoke.

2. The CAS server establishes the user's identity. Using the identity it determines the rights
as established by the VO's policy. It then returns a signed SAML assertion containing an
AuthorizationDecisionStatement. This assertion has the user's identity as the Subject and
some subset of the user's requested actions

3. The user presents the SAML assertion to a resource along with an authenticated
invocation request. The resource uses the SAML assertion, subject to local policy
regarding how much authority was delegated to the CAS service, to authorize the
request. The user may use the assertion to potentially make multiple requests, potentially
to multiple resources.

Note that it is common for a client to ask for an assertion containing a complete set of rights they
may have on a given resource, set of resources, or even on all resources for which a CAS server
has authority. Since the SAML statement returned is typically valid for a number of hours, a
assertion with multiple rights allows the user to undertake a number of different actions, which
may not be known a priori, without having to re-contact the CAS server.

5.4 PRIMA

PRIMA [PRIMA02, PRIMA03] is a system for privilege management and access control. It
provides tools for end users and administrators to manage privileges for the resources they are
authoritative for through grid middleware mechanisms. PRIMA leverages X.509 Attribute
Certificates to carry privilege and policy statements. An access control decision function
authorizes requests based on the combination of subject attributes (privileges) with resource
policies and provisions low-level access control enforcement functions with decision
qualifications. These enforcement mechanisms assign and configure local user accounts
dynamically and leverage POSIX file system access control lists and the XML based grid access
control lists (GACLs) of the Slashgrid project to assign and manage fine grained access rights.

5.4.1 Authorization sequence

Prima uses a hybrid authorization sequence. When a subject requests a service from a resource,
an enforcement function (AEF) queries an authorization decision function (ADF) for a coarse

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 25

access decision (yes/no) and a handle to an execution environment within which the service
should be executed. This conforms to the flow outlined in the pull scenario. However, the ADF
also configures an execution environment (enforcement function) for the service with the least
amount of fine-grained rights required by the service. This second step in which decision
qualifiers are provisioned to an AEF follows the information flow described by the push sequence.

5.4.2 Enforcement Mechanisms

Enforcement in PRIMA’s enforcement is based on controlling the environment within which the
application will execute. The PRIMA AEF creates, configures and manages local user accounts
on-demand, based on subject privileges issued by authoritative entities such as resource
administrators, resource owners, or group and project leaders. It utilizes dynamically modified file
access control lists and host based firewall rules to constrain services. Enforcement via the
execution environment enables PRIMA to securely execute non-trusted legacy applications
without duplicating security code already present in the operating systems.

5.4.3 Decision Function

PRIMA’s ADF makes access decisions based on subject attributes (privileges) and access
control as well as privilege management policies. The subject can specify what attributes will be
considered by the ADF by selectively providing them with the request. The PRIMA approach
constitutes an additive, capability-based security model where missing or deliberately omitted
attributes will result in fewer access permissions. The ADF is co-located with the resource and
communicates with the gatekeeper’s authorization module via XACML authorization requests and
responses. Subject privileges are supplied to the ADF in the form of a dynamically created policy
that is specific to the request and encompasses all the privileges that the subject presented.

5.4.4 Attribute Assertion and Policy Assertion Function

PRIMA provides tools for authoritative entities to create subject attributes that award individual
privileges to a subject (holder). The privileges are encoded as XACML rule constructs and
embedded in X.509 attribute certificates, signed by the issuer.

A tool for policy creation that aids administrators in creating resource access and privilege
management policies in XACML is being developed. The policies are embedded in attribute
certificates for secured transport to the PRIMA policy decision point where they will be enacted.
Two types of policies are used, a resource access control policy is used to constrain or augment
the privileges awarded to a subject via subject attributes and a privilege management policy
defines who is authoritative for subject privileges and how such privileges may be delegated.

5.5 PERMIS Authorization Infrastructure

PERMIS is an attribute based authorization infrastructure comprising the following components

i) An authorization policy written in XML, digitally signed and secured as an X.509
attribute certificate

ii) User authorization tokens, which are attribute certificates conforming to the X.509
standard

iii) One of more LDAP directory servers that are used to store the attribute certificates
(policy and authorization tokens)

iv) an ADF
v) API to the ADF, that is called by the application dependent AEF, and is very

approximately a simplification of the OpenGroups AZN API.
vi) Assorted tools for creating attribute certificates and policies

5.5.1 Authorization Framework

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 26

PERMIS currently works in the authorization pull model. The user contacts the resource (or more
precisely the AEF component of the resource), which in turn contacts the PERMIS ADF. The
PERMIS ADF makes the decision, based on the user’s attributes (obtained from the user’s
attribute certificates) and the policy for the resource, and returns this to the AEF. The AEF then
enforces this decision on behalf of the resource. The PERMIS decision-making is two stages. The
first stage, which typically takes place at user log on, is to evaluate the user’s attribute certificates
according to the policy, and to reject untrustworthy ones. Valid attributes are kept and returned to
the AEF in a Java object. The second stage, which typically takes place when the user attempts
to perform some action, is to make a grant or deny decision based on the user’s validated
attributes and the policy. Authorization requests and responses are passed as parameters in the
Java API, and the decision is a simple Boolean.

5.5.2 Flow of Authorization Information

Attribute acquisition is normally done by a Privilege Allocator tool that creates X.509 attribute
certificates and stores them in an LDAP server, in the entry of the holder of the attribute
certificate. Attribute application can be via either the attribute push or pull model. In the attribute
pull model, the PERMIS ADF is configured with the URLs of the LDAP servers it is to contact, and
it retrieves all the X.509 ACs that it can find for the user making the access request. In the
attribute push model, the AEF passes the attribute certificates that are to be used to the PERMIS
ADF. How the AEF gets these is an application dependent issue. The user could send them to
the resource along with his access request, or a Shibboleth type service could fetch them from a
remote attribute server..

5.5.3 Policy Issues

The PERMIS policy is written in XML and comprises a set of sub policies. Full details of these sub
policies can be obtained from papers on our web site (http://sec.isi.salford.ac.uk). The policy
supports hierarchical RBAC, whereby users are given roles (or attributes) and roles/attributes are
granted access rights. Superior roles/attributes inherit the privileges of subordinate
roles/attributes. The policy can contain arbitrary condition statements, such as GT, LT, EQ, etc
that can be ANDed and ORed together.

The policy is stored as a digitally signed attribute certificate in an LDAP directory by its creator,
the Source of Authority (SoA) for a resource. The PERMIS ADF Java object retrieves the policy
from this LDAP directory during construction time. No external processing agent sees the
PERMIS policy, since the PERMIS ADF makes all decisions internally, and a simple Boolean
grant/deny response is returned (i.e. no policy condition statements are returned to the AEF).

5.5.4 Trust Management

The PERMIS ADF trusts the resource, and the resource AEF provides PERMIS with the name of
the authorization root of trust (the resource SoA name) when the PERMIS Java object is
constructed by the AEF. The AEF also provides PERMIS with the unique OID of the policy to be
used, and the URLs of the LDAP directories to be contacted. The PERMIS ADF then contacts the
configured LDAP directory(ies) and retrieves the policy attribute certificate(s) from the entry of the
resource SoA. PERMIS checks that the policy is signed by this SoA and has the correct OID, so
that the policy can now be trusted. The policy contains the names of remote SOAs who are
trusted to issue attribute certificates to users. In this way the resource SoA has delegated
authority to a set of remote SoAs who are now trusted to issue attribute certificates to their users.
Attribute certificates must be signed by one of the trusted SoAs and conform to the Role
Assignment SubPolicy or they will be discarded by the PERMIS ADF. Dynamic delegation by
remote SoAs to their subordinates is currently not supported. If a subordinate issues an attribute
certificate to a user, it will not be trusted.

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 27

Attribute certificates contain the distinguished names of their holders (subjects). In PERMIS, the
root of trust in authentication is the responsibility of the application, and PERMIS trusts the
application to properly authenticate the users and to validate the digital signatures on attribute
certificates. A user must authenticate himself to the application to prove that he is identified by a
given DN, and then PERMIS can trust that attribute certificates containing this DN belong to the
user.

5.6 The EU DataGrid Security Architecture

The EDG Security Architecture [EDG-SEC] is based on two types of authorization component:
Virtual Organization Membership Services (VOMS) managing attributes, and several
Authorization Decision Functions available to resources. VOMS servers respond both to
authorization pull requests from resources, and also to attribute assertion requests from subjects
wishing to use resources. Consequently, this architecture supports both the Push and Pull
models described earlier.

5.6.1 VOMS Attribute Authorities

In the Pull model, the VOMS server is periodically contacted by each resource using HTTPS, and
requests are made for listings of members' certificate subject names matching specified criteria
(for example, all the members of a given group.) Since the VOMS HTTPS server identifies itself
by its own certificate at the start of the connection, no additional signing of this information is
used.

In the Push model, subjects wishing to use resources contact the VOMS server. Client tools at
the subject’s home location identify the subject to the VOMS using a GSI proxy, and request the
desired set of attribute assertions for the subsequent session. The VOMS server issues a signed
text block of name-value pairs containing those requested attributes that the subject is entitled to.
The text block starts with the subject and VOMS certificate names, the name of the VO, and
upper and lower time limits on the validity of the assertion. One or more Group, Role, Capability
triplets then follow, with value NULL if no specific Role or Capability is being asserted. This
signed assertion is then included as an extension in a new GSI proxy for the subject, generated
by the subject's client software.

5.6.2 Authorization Decision Functions

The Authorization Decision Function is provided via libraries which applications link to via the
application's native Authorization Enforcement Function. Three complementary systems are
provided: GACL, LCAS and the Java Authorization Manager.
GACL is a library for processing Grid Access Control Language policy statements, written in XML.
These statements grant permissions (such as write) to subjects satisfying one or more criteria
(such as a specific subject name or membership of a VOMS group.) The GACL C/C++ API
provides an Authorization Decision Function, returning yes/no answers given a proposed action
(eg write), the credentials the subject possesses and the policy associated with the object in
question. The Local Centre Authorization Service (LCAS) provides a more flexible and
customizable framework for Authorization Decision Functions, in a way suitable for heavier weight
requests, such as transfers of large files and job submissions. Decisions themselves are carried
out by plug-ins to the framework. Plug-ins exist to use a list of subject names (such as a Globus
grid-mapfile) or list of VOMS attributes, or to use a policy statement written in GACL. The Java
Authorization Management system provides an Authorization Decision Function for Java-based
SOAP services. XML policies grant internal attributes to subjects on the basis of certificate name
or VOMS attributes.

6. Related Standards

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 28

Various groups at GGF, IETF and OASIS are involved with the standardization of various
elements of authorization frameworks. In this section we try to give a summary of these related
activities and how it is related to the areas covered in this document.

Security Assertion Markup Language (SAML) defines a language and protocol to exchange
authentication and authorization information. Its primary goal is to provide a mechanism by which
permissions management data can be shared in a standardized fashion across domains and a
variety of systems. SAML provides schemas for queries and replies and for security related
assertions. The assertion statement is one of: authentication statement, attribute statement or
authorization statement.

eXtensible Access Control Markup Language (XACML) is an XML Specification under
development for expressing policies for information access over the internet.
The schema defines the elements needed to describe an authorization policy and to describe the
context in which a request for authorization is made. The target to which a policy applies is a
subject requesting a set of actions on a resource. All three elements can be specified by attribute
designators thus allowing a policy to apply at a variety of scales. The rules are combined using a
rule-combining algorithm into policies which include obligations that must be met when the
actions are performed.

eXtensible rights Markup Language (XRML) is a language to describe the rights and conditions
for using digital resources.[XRML] The key top-level element defined by XrML is a licence. It
contains one or more grants which define the rights of a user to a digital resource with some
optional conditions applied. There are documents defining core types of resources, rights and
conditions and standard extension types.

Web Services Security is an attempt within the Web Services community to provide a standard
XML vocabulary for defining the entire range of security issues in distributed systems. Web
services communicate via SOAP messages and thus each of the security specifications is
expressed in an XML schema which defines meta-data that can be carried in a SOAP message
header, in a transport-neutral way. The WS-security framework defines seven specifications of
security functionality. The one that is directly relevant to this discussion is WS-Authorization,
which is planned to describe how access policies for a Web service are specified and managed.
In particular it will describe how claims may be specified within security tokens and how these
claims will be interpreted at the endpoint, but which has not yet been published. WS-
SecurityPolicy defines policy assertions that have to do with security. It defines assertions about
integrity, confidentiality and age of the message and of some properties of the security header.

It is the intent of the developers of the Open Grid Services infrastructure to incorporate the Web
Services Security schema elements into the service interfaces, thus providing a common way for
clients and services to communicate security requirements and the tokens necessary to enforce
these requirements. At that point, it may be possible to write an authorization server that can be
used by multiple PEPs. If the policy that such a server uses is formatted in a standard way such
as XACML policy statements, it may be possible for a resource site to use a standard
authorization server and just customize the policy to meet its requirements.

RFC2704 The KeyNote trust management system [RFC2704] defines trust management as a
unified approach to specifying and interpreting security policies, credentials, and relationships. It
defines a simple language consisting of "Fields" and values to express both authorization policy
and credentials.

RFC2904 – The AAA Authorization Framework [RFC2904] focuses on four elements of an
authorization framework: the user; the User Home Organization (UHO), which, based on a user
agreement, can check if a user’s request for a service should be permitted; the service provider
containing an AAA server, which (coarsely) authorizes access based on an agreement with the
UHO, without knowing about the individual users; and the service equipment that provides

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 29

services. For evaluation and enforcement of access policies, RFC2904 introduces a Policy
Decision Point (PDP) and a Policy Enforcement Point (PEP). A PDP makes access control
decisions based on policies defined by parties authoritative for the PDP's administrative domain.
A PEP is the corresponding entity, typically located at the service equipment, that can enforce an
access decision made by the PDP.

The ISO 10181-3 [ISO 10181-3] authorization framework defines four roles for components
participating in an access request. They are Initiators, Targets, Access Control Enforcement
Functions (AEF) and Access Control Decision Functions (ADF). An Internet Attribute Certificate
Profile for Authorization (RFC 3281) [RFC3281] provides a means to bind arbitrary attributes (e.g.
role membership information, policy statements, accounting information) to identities.
Authorization API – Generic Application Interface for Authorization Frameworks defines a
standardized API for the interface between AEF and ADF as defined in RFC2904. The IETF
proposed standard Generic Authorization and Access control API (GAA API) is a definition of a
simple interface between a resource gateway and an authorization module or server and a policy
language in which stakeholders express their access requirements to the authorization server.

7. Security Considerations

The discussion of security concerns is intrinsic to this document. Readers of this document
should be aware that errors in design, implementation or operation of authorization systems could
compromise the security of any system. Building a secure authorization infrastructure for a
distributed environment, such as a grid environment, is a complex task. The use of security
technologies (e.g. policy languages, authorization servers, encryption mechanisms) alone does
not make for a secure system.
A point that is often forgotten when computer systems are designed and implemented is the
human factor. Users often view security as an obstacle, especially if security mechanisms prevent
them from performing their tasks or do not allow them to work efficiently. In such cases the users
may become a significant threat to the security of the systems as they will attempt to bypass the
security mechanisms put in place for the protection of themselves as well as for the protection of
the resources. Information leakage is an important topic in this context. If access to a system is
denied due to a negative authorization decision it has to be evaluated carefully what information
is released to the requestor of the service. In other components of a system the user may be
given full detail on why a requested task has failed. In authorization components however, one
has to consider the case of malicious users and attackers, which, if details on why an access was
denied are released to them, may be able to circumvent the authorization system using this
information (i.e. via social engineering).

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: t

GWD-I 2004-01-23

mlorch@vt.edu 30

Author Information

Rich Baker
Building 510m
Brookhaven National Laboratory
PO Box 5000
Upton, NY 11973 , USA
email: rbaker@bnl.gov

Bob Cowles (Co-Editor)
Stanford Linear Accelerator Center
2575 Sand Hill Rd., MS 97
Menlo Park, CA 94025, USA
email: bob.cowles@stanford.edu

Leon Gommans
Advanced Internet Research Group
Informatics Institute
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
The Netherlands
email: lgommans@science.uva.nl

Markus Lorch (Editor)
Department of Computer Science
Virginia Tech (m/c 106)
Blacksburg, VA 24061, USA
email: mlorch@vt.edu

Paul Madsen
Entrust
1000 Innovation Drive,
Ottawa, K2K-3E6
Canada
Email: p.madsen@entrust.com

Andrew McNab
Department of Physics and Astronomy
University of Manchester
MANCHESTER
M13 9PL
England
email: mcnab@hep.man.ac.uk

Lavanya Ramakrishnan
Center for Networked Information Discovery
and Retrieval / MCNC
PO Box 12889
Research Triangle Park, NC 27709, USA
email: lavanya@cnidr.org

Krishna Sankar
Cisco Systems Inc
170, W.Tasman Drive,
San Jose, CA-95134
email: ksankar@Cisco.com

Dane Skow
Fermi National Accelerator Lab
MS 369
P.O. Box 500
Batavia, IL 60510-0500
email: dane@fnal.gov

Mary R. Thompson
Lawrence Berkeley National Laboratory
MS50B-2239
1 Cyclotron Rd.
Berkeley, CA 94720, USA
email: MRThompson@lbl.gov

Acknowledgements

We would like to acknowledge the contributions from members of the community, specifically
Carlisle Adams, Von Welch and David Chadwick.

Glossary

Readers are pointed to the GWD-I authorization glossary document. [glossary]

Deleted: 3

Deleted: 12

Deleted: 25

Deleted: Fermilab

GWD-I 2004-01-23

mlorch@vt.edu 31

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Explicit statements about IPR should not be included in the document, because including a
specific claim implies that the claim is valid and that the listed claims are exhaustive. Once a
document has been published as a final GFD there is no mechanism to effectively update the IPR
information. Authors should instead provide the GGF secretariat with any explicit statements or
potentially relevant claims.

Full Copyright Notice

Copyright (C) Global Grid Forum (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 32

References

[Akenti]
M. Thompson, A. Essiari, S. Mudumbai, “Certificate-based Authorization Policy in a PKI
Environment,” ACM Transactions on Information and System Security, Aug 2003

[AZN-API]
"Authorization API - Generic Application Interface for Authorization Frameworks", Open Group
Technical Standard C908. http://www.opengroup.org/publications/catalog/c908.htm

[CARDEA]
Lepro, R., “Cardea: Dynamic Access Control in Distributed Systems”, NASA Technical Report
NAS-03-020, November 2003

[CASR2]
CAS AlphaR2 Web site, http://www.globus.org/Security/cas/alpha-r2/ , September 2002.

[CAS02]
Pearlman, L., Welch, V., Foster, I., Kesselman, C. and Tuecke, S., A Community Authorization
Service for Group Collaboration. IEEE 3rd International Workshop on Policies for Distributed
Systems and Networks, 2002.

[CAS03]
 Pearlman, L., Welch, V., Foster, I., Kesselman, C. and Tuecke, S., The Community Authorization
Service: Status and Futures. Computing in High Energy Physics (CHEP03), 2003.

[Datagrid]
http://datagrid.in2p3.fr/cgi-bin/cvsweb.cgi/Auth/VO/
http://www.gridpp.ac.uk/gridmapdir/
http://datagrid.in2p3.fr/cgi-bin/cvsweb.cgi/fabric_mgt/edg-lcfg/
http://cvs.infn.it/cgi-bin/cvsweb.cgi/Auth/voms/
http://www.gridpp.ac.uk/gacl/

[EDG-SEC]
R. Alfieri et al. (EDG Security Co-ordination Group), "Managing
Dynamic User Communities in a Grid of Autonomous Resources", Proceedings
of Computing in High Energy and Nuclear Physics (2003).

[GAA-API]
http://www.isi.edu/gost/info/gaaapi/

[PERMIS] "The PERMIS X.509 Role Based Privilege Management Infrastructure" in proc. of the
7th ACM SYMPOSIUM ON ACCESS CONTROL MODELS AND TECHNOLOGIES (SACMAT
2002), June 2002.

[PRIMA02]
M. Lorch, D. Kafura, "Supporting Secure Ad-hoc User Collaboration in Grid Environments",
accepted for publication at the 3rd Int. Workshop on Grid Computing, Baltimore, Nov. 18th, 2002

[PRIMA03]
Markus Lorch, David Adams, Dennis Kafura, Madhu Koneni, Anand Rathi, Sumit Shah, "The
PRIMA System for Privilege Management, Authorization and Enforcement in Grid Environments",
4th Int. Workshop on Grid Computing - Grid 2003, 17 November 2003, Phoenix, AR, USA

[RFC2704]

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 33

The KeyNote Trust Management System, http://www.ietf.org/rfc/rfc2704.txt?number=2704

[RFC2904]
AAA Authorization Framework http://www.ietf.org/rfc/rfc2904.txt?number=2904

[RFC3281]
An Internet Attribute Certificate Profile for Authorization. http://www.ietf.org/rfc/rfc3281.txt

[SAML]
Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML) Committee Specification 01, 31 May 2002,
http://www.oasis-open.org/committees/security/docs/cs-sstc-core-01.pdf

[Shibboleth]
Internet2 Shibboleth Project, “Shibboleth Architecture “ http://shibboleth.internet2.edu/docs/draft-
internet2-shibboleth-arch-v05.pdf , 2 May 2002

[WSSEC]
Security in a Web Services World: A Proposed Architecture and Roadmap
http://msdn.microsoft.com/library/en-us/dnwssecur/html/securitywhitepaper.asp . Version 1.0.
April 7, 2002

[XACML]
 OASIS eXtensible Access Control Markup Language (XACML)
Committee Specification 1.0 (Revision 1), 12 December 2002
http://www.oasis-open.org/committees/xacml/docs/s-xacml-specification-1.0-1.doc

[XRML]
http://www.xrml.org/get_XrML.asp

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 34

Appendix A: Two-domain authorization models taxonomy

Two-domain authorization
A domain is a set of entities (subjects and/or resources and/or other) whose membership is
controlled according to a policy that is administered by an authority.

Two-domain authorization models arise when an authority in one domain administers the set of
resources for which authorization is required, but one or more components in the authorization
architecture reside in another domain. This situation is often encountered in Business-to-
Business as well as grid computing scenarios, especially when resources from a number of
physical organizations are pooled to form virtual organizations

Two-domain authorization models taxonomy
We consider the different combinations by which the different components of an authorization
framework (Attribute Assertion Function (AAF), Access Control Decision Function (ADF), Policy
Assertion Function (PAF), Access Control Enforcement Function (AEF), Resource Assertion
Function (RAF)) can be distributed across a domain boundary (with the constraints that the AEF
is located in the same domain as the resources it protects, and that the Resource Authority is
located in the same domain as the resources for which it is the authority). With two of the five
components fixed, we can imagine the different combinations in which the remaining three
components (AAF, PAF, and ADF) are moved to an external domain. Thus, there are 7
combinations of which components can be moved to the external domain (see Fig. A-1); labeled
as Remote AAF, Remote PAF, Remote ADF, Remote AAF & PAF, Remote AAF & ADF, Remote
PAF & ADF, and Remote AAF & PAF & ADF.

Fig. A-1: Two-domain authorization models

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 35

It’s important to note that the above diagrams are intended to show configurations of
components, not information flows. For instance, for any configuration that involves the sharing
of subject attributes, these may be included in the actual request to access a resource, or they
may be requested by the AEF (or other component) from the subject after receipt of the access
request, or they may be requested by the AEF (or other component) from an Attribute Authority in
the subject domain, or they may be retrieved from some form of online repository (such as LDAP
or a wallet). Similar options are available for retrieving the resource attributes, the environmental
attributes, and the policy upon which to base the decision. As well, the order in which this data is
retrieved may vary from environment to environment, or even from request to request.
Consequently, a variety of information flows may be implemented for any given configuration of
components in the two-domain authorization architecture.

We explore briefly the advantages and issues associated with each of the 7 configurations in the
sections below.

Remote AAF
In this configuration, a Subject Authority in the Subject’s domain facilitates the subject’s access to
resources in other domains by making available relevant attributes of the subject to those
resource domains. Subject attributes, such as role, signing authority, security clearance, etc., are
administered in the subject domain and communicated to the resource domain. This model is
defined in standards such as X.509 [RFC3281], SAML [SAML], and Shibboleth [Shibboleth].

There are three obstacles to the success of this approach. The first is the need for the subject
domain and all the resource domains to agree upon the syntax and semantics of the subject
attribute encoding. The second is the need to agree upon a mechanism for communicating the
attributes. The third is the privacy concern inherent in the exchange of potentially sensitive
attribute information across the network.

There has as yet been only limited success in cross-domain agreement (in national or
international standards bodies, or in industry verticals) on syntax and semantics for subject
attributes.

Remote PAF
In this configuration, an authority from another domain creates a policy (perhaps the policy) upon
which the ADF acts. Such a configuration is well suited to the large corporate environment in
which corporate policies created by the head office may dictate/influence authorization decisions
made with respect to local resources in a branch office. However, this model is also appropriate
for cases in which legislative or regulatory policies are imposed upon local environments within a
particular vertical industry segment. An example of this may be the U.S. Health and Human
Services department defining a policy based on the U.S. Health Insurance Portability and
Accountability Act (HIPAA) which must be adhered to by individual healthcare organizations.
Note: This model actually implies that there are 3 domains relavent to the authorization decision;
that in which the policy is defined, that in which the resource is held, and that in which the subject
is a member.

Remote ADF
In this configuration, the ADF is outsourced – perhaps implemented as a Web service – to
another domain. The resource domain sends all relevant information (policy, attributes, access
request, and so on) to this ADF and receives an authorization decision in return. Although it may
seem that the resource domain is doing all the difficult work (understanding the policy well
enough to know what all the relevant inputs are; finding all those inputs; and validating each of
them for authenticity, integrity, and freshness) and outsourcing just the simplest task (processing
the policy and inputs to arrive at a decision), there may conceivably be some merit in this model.
The outsourced ADF may be a Decision Authority recognized in many domains, so that its
decisions have legal or similar value (e.g., for audit/archival purposes, to off-load risk for a faulty
authorization decision).

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 36

Remote AAF & PAF
In this configuration, both the subject attributes and the policy come from a domain external to the
protected resources. This model is appropriate to Digital Rights Management (DRM) scenarios in
which the subject arrives with its own attributes and some form of policy (perhaps a “ticket”)
supporting its request to access a resource. The model also fits environments addressing
privacy, in which the subject submits its own privacy policy, or personal preferences, that must be
taken into account by the resource-domain ADF.

Remote AAF & ADF
In this configuration, a ADF in the subject domain makes authorization decisions in accordance
with a policy created in the resource domain. This model (“here is the request, the resource, and
our policy; tell us if your subject should be allowed access”) seems unlikely to be commonly used.
One possible application is for a type of pre-check: the subject checks with its own ADF to see
what requests might be allowed before sending an actual request (and its subject attributes) to
the resource domain. This pre-check can perhaps save some bandwidth and preserve privacy
because sensitive attributes are not sent to the resource domain until the subject is relatively
confident that the attributes are necessary and sufficient for the desired access.

Remote PAF & ADF
In this configuration, an outsourced ADF operates under its own policy to make authorization
decisions with respect to subjects that are known and administered in the resource domain. This
model may apply to cases in which the policy is legislative or regulatory and the ADF acts as an
audit or compliance test center.

Remote AAF & PAF & ADF
In this configuration, the ADF operates in the subject domain according to its own policy. The
ADF issues authorization decision assertions upon which the AEF in the resource domain can
act. As shown in the figure, this is an over-simplification as the resource domain would almost
certainly have its own ADF acting in accordance with its own policy.

This model, as it has the AAF and RAF in separate domains, is similar to the Remote AAF
configuration, and like that configuration, seems an intuitive fit for a ‘simple’ bilateral B2B
relationship (with no other 3rd party involved). Unlike the Remote AAF configuration however, this
model avoids the privacy concern associated with subject attributes crossing the domain
boundary by instead bringing the ADF and PAF ‘across’-obviating the need for subject attributes
to ‘travel’.

Information Sharing
The different configurations presented in the previous sections are shown in the table below -
identified by the types of information that must be shared across the domain boundary for each.

 Subject

Attributes
Resource
Attributes

AuthZ
Decision

Policy

Remote AAF
Remote PAF * *
Remote ADF
Remote AAF&PAF *
Remote AAF&ADF *
Remote PAF&ADF
Remote AAF&PAF&ADF

For Remote PAF, Remote AAF & PAF, and Remote AAF & ADF, the ‘*’ symbol indicates that,
although no specific attributes must be shared across the domain boundary for these

Deleted: 3

Deleted: 12

Deleted: 25

GWD-I 2004-01-23

mlorch@vt.edu 37

configurations, definition of a relevant policy may be dependent on the attribute categorization.
For instance, a Remote PAF will need to know that Subjects are either Employees or
BoardMembers in order to define a relevant authorization policy even though it would not be
necessary in these cases for an assertion of the form ‘Joe is a BoardMember’ to cross the
boundary. This requirement is characteristic of configurations in which the PAF is separated from
either the AAF or RAF.

We note from the table that all of Remote ADF, Remote AAF & PAF, and Remote PAF & ADF,
because they all involve Subject Attribute Sharing, will face the same privacy concern that was
identified for Remote AAF.

We can also see that Remote PAF, Remote ADF, Remote AAF & PAF, and Remote AAF & ADF,
because they all involve a separation between the PAF and the ADF, all require that policy must
cross the domain boundary (for Remote PAF in the opposite direction from the others). At the
moment, there are very few standard protocols and data structures to carry such information.
The X.509 attribute certificate work did specify a way to carry a PrivilegePolicy construct in an
attribute certificate, but this has not been widely adopted or deployed. There has also been some
discussion of extending the SAML “Statement” type to define a “PolicyStatement” that can then
be carried in a SAML assertion along with other kinds of statements, but this work has yet to
begin.

We have not attempted to account for environment attributes in our discussion. The deciding ADF
may require this type of input (e.g., time of day, current stock price, etc). This data may come
from the domain in which the ADF is operating, or may need to cross the domain boundary along
with some of the other inputs. This level of detail is not shown in the above diagrams because
the source of environmental data necessarily depends upon the specific request made and the
particular policy that governs the access decision; it is not possible to say in a definitive way that
environmental data will always come from this domain or that domain in a given model.

Deleted: 3

Deleted: 12

Deleted: 25

