GWD-R
Andreas Haas, Sun Microsystems (maintainer)
Distributed Resource Management Roger Brobst, Cadence Design Systems
Application APl (DRMAA) Working Group Andreas Haas*, Sun Microsystems
Nicholas Geib, Condor Group
Hrabri Rajic*, Intel Americas Inc.
John Tollefsrud®, Sun Microsystems
*co-chairs
*founding co-chair
May, 2004

Distributed Resource Management Application API C Bindings v0.95

Status of This Memo

This memo is a Global Grid Forum Grid Working Draft - Recommendations (GWD-R) in process,
in general accordance with the provisions of Global Grid Forum Document GFD-C.1, the Global
Grid Forum Documents and Recommendations: Process and Requirements, revised April 2002.

Copyright Notice

Copyright © Global Grid Forum (2003). All Rights Reserved.

Abstract
This document describes the Distributed Resource Management Application APl (DRMAA) C

binding. The document is based on the implementations work of the DRMAA GWD-R
document.

Table of Contents

Lo OVRTVIEW ittt ettt ettt et he e et e bt e et e e e bt e e bt e bt e sabeenbeeenbeenbeesaneas 2
2. The Cheader file........ccoooiiiiiiiiiiie e 2
3. Cbinding eXAMPIEcoiriiiiiiiiiieiieee e e e e erae e 15
4. Security CONSIACTALIONScccuieruieeiieniieeiienieeteeeieeteeseteeteesaeesseessseeseesnseenseesnsaens 18
AUthor INfOrmMAtioNco.viiiiiiiiiicieee ettt 19
Intellectual Property Statement..........c.coeeriiiiiriinieiiniereceeene et 19
FUll Copyright NOICEeovieeiiieiieeiieciie ettt ettt e e be e teeesbeeseesnseessaeensaens 20

drmaa-wg@gridforum.org 1

1. Overview

This document lists a C language binding for the DRMAA interface. For information related to
interface semantics, possible argument values, error conditions etc., consult chapter "3.2 DRMAA
API" of the interface specification. The C header file below is complete only with regard to the
information needed by a C compiler and linker.

This C binding may be used with C++ programs through use of the extern "C" { } wrapping
technique, which is widely used to import C binding interfaces in C++ programs. An example is
listed in the header file.

2. The C header file

The header file contains a C function prototype for each interface operation described in the
DRMAA interface specification. The function names in this document are always identical with the
names from the interface specification.

Function prototypes and opaque data types in the header file that do not have a counterpart in
the interface specification are specific to the C language binding. The DRMAA interface makes
frequent use of strings, string vectors as input and output arguments. Since C language does not
have a “real” string data type, a few additional opaque data types and helper functions are used
to handle output string vector arguments with the actual interface calls. To minimize the
complexity that was added for the C language binding compared to the language independent
specification, traditional C constructs such as "const char *" and "const char *job_ids[]" are used
whenever possible. As a result not much has been added compared to the "3.2 DRMAA API"
description.

SECTION 1. Compile time symbols
SECTION 1.1 Opaque data types

The following four symbols SHALL be defined in a drmaa.h file in an
opaque fashion such as

typedef struct drmaa job template s drmaa job template t;
typedef struct drmaa attr names s drmaa attr names t;
typedef struct drmaa attr values s drmaa attr values t;
typedef struct drmaa job ids s drmaa job ids t;

unintendend access to struct drmaa * s implementation dependent
data members SHALL be precluded by leaving out struct drmaa * s
from drmaa.h file. This ensures access to struct members can done
only by means of the libraries access functions as described in
sections after section 1.

SECTION 1.2 C preprocessor #defines for handling string output arguments

Firstly, the following C preprocessor #define's SHALL be define
in a drmaa.h file

#define DRMAA ATTR BUFFER 1024
#define DRMAA CONTACT BUFFER 1024
#define DRMAA DRM SYSTEM BUFFER 1024
#define DRMAA ERROR STRING BUFFER 1024
#define DRMAA JOBNAME BUFFER 1024

drmaa-wg@gridforum.org 2

#define DRMAA SIGNAL BUFFER 32

and could be used as global constants for buffer variable
definition of type char *. The defined numbers above denote the
recommended MINIMUM lengths for the content of the corresponding
char * output variables. If buffers are passed that are smaller
than the recommended minimum lengths the implementation MUST either
truncate the string to be returned or indicate the

DRMAA ERRNO INVALID ARGUMENT error.

SECTION 1.3 C preprocessor #defines for control operations

Firstly these preprocessor #define's SHALL be defined in a drmaa.h
file as follows

#define DRMAA TIMEOUT NO WAIT 0
#define DRMAA TIMEOUT WAIT FOREVER -1

for convenience in programs that make use of drmaa synchronize ()
or drmaa wait ().

Secondly these preprocessor #define's SHALL be defined in a drmaa.h
file as follows

#define DRMAA PS UNDETERMINED 0x00
#define DRMAA PS QUEUED ACTIVE 0x10
#define DRMAA PS SYSTEM ON HOLD 0x11
#define DRMAA PS USER ON HOLD 0x12

#define DRMAA PS USER SYSTEM ON HOLD 0x13

#define DRMAA PS RUNNING 0x20
#define DRMAA PS SYSTEM SUSPENDED 0x21
#define DRMAA PS USER SUSPENDED 0x22

#define DRMAA PS USER SYSTEM SUSPENDED 0x23
#define DRMAA PS DONE 0x30
#define DRMAA PS FAILED 0x40
for convenience in programs that make use of drmaa Jjob ps().

Thirdly these preprocessor #define's SHALL be defined in a drmaa.h
file as follows

#define DRMAA CONTROL_ SUSPEND
#define DRMAA CONTROL RESUME
#define DRMAA CONTROL_HOLD
#define DRMAA CONTROL RELEASE
#define DRMAA CONTROL TERMINATE

S w N O

for convenience in programs that make use of drmaa control().

Forthly the following C preprocessor #define's SHALL be defined in
a drmaa.h file as follows

#define DRMAA JOB IDS SESSION ALL "DRMAA JOB IDS_SESSION ANY"

drmaa-wg@gridforum.org 3

#define DRMAA JOB IDS SESSION ANY

for convenience in programs.

"DRMAA JOB IDS SESSION ALL"

SECTION 1.4 C preprocessor #defines specifically for job template

compilation

Firstly the following C preprocessor #define's SHALL be defined in
a drmaa.h file as follows

#define
#define

#define
#define

#define

DRMAA SUBMISSION STATE ACTIVE
DRMAA SUBMISSION STATE HOLD

DRMAA PLACEHOLDER HD
DRMAA PLACEHOLDER WD

DRMAA PLACEHOLDER INCR

"drmaa_ active"
"drmaa hold"

"Sdrmaa hd ph$"
"Sdrmaa wd phS"

"Sdrmaa incr phs$"

for convenience in use of keywords within job template attribute

values.

Secondly the following list of C preprocessor #define's SHALL be
defined in a drmaa.h file as follows for convenience in use of Jjob
template attribute names

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

DRMAA BLOCK_EMAIL
DRMAA DEADLINE TIME

DRMAA DURATION HLIMIT
DRMAA DURATION SLIMIT
DRMAA ERROR_PATH

DRMAA INPUT PATH
DRMAA JOB CATEGORY
DRMAA JOB NAME
DRMAA JOIN FILES

DRMAA JS_STATE

DRMAA NATIVE SPECIFICATION

"drmaa

DRMAA OUTPUT PATH
DRMAA REMOTE_COMMAND
DRMAA START TIME
DRMAA TRANSFER FILES

DRMAA V_ ARGV
DRMAA V _EMAIL
DRMAA V_ENV
DRMAA WCT HLIMIT
DRMAA WCT SLIMIT
DRMAA WD

"drmaa block email"
"drmaa deadline time"
"drmaa durartion hlimit"
"drmaa_ durartion slimit"
"drmaa error path"
"drmaa input path"
"drmaa_ job category"
"drmaa_Jjob name"
"drmaa_ join files"
"drmaa_ Jjs_ state"

native specification™”
"drmaa output path"
"drmaa remote command"
"drmaa start time"

"drmaa_ transfer files"
"drmaa_ v_argv"

"drmaa v_email"

"drmaa v_env"
"drmaa wct hlimit"
"drmaa wct slimit"
"drmaa_ wd"

SECTION 1.5 C preprocessor #defines used for DRMAA error codes

The following C preprocessor #define's SHALL be defined in a

drmaa.h file

#define
#define
#define

as follows

DRMAA ERRNO_SUCCESS 0
DRMAA ERRNO INTERNAL ERROR 1
DRMAA ERRNO DRM COMMUNICATION FAILURE 2

drmaa-wg@gridforum.org 4

#define DRMAA ERRNO AUTH FAILURE

#define DRMAA ERRNO INVALID ARGUMENT

#define DRMAA ERRNO NO ACTIVE SESSION

#define DRMAA ERRNO NO MEMORY

#define DRMAA ERRNO INVALID CONTACT STRING
#define DRMAA ERRNO DEFAULT CONTACT STRING ERROR
#define DRMAA ERRNO DRMS INIT FAILED

#define DRMAA ERRNO ALREADY ACTIVE SESSION
#define DRMAA ERRNO DRMS EXIT ERROR

H O W o Jo U W

o

#define DRMAA ERRNO INVALID ATTRIBUTE FORMAT 12
#define DRMAA ERRNO INVALID ATTRIBUTE VALUE 13
#define DRMAA ERRNO CONFLICTING ATTRIBUTE VALUES 14

#define DRMAA ERRNO TRY LATER 15
#define DRMAA ERRNO DENIED BY DRM 16
#define DRMAA ERRNO INVALID JOB 17
#define DRMAA ERRNO RESUME INCONSISTENT STATE 18
#define DRMAA ERRNO SUSPEND INCONSISTENT STATE 19
#define DRMAA ERRNO HOLD INCONSISTENT STATE 20
#define DRMAA ERRNO RELEASE INCONSISTENT STATE 21
#define DRMAA ERRNO EXIT TIMEOUT 22
#define DRMAA ERRNO NO RUSAGE 23

/* SECTION 2. string list helper functions */

int drmaa get next attr name(drmaa attr names t* values, char *value,
size t value len);

int drmaa get next attr value(drmaa attr values t* values, char *value,
size t value len);

int drmaa get next job id(drmaa job ids t* values, char *value, size t
vadue len) ;

void drmaa_ release attr names(drmaa attr names t* values);

void drmaa release attr values(drmaa attr values t* values);

void drmaa release job ids(drmaa job ids t* values);

/* SECTION 3. session mgmt */

int drmaa init (const char *contact, char *error diagnosis, size t
error diag len);

int drmaa exit (char *error diagnosis, size t error diag len);

/* SECTION 4. job template */
NAME
drmaa allocate job template, drmaa delete job template,
drmaa set attribute, drmaa get attribute,
drmaa_ set vector attribute,
drmaa get vector attribute, drmaa get attribute names,
drmaa_get vector attribute names - methods to build a job
template

SYNOPSIS
int drmaa allocate job template (drmaa job template t **jt, char

*error diagnosis, size t error diag len);

int drmaa delete job template(drmaa job template t *jt, char
*error diagnosis, size t error diag len);

drmaa-wg@gridforum.org 5

int drmaa set attribute(drmaa job template t *jt, const char
*name, const char *value, char *error diagnosis, size t
error_diag len);

int drmaa get attribute (drmaa job template t *jt, const char
*name, char *value, size t value len, char
*error diagnosis, size t error diag len);

int drmaa set vector attribute(drmaa job template t *jt, const
char *name, const char *value[], char
*error diagnosis, size t error diag len);

int drmaa get vector attribute(drmaa job template t *jt, const
char *name, drmaa attr values t **values, char
*error diagnosis, size t error diag len);

int drmaa get attribute names(drmaa attr names t **values, char
*error diagnosis, size t error diag len);

int drmaa get vector attribute names(drmaa attr names t **values,
char *error diagnosis, size t error diag len);

DESCRIPTION
The function drmaa allocate job template() allocates a new job
template, returned in jt. This template is used to describe the
job to be submitted. This is accomplished by setting the desired
scalar and vector attributes to their appropriate values. This
template is then used in the job submission process.

The function drmaa delete job template() deallocate the job
template pointed to by jt.

The function drmaa set attribute() sets scalar attribute, name,
to the value, value, in the job template, jt. Similarly, the
function drmaa set vector attribute() sets the vector attribute,

name, to the wvalue(s), value. Here, value must be an array of
one or more strings terminated by the null string.

The function drmaa get attribute() fills value with up to

value len characters of the scalar attribute name's value in the
given job template. drmaa get vector attribute() performs the
same for vector attributes.

The function drmaa get attribute names() returns the set of
supported scalar attribute names in values.
drmaa_get vector attribute names ()

performs the same for vector attributes.

RETURNS
All functions return DRMAA ERRNO SUCCESS on success.

ERRORS
If any error condition occurs, drmaa allocate job template(),
drmaa_deallocate job template(), drmaa set attribute(),
drmaa get attribute() drmaa set vector attribute(),
drmaa_ get vector attribute(), drmaa get attribute names () and

drmaa-wg@gridforum.org 6

drmaa get vector attribute names () shall provide up to
error _diag len characters of error related diagnosis
information in the buffer error diagnosis and return an
appropriate error code from those described below.

The drmaa_allocate job template() and drmaa delete job template ()
functions may return DRMAA ERRNO NO MEMORY,
DRMAA ERRNO INTERNAL ERROR or
DRMAA ERRNO DRM COMMUNICATION FAILURE.

The drmaa_ set attribute() may return DRMAA ERRNO NO MEMORY,
DRMAA ERRNO INTERNAL ERROR,
DRMAA ERRNO INVALID ATTRIBUTE FORMAT,
DRMAA ERRNO INVALID ARGUMENT,
DRMAA ERRNO INVALID ATTRIBUTE VALUE or
DRMAA ERRNO CONFLICTING ATTRIBUTE VALUES.

The drmaa set vector attribute() may return DRMAA ERRNO NO MEMORY,
DRMAA ERRNO INTERNAL ERROR,
DRMAA ERRNO INVALID ATTRIBUTE FORMAT,
DRMAA ERRNO INVALID ATTRIBUTE VALUE or
DRMAA ERRNO CONFLICTING ATTRIBUTE VALUES.

DRMAA ERRNO DRM COMMUNICATION FAILURE
Could not contact DRM system for this request.

DRMAA ERRNO INTERNAL ERROR
Unexpected or internal error.

DRMAA ERRNO INVALID ARGUMENT
The input value for an argument is invalid.

DRMAA ERRNO CONFLICTING ATTRIBUTE VALUES
The value of this attribute is conflicting with a previously
set attribute.

DRMAA ERRNO INVALID ATTRIBUTE FORMAT
The format for the job attribute is invalid.

DRMAA ERRNO INVALID ATTRIBUTE VALUE
The value for the job attribute is invalid.

DRMAA ERRNO NO MEMORY
The system is unable to allocate the required memory.

SEE ALSO
drmaa run job (), drmaa get next attr name(),
drmaa get next attr value ()

CONFORMING TO
Distributed Resource Management Application API Specification 1.0
(GWD-R)

SECTION 6. job submission

drmaa-wg@gridforum.org 7

NAME
drmaa_run job, drmaa run bulk jobs - submit single and bulk jobs

SYNOPSIS

int drmaa run_ job (char *job id, size t job_id len,
const drmaa_ job template t *jt,
char *error diagnosis, size t error diag len);

int drmaa run bulk jobs(drmaa job ids t **jobids,
const drmaa_ job template t *jt,
int start, int end, int incr,
char *error diagnosis, size t error diag len);

DESCRIPTION
These two functions are used for job submission to a DRM system.

The drmaa run job() submits a single job with the attributes
defined in the job template 'jt'. On success up to
'job_id len' bytes of the job identifier are returned into
the buffer 'job id'.

The drmaa run bulk jobs() submits a set of parametric jobs that
can be run concurrently. For each parametric Jjob the
attributes defined in the job template 'jt' are used. Each
job of the set is identical except of it's index. The first
parametric job gets 'start' as index, the next one gets
'start' + 'incr' etc. until 'end'. The smallest 'start' is
1, the largest 'end' is 2731-1. The 'start' value must be
lower or equal than 'end' and only positive index numbers
are accepted. The index number can be determined by the job
in an implementation specific fashion.

On success

a job id string vector containing job identifiers is returned

into 'jobids'. The job identifiers in the job id string vector

can be extracted using drmaa get next job id(). The caller is
responsible for releasing the job id string vector returned into

'"jobids' using drmaa release Jjob ids().

RETURNS
Upon successful completion drmaa run job () and
drmaa run bulk jobs()
return DRMAA ERRNO SUCCESS, otherwise corresponding DRMAA error
codes are returned.

ERRORS
If any error condition occurs, drmaa run job() and
drmaa_run bulk jobs() shall provide up to 'error diag len'

characters of error related diagnosis information in the buffer
'error diagnosis' and return one of following error codes:

DRMAA ERRNO TRY LATER
Could not pass job now to DRM system. A retry may succeed

however (saturation).

DRMAA ERRNO DENIED BY DRM
The DRM system rejected the job. The job will never be

drmaa-wg@gridforum.org 8

accepted due to DRM configuration or job template settings.

DRMAA ERRNO DRM COMMUNICATION FAILURE
Could not contact DRM system for this request.

DRMAA ERRNO AUTH FATILURE
The specified request is not processed successfully due to
authorization failure.

DRMAA ERRNO NO MEMORY
The system is unable to allocate resources.

DRMAA ERRNO INTERNAL ERROR
Unexpected or internal error.

DRMAA ERRNO INVALID ARGUMENT
The input value for an argument is invalid.

DRMAA_ERRNO_NO_ACTIVE_SESSION
Routine failed because there is no active session.

SEE ALSO
drmaa get next job id(), drmaa release job ids()

EXAMPLE
CONFORMING TO
Distributed Resource Management Application API Specification 1.0

(GWD-R)

SECTION 7. job status and control

NAME
drmaa control, drmaa job ps - control a job and obtain a job's
status
SYNOPSIS

#include "drmaa.h"

int drmaa control (const char *jobid, int action, char
*error diagnosis, size t error diag len);

int drmaa job ps(const char *job id, int *remote ps, char
*error diagnosis, size t error diag len);

DESCRIPTION
The drmaa control () function allows the job specified by jobid to
be controlled according to action, whose value may be one of the
following:

DRMAA CONTROL_SUSPEND
DRMAA CONTROL RESUME
DRMAA CONTROL_HOLD
DRMAA CONTROL RELEASE
DRMAA CONTROL TERMINATE

drmaa-wg@gridforum.org 9

The drmaa control() call returns after the DRM system has
acknowledged the command, not necessarily after the desired
action has been performed. f jobid is DRMAA JOB IDS SESSION ALL,
then this function performs action on all jobs submitted during
this session at the moment it is called.

The drmaa_ job ps() function fills remote ps with the program
status of the job identified by job id. The possible values of a
program's staus are:

DRMAA PS UNDETERMINED

DRMAA PS QUEUED ACTIVE

DRMAA PS SYSTEM ON HOLD
DRMAA PS USER ON_HOLD

DRMAA PS USER_SYSTEM ON HOLD
DRMAA PS RUNNING

DRMAA PS SYSTEM SUSPENDED
DRMAA PS USER_SUSPENDED
DRMAA PS_ DONE
DRMAA PS FAILED

Terminated jobs have DRMAA PS FAILED status.

RETURNS
All functions return DRMAA ERRNO SUCCESS on success.

ERRORS
If any error condition occurs, drmaa control () and drmaa Jjob ps()
shall provide up to error diag len characters of error related
diagnosis information in the buffer error diagnosis and return an
appropriate error code from those described below.

The drmaa control () function may return DRMAA ERRNO AUTH FAILURE,
DRMAA ERRNO DRM COMMUNICATION FAILURE,
DRMAA ERRNO HOLD INCONSISTENT STATE,
DRMAA_ERRNO_INTERNAL_ERROR,
DRMAA ERRNO INVALID JOB, DRMAA ERRNO NO MEMORY,
DRMAA_ERRNO_RELEASE_INCONSISTENT_STATE,
DRMAA ERRNO RESUME INCONSISTENT STATE or
DRMAA ERRNO SUSPEND INCONSISTENT STATE.

The drmaa job ps() function may return DRMAA ERRNO AUTH FAILURE,
DRMAA ERRNO DRM COMMUNICATION FAILURE,
DRMAA ERRNO INTERNAL ERROR,
DRMAA ERRNO INVALID JOB or DRMAA ERRNO NO MEMORY .

DRMAA ERRNO AUTH FAILURE
The specified request is not processed successfully due to

authorization failure.

DRMAA ERRNO DRM COMMUNICATION FAILURE
Could not contact DRM system for this request.

DRMAA ERRNO HOLD INCONSISTENT STATE
The job cannot be moved to a HOLD state.

DRMAA ERRNO INTERNAL ERROR

drmaa-wg@gridforum.org 10

Unexpected or internal error.

DRMAA ERRNO INVALID JOB
A jobid is invalid.

DRMAA ERRNO NO MEMORY
The system is unable to allocate the required memory.

DRMAA ERRNO RELEASE INCONSISTENT STATE
The job is not in a HOLD state.

DRMAA ERRNO RESUME INCONSISTENT STATE
The job has not been suspended.

DRMAA ERRNO SUSPEND INCONSISTENT STATE
The job has not been running and cannot be suspended.

SEE ALSO
drmaa_run_ job ()

CONFORMING TO
Distributed Resource Management Application API Specification 1.0
(GWD-R)

SECTION 8. synchronize, wait

NAME
drmaa synchronize, drmaa wait, drmaa wifexited, drmaa wifsignaled,
drmaa wtermsig, drmaa_ wcoredump, drmaa wifaborted - synchronize
and wait operations

SYNOPSIS
#include "drmaa.h"

int drmaa synchronize (const char *job ids[], signed long timeout,
int dispose, char *error diagnosis, size t
error_diag len);

int drmaa wait (const char *job id, char *job id out, size t
job id out len, int *stat, signed long timeout,
drmaa attr values t **rusage, char *error diagnosis,

size t error diag len);

int drmaa wifexited(int *exited, int stat, char *error diagnosis,
size t error diag len);

int drmaa wexitstatus(int *exit status, int stat, char
*error diagnosis, size t error diag len);

int drmaa wifsignaled(int *signaled, int stat, char
*error diagnosis, size t error diag len);

int drmaa wtermsig(char *signal, size t signal len, int stat,
char *error diagnosis, size t error diag len);

int drmaa wcoredump (int *core dumped, int stat, char

drmaa-wg@gridforum.org 11

*error diagnosis, size t error diag len);

int drmaa wifaborted(int *aborted, int stat, char
*error diagnosis, size t error diag len);

DESCRIPTION

The drmaa synchronize () function blocks until all jobs specified
by job ids have completed execution. Use

DRMAA JOB IDS SESSION ALL as job ids in order to wait for all
jobs submitted before this function is called. The function
waits for the number of seconds specified by timeout, where a
timeout of DRMAA TIMEOUT WAIT FOREVER is an infinite amount of
time and DRMAA TIMEOUT NO WAIT returns immediately. If this
function returns before timeout seconds either all the jobs have
been waited on or there was an interrupt. This function returns
DRMAA ERRNO EXIT TIMEOUT if it exits due to timeout before all
jobs have completed. The dispose parameter specifies how to
treat the rusage data of the waited jobs; if false, the
information remains available via drmaa wait (), otherwise it is
discarded.

The drmaa wait() function waits for the job specified by job id
to either finish executing or fail. If job id is

DRMAA JOB IDS SESSION ANY,

drmaa wait () waits for any job submitted this session. Like
drmaa synchronize (), drmaa wait() waits for the number of seconds
specified by timeout, where timeout may be

DRMAA TIMEOUT WAIT FOREVER or DRMAA TIMEOUT NO WAIT.

Upon success, drmaa wait() fills job id out with up to

job _id out len characters of the waited job's id, stat with the a
code that encompasses information about the condition under which
the job terminated, and rusage with an array of <name>=<value>
strings that describe the amount of resources consumed by the job.
The stat parameter is further described below. The rusage
parameter's values may be accessed via

drmaa get next attr value().

If drmaa wait() exits before timeout, either the job has been
successfully waited or there was an interrupt. If successfully
waited, the jobs rusage information has been reaped, and further
calls to drmaa wait() with this job id will return

DRMAA ERRNO_ INVALID JOB. If drmaa wait() exists due to

timeout, DRMAA ERRNO EXIT TIMEOUT is returned and no rusage
information is reaped.

The stat parameter set by a successful call to drmaa wait() is
used to retrieve further input about the exit condition of the
waited job, job id out, through the following functions:

drmaa wifexited(), drmaa wexitstatus(), drmaa wifsignaled(),
drmaa_ wtermsig(), drmaa wcoredump () and drmaa wifaborted().
The drmaa wifexited() function evaluates into exited a non-zero

value if stat was returned for a job that termined normally. 1In
this case, more information can be provided about the job by the
drmaa wifsignaled() and drmaa wcoredump () functions. Exited is

drmaa-wg@gridforum.org 12

filled with zero if either the job's termination state is unknown
or no exit status of a normally terminated job is available.

The drmaa wexitstatus() function evaluates into exit status the
exit code of the job provided that drmaa wifexited()'s exited is
non-zero.

The drmaa wifsignaled() function evaluates into signaled a non-

zero value if stat was returned for a job that terminated due to
the receipt of a signal. A zero value indicates either the Jjob

did not terminate due to a signal or it is not known if the Jjob

terminated due to a signal.

The drmaa wtermsig() function fills signal with up to signal len
characters of the signal name that caused the termination of the
job provided that the call to drmaa wifsignaled() with this stat
returned non-zero. For signals declared by POSIX, the symbolic
names are returned.

The drmaa wcoredump () function fills core dumped with a non-zero
value provided that drmaa wifsignaled()'s signaled is non-zero
and a core image of the terminated job was created.

The drmaa wifaborted() function fills aborted with a non-zero
value if stat was returned for a job that ended before entering
the running state.

RETURNS
All functions return DRMAA ERRNO SUCCESS on success.

ERRORS
If any error condition occurs, all functions shall provide up to
error_diag len characters of error related diagnosis information
in the buffer error diagnosis and return an appropriate error
code from those described below.

The drmaa synchronize() function may return DRMAA ERRNO NO MEMORY,
DRMAA ERRNO INTERNAL ERROR, DRMAA ERRNO DRM COMMUNICATION FAILURE,
DRMAA ERRNO AUTH FAILURE or DRMAA ERRNO INVALID JOB.

The drmaa wait() function may return DRMAA ERRNO NO MEMORY,

DRMAA ERRNO INTERNAL ERROR, DRMAA ERRNO DRM COMMUNICATION FAILURE,
DRMAA ERRNO AUTH FAILURE, DRMAA ERRNO NO RUSAGE or

DRMAA ERRNO INVALID JOB.

DRMAA ERRNO AUTH FAILURE
The specified request is not processed successfully due to
authorization failure.

DRMAA ERRNO DRM COMMUNICATION FAILURE
Could not contact DRM system for this request.

DRMAA ERRNO INTERNAL ERROR
Unexpected or internal error.

DRMAA ERRNO INVALID JOB
A jobid is invalid.

drmaa-wg@gridforum.org 13

DRMAA ERRNO NO MEMORY
The system is unable to allocate the required memory.

DRMAA ERRNO NO RUSAGE
The job has finished but no rusage and stat data is available.

SEE ALSO drmaa get next attr value(), drmaa release attr values()

CONFORMING TO
Distributed Resource Management Application API Specification 1.0
(GWD-R)

SECTION 9. auxilliary

NAME
drmaa strerror, drmaa get contact, drmaa version,
drmaa_get DRM system, drmaa get DRMAA implementaion — auxillary
operations

SYNOPSIS
#include "drmaa.h"

const char *drmaa strerror (int drmaa errno);

int drmaa get contact (char *contact, size t contact len, char
*error diagnosis, size t error diag len);

int drmaa version (unsigned int *major, unsigned int *minor, char
*error diagnosis, size t error diag len);

int drmaa get DRM system(char *drm system, size t drm system len,
char *error diagnosis, size t error diag len);

int drmaa get DRMAA implementation(char *drmaa impl, size t
drmaa impl len, char *error diagnosis, size t
error_diag len);

DESCRIPTION
The drmaa strerror() function returns the error string describing
the DRMAA error number drmaa errno.

The drmaa_get contacts() function, if called before drmaa init(),
returns the list of default DRMAA implementation contacts strings,
one per each DRM implementation provided. These contact strings
are delimited by commas. If called after drmaa init(),

drmaa_get contacts() returns the contact string of the DRM system
for which the library has been initialized.

The drmaa version() function sets major and minor to the major
and minor versions of the DRMAA library.

The drmaa get DRM system() function, if called before

drmaa_init (), returns a comma delimited DRM systems string, one
per each DRM system implementation provided. If called after
drmaa_init (), it returns the selected DRM system.

drmaa-wg@gridforum.org 14

The drmaa get DRMAA implementation() function, if called before
drmaa init (), returns a command delimited DRMAA implementations
string, one per each DRM system implementation provided. If
called after drmaa init(), it returns the selected DRMAA
implementation.

RETURNS
The drmaa strerror () function returns the appropriate string given a
valid
drmaa_errno, otherwise it returns NULL.

The drmaa get contact(), drmaa version(), drmaa get DRM system(),
and drmaa get DRMAA implmentation() functions always return
DRMAA ERRNO SUCCESS.

SEE ALSO
drmaa_ init ()

CONFORMING TO
Distributed Resource Management Application API Specification 1.0
(GWD-R)

3. C binding example

The C test program below serves as an example of an application that uses the DRMAA C
binding interface. It illustrates submission of both single and bulk remote jobs. After submission
drmaa_synchronize() call is used to synchronize the remote jobs execution. The call returns after
all the jobs have finished executing. Finally, drmaa_wait() call is used to retrieve and print out
the remote jobs execution information.

A full path for the remote command is passed as the first argument to the test program. That
value is directly used as “drmaa_remote_command” job template attribute. The C binding
example uses value “5” as a first argument to the job template vector attribute “drmaa_v_argv”.
Passing “/bin/sleep” as a first argument to the test program will for example cause 32 sleep jobs
to be run that sleep for 5 seconds each before finishing execution. Note that we expect to find
“/bin/sleep” command on all of the remote nodes.

#i ncl ude <stdi o. h>;

#i ncl ude <uni std. h>;

#i ncl ude <string. h>;

#i ncl ude "drnaa. h"

#defi ne JOB CHUNK 8

#defi ne NBULKS 3

static drnaa_job tenplate t *create_job tenplate(const char *job_path,

int seconds, int as_bul k_job);
int main(int argc, char *argv[])
{
char di agnosi s[DRMAA ERROR_STRI NG_BUFFER] ;
const char *all _jobids[NBULKS*JOB CHUNK + JOB CHUNK+1];
char j obi d[100];
int drmaa_errno, i, pos = 0;
const char *job_path;
drnmaa_job tenplate t *jt;
drmaa-wg@ri df orumorg 8
if (argc < 2) {
fprintf(stderr, "usage: exanple path-to-job\n");

drmaa-wg@gridforum.org 15

return 1;

_path = argv[1];

(drmaa_i ni t (NULL, diagnosis, sizeof(diagnosis)-1) !=
DRVAA ERRNO SUCCESS) {
fprintf(stderr, "drnmaa_init() failed: %\n", di agnosis);
return 1;

}
j ob
i f

/* submt sone bul k jobs */
if (!(jt = create_job_tenplate(job_path, 5, 1)))
fprintf(stderr, "create_job_tenplate() failed\n");

return 1,

}

for (i= I < NBULKS; i++) {
drnaa_Job ids_t *jobids;
int j;

whil e ((drmaa_errno=drmaa_run_bul k_j obs(& obids, jt, 1
JCB CHUNK, 1, diagnosis, sizeof(diagnosis)- 1))
=DRMAA ERRNO DRNICCNNUNICATICN | FAI LURE)
fpr|ntf(stderr "drmaa_run_bul k_jobs() failed —
retry: %\ n" di agnosi s) ;
sleep(l);

if (drrmaa_errno ! = DRMAA ERRNO SUCCESS) {
fprintf(stderr, "drmaa_run_bul k_j obs()
failed: 9%\n" di agnosi s);
return 1,

}
printf("submitted bulk job with jobids:\n");
for (j=0; j < JOB CHUNK; j++) {
drmaa_get next job_id(jobids, jobid,
si zeof (j obid)-1);
al | _j obi ds[pos++] = strdup(jobid);
printf("\t \"%\"\n", jobid);

drmaa_rel ease_job_ids(jobids);

}

drmaa_del ete_job_tenplate(jt, NULL, 0);

/* submt sone sequential jobs */

if ('(jt = create_job_ tenplate(Job path, 5, 0))) {
fprintf(stderr, “"create sleeper_Job tenplate()

failed\n");

return 1;

}

for (i= | JOB_CHUNK; i++) {

mh|le ((drmaa_errno=dr maa_run_j ob(j obi d,
sizeof (jobid)-1, jt,
di agnosi s, S|zeof(d|agn05|s) 1)) ==
DRVAA ERRNO DRNICCNNUNICATICN | FAI LURE) {
fprintf(stderr, "drmaa_run_job() failed —
retry: %\ n" di agnosi s) ;
sleep(l);

}
if (drrmaa_errno ! = DRMAA ERRNO SUCCESS)
fprintf(stderr, "drrmaa_run_job() failed: %\n",
diagnosis)
return 1,
drmaa-wg@ridf orumorg 9

}
printf("\t \"%\"\n", jobid);
al | _j obi ds[pos++] = strdup(j obid);

/* set string array end nark */
al | _j obi ds[pos] = NULL;

drmaa-wg@gridforum.org 16

drnmaa_del ete_job tenplate(jt, NULL, 0);
/* synchronize with all jobs */
drmaa_errno = drrmaa_synchroni ze(al | _j obi ds,
DRVAA TI MEQUT WAI T_FOREVER, 0,
di agnosi s, sizeof (di agnosi s)-1);
if (drrmaa_errno ! = DRMAA ERRNO SUCCESS) {
fprintf(stderr,
"drmaa_synchr oni ze(DRMAA JOB | DS_SESSI ON_ALL,
di spose) failed: %\n", diagnosis);
return 1;

intf("synchronized with all jobs\n");
wait all those jobs */
(pos=0; pos < NBULKS*JOB CHUNK + JOB CHUNK; pos++) {
int stat;
int aborted, exited, exit_status, signaled,
drmaa_errno = drrmaa_wait (al | _j obi ds[pos], jobid,
si zeof (jobid)-1, &stat,
DRMAA TI MEQUT_WAI T_FOREVER, NULL,
di agnosi s, sizeof (diagnosis)-1);
if (drrmaa_errno ! = DRMAA ERRNO_SUCCESS)
fprintf(stderr, "drmaa_wait (%) failed: %\n",
al | _j obi ds[pos], diagnosis);
return 1,

}
pr
/*
for

eport how job finished */
a w faborted(&borted, stat, NULL, 0);
abort ed)
printf("job\"%\" never ran\n", all_j obi ds[pos]);

—h = %
/\5—1

drmaa_wi fexited(&exited, stat, NULL, O);
if (exited) {
drmaa_wexi t st at us(&exit_status, stat, NULL,
0);
printf("job \"%\" finished regularly with
exit status d\n",
al | _jobids[pos], exit_status);
1} else {
drmaa_wi f si gnal ed(&si gnal ed, stat, NULL,
O .

if (signaled) {
char ternsi g] DRMAA SI GNAL_ BUFFER+1] ;
drmaa_wt ernsi g(ternsig,
DRVAA SI GNAL_BUFFER, st at,
NULL, 0);
printf("job \"%\" finished due to
signal 9%\n",
al | _jobids[pos], ternsigQ);
} else
printf("job \"%\" finished with
uncl ear conditions\n",
al | _j obi ds[pos]);

}

if (drraa_exit(diagnosis, sizeof(diagnosis)-1) !=
DRMAA _ERRNO_SUCCESS) {
fprintf(stderr, "drmaa_exit() failed: %\ n", di agnosis);
return 1,

return O;

static drnaa_job tenplate_t *create_job_ tenplate(const char *job_path,

drmaa-wg@gridforum.org 17

i nt seconds, int as_bul k_job)

const char *job_argv[2];
drmaa_job_tenplate_ t *jt = NULL;
char buffer[100];
if (drmaa_allocate_job tenplate(&t, NULL, 0)!=DRVAA ERRNO SUCCESS)
return NULL;
/* run in users hone directory */
drmaa_set _attribute(jt, DRMAA WD, DRMAA PLACEHOLDER HD, NULL, 0);
/* the job to be run */
drnmaa_set _attribute(jt, DRMAA REMOTE COMVAND, job_path, NULL, 0);
/* the job's argunments */
sprintf(buffer, "%l", seconds);
job_argv[0] = buffer;
job_argv[1] = NULL;
drmaa_set _vector_attribute(jt, DRMAA V_ARGY, job _argv, NULL, 0);
/* join output/error file */
drmaa_set _attribute(jt, DRMAA JO N FILES, "y", NULL, 0);
/* path for output */
if (las_bul k_job)
drmaa_set _attribute(jt, DRMAA OUTPUT PATH,
DRVAA PLACEHOLDER HD'/ DRMAA JOB", NULL, 0);
el se
drmaa_set _attribute(jt, DRMAA OUTPUT_PATH,
DRVAA PLACEHOLDER HD'/ DRVAA JOB. " DRVAA PLACEHOLDER | NCR,
NULL, 0);
return jt;

4. Security Considerations

The DRMAA API does not specifically assume the existence of GRID Security
infrastructure. The scheduling scenario described herein presumes that security is handled
at the point of job authorization/execution on a particular resource. It is assumed that
credentials owned by the process using the API are used by the DRMAA implementation
to prevent abuse of the interface. In order to not unnecessarily restrict the spectrum of
usable credentials, no explicit interface is defined for passing credentials.

It is conceivable an authorized but malicious user could use a DRMAA implementation or
a DRMAA enabled application to saturate a DRM system with a flood of requests.
Unfortunately for the DRM system this case is not distinguishable from the case of an
authorized good-natured user that has many jobs to be processed. For this case DRMAA
defines the DRMAA ERRNO TRY LATER return code to allow a DRM system to reject
requests and properly indicate DRM saturation.

DRMAA implementers should guard against buffer overflows that could be exploited
through DRMAA enabled interactive applications or web portals. Implementations of the
DRMAA API will most likely require a network to coordinate subordinate DRMS,
however the API makes no assumptions about the security posture provided the
networking environment. Therefore, application developers should further consider the
security implications of "on-the-wire" communications.

drmaa-wg@gridforum.org 18

For environments that allow remote or protocol based DRMAA clients DRMAA should
consider implementing support for secure transport layers to prevent man in the middle
attacks. DRMAA does not impose any security requirements on its clients.

Author Information

Roger Brobst
rbrobst@cadence.com
Cadence Design Systems, Inc
555 River Oaks Parkway

San Jose, CA 95134

Nicholas Geib

njgeib@wisc.edu

University of Wisconsin Madison
USA

Andreas Haas
andreas.haas@sun.com
Sun Microsystems GmbH
Dr.-Leo-Ritter-Str. 7
D-93049 Regensburg
Germany

Hrabri L. Rajic
hrabri.rajic@intel.com
Intel Americas Inc.
1906 Fox Drive
Champaign, IL 61820

John Tollefsrud

J.t@sun.com

Sun Microsystems

18 Network Circle, UMPK18-211
Menlo Park, CA 94025

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license

drmaa-wg@gridforum.org 19

or permission for the use of such proprietary rights by implementers or users of this
specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF
Executive Director.

Full Copyright Notice

Copyright (C) Global Grid Forum (date). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to the GGF or other
organizations, except as needed for the purpose of developing Grid Recommendations in
which case the procedures for copyrights defined in the GGF Document process must be
followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF
or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE."

drmaa-wg@gridforum.org 20

